
1

An Efficient NVM based Architecture for
Intermittent Computing under Energy Constraints

SatyaJaswanth Badri, Mukesh Saini, and Neeraj Goel

Abstract—Battery-less technology evolved to replace battery
technology. Non-volatile memory (NVM) based processors were
explored to store the program state during a power failure. The
energy stored in a capacitor is used for a backup during a power
failure. Since the size of a capacitor is fixed and limited, the
available energy in a capacitor is also limited and fixed. Thus,
the capacitor energy is insufficient to store the entire program
state during frequent power failures. This paper proposes an
architecture that assures safe backup of volatile contents during
a power failure under energy constraints. Using a proposed dirty
block table (DBT) and writeback queue (WBQ), this work limits
the number of dirty blocks in the L1 cache at any given time.
We further conducted a set of experiments by varying the pa-
rameter sizes to help the user make appropriate design decisions
concerning their energy requirements. The proposed architecture
decreases energy consumption by 17.56%, the number of writes
to NVM by 18.97% at LLC, and 10.66% at a main-memory level
compared to baseline architecture.

Index Terms—Non-Volatile Memory, STT-RAM, PCM, Inter-
mittent power, Limited Energy

I. INTRODUCTION

The Internet of Things (IoT) allows humans to interact
and connect with almost every object. These wearable and
implantable devices consist of many sensors. In the future, IoT
may consist of billions of sensors and systems by the end of
2050 [1]. Most of these devices will be powered by batteries.
Maintaining and replacing a larger number of battery-operated
devices is a costly and enormous task. Further, batteries are
hazardous to the environment, and their lifetime is also a
critical issue [2].

The alternative solution is to harvest energy from the
environment and use it in the IoT system, thus, completely
avoiding the use of batteries. Energy harvesting is unpre-
dictable, and power failures are often [3]. Thus, devices based
on harvested energy can also be referred to as intermittently
powered devices or battery-less devices [4], [5]. In conven-
tional processors, registers, cache, and main memories are
volatile [6]; therefore, after each power failure, all data is
erased from the memory, and the system has to restart from
the beginning.

Non-volatile processors (NVP) have been proposed [6]–[8]
as a solution in the past. An NVP stores the processor state
in non-volatile memory (NVM) during a power failure. Thus,
NVP resumes the application’s computational tasks once the
power supply is restored, thus achieving faster recovery and
backup speeds when compared to traditional processors.

The authors are with the Computer Science and Engineering Depart-
ment, IIT Ropar, Punjab-140001, India (e-mail: 2018csz0002@iitrpr.ac.in;
mukesh@@iitrpr.ac.in; neeraj@iitrpr.ac.in).

At power failure, NVP needs to store the content of volatile
memory (registers/SRAM caches) in an NVM such that the
application can restart from the same point. The size of the
registers and the contents of the SRAM caches determines
the time and energy required for backup. Although using no
SRAM caches reduces backup time and energy to almost
negligible, but it significantly impacts performance.

When using battery-less hardware, the device must be
turned off as soon as harvested power is no longer available.
To avoid sudden power failures and fluctuations, such devices
accumulate energy in a capacitor that smoothens the power
availability and provides energy during power failures [4],
[9], [10]. Thus, during a power failure, the energy stored in
a capacitor is used to backup the processor state. The entire
process state in volatile memory must be backed up to ensure
correctness. Further, cache lines store a copy of data elements
present in memory; therefore, cache lines that are not modified
need not be backed up. However, in the worst case, all the
cache lines could be dirty.

Since the energy storage capacity of the capacitor is limited
and fixed, only fixed SRAM contents can be copied to NVM
during a power failure. A sub-optimal solution is to constrain
the cache size based on the energy available in a capacitor or
design the capacitor to store the entire cache.

This paper proposes an NVM-based architecture that can
save the process state by optimally utilizing a fixed amount
of energy and using effective cache management policies. We
propose to use a cache larger than that can be backed up by
the capacitor. To limit the number of cache lines to be backed
up, we fix the maximum number of dirty blocks in the cache.
We propose a cache architecture that maintains a maximum
number of dirty blocks and cache management policies that
keep track of dirty blocks and suggest which block to replace.

The proposed architecture is compared with write-back and
write-through cache architectures in terms of performance and
energy consumption. During stable power supply, the proposed
architecture reduces energy consumption by 17.56%, writes
to STT-RAM by 18.97%, and PCM by 10.66% compared
to baseline architecture. During power failure, the proposed
architecture consumes 20.94% less energy than the baseline.

Paper organization: Section II discusses the background
and related works. Section III explains the motivation behind
the base architecture selection and the need to propose an
NVM-based architecture that uses only a fixed amount of
energy for backup. Section IV describes the proposed architec-
ture in detail. The experimental setup and results are discussed
in section V. We conclude this work in section VI.
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II. BACKGROUND AND RELATED WORKS

SRAM/DRAM is used to design registers, caches, and main
memory for conventional processors. Recent advancements
in NVM technologies include Spin-Transfer Torque RAM
(STT-RAM) [11], Phase Change Memory (PCM) [12], and
Ferroelectric RAM (FRAM) [13]. These NVM technologies
motivated researchers for their appealing characteristics, such
as non-volatility, low cost, and high density. NVM is used
to design flip-flops [14], [15]. S. Thirumala et al. [14] pro-
posed reconfigurable-ferroelectric transistors to design energy-
efficient intermittent devices. NVM is used to design the
L1 cache [16], last level cache (LLC) [17], [18], and main
memory [12], [13] in the literature. Many studies have used
NVMs to build even hybrid memories [11], [16], [19], saving
significant energy when configured and used correctly.

Writes to NVMs consume more latency and energy com-
pared to volatile memory. We must optimize NVM utilization
by reducing the usage of NVM or reducing the number of
writes to NVM. Many researchers are working to reduce the
number of NVM writes at the cache or main memory. Choi
et al. [19] proposed a way allocation scheme to reduce write
counts to NVM in their hybrid LLC. Lee et al. [20] introduced
PCM buffers to overcome the overheads, i.e., write latency and
energy. Qureshi et al. [21] proposed a write cancellation and
write pausing technique to give more priority to read requests
than write requests.

To develop an intermittent aware design, we should also
change the execution model of a conventional processor by
incorporating additional backup/restore procedures [5]. We
require an efficient backup/restore procedure that backup and
restores volatile contents during power failures. The size of
volatile contents determines the amount of energy required to
backup/restore during a power failure [22]. If we only have
a small amount of available energy in our capacitor, and this
energy is insufficient to backup the entire volatile contents,
we may get inconsistent results. As a result, we must reduce
backup/restore overheads during frequent power failures.

Many researchers are working to reduce NVP backup and
restore overheads. Recent checkpointing techniques [14], [16],
[23], [24] are also proposed to reduce the size of volatile
contents that must be backup/restored during frequent power
failures. In-situ checkpointing has gained popularity in recent
times [14], [25], which uses unified NVM architectures. Lee
et al. [7] proposed an adaptive NVP that prioritizes data
retention to reduce the frequency of backup/restore operations.
The number of power failures can be reduced by voltage and
frequency scaling [26], [27]. Rather than reducing the number
of backups and restore operations, researchers [28] focused
on reducing the size of backup contents. Architectures [29],
[30] based on the comparison and compression strategies are
proposed to reduce the number of bits/contents to be stored in
the non-volatile flip flop (NVFF)-based NVP, which reduces
the dynamic energy consumption.

III. MOTIVATION

This section discusses the observations that motivated us to
propose an energy-efficient NVM-based architecture.

A. Motivation for base architecture

NVMs at Cache Level: Typically, we want LLCs to be
small and faster in comparison to main memory. Based on
these two parameters, we must choose between STT-RAM
and PCM to determine which NVM technology is appropriate
for LLC. For small-size LLCs, STT-RAM outperforms PCM
because STT-RAM consumes less latency and low energy and
has high write endurance than the PCM. In terms of write
energy and write latency, PCM consumes 10 times more than
STT-RAM. The endurance of STT-RAM is 4 × 1012 write
cycles, whereas PCM has 109 write cycles [31]. When used
at the cache level, STT-RAM has a lifetime of more than tens
of years [31]. As a result, we use STT-RAM as a replacement
for SRAM at the cache level. Thus, we use STT-RAM at LLC
throughout the paper.

NVMs at Main Memory Level: Usually, we want our main
memories to be large and inexpensive. Based on these two
parameters, we must select one of several NVM technologies,
including STT-RAM, PCM, flash, and FRAM. NAND flash
has the fewest write/erase cycles. A block must be erased
every time in a NAND flash before writing to it, which
consumes extra energy and delay [32]–[34]. FRAM cannot
yet replace either DRAM or NVM technologies in terms of
density because of its scalability [35]. Though PCM is slower
than STT-RAM, but PCM has better density characteristics.
PCM has 4x times more density than STT-RAM [36]. STT-
RAM is more expensive than PCM. PCM is 2x-4x slower than
DRAM but provides 4x more density than DRAM [12]. The
majority of previous works have used PCM as an emerging
candidate at the main memory level [37], [20], [21]. PCM is
a viable alternative to DRAM in main memory design. Thus,
we use PCM as the main memory throughout the paper.

Evaluating the base architecture : We chose NVM for
LLC and main memory based on previous discussions. We
use STT-RAM at LLC and PCM at main memory throughout
this work. In architecture-1, SRAM is used at L1 and LLC,
and PCM is used at the main memory, as shown in figure
1 (a), i.e., traditional architecture. Architecture-2 is shown in
figure 1 (b), SRAM is used at L1, STT-RAM at LLC, and
PCM is used at the main memory, i.e., our base architecture.
These comparisons help to evaluate how bad or good our base
architecture is under stable and unstable power scenarios.

Under stable power supply : Both architecture-1 and 2
give an equal number of writes to PCM during a regular
operation. In architecture-2, STT-RAM takes more cycles to
execute than in architecture-1 because the CPU has to stall
to complete each STT-RAM write. So, we implement the
LLC cache such that the LLC gets less number of writes
by passing the writes to PCM to hide the LLC latency. We
observed that architecture-2 takes 5.88% more execution time
than architecture-2 during stable power. Thus, using STT-
RAM at the cache should be a minimal impact on overall
system performance.

Under unstable power supply : During frequent power
failures, writeback of volatile contents is essential. In
architecture-1, PCM gets more writes due to frequent power
failures, which consumes more energy. In architecture-2, PCM
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Fig. 1. Architecture Designs to integrate NVM (a) Introduce NVM at Main-memory, and (b) Introduce NVM at the last-level cache and main-memory levels,
(c) Introduce NVM at both the cache levels and main-memory level, and (d) Introduce NVM based Backup-Region (BR) at the last-level cache.

gets fewer writes because STT-RAM can save cache blocks
during a power failure, which consumes less energy than in
architecture-1. We compared architecture-1 and architecture-
2 in terms of energy and performance during frequent power
failures. We used the same set of benchmarks used in section V
and the same experimental setup shown in table I. We observed
that architecture-1 takes 8.13% more execution time than
architecture-2 during power failures. On average, architecture-
2 saves energy of 0.07% per every power failure. If the number
of power failures is 200, then we save 9.04% of the overall
system energy.

Thus, using NVM at both LLC and main memory saves
energy during frequent power failures. Therefore, we choose
architecture-2 as our base architecture throughout this work.

B. Fixed backup energy
We need to back up the SRAM dirty blocks during a power

failure to NVM. In architecture-2, we require a capacitor that
helps to backup the entire L1 dirty blocks to either PCM or
STT-RAM. Equation 1 formulates the backup energy required
for architecture-2. In the worst case, we need to backup the
entire L1 contents to either STT-RAM or PCM.

Ebackup/A2 = NB/L1 × (ew sttram) (1)

Where Ebackup/A2 is the backup energy required for
architecture-2 during a power failure. NB/L1 is the number
of blocks at L1, and ew sttram is the energy per write for the
STT-RAM cache block.

Usually, a capacitor has fixed energy (Ecapacitor) that can
only backup a fixed number of cache blocks (K) during a
power failure. In the worst case, we need to backup the entire
L1 contents to either STT-RAM or PCM for architecture-2.
We need a larger capacitor to backup the entire L1 contents,
as shown in equation 1, which is infeasible in practice. A large
capacitor requires more time to charge. Thus, maintaining the
larger size capacitor will not help us during frequent power
failures, resulting in faulty computations. This observation

motivated us to propose an architecture that uses fixed energy
to backup the L1 dirty cache contents during a power failure.

We defined Ecapacitor in equation 2. Where C is the
capacitance, and V is the operating voltage.

Ecapacitor =
1

2
CV 2 (2)

So, given Ecapacitor as constant, our objective is to maxi-
mize K cache blocks. We define K using equation 3.

K =
Ecapacitor − Ereg file

ew sttram
(3)

Where K is the maximum number of blocks that can backup
to NVM during a power failure. Where Ereg file is the energy
required to backup the register file to STT-RAM.

Instead of saving entire SRAM contents during a power
failure, we backup only K blocks from the L1 cache to
NVM. Where K <<

(
Ndirty/L1

)
w.r.t architecture-2 during

a backup procedure.
Thus, we require a capacitor of size C that can provide

energy of ≥ Ecapacitor; this ensures that K blocks are
completely and safely backed up to NVM. We assumed that
the capacitor energy was fixed and could not be replaced again.
As a result, Ecapacitor is sufficient to backup K blocks from
the L1 cache and the register file contents to NVM, which we
explained in section IV-C.

IV. PROPOSED ARCHITECTURE

This section explains the proposed architecture. The main
objective here is to use the given Ecapacitor efficiently and
complete the backup within the given Ecapacitor during a
power failure. We need to restrict the number of dirty blocks
to K to achieve the above objective. We need to address the
following issues that help to restrict the number of dirty blocks
to K:

1) The number of dirty blocks at any point in time needs
to be counted and tracked.
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2) The write time to LLC is longer than the L1 cache. Every
(K + 1)th dirty block would require additional time to
write back to LLC. The processor would stall during this
time, which degrades the system’s performance. How
can we avoid this unnecessary stalling?

3) We need to decide which block should be replaced when
dirty blocks are more than K.

4) Where should all dirty blocks be stored during a power
failure?

Our proposed architecture addresses these four issues. In
the proposed architecture, we divided K as M+N blocks. To
address the first issue, we proposed a dirty block table (DBT)
that tracks M dirty blocks. We discussed DBT in section
IV-A. We introduced a write-back queue (WBQ) at the L1
cache, which resolves the second issue. We discussed WBQ
in the section IV-A. To address the third issue, we explore two
different replacement policies. These replacement policies are
discussed in section IV-B. We introduced an STT-RAM-based
backup region at LLC, which provides additional storage space
for volatile data during power failures.

A. Proposed Architecture

The proposed architecture is shown in figure 2. Each cache
block contains a valid bit (V), a dirty bit (D), a tag, and data.

CPU

SRAM 
based 

L-1 Cache 

Dirty Block Table

M
-entries

V {Set,Way} WC

{Set,Way} N
-entries

V D TAG DATA

Write-Back
Queue

PCM
based

Main Memory

STT-RAM
based

Last-Level Cache 

Backup
Region

Fig. 2. Overview of Proposed Architecture

Algorithm-1 refers to whenever there is a write hit at the L1
cache. Line 1 checks; if a write hit occurs and the dirty bit is
0, we set the dirty bit to 1 and create an entry in DBT. Line 3
checks whether the number of valid DBT blocks equals M. If
the number of valid blocks in DBT equals M, we use the DBT

replacement policy to make space for the new entry. Line 6
checks if there are more than N entries in WBQ; the processor
stalls to complete a writeback to LLC. Line 12 determines
whether the number of valid blocks in DBT is less than M
and inserts an entry into DBT. Line 15 determines whether
there is a write request and if the dirty bit is already set to 1.
If Line 15 becomes true, we update the WC field in DBT.

If we find any dirty block, we make an entry to DBT. DBT
stores dirty block information in four fields: valid bit (V), set,
way, and write counter (WC). DBT is implemented as an M-
entry fully associative buffer. DBT doesn’t impact the clock
period because it doesn’t come under the critical path. When
a victim entry is chosen from DBT for replacement, the tag
information of that entry is moved into WBQ.

WBQ has N entries that store the {set, way} field infor-
mation. To hide the latency of STT-RAM writes, we use a
writeback queue in a standard mechanism. WBQ works as a
queue and writes the data to LLC to maintain N entries. When
data is written from WBQ, the dirty bit in the cache is cleared.
We update the modified value in WBQ whenever there is a
write hit to the WBQ entry.

The primary importance of WBQ is seen in a scenario
where we need to write back the data to LLC, which takes
an additional number of cycles for every (K + 1)th block.
During this time, the processor would halt for the ‘X’ number
of cycles to write one of the (K+1)th blocks to LLC, where X
is the number of cycles required to complete one STT-RAM
write. This additional stalling degrades system performance
and consumes a significant amount of energy.

Rather than saving the entire contents of the SRAM, we
backup M + N dirty blocks to the STT-RAM. This reduces
writes to STT-RAM and PCM during a power failure. In case
of a miss at the L1 cache, the architecture is the same as
conventional architecture.

Algorithm 1 L1 cache hit access
On access to block b in set s

1: if (b.write) & !(b.D) then
2: b.D =1
3: if DBT.size() == M then
4: invokes replacement policy.
5: replacement policy returns a victim DBT entry.
6: if WBQ.isFull() then
7: STALL
8: else
9: Make an entry in WBQ.

10: end if
11: else
12: Make an entry in DBT.
13: Update WC field in DBT.
14: end if
15: else if b.write then
16: Update WC.
17: else
18: this is a read-hit case; provide the data.
19: end if

B. Replacement Policy in DBT

When the DBT size exceeds >M, we require a replacement
policy in the DBT to replace any of the M entries. The
traditional LRU replacement policy does not work for our
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architecture because we want to replace a block based on
the number of writes or write behavior. For the proposed
architecture, we explore two replacement policies. First, the
least frequently written (LFW) policy replaces an entry that
has received the least number of writes compared to all other
entries in the DBT. Second, the least recently written (LRW)
policy maintains the recency information for each block.
Instead of replacing the block based on write counts, the LRW
policy recommends replacing the most recently written block
to preserve write access recency information.

We introduce a write counter (WC) field in the DBT to
identify the LFW block; the size of the WC depends on ‘M’.
If a write request is made to any DBT entry, we increment
WC by one. For instance, the WC has a size of 5 bits. If the
WC of the requested entry equals the maximum value (25−1),
we do the logical right shift, i.e., we decrement (25/2) from
all DBT entries. For example, WC size is 5 bits, and DBT has
four entries with the WC values as follows {19, 17, 31, 3}.
Suppose a new write request is received for the third entry. The
WC value for the third entry exceeds 31; we subtract 16 from
all DBT entries, which becomes {3, 1, 15, 0}. We replace the
entry with the lowest WC value during a replacement request.

We used the LRW field in the DBT to implement the LRW
replacement policy. The LRW field has a size of dlogMe bits.
For example, if M is 16, we require a 4-bit LRW field. The
implementation of LRW is identical to that of the 4-bit priority
queue. When we use the LRW policy, we replace the WC field
in DBT with the LRW field.

C. During Intermittent power supply

Apart from the STT-RAM-based LLC, we introduce a
backup region (BR). STT-RAM is used to implement the
backup region. The backup region can always have a max-
imum size of K blocks + reg file. For reading/updating the
backup region, we used the same access latency and energy
values as the STT-RAM cache. During a power failure, we
have registers and K block (M+N) contents to backup. When
the power comes back, we move the backup region contents to
the L1 cache. With these contents, we begin the application’s
execution.

1) Validity of Proposed work: The following activities
occur in the system during a power failure and before initiating
the backup procedure.

1) Except for the processor, all system peripherals receive
power-off signals.

2) As the processor is stalled, no new instructions are
carried out by the processor.

a) Since all peripherals are switched off, no peripheral
can issue an interrupt during this time.

3) Because the processor is stalled, it consumes no dynamic
energy. As a result, we can use the entire capacitor
energy to backup the volatile contents.

After completing the preceding three phases, we initiate
the backup procedure. During backup, the volatile contents
are stored in the register file and the SRAM-based cache;
a specially designed controller is responsible for saving the
volatile contents to STT-RAM-based BR at LLC. During

backup, the controller reads the (set, way) fields in DBT and
WBQ one entry after another to identify a block in the L1
cache, then writes the dirty data to the STT-RAM-based BR
at LLC. The controller performs the following operations:
reading from the register file, reading from the SRAM-based
cache (‘K’ blocks data), and writing to STT-RAM-based BR
at LLC. In the proposed architecture, the register file size and
the number of dirty blocks at the L1 cache are minimal, and
the backup procedure requires a constant and fixed number of
cycles. As a result, the proposed architecture requires a fixed
overhead for backup.

The processor has been set to shutdown mode once the
backup procedure has been completed. We use the capacitor
energy (Ecapacitor) to perform the backup. When the power is
resumed, we perform the same operations as in a conventional
processor.

Therefore, for a given capacitor energy, system configura-
tion, register files and read/write parameters for the memory
system, we define the required number of K blocks in section
III-B using equation 3.

V. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

The proposed architecture is evaluated using the gem5 [38]
simulator and 14 MiBench benchmarks [39]. Table I shows the
micro-architectural parameters used for implementation. We
collected dynamic energy and latency values for a single read
and write operation to SRAM and STT-RAM using Nvsim
[40], as shown in table II.

TABLE I
SYSTEM CONFIGURATION

Component Description
CPU core 1-core, 480MHZ

L1 Cache
Block size is 64-byte, 4-way associative
Private cache
(16KB D-cache,and 16KB I-cache)

Last-Level Cache

Block size is 64-byte, 16-way associative
Private cache
(128KB D-cache, and 128KB I-cache),
write-back cache policy

Size Parameters
VB - 1bit, WC - 6bits
K- 16; M- 12, N- 4, LRW- 4bits, and
C should be ≥ 1.92 nF

Main memory 128MB PCM

Others

Clock Period: 2ns,
SRAM Read: 1 Cycle,
SRAM Write: 2 Cycles,
STT-RAM Read: 2 Cycles,
STT-RAM Write: 10 Cycles,
PCM Read: 35 Cycles, and
PCM Write: 100 Cycles

B. Baseline Architecture

We modeled three baseline architectures to compare with
the proposed architecture as shown in table III.

• At L1, Baseline-1 uses a write-through policy. As a result,
L1 contains no dirty blocks. Baseline-1 uses the least
amount of backup energy during a power failure.
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TABLE II
NVSIM PARAMETERS OF SRAM, STT-RAM CACHES, PCM MEMORY

(350K, 22NM)

Parameter 16KB
SRAM

16KB
STT-RAM

128KB
STT-RAM

128MB
PCM

Read Latency 0.792 ns 1.994 ns 1.861 ns 204.584ns
Read Energy 0.006 nJ 0.081 nJ 0.123 nJ 1.553 nJ

Write Latency 0.772 ns 10.520 ns 10.446 ns
RESET -
134.923 ns
SET -
264.954 ns

Write Energy 0.002 nJ 0.217 nJ 0.542 nJ
RESET -
6.946 nJ
SET -
6.927 nJ

TABLE III
OVERVIEW OF BASELINE ARCHITECTURES CONFIGURATIONS

Architecture Memory Policy

Baseline-1
L1: SRAM (32 KB) Write-through
LLC: STT-RAM (256 KB) Write back
Main Memory: PCM (128 MB) -

Baseline-2
L1: SRAM (32 KB) Write back
LLC: STT-RAM (256 KB) Write back
Main Memory: PCM (128 MB)

Baseline-3
L1: SRAM (4 KB) Write back
LLC: STT-RAM (256 KB) Write back
Main Memory: PCM (128 MB)

• At L1, Baseline-2 uses a write-back policy. As a result,
the number of LLC writes decreases. Baseline-2 improves
system performance over baseline-1.

• Baseline-3 has a 4 KB L1 cache and the same LLC and
main memory sizes as in baseline-2. Baseline-3 assists in
determining whether using small-size volatile memory at
L1 improves performance during a stable power supply.
During a power failure, our proposed backup contents are
the same size as baseline-3.

Under a stable power supply, we compared baselines-1, 2,
and 3 to the proposed architecture. We compared baseline-2 to
the proposed architecture during frequent power failures. Pro-
posed policies such as DBT, WBQ, and replacement policies
are not included in the baselines-1,2, and 3 architectures.

C. Results

The proposed architecture is evaluated in this section under
stable power and power failures. The proposed architecture is
compared with two baseline architectures.

1) Proposed Architecture Under Stable Power Supply: In
order to reduce the system’s energy consumption, we first need
to reduce the number of writes to both STT-RAM and PCM.
We performed experiments to compare the number of writes
for NVM in baseline and proposed architectures. All values
shown in figures 3 and 4 are normalized with the baseline-
1 architecture. All values shown in figure 5 are normalized
with the baseline-3 architecture. Baseline-2 gets fewer writes
than the proposed architecture at LLC and PCM by 14.11%
and 7.84%, as shown in figure 3. Compared to baseline-1, the
proposed gets 18.97% fewer writes at the LLC and 10.66% at
the PCM, as shown in figure 3.
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Fig. 3. Write operations for STT-RAM, PCM under Stable Power.

As shown in figure 4, the proposed architecture consumes
17.56% less energy than baseline-1 architecture and 4.93%
more energy than baseline-2 architecture. Under a stable
power supply scenario, the proposed architecture consumes
less energy than baseline-1 and more energy than baseline-2.
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Fig. 4. Comparisons between Proposed and Baseline Architectures for
Dynamic Energy Consumption under Stable Power.

During a power failure, the proposed architecture backup
only the contents of DBT and WBQ to LLC. The combined
size of DBT and WBQ is approximately less or equal to 4
KB. As a result, we compared the proposed architecture to
baseline-3 to see how it performs in normal operations. As
shown in figure 5, architecture-3 performs poorly compared to
the proposed and baseline architectures. Compared to baseline-
3, the proposed architecture takes 38.79% less execution time
during regular operation. Thus, using a small L1 size cache
doesn’t improve performance during a stable power supply.

As shown in figure 5, we compared architectures with
LRW and LFW policies. As shown in table IV, the proposed
architecture uses the LFW replacement policy, and the pro-
posed using LRW architecture uses the LRW replacement
policy instead of LFW. As shown in figure 5, the proposed
architecture takes 13.11% less execution time than baseline-1
architecture and 5.10% more execution time than baseline-2
architecture. The proposed architecture with the LFW policy
performs better than the architecture with the LRW policy.
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TABLE IV
OVERVIEW OF THE DIFFERENT POSSIBILITIES FOR THE PROPOSED ARCHITECTURE THAT ARE USED FOR THE COMPARISONS

Proposed Architecture Proposed Base Architecture
(L1: SRAM, LLC-STT-RAM, Memory: PCM)

Proposed Techniques
(DBT, WBQ) LFW LRW BR

Proposed with LRW 3 3 7 3 3
Proposed without BR 3 3 3 7 7
Proposed without BR and with LRW 3 3 7 3 7
Proposed Architecture 3 3 3 7 3
3- Supported , 7- Not Supported
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Fig. 5. Comparisons between Proposed and Baseline Architectures for
Execution Time under Stable Power.

We performed experiments to determine K, M, and N values
as shown in the figures 6, 7. We performed the experiments
for various K values, as shown in figure 6. We performed
experiments with various K values from K=8 to K=128. For
all experiments shown in figure 6, we assumed (M, N) to be
equal. For example, if K=16, M=N=8. As shown in figure
6, increasing the K value consumes higher energy values.
We assume capacitor energy as input; thus, K is also input
to our design based on equation 3. We analyzed various K
values because different sizes of capacitors are available in
the market. The size of M entirely decides the LRW field’s
size. Figure 7 already show the energy consumption values
for various M values. Based on the M value, we can set the
LRW field’s size. If we look at the figure 6, we observe that
the system uses less energy up until K=42, then gradually
consumes more energy as K increases.

As shown in figure 7, we used K as 32 in these experiments.
Within K=32, we experimented on various (M, N) pairs. In
figure 7, when M=2, N becomes 14 (16-M), and when M=12,
N becomes 4. We performed experiments with various possible
(M, N) pairs such as (6, 10), (16, 16), (24, 8), and (32, 0). We
observe that (26, 6) utilizes less energy than the other pairs.
As a result, for K=32, we used (M, N) as (26, 6) throughout
this paper. In the same way, we experimented to identify the
best (M, N) pair for K=64. We observe that (54, 10) uses less
energy than all other pairs for K=64.

We performed experiments on the same benchmark suite
used in section V-A to determine the K, M, and N values. We
selected K, M, and N values based on the average values.
The optimal K, M, and N values vary depending on the
application behavior and the system configuration. We also
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Fig. 6. Energy Consumption for Different K Values under Stable Power.
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Fig. 7. Energy Consumption for Different M, N values under Stable Power.

observed that for the selected K, M, and N values, the majority
of benchmarks (11 out of 14) outperform others. The variation
between other K, M, and N values and selected values is
negligible for the other three benchmarks. As a result, we
selected K, M, and N values after considering all benchmarks.
We have shown the overall average values in figures 6 and 7.
Table I lists the selected K, M, and N values.

As shown in figure 1, our proposed architecture has four
design alternatives. Using NVM at both L1 and LLC in
architecture-1 gives us the third alternative. Adding BR to
architecture-2 gives us the fourth alternative.

We performed experiments with the unified NVM architec-
ture, i.e., architecture-3. We compared unified NVM architec-
ture to the proposed architecture to determine how good or bad
architecture-3 will perform under a stable power supply. We
compared architecture-3 to architectures-1 and 2 for dynamic
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energy consumption, as shown in figure 8. Under a stable
power supply, architecture-1 outperforms architectures-2, 3,
and the proposed architecture. This advantage is due to the
use of volatile memory at L1 and LLC in architecture-1.
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Fig. 8. Comparisons between Proposed Architecture and Unified NVM-based
Architectures for Dynamic Energy Consumption under Stable Power.

We observed that NVM receives more read/write accesses
when the entire memory at L1 is NVM-based. Compared to the
proposed architecture, architecture-3 consumes 43.25% more
energy and has a performance overhead of 38.99% under a
stable power supply. This analysis motivated us to compare the
proposed architecture with one that uses NVM-based memory
for only DBT and WBQ at the L1 cache. The proposed
architecture consumes 19.41% less energy than this design.

0
0.2
0.4
0.6
0.8

1

bit
cn

ts bf
bft

es
t

ba
sic

math
_la

rge lam
e crc

ba
sic

math
_s

mall fft

dij
str

a_
lar

ge

pa
tric

ia
su

sa
n

sh
a

se
arc

h_
lar

ge

qs
ort

_la
rge

N
or

m
al

iz
ed

 W
rit

e 
O

pe
ra

tio
ns

 to
N

VM
(N

or
m

al
iz

ed
 w

ith
 A

rc
hi

te
ct

ur
e-

3)

Benchmarks

Architecture 3 (Proposed Architecture with Unified NVM at L1)
Proposed Architecture with NVM-based DBT and WBQ
Proposed Architecture

Fig. 9. Comparisons between Proposed Architecture and Unified NVM-based
Architectures for NVM Write operations under Stable Power.

We performed experiments to compare architecture-3 with
the architecture that uses NVM-based DBT and WBQ for
the number of NVM writes, as shown in figure 9. Under a
stable power, NVM-based DBT and WBQ design consumes
37.17% lesser writes than architecture-3 and 21.79% more
writes than the proposed architecture. As a result, unified
NVM architecture is not a good choice to use for regular
operations.

Analysis with Different Checkpointing Approaches: The
proposed backup/restore strategy looks similar to checkpoint-
ing. We performed experiments with a stable power supply
to compare the proposed backup/restore strategy to existing

checkpointing approaches. We used three different checkpoint-
ing methods for these experiments.

First, we designed a traditional checkpointing technique,
introducing a safe point at every 4 million instructions. For
every 4 million instructions, we backup the system state
to NVM. We restore from the main memory at each safe
point and continue with the application’s execution. Our
proposed architecture outperforms traditional checkpointing
because backup only occurs during power failure. All values
shown in figures 10 and 11 are normalized with the traditional
checkpointing technique. As shown in figures 10 and 11,
the proposed architecture reduces performance overhead and
energy consumption by 41.27% and 37.95%.
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Fig. 10. Comparisons between Proposed Backup and Different Existing
Checkpointing Techniques for Execution Time under Stable Power.

Second, we used a checkpointing method proposed by Xie
et al. [16]. Xie et al. identified the important volatile blocks
that needed to be backed up during a power failure using STT-
RAM-based counters (DBCounter and MCounter). Xie et al.
used the LRU policy for replacement in NVM-based caches
and volatile caches. Updating and accessing these counters
is similar to NVM writes and reads, which use more energy
and slow down the system. Because Xie et al. performs
backup during a power failure, we compared performance
and energy consumption based on total NVM reads/writes. As
shown in figures 10 and 11, the proposed architecture reduces
performance overhead and energy by 19.03% and 14.72%.

Third, we implemented a checkpointing procedure that
creates a checkpoint whenever the system state changes. For
every write request, we increment the write counter (WC).
Once WC reaches the threshold, the checkpoint procedure
is triggered, size of the WC size is the same as the pro-
posed system configuration. This checkpointing technique
increases NVM reads/writes, degrades system performance,
and consumes more energy. As shown in figures 10 and 11,
the proposed architecture reduces performance overhead and
energy consumption by 39.11% and 33.10%.

The traditional checkpointing technique is both the standard
and the worst-case scenario for these intermittently powered
systems. If we want to add another level of filtering check-
points, we can add a counter per cache block, and if any cache
block reaches the defined threshold, the checkpoint procedure
is triggered. This checkpointing technique performs better than
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Fig. 11. Comparisons between Proposed Backup and Different Existing
Checkpointing Techniques for Energy Consumption under Stable Power.

traditional checkpointing. However, the second checkpointing
technique increases the number of NVM accesses. Instead
of checkpointing at every safe point or for every > WC
case, we can add another level for reducing checkpoints by
placing a checkpoint only during a power failure. Xie et al.
proposed a checkpointing policy that only backups the dirty
blocks selected during a power failure. Xie et al. outperform
the other two checkpointing policies. However, the proposed
backup strategy reduces performance overhead and energy
consumption compared to Xie et al., as shown in figures 10
and 11.

2) Proposed Architecture Under Unstable Power: We
simulate frequent power failures by assuming that a power
failure occurs for every 2 million instructions. The open-source
version of the Gem5 core does not model an intermittent power
supply processor. By introducing interrupts, we modified gem5
to support intermittent power supply processors. So, for every
2 million instructions, there is an interrupt, which the processor
model admits as a power failure. The Gem5 simulator is used
to run all of the experiments for one billion instructions. We
assumed a power failure occurs for every 2 million instructions
because, on average, 2 million instructions take approximately
25-30 ms of time to execute. In another way, there is a power
interruption every 30 ms, so these power failures are not as
frequent as they would be in real life. Therefore, the results
are rather conservative.

Considering energy harvesting sources, such as piezoelectric
and vibration-based sources, they extract significantly less
energy from their surroundings. In such cases, the capacitor
is unable to store sufficient energy, leading to frequent power
failures. As a consequence, our proposed architecture is capa-
ble of handling these worst-case scenarios. However, existing
work by Xie et al. [16] made similar assumptions that almost
every power failure occurs every 200 and 500 ms.

All values shown in figures 12, 13 are normalized with
baseline-2 architecture. The proposed architecture consumes
20.94% less energy than the baseline-2 architecture, as shown
in figure 12. We evaluated the proposed architecture with both
replacement policies. The architecture that uses LFW performs
better than LRW, as shown in figure 13.

We performed a series of experiments to analyze the backup
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Fig. 12. Comparisons between Proposed and Baseline Architectures for
Energy Consumption under Unstable Power.
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Fig. 13. Comparisons between LRW and LFW Replacement Policies with
Proposed and Baseline Architectures under Unstable Power.

energy and the effect of PCM on our proposed architecture.
During frequent power failures, architecture-3 outperforms

architecture-1 and the proposed architecture for backup en-
ergy consumption. Compared with architecture-1, architecture-
4 consumes 35.57% less energy, as shown in figure 14.
Because we need to backup the entire L1 and LLC to PCM,
architecture-1 requires more backup energy than architecture-
3. Due to the unified NVM architecture, architecture-3 only
needs to backup volatile register contents. Architecture-4
requires constant backup energy because we only need to
backup volatile register contents and K blocks to BR during a
power failure. Thus, architecture-4 consumes more energy than
architecture-3. We have shown the required backup energy for
architecture-1 and 4 in equation 1. Architectures-3 and 4 use
constant energy to backup volatile contents.

We want to examine whether all these benefits are because
of PCM at the main-memory level. So, we compare the energy
consumption for four architectures shown in figure 15. As
shown in figure 15, architecture-1 consumes more energy than
the other three architectures because the number of writes to
PCM is more in architecture-1. The only difference between
architecture-2 and 4 is that architecture-4 is BR-enabled.

The performance of BR-enabled architecture is more
effective than that of non-BR-enabled architecture, i.e.,
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Fig. 14. Comparisons between Architecture-1, 3, and 4 for Backup Energy
Consumption under Unstable Power.

architecture-2. With a BR at LLC, we can directly place those
K blocks in BR and quickly restore the contents of the L1
cache. When we remove BR at LLC, we must first update
in LLC. If LLC is full, we need to replace some blocks
at LLC to make space for the L1 dirty blocks. We use the
LRU replacement policy at LLC, which increases write to
PCM compared to the BR-enabled architecture. We assume
our system has a fixed-energy capacitor that can only backup
the K blocks and the register file. When we remove BR from
LLC, the capacitor no longer supports safe backup because we
have to lose K or < K blocks (either from L1 or LLC). As
a result, we either end up with the wrong results or have to
restart the application. As illustrated in figure 12, BR-enabled
architecture consumes less energy than the architecture without
BR at LLC. This benefit is because of the increased number
of writes to PCM. The proposed architecture consumes less
energy than the baseline-2 architecture because frequent power
failures increase reads/writes to NVM, as shown in figure 12.

Compared with architecture-1, architecture-2 consumes
19.02% less energy, and architecture-4 consumes 32.64%
less energy. Figure 15 shows that architecture-4 is better
than the other three architectures. Therefore, not all of these
improvements are solely linked to PCM since our proposed
policies also help to achieve better performance and energy.
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Fig. 15. Comparisons between Architectures-1, 2, 3, and 4 for Overall
Dynamic Energy Consumption under Intermittent Power Supply.

We performed experiments with the unified NVM archi-
tecture, i.e., architecture-3. All values shown in figure 15
are normalized with architecture-1. Under frequent power
failures, architecture-3 outperforms architecture 1, but not
architecture-2 and the proposed architecture. This advantage
for architecture-3 is due to the usage of NVM at L1 and LLC.

Architecture-3 consumes 23.01% more energy than the pro-
posed architecture, i.e., architecture-4, as shown in figure 15.
This benefit for the proposed architecture is because the energy
required for backing up the K blocks is less than that of the
energy required for architecture-3 during regular operations.
Figures 8 and 9 show that architecture-3 consumes more
energy and attracts more NVM reads and writes during reg-
ular operations. Architecture-3 is not suitable for intermittent
power supply scenarios due to these overheads during normal
operations. The unified NVM architecture requires additional
procedures to make the system more energy efficient.

Analysis with Different Checkpointing Approaches: The
proposed backup/restore strategy looks similar to checkpoint-
ing, a widely used approach to save the system state during
a power failure. We performed experiments to compare the
proposed backup/restore strategy with the existing check-
pointing approaches under frequent power failures. For these
experiments, we used four different checkpointing methods.

First, we designed a traditional checkpointing technique.
Section V-C1 has discussed the checkpointing technique’s
implementation details. All values shown in figures 16 and 17
are normalized with the traditional checkpointing technique.
For example, suppose an unexpected power failure occurs at
the 7th million instruction. We re-execute the application from
the 4th million instruction because it is the closest safe point.
These unnecessary executions increase NVM writes/reads,
consume more energy, and degrade system performance. The
proposed architecture reduces performance overhead and en-
ergy consumption by 48.70% and 40.19%, as shown in figures
16 and 17.
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Fig. 16. Comparisons between Proposed Backup and Different Existing
Checkpointing Techniques for Execution Time under Unstable Power.

Second, we used a checkpointing method proposed by
Xie et al. [16]. The implementation details of the Xie et
al. checkpointing technique are discussed in section V-C1.
The proposed architecture reduces performance overhead and
energy consumption by 27.99% and 20.07%, as shown in
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figures 16 and 17. This advantage is due to the author’s
selection of an LRU-based replacement policy for updating
the counters, which we observed as insufficient to reduce the
number of writes to NVM. Another reason is that Xie et al. did
not backup the entire dirty block to NVM, which requires the
application to be re-executed, which consumes more energy
during frequent power failures.

Third, we implemented a checkpointing procedure that cre-
ates a checkpoint whenever the system state changes. Section
V-C1 has discussed the checkpointing technique’s implemen-
tation details. The proposed architecture reduces performance
overhead and energy consumption by 38.71% and 32.13%, as
shown in figures 16 and 17. During frequent power failures,
backup/restore sizes increase in this technique, potentially
causing NVM reads and writes to increase, which degrades
system performance and consumes more energy.

Fourth, we implemented a checkpointing procedure that ini-
tiates a backup procedure whenever the system state changes.
During a power failure, the checkpoint procedure is triggered,
and we compare the previous checkpoint data to the new
checkpoint data, block by block. Only the volatile contents
that differ from the previous checkpoint data are backed up.
Copy-by-Change checkpointing procedures are proposed by
S. Ahmed et al. [23], [24]. The proposed architecture reduces
performance overhead and energy consumption by 21.93% and
16.55%, as shown in figures 16 and 17.
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Fig. 17. Comparisons between Proposed Backup and Different Existing
Checkpointing Techniques for Energy Consumption under Unstable Power.

We already discussed the first three checkpointing policies
in section V-C1. In order to add another level to Xie et al. for
reducing the checkpointing overhead. Instead of checkpointing
all cache blocks, S. Ahmed et al. policy checks and compares
the most recently checkpointed data. When compared to Xie
et al., this policy reduces NVM accesses; thus, the S. Ahmed
et al. checkpointing policy outperforms the Xie et al. pol-
icy. However, accessing and comparing NVM-based previous
checkpointed data also induces reads/writes to NVM. Figures
16 and 17 show that the proposed backup strategy performs
better than the existing checkpointing techniques.

We compared the average memory access time (AMAT)
for two architectures. One, the architecture is without any
proposed data structures and replacement policies, i.e., the
baseline-2 architecture. Second, the architecture with proposed

data structures and replacement policies. We performed these
experiments to analyze the proposed architecture to see how
the proposed data structures and replacement policy impacted
system performance. AMAT analysis allows us to determine
which of the two architectures is faster during frequent power
failures. The proposed architecture outperforms the baseline-2
architecture by 19.61% during frequent power failures. This
advantage is due to DBT and WBQ; most L1 requests result in
hits, which reduces performance overhead. Another significant
advantage of the proposed architecture is the explored replace-
ment policies. During a stable power supply, the proposed
replacement policy helps in saving important blocks (write-
intensive blocks) at the L1 cache rather than evicting them.
Thus, incorporating DBT and WBQ improves the proposed
architecture’s performance under intermittent power.

D. Analysis for Multi-Cache Levels and Multi-Core Designs
The proposed architecture consists of an SRAM-based L1

cache and an STT-RAM-based LLC. We found two possibil-
ities if we want to add one or two levels of cache to the
proposed architecture.

First, suppose we introduce one or two levels of STT-RAM-
based caches. In that case, our proposed architecture has no
impact or complications with this design because we proposed
a backup strategy that can only track and backup K dirty
blocks from the L1/L2/L3 caches. Everything is the same as
in the proposed architecture during a stable power supply. We
don’t need a backup of L2/L3 during frequent power failures
because these are already NVM-based caches. According to
our proposed backup policy, we must back up the contents of
registers and the L1 dirty contents to LLC. We must track the
number of dirty block contents in the L1 cache. This appears
to be similar to our proposed architecture and techniques. As
a result, our proposed architecture does not require additional
methods and data structures for the first possibility.

Second, imagine we have one or two levels of SRAM-based
caches. In that case, our proposed architecture makes a dif-
ference. This design is complicated because it is necessary to
limit the total number of dirty blocks from all levels of SRAM-
based caches, i.e., from L1/L2/L3 caches to K at any point in
time. This issue requires several changes to the proposed archi-
tecture for tracking and maintaining K dirty data at each level.
If the processor is multi-core, the problem becomes even more
complex and introduces new complications, such as cache
coherence issues. Selecting volatile data and backing it up
to NVM requires significant energy and additional techniques
during frequent power failures. These extra procedures add
various overheads, such as size and performance. However,
these complex systems are not required for embedded devices
or applications.

NVM-enabled microcontrollers do not contain a second-
level cache. Texas Instruments (TI)-based NVPs, such as
the MSP430FR6989 and MSP430F5529, don’t have a cache
and contain only main memory. The main memory of the
MSP430FR6989 contains 2KB of SRAM and 128KB of
FRAM, while the MSP430F5529 contains SRAM and flash.
For these intermittently powered IoT systems to run embed-
ded applications, we don’t need a multi-core processor with



12

TABLE V
COMPARISON OF DIFFERENT POSSIBILITIES FOR A GIVEN CACHE SIZE(L1/LLC) AS 32KB/256KB AND MAIN MEMORY SIZE AS 64MB

Cache size
(L1/LLC)

Main Memory
size K M N WC LRW/LFW BR-enabled Number of

power failures
Energy
Gain (%) Compared with

32KB/256KB 64MB

8 6 2 6 LFW Yes 500 13.60 Baseline-2
8 6 2 0 LRW Yes 500 12.35 Baseline-2
8 6 2 6 LFW No 500 7.15 Baseline-2
8 6 2 6 LFW Yes 200 11.76 Baseline-2
8 6 2 6 LFW No 200 6.84 Baseline-2
8 6 2 6 LFW Yes 1000 14.32 Baseline-2
8 6 2 6 LFW No 1000 7.58 Baseline-2
16 8 8 6 LFW Yes 500 15.37 Baseline-2
16 12 4 0 LRW Yes 500 15.56 Baseline-2
16 12 4 6 LFW No 500 8.230 Baseline-2
16 12 4 6 LFW Yes 200 15.64 Baseline-2
16 12 4 6 LFW Yes 1000 18.04 Baseline-2
16 8 8 6 LFW Yes 200 14.45 Baseline-2
16 8 8 6 LFW No 1000 9.43 Baseline-2
16 12 4 0 LRW No 200 8.60 Baseline-2
16 12 4 0 LRW Yes 1000 16.63 Baseline-2

complex cache hierarchies; instead, one/two levels of caches
and a 1-core processor are sufficient. As a result, in this work,
we did not examine the proposed architecture for higher levels
of cache or multi-core processors.

E. Design Space

In this section, we evaluate the proposed architecture for
various parameter combinations. The parameters in our work
are the cache size, main memory size, and sizes of K, M, N,
and WC. We intend to allow the end user to choose a suitable
architecture with an appropriate parameter size.

As shown in the tables I and II, we used the same ex-
perimental setup and latency/energy values for NVM. Our
design depends on the number of power failures that occur.
We performed experiments to observe the energy gains when
the number of power failures increased from 500 to 1000 and
decreased from 500 to 200. Usually, we introduce a power
failure for every 2 million instructions, which means that in
executing 1 billion instructions, we experience 500 power
failures. We introduce a power failure for every 1 million
instructions to increase the number of failures from 500 to
1000. Similarly, if we introduce a power failure every 5 million
instructions, the total number of power failures becomes 200.

So, our design space depends on (cache size, Memory size,
K, M, N, WC, Replacement policies, BR, number of power
failures). If we fix cache, memory, and WC sizes w.r.t our
experimental setup, our design space becomes large enough.
Let’s take an instance to see how large our design space will
become. For K=16, possible K values are 16. If K=16, possible
(M, N) pairs are 16*16. For BR, possible conditions are 2
(BR-enabled or not). For replacement policies, the possible
ways are 2 (LRW or LFW). The number of power failures;
the possible cases are 4 (as per the experiments we performed)
if we combine all these parameters for calculating the design
space size (16*16*16*2*2*4) equals 65,536 design choices
for given cache size, main-memory size, WC, and K=16.

We can notice from table V that only one design choice
performs better in all of the given combinations. For the
given cache size, main-memory size, and K=16, we find that

the combination of M=12, N=4, WC=6, BR-enabled, and
the number of power failures=1000 is preferable to all other
65,536 design choices.

VI. CONCLUSIONS

In this paper, we proposed an NVM-based architecture.
Using the proposed DBT and WBQ, we see fewer writes to
STT-RAM (LLC) and PCM (main memory). The proposed
architecture decreases STT-RAM writes by 18.97% and PCM
writes by 10.66% compared with baseline-1 architecture. As
a result, we have decreased energy consumption by about
17.56%. However, the proposed architecture has 5.10% ex-
ecution overhead and 4.93% energy overhead compared to
baseline-2 architecture under the stable power supply. We
also compared the existing checkpointing policies with the
proposed architecture. We introduced an STT-RAM-based
backup region at LLC that helps for backup from L1 during
a power failure. We also evaluated and analyzed the unified
NVM architecture with the proposed architecture. We explored
various design spaces to determine how our proposed archi-
tecture behaves when changing parameter sizes.

VII. ACKNOWLEDGEMENT

This work is supported by the grant received from DST,
Govt. of India for the Technology Innovation Hub at the
IIT Ropar in the framework of the National Mission on
Interdisciplinary Cyber-Physical Systems.

REFERENCES
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