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Abstract—Today edge devices commonly connect to the cloud
to use its storage and compute capabilities. This leads to security
and privacy concerns about user data. Homomorphic Encryption
(HE) is a promising solution to address the data privacy problem
as it allows arbitrarily complex computations on encrypted data
without ever needing to decrypt it. While there has been a
lot of work on accelerating HE computations in the cloud,
little attention has been paid to the message-to-ciphertext and
ciphertext-to-message conversion operations on the edge. In this
work, we profile the edge-side conversion operations, and our
analysis shows that during conversion error sampling, encryption,
and decryption operations are the bottlenecks. To overcome these
bottlenecks, we present RISE, an area and energy-efficient RISC-
V SoC. RISE leverages an efficient and lightweight pseudo-
random number generator core and combines it with fast
sampling techniques to accelerate the error sampling operations.
To accelerate the encryption and decryption operations, RISE
uses scalable, data-level parallelism to implement the number
theoretic transform operation, the main bottleneck within the
encryption and decryption operations. In addition, RISE saves
area by implementing a unified en/decryption datapath, and
efficiently exploits techniques like memory reuse and data
reordering to utilize a minimal amount of on-chip memory.
We evaluate RISE using a complete RTL design containing a
RISC-V processor interfaced with our accelerator. Our analysis
reveals that for message-to-ciphertext conversion and ciphertext-
to-message conversion, using RISE leads up to 6191.19× and
2481.44× more energy-efficient solution, respectively, than when
using just the RISC-V processor.

Index Terms—Homomorphic Encryption, CKKS Scheme,
Privacy-preserving Computing, Edge-side Operations, RISC-V,
Hardware Acceleration.

I. INTRODUCTION

Cloud computing has enabled reliable and affordable access
to shared computing resources at scale. Hence, energy and
area-constrained edge devices outsource their computing needs
to a third-party cloud system. However, outsourcing data to a
third-party cloud raises data security and privacy concerns.
While an edge device can encrypt the data and send it to the
cloud, within the cloud the data needs to be decrypted before
processing. The cloud needs to decrypt the data, which again
leaves the data vulnerable to all kinds of data breaches.

Homomorphic Encryption (HE) [1], [2] has emerged as
a class of encryption schemes that address this problem by
enabling computation on encrypted data. Figure 1 shows an
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Fig. 1. The dataflow of an end-to-end encrypted computation based on
Homomorphic Encryption.

illustrative use case of how HE can be used to outsource secure
computation. A user captures an image/video using an edge
device. The captured image/video is encoded and encrypted
on the edge device and then transferred to a third-party cloud
system. The untrusted cloud system can process the encrypted
data and send the encrypted result back that can be decrypted
and decoded only by the user.

Although HE-based privacy-preserving computing seems
plausible, it is several orders of magnitude slower than op-
erating on unencrypted data [3]. To bridge this performance
gap, several existing works take advantage of software and
hardware optimizations to accelerate cloud-side HE operations
running on CPU [4], [5], GPU [6], [7], and custom hard-
ware accelerators [8]–[12]. Unfortunately, little attention has
been paid to edge-side operations even when the edge-side
operations are non-trivial. For encrypting the data, the edge
device needs to perform encoding, error sampling, and encryp-
tion. These three operations together form the “message-to-
ciphertext” conversion operation. Similarly for decrypting the
data received from the cloud, the edge device needs to perform
decryption and decoding. These two operations together form
the “ciphertext-to-message” conversion operation. These edge-
side operations incur huge memory consumption (on the order
of several MBs) and computation overhead.

To accelerate these edge-side operations, recently Microsoft
released SEAL-Embedded [3] as the first HE library targeting
embedded devices. SEAL-Embedded proposes a number of
optimizations for error sampling, en/decoding, and en/decryp-
tion on resource-constrained edge devices. To enable com-
puting on a variety of data captured by the sensors on the
edge device, SEAL-Embedded targets Cheon-Kim-Kim-Song
(CKKS) [13] HE scheme as it enables operations on real
numbers. Unfortunately, this implementation of the library is
still not practical. For example, the industry-required frame
rate for surveillance cameras and mobile platforms typically
ranges from 15 to 60 frames per second [14]. With the SEAL-
Embedded library running at 1 GHz on a RISC-V processor
like BlackParrot [15], for a polynomial of degree N = 4096
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Fig. 2. Latency breakdown of (a) message-to-ciphertext and (b) ciphertext-to-message conversion operations running on BlackParrot using SEAL-Embedded
library. Corresponding scheme parameters (N , logQ) and latencies are specified inside the doughnut charts.

and three 30-bit primes1, we are unable to encrypt even a
single low resolution quarter quarter video graphics array
(QQVGA) frame per second (further details in Section VI).
While one could use a more powerful processor to achieve
the required frame rates, it comes at the cost of high power
consumption, which is not acceptable in edge devices.

As software solutions are inefficient, several prior works fo-
cused on accelerating the key performance bottlenecks within
the edge-side operations in hardware. Figure 2 (a) and (b)
shows the latency breakdown of the message-to-ciphertext
and ciphertext-to-message conversion for different scheme
parameters (polynomial degree, N and coefficient bit-width,
logQ) running on BlackParrot using SEAL-Embedded library.
For all the parameter sets that we evaluated, the encryption
and decryption operations incur the highest latency because
they perform multiple polynomial multiplications. The latency
of the encryption and decryption operations is dominated by
number theoretic transform (NTT) operations. Error sampling
is also a bottleneck operation accounting for up to 10% of the
total message-to-ciphertext conversion latency.

To address these performance bottlenecks, there exist works
that focus on accelerating sub-operations like NTT [16]–
[26] in en/decryption and pseudo-random number genera-
tion (PRNG) [16]–[18] in error sampling. For accelerating
the complete encryption and decryption operations, Su et
al. [27] and Yoon et al. [28] proposed an FPGA-based and
an ASIC-based accelerator, respectively, targeting Brakerski-
Gentry-Vaikuntanathan (BGV) HE scheme [29]. Both of these
solutions use small scheme parameters (N <= 210 and
logQ <= 24). However, these parameters are not practical
for most real-world applications because HE schemes contain
a noise term (error sample) within the ciphertext coefficients,
which is essential for security. This noise within the ciphertext
increases with each succeeding homomorphic operation until
it reaches a critical level at which it is impossible to recover
the computation output [2]. To increase the noise budget
for practical HE applications with a large number of HE
computations, we need large scheme parameters (N > 212

and logQ > 109).
In this work, we present RISE, a System-on-Chip (SoC)

containing a RISC-V BlackParrot core and an area and energy-
efficient hardware accelerator that supports large scheme pa-
rameters (N and logQ), which enables practical CKKS-based
HE applications. To address the performance bottlenecks, in

1These are the largest parameters supported by the SEAL-Embedded
library.

RISE we accelerate the error sampling and en/decryption
operations while reducing the area overhead and energy con-
sumption. To speed up error sampling, we take an efficient and
lightweight implementation of a PRNG core [30] and integrate
it with fast binomial and uniform samplers. We propose a
shared datapath (referred to as a unified datapath later in the
paper) for the encryption and decryption operations because
they both involve similar operations (polynomial addition and
multiplication). To reduce on-chip memory (designed using
SRAM) area, we manage the data in RISE such that it does
not require memory larger than what is required to store two
polynomials. In contrast to prior works [16]–[20], [31] that
require dual port (1R1W) SRAM banks to access polynomial
coefficients for NTT computation, we propose a novel data
reordering scheme for NTT so that RISE only needs single
port (1RW) SRAM banks, which further reduces the area.
Moreover, RISE exploits the data-level parallelism in NTT
by leveraging a scalable parallel implementation of butterfly
operations.

The main contributions of our work are as follows:
• We profile edge-side operations for the CKKS scheme by

executing the SEAL-Embedded library on BlackParrot core
(referred to as baseline in the rest of the paper), for a
range of scheme parameters (N and logQ) to identify the
performance bottlenecks.

• Based on the profiling results, we architect RISE, an area-
and energy-efficient SoC (containing BlackParrot core and
an accelerator) to accelerate the error sampling and en/de-
cryption operations. We use several optimizations such as
data level parallelism, a shared data path for the en/decryp-
tion operations, memory reuse and data reorder techniques
to architect an efficient accelerator design.

• We evaluate RISE by executing message-to-ciphertext and
ciphertext-to-message conversion operations using perfor-
mance, area, and energy efficiency metrics. Across a range
of parameters, RISE reduces the message-to-ciphertext
and ciphertext-to-message conversion latency by 28.79×-
104.39× and 7.95×-66.08×, respectively, as compared
to the baseline. RISE achieves 471.24×-6191.19× lower
EDP when performing message-to-ciphertext conversion
and 36×-2481.44× lower EDP when performing ciphertext-
to-message conversion as compared to baseline. Similarly,
RISE has 24.06×-55.36× lower ADP when performing
message-to-ciphertext conversion and 6.65×-35.05× lower
ADP when performing ciphertext-to-message conversion as
compared to baseline.
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II. PRELIMINARIES

A. Homomorphic Encryption

The HE computing model allows operating on encrypted
data to maintain data privacy. Over the years, a variety
of HE schemes have been developed such as BGV [29],
Brakerski/Fan-Vercauteren (BFV) [32], and CKKS [13]. The
CKKS scheme allows operations on real numbers, which are
required for various applications including machine learning,
scientific, and graph applications. Hence, we choose to focus
on the CKKS scheme in our paper, and we use SEAL-
Embedded library to implement it. Below we describe the
process for message-to-ciphertext and ciphertext-to-message
conversion.

The CKKS scheme works with a native plaintext data type
that is a vector of length N/2, where each element is chosen
from the field of complex numbers C. The encoding opera-
tion takes as input this N/2-dimensional vector and returns
polynomial m(X) with integer coefficients. The polynomial
m(X) can be encrypted under the public key pk, generating a
ciphertext ct by computing:

c0 = µ · pk0 +m+ e0, (1)
c1 = µ · pk1 + e1 (2)

Here, the µ polynomial is sampled from a uniform dis-
tribution, and the error polynomials e0 and e1 are sampled
using a discrete Gaussian noise sampler. The coefficients in the
ciphertext polynomials (c0, c1) are elements of ZQ, where Z
is a set of integers and Q defines the order of finite field. Here
modulus Q is typically on the order of thousands of bits to
account for the noise growth. The CKKS scheme supports the
use of Residue Number System (RNS) (also known as the Chi-
nese Remainder Theorem (CRT) representation) to compute on
such large operands efficiently. Using the RNS approach, each
coefficient is represented modulo Q =

∏`
i=1 qi, where each

qi is a prime number. We can represent x ∈ ZQ as a length-
` vector of scalars [x]B = (x1, x2, . . . , x`), where xi ≡ x
(mod qi). We refer to each xi as a limb of x. The ciphertext
is decrypted to obtain the original message back using the
following equations:

m = c0 + c1 · s (mod q`) (3)

Here s is the secret key. Using RNS, both encryption and
decryption can be performed w.r.t. a smaller modulus qi
instead of a large modulus Q.

B. Number Theoretic Transform

Polynomial multiplication is a critical step in encryption
and decryption operations. A naı̈ve approach to perform a
polynomial multiplication has a complexity of O(N2) multi-
plications for a polynomial of degree N . Therefore, to reduce
this computational complexity, an NTT operation is applied to
the polynomials so as to perform a point-wise multiplication.
Using NTT we can reduce the polynomial multiplication
complexity to O(N logN). NTT can be viewed as the finite
field version of fast Fourier Transform (FFT). During NTT,
coefficients of the input polynomial are multiplied with the

power of an N -th primitive root of unity and combined with
each other in a butterfly fashion. Before each polynomial
multiplication takes place in an encryption operation (see
Equation (1) and (2)), the polynomials are converted into an
NTT domain. Similarly, we need to perform an inverse NTT
(iNTT) operation in the decryption operation. Both NTT and
iNTT operations add high computational complexity to the
encryption and decryption operations, respectively.

C. BlackParrot: RISC-V Multicore Processor

BlackParrot is an agile open-source RISC-V multicore pro-
cessor for accelerator SoCs [15]. The BlackParrot multicore
implements the RISC-V RV 64G architecture and is designed
as a scalable, heterogeneously tiled multicore microarchi-
tecture. BlackParrot microarchitecture has four different tile
types: 1) A Core Tile, which contains a BlackParrot processor
with one or more coherent caches, a directory shard, and an
L2 slice, 2) An L2 extension tile, which is used to scale-out
the on-chip L2 in the BlackParrot system, 3) A Coherent
accelerator tile, which has a local cache engine (LCE) with a
backing coherent cache, and 4) A Streaming accelerator tile,
which does not have a cache memory behind their LCE link
and does not control any physical memory. Streaming tiles
can be used for basic I/O devices, network interface links, or
GPUs.

BlackParrot provides a robust and scalable end-to-end
framework for accelerator integration, which simplifies the
interfacing of both coherent and streaming accelerators, and
the offloading of parts of the user application from the pro-
cessor to the accelerator. This framework provides hardware
implementation of streaming and coherent accelerator tiles in
SystemVerilog (simulation and FPGA prototype). This helps
accelerator designers and system architects to evaluate their
accelerator related ideas using hardware implementation rather
than simulation, and find the integration strategy that has low
offload and synchronization overheads for their application to
improve the end-to-end application time.

D. Video Encryption Example

In this paper, we use the example of video encryption to
discuss the choice of N and logQ, sizes of the ciphertext,
memory and compute requirements for message-to-ciphertext
and ciphertext-to-message conversions, and how that influ-
enced the microarchitecture of RISE. A video is made up of
multiple frames, where a frame size is defined by fw×fh×bpp.
Here, bpp defines the bits per pixel and assumes a value of 8
for a grayscale pixel. For a given N , log q, and limbs value,
we can encode N/2× log q bits in a single ciphertext, which
implies that a single frame will be encoded and encrypted
within multiple ciphertexts (cts) and will have a total size of
N × log q × limbs×#cts bits.

For a QQVGA, the frame resolution is 120× 160 pixels. If
this frame is in grayscale, the frame size will be 120× 160×
8 = 153, 600 bits = 18.75 KB. With N = 4096 and log q = 30
bits, we can encode N/2× log q = 2048× 30 = 61, 440 bits
in a single ciphertext, which implies that a single frame will
be encoded and encrypted within 3 ciphertexts and will have
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a total size of 270 KB. While N = 4096 and logQ = 90
bits parameter set provides 128-bit security, to enable practical
applications using HE computing approach, we need to have
larger parameters such as N = 16384 and logQ = 390 bits.
For this N and logQ combination, a single frame will be
encoded and encrypted within a single ciphertext and will
have a total size of 1.6 MB. Similarly for QVGA, the frame
resolution is 320 × 240 pixels. If this frame is in grayscale,
the frame size will be 320 × 240 × 8 = 614, 400 bits =
75 KB. With N = 4096 and log q = 30 bits, we can convert
N/2× log q = 2048×30 = 61, 440 bits of a frame in a single
ciphertext, which implies that a single frame will be encoded
and encrypted within 10 ciphertexts and will have a total size
of 900 KB. With N = 16384 and log q = 30 bits, a single
frame will be encoded and encrypted within a single ciphertext
and will have a total size of 4.5 MB.

Given the limited on-chip memory in edge devices, we
cannot use batch processing for message-to-ciphertext and
ciphertext-to-message conversion of the frames. We need to
architect RISE such that it can match the throughput of the
message-to-ciphertext conversions with the typical frame rates
of 15 to 60 frames per second. In contrast, the ciphertext-to-
message conversion is constrained by the bandwidth (100−900
Mbps) of the network connecting the edge device and the
cloud.

III. RELATED WORK

Over the years, there have been several works that have
focused on accelerating HE computing on the cloud side.
These works include algorithmic optimizations for CPU [4],
[5] and GPU [6], [7], and custom hardware accelerators [8]–
[12] running in the cloud. All these works assume that the
cloud receives encrypted data from the edge device and that
the cloud sends the encrypted result back to the edge device
for decryption. There is an implicit assumption in these works
that the edge devices have the capability to encrypt and decrypt
the data with high performance and do not need any hardware
acceleration. However, the encryption and decryption of data
for HE computing is compute intensive and has a very high
memory usage. For the edge devices that are constrained by
power, performance, and area, we need to develop an efficient
solution for edge-side operations.

A. Software-based Solutions

Microsoft SEAL [33] is a HE library that allows addi-
tion and multiplication operations on encrypted integers or
real numbers. Recently, SEAL has been extended to SEAL-
Embedded [3] for resource-constrained edge devices. SEAL-
Embedded exploits RNS partitioning, data type compression,
memory pooling, and reuse to reduce the memory consump-
tion. However, this software-based implementation of encryp-
tion operation is still slow and not efficient for real-time
applications. As mentioned earlier, for a video application with
a low resolution of QQVGA, SEAL-Embedded fails to encrypt
even one frame per second running at 1 GHz on a RISC-V core
like BlackParrot [15] for a practical set of scheme parameters
(polynomial degree of N = 4096 and three 30-bit primes).

B. Hardware-based Solutions

There are a few works focusing on accelerating edge side
operations for HE [27], [28]. Su et al. [27] present an FPGA-
based accelerator for the BGV HE scheme as against the
CKKS scheme that we support. Their BGV accelerator only
supports small scheme parameters (N = 128, logQ = 27),
which are impractical for HE computation. However, the
authors claim that their accelerator can be extended to larger
polynomial degrees to support higher security levels, but sup-
port for larger parameters is left as future work. Moreover, the
accelerator is mainly optimized to achieve high performance
and throughput, while ignoring area/energy efficiency. Yoon
et al. [28] present an ASIC-based en/decryption accelerator
for HE operations. The accelerator is again evaluated only
for small parameters (N = 16). Even to support these small
polynomials, it needs large buffers to store the in/outputs and
the pre-computed twiddle factors, increasing the memory area.

In our work, we architect an accelerator that can perform
message-to-ciphertext and ciphertext-to-message conversions
for practical scheme parameters. Our accelerator uses data-
level parallelism, shares the datapath between encryption and
decryption operations, adopts memory reuse and memory
reordering strategies, and eliminates the need for additional
on-chip memory to store twiddle factors by computing them
on-the-fly.

IV. RISE SYSTEM VIEW

In this section, we present the overall design of RISE,
an end-to-end SoC (see Figure 3) that consists of a single
BlackParrot RISC-V core, and an accelerator that performs
error sampling, encryption, and decryption. The accelerator is
interfaced with the BlackParrot core in a streaming fashion be-
cause a large amount of data needs to be frequently transferred
between the two. To move all the input data from the main
memory of BlackParrot core to the accelerator, we configure a
hardware DMA logic. The user provides public keys (pk0, pk1)
and input message m to the BlackParrot core. The BlackParrot
core is responsible for performing en/decoding operations and
the random seed generation using SEAL-Embedded library.
The PRNG unit in accelerator receives the random seed from
the BlackParrot core and uses it to generate a bit stream of
pseudo-random numbers. These pseudo-random numbers are
passed to a fast error sampler to generate the required error
polynomials, i.e., e0, e1, and µ. These error polynomials along
with the encoded message and public keys are then used to
perform encryption. The encryption operation performs the
operations described in the Equations (1) and (2). Similarly,
the decryption operation performs the operations listed in
Equation (3). For decryption operation, we need the ciphertext
(c0 and c1) that is sent by the cloud and the secret key
that is generated by the BlackParrot core as inputs. Once the
en/decryption operation is completed, the BlackParrot core
receives an interrupt from the accelerator. Then, the DMA
logic transfers the output of the accelerator back to the main
memory of the BlackParrot core.



5

 u

 MUL
 v

 w

0

1

0
1

 s0

  mode[1:0]

 ADD_RED

 SUB_RED

 {s2, s1}

 q
 Decode

 s0

 Barrett 
Reduction

1

0

 s2

 s1

 q

 q

 Re-ordering
unit

 BFU

  M
M

IO
 D

M
A

 rd
_d

at
a rd

_a
dd

r/e
n

Bank0
0

4
...

n-4

Bank1
1

5
...

n-3

Bank2
2

6
...

n-2

Bank3
3

7
...

n-1

 BG1
 BG0

Bank0Bank1 Bank2Bank3

 0 1 2 3
4 5 6 7
... ... ... ...

n-4 n-3 n-2 n-1

 SRAM

w
r_

ad
dr

/d
at

a/
en

W
rit

e 
Bu

ffe
rs

Decode Unit

mode s0 s1 s2 Function

0x 0 0 0 Butterfly

10 x 1 0 out0 = (u+v) mod q

11 1 x 1 out0 = (u*v) mod q

 Ic
ac

he
 D

ca
ch

e

 F
ro

nt
 E

nd

RISC-V
Core

 Comp
Ctrl

CU

 En/Decryption
Unit

 Error Sampling
Unit

 Seed

 PRNG

 Keccak Unit

 M
od

3 
R

ed
uc

tio
n

 B
ou

nd

 q
 C

om
p

 Uniform Sampler

Modulus
q Sub

 TRNG

 State Registers

 

Round Unit

 Absorb  Permutation
 H

W
 H

W

 M
ul

ti-
W

id
th

 C
on

ve
rto

r

 IO
 B

uf
fe

r

IO
Ctrl

 B
ac

k 
En

d

 M
em

or
y 

In
te

rc
on

ne
ct

Fig. 3. System-level view of RISE, a RISC-V SoC for accelerating message-to-ciphertext and ciphertext-to-message conversion operations on the edge for
supporting homomorphic operations in the cloud.

V. ACCELERATOR MICROARCHITECTURE

In this section, we provide a detailed description of the
microarchitecture of our accelerator (see Figure 3).

A. Error Sampling Unit

Error samples are critical to maintaining the required
security level while performing HE operations. However,
generating these high-quality error samples is one of the
bottlenecks in the edge-side operations. As shown in Figure 3,
error sampling basically consists of two steps: generation
of pseudo-random numbers using a true random seed, and
generation of uniform and binomially distributed error
samples using the generated pseudo-random numbers. Below
we present the microarchitecture of a lightweight PRNG, a
binomial sampler, and a uniform sampler.

Pseudo-Random Number Generator (PRNG): We have a
customized PRNG unit as part of the accelerator to speed
up pseudo-random number generation process [30]. One of
the prior works [21] evaluated various PRNGs and concluded
that the SHA-3 hash family in the SHAKE mode [34], is
2× and 3× more energy efficient than ChaCha20 [35] and
AES [36], respectively. This is due to the fact that SHA-3 in
SHAKE mode generates the highest number of pseudo-random
numbers per round. Therefore, in our PRNG unit design, we
use a SHAKE function, which is more commonly referred
to as Keccak. For our use case of en/decryption operation
that requires a large number of error samples (as N is >212),
Keccak makes a perfect PRNG because its output length is
not predetermined. Hence, we can generate as many error
samples as needed for the en/decryption operation with just
one invocation of the Keccak unit.

A Keccak unit typically consists of a round unit with
two sub-units: Absorb and Permutation. A true random seed
(generated by TRNG), and the desired length of the pseudo-
random number, and the rate at which the pseudo-random

numbers are generated (provided by the BlackParrot core via
control and status registers (CSRs)) are input to the Absorb
sub-unit. In our design, the true random seed consists of 1600
bits. A Keccak round operates on the data organized as an
array of 5×5 computation lanes, each of length 64. Hence, the
absorption phase changes the random seed from a 1D 1600-
bit representation into a 2D 25×64-bit representation, and we
store this 2D representation in a state register (see Figure 3).
The value in the state register is permuted by performing
a series of shift, XOR, AND, and NOT operations in the
Permutation unit [30]. We store the output of the Permutation
unit in the state register. We set the length of the pseudo-
random number to 1088 bits, which is the maximum length
supported by Keccak.
Error Sampler: The output of PRNG is passed to a uniform
sampler and a binomial sampler to generate error polynomials.
For RLWE cryptosystems, the original worst-case to average-
case security reductions hold for both continuous (rounded)
Gaussian distributions and discrete Gaussian distributions.
However, the implementation of efficient and constant-time
Gaussian sampling is a challenging problem [37]. Prior
works [3], [19], [38] address this by calculating the difference
of the hamming weights of two random bit streams of length k,
and can rapidly obtain samples from a zero-centered binomial
distribution2 in a constant time. We adopt the same approach
in our design.

Additionally, we implement a uniform sampling unit that
uniformly samples the coefficients of the polynomial from
R3 (i.e., N coefficients sampled uniformly from {-1, 0, 1}).
We implement this functionality using a rejection sampling
algorithm [40]. The implementation is a constant time imple-
mentation of modulo3 reduction (see Figure 3).

2Presuming this error distribution’s standard deviation is sufficiently large,
no known attack exploits the shape of this distribution. For our binomial
distribution, we use a standard deviation of

√
21/2 u 3.24 to comply with

the HE security standard [39].
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B. Encryption and Decryption Unit

Figure 4 (a) shows the encryption datapath, which follows
Equation (1) and (2). Each encryption operation calls the
accelerator twice, once to compute c0 with (pk0, µ,m, e0)
input set and then to compute c1 with (pk1, µ, e1) input
set. The datapath consists of polynomial addition and
multiplication operations. The polynomial addition involves
simple element-wise modular addition of the polynomial
coefficients and has a complexity of O(N). In contrast,
polynomial multiplication has a complexity of O(N2), and
like prior efforts, we accelerate it using NTT. (more details
about NTT are in Section II-B). Acceleration using NTT
reduces the complexity of polynomial multiplication to O(N).
Similarly, Figure 4 (b) shows the datapath for the decryption
operation that follows Equation (3). Decryption datapath again
performs polynomial addition and multiplication operation.
It receives input polynomials that are already in the NTT
domain. However, the decrypted polynomial is required to
be in coefficient form for performing the decoding operation
(we perform this operation on the BlackParrot core using the
SEAL-Embedded library). Therefore, the decryption datapath
has an iNTT operation.

Unified En/Decryption Datapath: In order to reduce the area
overhead of the accelerator, we share the datapath and control
logic of the accelerator between encryption and decryption
operations (see Figure 4 (c)). This is possible because the
sequence of operations performed in the encryption and
decryption operations are the same. Moreover, the encryption
operation uses the exact same sequence of operations to
compute both c0 and c1. Thus, we use the same datapath
twice to perform the complete encryption operation.

NTT Acceleration: The main performance bottleneck in the
en/decryption unit is the NTT operation. Consequently, we
propose several optimization techniques to efficiently perform

SAMPLE(   )

LOAD(pk1)

NTT(   )

MULTNTT(pk1)

SAMPLE(e1) NTT(e1)

ADD STORE(c1)

BG0

BG1

Time

(a) 

LOAD(c1)

LOAD(s) ADD iNTT

BG0

BG1

Time

(b)  

MULT

LOAD(c0)

STORE(m)

DMA Read/Operate/Write Occupied Empty

Fig. 5. Memory reuse during (a) encryption and (b) decryption operations.
Each BG can store only one polynomial. “Read/Operate/Write” means the
bank group is being accessed during the operations. “Occupied” means the
bank group stores intermediate results.

NTT while incurring a low memory and area overhead. We
discuss these optimizations in detail in the rest of this section.

Butterfly Unit (BFU): A Butterfly operation is the basic build-
ing block of NTT/iNTT operation. An NTT/iNTT operation
consists of log2N stages (for a polynomial of degree N ),
and each stage requires N/2 Butterfly operations. Each BFU
takes two coefficients (say a and b) out of the N polynomial
coefficients as input and computes (a, b) = (a+ω ·b (mod q),
a− ω · b (mod q)) (refer Algorithm 1 line 13 and 14). Here,
ω is the twiddle factor. A degree N polynomial requires N/2
twiddle factors, where each twiddle factor needs log q bits. Our
accelerator computes twiddle factors on-the-fly within BFU to
reduce the memory overhead for storing them as pre-computed
values.

BFU is fully-pipelined with the throughput of 1 Butterfly
operation per cycle. It is designed to perform NTT, iNTT,
polynomial addition, and multiplication operations that are
required by both encryption and decryption operations (see
Figure 4). BFU has an integer adder and subtractor unit that
performs modular reduction using a conditional operator.
BFU contains a modular multiplier where modular reduction
operation is performed using a Barrett reduction [41] unit.
Barrett reduction computes modular reduction operation
without performing any division and only involves two
multiplications and one subtraction, shift, and conditional
subtraction operation [41]. In addition, it does not exploit
any property of the modulus q, which makes it ideal for
supporting configurable moduli. The modular multiplier lies
on the critical path in the accelerator. Hence, we pipeline
the multiplier to reduce the critical path and improve the
operating frequency of the accelerator. As power and area
are the primary design goals for edge devices, all the above
computations are performed by sequentially leveraging the
pipelined BFU.

Memory Reuse Technique: All the necessary polynomials (m,
e0, e1, µ, pk0, pk1, c0, c1) should be kept in the accelerator’s
on-chip memory for efficient en/decryption computation. A
single polynomial typically needs memory of ∼60 KB with
N = 214 and log q = 30. Therefore, we require a total of
480 KB to hold all the in/output polynomials. In our memory
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NTT_swap4 Example, N=32

Addr B0 B1 B2 B3 B0 B1 B2 B3 B0 B1 B2 B3 B0 B1 B2 B3 B0 B1 B2 B3 B0 B1 B2 B3
0 0 a0 a1 1 a2 a3 0 a0 a2 1 a4 a6 0 a0 a4 1 a8 a12 0 a0 a8 1 a16 a24 0 a0 a16 1 a1 a17 a0 a1 a2 a3
4 2 a4 a5 3 a6 a7 8 a1 a3 9 a5 a7 4 a1 a5 5 a9 a13 2 a1 a9 3 a17 a25 8 a8 a24 9 a9 a25 a8 a9 a10 a11
8 4 a8 a9 5 a10 a11 2 a8 a10 3 a12 a14 8 a2 a6 9 a10 a14 4 a2 a10 5 a18 a26 2 a2 a18 3 a3 a19 a16 a17 a18 a19

12 6 a12 a13 7 a14 a15 10 a9 a11 11 a13 a15 12 a3 a7 13 a11 a15 6 a3 a11 7 a19 a27 10 a10 a26 11 a11 a27 a24 a25 a26 a27
16 8 a16 a17 9 a18 a19 4 a16 a18 5 a20 a22 2 a16 a20 3 a24 a28 8 a4 a12 9 a20 a28 4 a4 a20 5 a5 a21 a4 a5 a6 a7
20 10 a20 a21 11 a22 a23 12 a17 a19 13 a21 a23 6 a17 a21 7 a25 a29 10 a5 a13 11 a21 a29 12 a12 a28 13 a13 a29 a12 a13 a14 a15
24 12 a24 a25 13 a26 a27 6 a24 a26 7 a28 a30 10 a18 a22 11 a26 a30 12 a6 a14 13 a22 a30 6 a6 a22 7 a7 a23 a20 a21 a22 a23
28 14 a28 a29 15 a30 a31 14 a25 a27 15 a29 a31 14 a19 a23 15 a27 a31 14 a7 a15 15 a23 a31 14 a14 a30 15 a15 a31 a28 a29 a30 a31

Input(after bit-reverse) Output

Stage 0
compute

Stage 1
compute

Stage 2
compute

Stage 3
compute

Stage 4
compute

swap2
swap4

Fig. 6. NTT swap4 with N = 32. The red-colored numbers before each pair of cells denote the order of Butterfly operations. The four consecutive Butterfly
operations (2 rows) being reordered are denoted with the same color.

reuse strategy, we manage the encryption and decryption
operations such that at any given time, we need to store a
maximum of only two polynomials, which takes 120 KB of
space.

For memory reuse, we divide the entire on-chip SRAM
memory into multiple banks that are organized into two bank
groups, i.e., BG0 and BG1. Each bank group corresponds
to a single polynomial and each polynomial is stored across
multiple banks within a bank group. During the encryption
and decryption operation, we use these bank groups to store
the input, output, and intermediate polynomials. Hence, we
share each of the two bank groups among several polynomials
as shown in Figure 5 (a) and (b). As an illustration (see
Figure 5), we carry out an in-place NTT in an encryption
operation that gets the data for polynomial µ from BG0,
processes it, and then writes the results back to BG0. While
we are still performing NTT on the polynomial µ, we load the
next input polynomial pk1 into BG1 in parallel. The modular
addition and multiplication operations involve memory reuse
as well. Both of these operations read the input from BG0 and
BG1 while writing the output to bank group BG1. Therefore,
after the modular addition or multiplication operations are
complete, we can reuse BG0 for the subsequent operation.
Therefore, by utilizing a memory reuse strategy, we can
efficiently perform en/decryption operations while incurring a
minimal memory footprint.

Memory Reorder Technique: The next memory level optimiza-
tion that we perform is memory reorder, which helps reduce
the number of memory ports required, resulting in low memory
area overhead. Every Butterfly operation takes as input two
coefficients of the polynomials, operates on them, and stores
the resultant values back to the same memory banks. As a
result, a naı̈ve implementation of NTT will require 2 read and
2 write ports (2R2W) for each memory bank that is of size N .
Typically, a 2R2W memory bank is roughly twice as large as 1
read and 1 write port (1R1W) memory bank of the same size.
Consequently, we can save half of the memory area simply by
switching from a single 2R2W bank of size N to two 1R1W
banks of size N/2.

However, managing memory access patterns for NTT, with
1R1W banks, becomes challenging as the memory accesses
can lead to bank conflicts. Throughout all the NTT stages,
the distance ((j − i)) between the two inputs of a Butterfly
operation changes. This leads to bank conflicts in several
stages of NTT as each stage in NTT iterates through all

values from 1 to N/2. Thus, replacing 2R2W bank with
1R1W banks is not trivial. Some of the prior works [16]–
[19], [21], [22], [38] address this issue by modifying the NTT
algorithm itself. For example, to use 1R1W memory banks
for an NTT, Roy et al. [22] proposed a memory-efficient NTT
algorithm, which we refer to as the NTT swap2 algorithm.
Their technique rearranges the output of the two subsequent
Butterfly operations to prevent bank conflicts (two 1R1W
banks). As a result, it guarantees that the input pair required
by the Butterfly operation in the following stage is in distinct
memory banks.

Although using a 1R1W memory bank reduces memory
space by half, there is still scope for improvement. To further
reduce memory area overhead, we suggest replacing two
1R1W banks of size N/2 with four 1 read/write port (1RW)
banks of size N/4. This causes newer bank conflicts, which
cannot be addressed by using the NTT swap2 method. For
example, if a bank receives both read and write requests at
the same time, we will need an additional write buffer to
store the write requests. Now the write requests must wait
in the write buffer until there are no incoming reads before
opportunistically writing back the results. Although using a
write buffer is a good way to solve bank conflicts, the size of
the write buffer quickly grows. Our observation is that if there
are N/4 continuous read and write accesses to the same bank
in a given stage, the write buffer must be the same size as the
banks (N/4) in order to hold all write requests that overlap
with read requests to the same bank. If we were to use the
same size buffers as the memory banks, we incur the same
memory overhead as the 1R1W memory bank, making this
solution impractical.

We propose a method called NTT swap4 (refer
Algorithm 1) to avoid using these large write buffers.
NTT swap4 reorders the output of four successive Butterfly
operations, while NTT swap2 reorders the result of only two
Butterfly operations. (see Figure 6). This is to ensure that not
only the two inputs of each Butterfly operation are stored
in different banks (like NTT swap2), but also the inputs of
consecutive Butterfly operations are stored in different banks
(NTT swap4). As the same bank is not repeatedly used in
this scenario, the write buffer can immediately write back
the outcomes in the subsequent cycle. Thus, the write buffer
can be as small as one element wide (log q) for a memory
bank. We demonstrate NTT swap4 technique example (for
N = 32) in Figure 6. The order of the Butterfly operations is
indicated by the numbers (in red) before each pair of cells. For
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Algorithm 1: NTT swap4
Input: Polynomial a(x) ∈ Zq[x] in bit-reversed order
Output: NTT (a(x)) in normal order

1 m = 2;
2 for (stage = 0; stage < (logN − 1); stage+ = 1) do
3 ω = 1; ωm = ω2log N−1−stage

n ; upd cnt = 1;
4 for (j = 0; j < m ∗ 2; j+ = 4) do
5 for (k = 0; k < N ; k+ = m ∗ 4) do
6 i0=[]; i1=[];
7 for (l = 0; l < 4; l+ = 1) do
8 switch l do
9 case 0 do idx = j + k ;

10 case 1 do idx = j + k + 2 ;
11 case 2 do idx = j + k +m ∗ 2 ;
12 case 3 do idx = j + k +m ∗ 2 + 2 ;

13 a[idx] = a[idx] + a[idx+ 1] ∗ ω (mod q);
14 a[idx+1] = a[idx]−a[idx+1]∗ω (mod q);
15 i0.append(idx); i1.append(idx+ 1);
16 if upd cnt == N/(2stage+1) then
17 ω = ω ∗ ωm (mod q); upd cnt = 1;
18 else upd cnt+ = 1 ;

19

(a[i0[0]], a[i1[0]], a[i0[1]], a[i1[1]],

a[i0[2]], a[i1[2]], a[i0[3]], a[i1[3]]) =

(a[i0[0]], a[i0[1]], a[i0[2]], a[i0[3]],

a[i1[0]], a[i1[1]], a[i1[2]], a[i1[3]])

20 m = (m == N/4) ? 2 : (m ∗ 2);
21 for (i = 0; i < N ; i+ = 1) do

/* Bit manipulation */
22 phy addr = {i[logN − 3 : 2], i[logN − 1 :

logN − 2], i[1 : 0]} ;
23 a out[i] = a[phy addr];

24 return a out;

example, in stage 0, the first four Butterfly operations access
the following pairs: (a0, a1), (a2, a3), (a4, a5), (a6, a7).
However, stage 1 expects elements in the order of (a0, a2),
(a4, a6), (a1, a3), (a5, a7). To prevent successive Butterfly
operations in stage 1 from accessing the same banks for reads
and writes, we reorganize stage 0’s outputs into the order
anticipated by stage 1 (refer Algorithm 1 line 19). To carry
out this reordering, we use a Reordering Unit (RU).

Re-ordering Unit (RU): The RU reorders the output generated
by the BFU and writes it back into the memory banks. A
small register array that can store up to 8 pairs of Butterfly
outputs and a reordering logic make up the RU. Reordering
logic begins by sequentially writing the two results of a
Butterfly operation and their addresses to the register array
in each cycle. Once there are eight elements in the register
array or four pairs of BFU outputs, the reordering logic
will send out the elements stored in the registers to the
corresponding memory bank. Both NTT and iNTT operations
can be reordered effectively using RU. The RU will be active
only while doing NTT/iNTT computations based on the
mode signal (see Figure 3).

Control Unit (CU): The CU consists of two components – the
computation controller and the I/O controller. Based on the

current operation (error sampling, NTT/iNTT, modular addi-
tion, and multiplication), the computation controller, which is
an FSM, chooses the BFU and RU mode signals. In addition,
it generates the enable signal and read/write addresses for
memory bank accesses. During NTT/iNTT operation, the com-
putation controller is also in charge of setting up the NTT unit
to compute the twiddle factors on-the-fly. Depending on the
type of CPU request received by the accelerator (encryption
or decryption), the I/O controller chooses the necessary set of
BFU operations. Besides, based on the current en/decryption
stage, it also configures the DMA unit for the input/output
data transfer to/from memory banks.

C. Further Optimizations to NTT

In this section, we present a technique to parallelize NTT to
further improve its performance. This is due to the fact that the
area-efficient NTT design that we discussed above cannot meet
the performance requirements of high-end edge devices and
several high-speed applications. Therefore, by parallelizing the
NTT computation, we can improve the performance at the cost
of area and power overhead. We evaluate this performance vs.
area/power trade-off to identify the optimal architectures for
different design objectives in Section VI.

To improve the performance of NTT computation, we can
perform multiple Butterfly operations in parallel. Therefore,
we propose a scalable parallel implementation of NTT with
multiple BFUs. To support a parallel NTT architecture using
multiple BFUs, we need to address two main requirements:
1) Multi-port memory banks to read/write multiple BFUs’
inputs and outputs simultaneously and 2) On-the-fly compu-
tation of multiple twiddle factors to enable multiple Butterfly
operations in parallel.

1) Memory Bank Organization for Parallel NTT: Moving
to a multi-port memory bank design is not an efficient solution
as increasing the number of ports will quadratically increase
the memory area overhead [42]. To reduce the memory area
overhead, we still use the 1RW memory banks but we
linearly increase the number of memory banks as we increase
the number of BFUs. However, we keep the total memory
size the same by proportionally decreasing the size of each
memory bank. With an increase in the number of memory
banks, the data access pattern within each stage of the NTT
becomes complicated resulting in data dependencies that need
to be carefully managed. Consequently, our proposed memory
reorder technique (see Section II-B) will not work as it is and
requires modifications.

We extend our memory reorder scheme to get rid of the
memory bank conflicts by reordering the output of 4 ×
#BFUs Butterfly operations instead of reordering the output
of only four successive Butterfly operations (as proposed in
NTT swap4 technique). For example, for N = 32 with 2
parallel BFUs, in stage 0, the first eight Butterfly operations
access the following pairs: (a0, a1), (a2, a3), (a4, a5), (a6, a7),
(a8, a9), (a10, a11), (a12, a13), (a14, a15). However, stage 1
expects elements in the order of (a0, a2), (a4, a6), (a8, a10),
(a12, a14), (a1, a3), (a5, a7), (a9, a11), (a13, a15). To prevent
successive Butterfly operations in stage 1 from accessing the
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same banks for reads and writes, we reorganize stage 0’s
outputs into the order anticipated by stage 1.

2) Twiddle Factor Computation for Parallel NTT: As dis-
cussed earlier, to minimize the memory area overhead RISE
computes the required twiddle factors on-the-fly instead of
storing the precomputed values. However, now as we increase
the number of BFUs for the parallel NTT approach, we need
to compute many twiddle factors in parallel, thus introducing
stalls in the NTT computation pipeline that offsets the perfor-
mance gains. The stalls are introduced because RISE’s area-
efficient design shares the BFU to compute the twiddle factor
and to perform the Butterfly operation. To eliminate pipeline
stalls, we introduce a separate modular multiplier to compute
twiddle factors in parallel with the Butterfly operations. We
note that we also need to increase the number of modular
multipliers that are used to compute twiddle factors, as we
increase the number of BFUs.

VI. EVALUATION

A. Methodology

For our analysis, we run all edge-side operations on the
following systems in bare-metal mode:
• Baseline: BP processor executes all the operations from

SEAL-Embedded library.
• RACE [42]: In the RACE SoC, the hardware accelerator

executes the en/decryption operation, while the remaining
operations (error sampling and en/decoding) are performed
on the BP processor. We modified SEAL-Embedded library
to invoke calls to en/decryption operations on the accelera-
tor.

• RISE: In the RISE SoC, the hardware accelerator performs
error sampling and executes the en/decryption operation
while the remaining operations (en/decoding) are performed
on the BP processor. RISE supports a range of parallel
BFUs (1 to 32) within a single NTT operation. In our
evaluation, RISE-1BFU and RISE-MaxBFU correspond to
configurations with 1 BFU and 32 BFUs, respectively.
All three systems, i.e., baseline, RACE, and RISE, make use

of a single core BP configuration (32 KB each of Icache and
Dcache) running at 1 GHz. We implement all three systems in
SystemVerilog and simulate them using VCS. The hardware
implementation is cycle-accurate and captures the nuances of
data movement between all parts of the systems. For power,
performance, and area evaluation, we use GlobalFoundries
12nm technology. We synthesize the logic components in
baseline, RACE, and RISE using Synopsys Design Compiler,
and use memory compiler for designing the SRAM arrays.

B. Performance Results

We evaluate RISE performance with different numbers of
BFUs (1 to 32) for both message-to-ciphertext and ciphertext-
to-message conversion operations for a range of scheme pa-
rameters.

As shown in Figure 7 (a), across different scheme param-
eter (N , logQ) values, RACE configuration achieves 7.8×-
12.58× and 7.9×-66.08× better performance for message-
to-ciphertext and ciphertext-to-message conversion operations,

respectively, compared to the baseline. The performance im-
provement in RACE is because we offload the encryption
and decryption operations to the hardware accelerator, which
speeds up encryption by 89.82×-123.76× and decryption by
204.66×-244.44×. In RISE-1BFU configuration, on top of
encryption and decryption operations, we also offload the error
sampling operation to the hardware accelerator, which results
in 1726.39×-1734.08× speed up in the error sampling. How-
ever, RISE-1BFU configuration achieves just 3.68×-8.29×
better performance for message-to-ciphertext conversion oper-
ation compared to the RACE as the performance improvement
is limited by Amdahl’s law.

RISE-1BFU configuration achieves similar performance
as RACE for ciphertext-to-message conversion operation
(refer Figure 7 (b)), as this conversion does not include the
error sampling step. As we increase the number of BFUs
within the NTT/iNTT operation to perform multiple Butterfly
operations in parallel, we observe a speed-up in encryption
and decryption operation. As shown in Figure 7 (a) and (b)
for RISE-MaxBFU configuration, with maximum number
of BFUs (32), compared to RISE-1BFU the message-to-
ciphertext and ciphertext-to-message conversion performance
improves by 37.7%-414.92% and 3.4%-35%, respectively.
Overall, compared to the baseline system, our RACE-
MaxBFU improves the message-to-ciphertext conversion
performance by 38.27×-433.14×, and the ciphertext-to-
message conversion performance by 8.2×-89.25×.

Comparison with Related Works: Table I presents the
performance comparison between RISE and other relevant
state-of-the-art works. The performance comparison includes
the latency of NTT operation for a single limb (the dominant
operation in message-to-ciphertext and ciphertext-to-message
conversion), the SRAM size, the number of memory ports, and
the evaluation platform (ASIC or FPGA). As other existing
works use different parameters (N and log q), we compute
the performance numbers for RISE for all of these parameter
sets. It is evident from the table that RISE performs faster NTT
computation when compared to other designs for all values
of N except for [17]. Moreover, for every value of N , RISE
utilizes only single-port memory with the smallest SRAM size.
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Fig. 7. Latency (in clock cycle count) of (a) message-to-ciphertext and (b)
ciphertext-to-message conversion operations for baseline, RACE, RISE-1BFU,
and RISE-MaxBFU with 1 GHz frequency.
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TABLE I
NTT OPERATION PERFORMANCE (CYCLE COUNT) COMPARISON WITH THE STATE-OF-THE-ART DESIGNS IN RELATED WORKS. A HEAD-TO-HEAD

COMPARISON IN TERMS OF FREQUENCY, POWER AND AREA NUMBERS CANNOT BE DONE BECAUSE OF DIFFERENCES IN PLATFORMS (ASIC VS FPGA)
AND TECHNOLOGY NODES.

Design N log q
Latency

(Clock Cycles)
SRAM PlatformSize (KB) R/W Ports

[16]

256

16 18554 2.25 KB Dual FPGA
[21] 24 1289 45 KB Single ASIC
[17] 16 556 13.5 KB Dual FPGA
[18] 14 327 22.5 KB Dual FPGA

RISE 30 103 0.93 KB Single ASIC
[17] 16 38 10 KB Dual FPGA
[23] 512 16 1074 18 KB Dual FPGA

RISE 30 215 1.87KB Single ASIC
[24]

1024

28 2568 108 KB Dual FPGA
[23] 28 2114 27 KB Dual FPGA
[25] 32 650 355.5 KB Dual FPGA

RISE 30 447 3.75KB Single ASIC
[23]

4096
60 8284 110.25 KB Dual FPGA

[25] 32 3075 355.5 KB Dual FPGA
RISE 30 1918 15KB Single ASIC
[26] 16384 60 536832 616.5 KB Dual FPGA

RISE 60 34814 480 KB Single ASIC
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Fig. 8. (a) Power consumption and (b) area utilization for baseline, RACE,
RISE-1BFU, and RISE-MaxBFU.

Thanks to our highly parallel and pipelined NTT compu-
tation design that leads to low NTT computation latency. Li
et al. [17] can perform a single NTT in 38 cycles as they
store precomputed twiddle factors in SRAM, which leads to
10× higher memory requirement than RISE. In addition, they
need dual-port memories to feed the input to their vectorized
NTT unit. RISE manages to perform NTT computations while
using only a single-port memory by leveraging NTT swap4
method. Compared to the related work, RISE has the smallest
memory footprint because of our on-the-fly twiddle factor
generation unit and in-place NTT computation. We do not
provide a head-to-head comparison of the performance of
RISE with the works by [27], [28] as those prior works
accelerate en/decryption operations to support HE operations
for the BGV scheme while we enable the support for CKKS
scheme.

C. Power/Energy Results

Figure 8 (a) shows the power consumption in the message-
to-ciphertext and ciphertext-to-message conversion operations

for different scheme parameter (N , logQ) values when using
baseline, RACE, RISE-1BFU, and RISE-MaxBFU systems.
message-to-ciphertext and ciphertext-to-message conversion
operations have similar power consumption, within 0.01%,
and we report the power consumption for the message-to-
ciphertext3. The total power consumption for a message-to-
ciphertext and ciphertext-to-message conversion in the base-
line system is 27.19 mW, out of which the SRAM power
consumption is 41.49% = 11.4 mW and the digital logic
consumes the remaining power. Overall, the power consump-
tion of RACE is about 25%-28% (for a range of scheme
parameters) higher than the baseline system for both message-
to-ciphertext and ciphertext-to-message conversion operations.
The increase in the power consumption is due to 41.92%-
43.55% and 3.36%-7.81% power increase in the digital logic
and SRAM, respectively. The power consumption in RISE-
1BFU configuration increases by 11.62%-30.15% compared to
RACE due to the additional digital logic required for the error
sampling unit. As we increase the number of BFUs from 1 to
32, the power consumption increases by 4.49%-10.98% due
to the more complex memory banking logic (14.61%-30.66%)
and multiple parallel BFUs (1.01%-4.11%).

D. Area Results

The area of RACE is 15% (smallest N ) to 84% (largest N )
larger than the area of the baseline system. (see Figure 8 (b)).
This increase in the area is due to the area required by the

3The ciphertext-to-message conversion does not perform the error sampling
operation and so should have lower power consumption than the message-to-
ciphertext conversion. However, we did not power gate or clock gate the error
sampling unit during the ciphertext-to-message conversion and so it consumes
some power even during the ciphertext-to-message conversion. The error
sampling operation takes less than 10% of the total time required to perform
message-to-ciphertext conversion, and so is not the dominant component.
Hence, the power consumed during message-to-ciphertext and ciphertext-to-
message conversion are comparable
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Fig. 9. (a/b) ADP and (c/d) EDP of message-to-ciphertext/ciphertext-to-message conversion operations for baseline, RACE, RISE-1BFU, and RISE-MaxBFU.

accelerator where SRAMs primarily contribute to the increase
in area. The area overhead in RISE-1BFU is (3.65%-2.14%)
compared to RACE, as error sampling contributes very little
to the overall area of RISE.-1BFU With an increase in the
number of parallel BFUs, the complexity of control logic and
memory banking increases. Hence, as shown in Figure 8 (b),
by increasing the number of BFUs from 1 to 32, the area
overhead of RISE-MaxBFU increases by 17.59% to 22.38%
as compared to RISE-1BFU for different scheme parameters.

E. Area and Energy Efficiency

RISE aims to improve the performance of message-to-
ciphertext and ciphertext-to-message conversion at the cost
of increase in area and power. Thus, Area-Delay Product
(ADP) and Energy-Delay Product (EDP) metrics need to be
considered for evaluating our RISE design. Figure 9 (a) and
(b) compares the ADP value for baseline, RACE, RISE-1BFU,
and RISE-MaxBFU systems. As we can see, RACE decreases
the message-to-ciphertext and ciphertext-to-message conver-
sion ADP by 6.76×-7.78× and 6.89×-35.80× compared to
the baseline, respectively. The improvement is the result of
7.8×-12.58× and 7.95×-66.08× improvement in performance
while incurring only a 15%-84% increase in the area.

The Figure 9 (a) also shows that in RISE-1BFU, the
message-to-ciphertext conversion ADP outperforms RACE
(3.55×-8.12× lower). This is due to 3.68×-8.29× perfor-
mance improvement while incurring only 3.65%-2.14% in-
crease in area. Increasing the number of BFUs from 1 to
32 improves the message-to-ciphertext conversion ADP by
1.13×-3.39× for different scheme parameters (due to 1.37×-
4.14× performance improvement and 17.59%-22.38% area
overhead). For the ciphertext-to-message conversion the ADP
(refer Figure 9 (b)) of the RISE-1BFU system underperforms
RACE by 3.65% for the smallest N and 2.14% for the
largest N as there is an increase in area overhead due to the
additional error sampling unit, which is not used by ciphertext-
to-message conversion. Increasing the number of BFUs to 32
worsens the ciphertext-to-message conversion ADP of RISE-
1BFU by up to 12.3% for small N values. This is because
in RISE-1BFU the decryption operation only accounts for
3.43%-10.40% of the total latency, which when improved
by adding parallel BFUs within iNTT, does not improve

the performance by the same proportion as the area over-
head (17.59%-22.38%). For large N values, the ciphertext-
to-message conversion ADP increases by up to 10.35% as
now decryption operation contributes significantly to the total
latency, which can be accelerated by instantiating parallel
BFUs.

Figure 9 (c) and (d) compare the energy efficiency of base-
line, RACE, RISE-1BFU, and RISE-MaxBFU systems. As
evident from the figures, EDP follows a similar trend as ADP.
There is 38.6×-117.09× and 40.19×-3229.81× improve-
ment in the EDP for message-to-ciphertext and ciphertext-to-
message conversion, respectively when using RACE as com-
pared to the baseline. The EDP of RISE-1BFU for message-
to-ciphertext conversion is 12.19×-52.87× better compared
to RACE and by increasing the number of parallel BFUs,
EDP further improves by 1.69×-15.51×. Unfortunately, EDP
of RISE-1BFU for ciphertext-to-message conversion worsens
by 11.62%-30.15% compared to RACE for the same reason
as ADP. The EDP of RISE-1BFU for ciphertext-to-message
conversion can be improved by clockgating the error sampling
unit. Moreover, by using 32 BFUs the ciphertext-to-message
conversion EDP improves by 1.71%-64.35% compared to
RISE-1BFU. This improvement is due to the fact that in-
creasing the number of BFUs improves decryption operation
performance, which leads to up to 35% performance improve-
ment for ciphertext-to-message conversion. We also get up to
21.69% energy consumption reduction as the BlackParrot core
consumes less idle energy.

F. Video Application Evaluation

We evaluate our RISE design using QQVGA and QVGA
video frame encryption examples. For calculating the number
of ciphertexts required to encode and encrypt each of these
frames refer to Section II-D. Figure 10 (a) and (b) shows the
maximum frames per second (FPS) that the baseline, RACE,
RISE-1BFU, and RISE-MaxBFU systems can sustain for dif-
ferent scheme parameter (N , logQ) values when performing
message-to-ciphertext conversion operation for QQVGA and
QVGA, respectively. The frames are sent to the cloud using
a mid-band 5G network, which offers a balance between
speed, capacity, and coverage [43]. As shown in Figure 10, in
the regions with maximum bandwidth, mid-band 5G network
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Fig. 10. Maximum supported (a) QQVGA and (b) QVGA frame rate per
second for mid-band 5G, baseline, RACE, RISE-1BFU, and RISE-MaxBFU
for different N and logQ values. The green region indicates the typical frame
per second required for surveillance cameras and mobile platforms.

can transfer up to 70 (QQVGA) and 23 (QVGA) frames
per second for the largest N value and in the regions with
minimum bandwidth, it can only transfer 7 (QQVGA) and
2 (QVGA) frames per second for the smallest N value.
So the throughput of our designs for message-to-ciphertext
conversion and ciphertext-to-message conversion should match
with these frame rates.

The baseline system is capable of encrypting up to 2
QQVGA FPS for N values smaller than 2048 (refer Figure 10
(b)). However, as we increase N to 4096 or larger values, it
cannot encrypt even a single frame per second. On the other
hand, for QQVGA, RACE encrypts ∼16 FPS for small values
of N and 5 FPS for the largest N value (16384). So at large
values of N we cannot saturate the 5G network at both the
maximum bandwidth and minimum bandwidth.

For QVGA resolution, the baseline system cannot encrypt
even one FPS even for the smallest N value (1024). However,
RACE can encrypt 5 and 2 FPS for the smallest and largest
N values, respectively. While RACE can support higher FPS
than the baseline, it cannot saturate the 5G network at both the
maximum bandwidth and minimum bandwidth for QVGA.

The RISE-1BFU system is capable of encrypting up to
48 QQVGA FPS for N values smaller than 2048 (refer
Figure 10(b)). For the largest N value, RISE-1BFU system is
capable of encrypting up to 10 QQVGA FPS. As we increase
the number of BFUs from 1 to 32, the FPS numbers change
to 64 and 27 QQVGA FPS for the smallest and largest N
values, respectively. Thus, we can saturate the 5G network at
minimum bandwidth but not at the maximum bandwidth.

For QVGA resolution (refer Figure 10 (a)), RISE-1BFU
system is capable of encrypting up to 13 FPS for the smallest
N value (1024) and 4 FPS for the largest N value. The RISE-
MaxBFU configuration can encrypt up to 17 and 10 QVGA
FPS for the smallest and largest N values, respectively. Thus,
we can saturate the 5G network at minimum bandwidth but
not at the maximum bandwidth.

Typically surveillance cameras and mobile platforms have
an average frame rate of 15 to 30 FPS [14] (shown by the
green highlighted area in Figure 10 (a) and (b)). For QQVGA

resolution, RISE-MaxBFU meets this FPS requirement for all
N and logQ combinations. For QVGA, RISE-MaxBFU can
barely meet the FPS requirement for smaller values of N and
logQ.

VII. CONCLUSION

In this work, we present RISE, a RISC-V based SoC for
message-to-ciphertext and ciphertext-to-message conversion
acceleration on the edge to support HE operations in the
cloud. RISE implements several optimizations that enable
high performance, and area- and energy-efficient message-
to-ciphertext and ciphertext-to-message conversion operations.
These optimizations include data-level parallelism, unified en-
cryption and decryption datapath, memory reuse and memory
reordering strategies, and on-the-fly twiddle factor computa-
tion. Our analysis shows that compared to the baseline and
RACE, RISE achieves higher performance with lower energy
consumption. As a result, overall RISE is more area and energy
efficient than the baseline and RACE system. Across differ-
ent N and logQ parameters, RISE has 471.24×-6191.19×
lower EDP when running a message-to-ciphertext conversion
and 36×-2481.44× lower EDP when running ciphertext-to-
message conversion as compared to baseline. Similarly, across
different N and logQ parameters, RISE has 24.06×-55.36×
lower ADP when running a message-to-ciphertext conversion
and 6.65×-35.05× lower ADP when running a ciphertext-to-
message conversion as compared to baseline.
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