

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 27, 2024

PeakEngine: A Deterministic On-the-Fly Pruning Neural Network Accelerator for
Hearing Instruments

Jelcicova, Zuzana; Kasapaki, Evangelia; Andersson, Oskar; Sparso, Jens

Published in:
IEEE Transactions on Very Large Scale Integration (VLSI) Systems

Link to article, DOI:
10.1109/TVLSI.2023.3300910

Publication date:
2023

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Jelcicova, Z., Kasapaki, E., Andersson, O., & Sparso, J. (2023). PeakEngine: A Deterministic On-the-Fly Pruning
Neural Network Accelerator for Hearing Instruments. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 32(1), 150 - 163. https://doi.org/10.1109/TVLSI.2023.3300910

https://doi.org/10.1109/TVLSI.2023.3300910
https://orbit.dtu.dk/en/publications/48c517d2-8234-474f-9cda-0ef08d08b158
https://doi.org/10.1109/TVLSI.2023.3300910

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

PeakEngine: A Deterministic On-the-Fly Pruning
Neural Network Accelerator for

Hearing Instruments
Zuzana Jelčicová , Evangelia Kasapaki, Oskar Andersson , Member, IEEE, and Jens Sparsø , Member, IEEE

Abstract— Recurrent neural networks (RNNs) are well-suited
for sequential tasks such as speech enhancement (SE). However,
their performance comes with high-computational complexity
and latency. This impedes their deployment to battery-powered
and resource-constrained hearing instruments (HIs) that need to
operate for 16–18 h daily at only a few milliwatts (mW). In this
article, we introduce PeakEngine, a configurable ASIC accel-
erator that decreases the amount of computation and memory
accesses, and thus latency, in a gated recurrent unit (GRU) by
means of adaptive inference. The reduction is achieved by on-the-
fly pruning that selects the top K elements based on magnitudes
of delta changes across timesteps from both input and hidden
state sequences. Since K is constant, it results in a deterministic
execution time. PeakEngine is synthesized in a 22-nm CMOS
process, and the simulations show that it dissipates 11.83 µJ
per inference for the baseline (unpruned) network and only
4.14–5.04 µJ for the pruned networks, with maximum acceptable
degradation to no degradation in the improvement in audio
quality and intelligibility. Moreover, the inference is on average
sped up 2.2–2.97×, hence meeting the real-time requirements
imposed by a HI application. To the best of our knowledge,
PeakEngine is the first ASIC accelerator for deterministic and
dynamic pruning in RNNs targeting HIs and SE.

Index Terms— Deterministic execution time, dynamic prun-
ing, hardware accelerator, hearing instruments (HIs), min-heap,
recurrent neural networks (RNNs), speech enhancement (SE),
top K .

I. INTRODUCTION

UNDERSTANDING speech-in-noise is critically impor-
tant yet one of the biggest problems for hearing instru-

ment (HI) users [1], [2], [3]. Speech enhancement (SE)
addresses this issue by attenuating the background noise,
thus improving speech quality and/or intelligibility. Traditional
methods for SE are very advanced, but most of them either

Manuscript received 22 January 2023; revised 30 June 2023;
accepted 24 July 2023. This work was supported in part by the
Innovation Fund Denmark under Grant 9065-00139B. (Corresponding author:
Zuzana Jelčicová.)

Zuzana Jelčicová is with Demant A/S, 2765 Smørum, Denmark, and
also with the Department of Applied Mathematics and Computer Science,
Technical University of Denmark, 2800 Kongens Lyngby, Denmark (e-mail:
zuje@demant.com).

Evangelia Kasapaki and Oskar Andersson are with Demant A/S, 2765
Smørum, Denmark (e-mail: evka@demant.com; oand@demant.com).

Jens Sparsø is with the Department of Applied Mathematics and Computer
Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
(e-mail: jspa@dtu.dk).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TVLSI.2023.3300910.

Digital Object Identifier 10.1109/TVLSI.2023.3300910

assume that speech and noise are uncorrelated or heavily
rely on domain knowledge [4] that is unknown in advance
and hence must be estimated, such as the a priori signal-
to-noise ratio (SNR). This is not the case for deep neural
networks (DNNs) that learn directly from the data and have
already demonstrated their superior performance for SE over
the traditional methods [5], [6], [7], [8].

Recurrent neural networks (RNNs) are an attractive solution
for SE due to their powerful capabilities of processing sequen-
tial data. This is possible thanks to their feedback connection
that is shared between timesteps. The feedback connection
enables RNNs to retain information, making them superior
for applications that use data with temporal structures, such
as video processing [9], natural language processing [10],
translations [11], and speech recognition [12]. The two most
typical variants of RNNs are a long short-term memory
(LSTM) [13] and a gated recurrent unit (GRU) [14].

At the same time, RNNs suffer from high-computational
complexity and latency. Since the sequences are dependent on
each other they cannot be processed simultaneously, which
prevents exploiting parallelism. Moreover, the dominant oper-
ation in RNNs is a matrix–vector multiplication that grows
quadratically with the number of hidden units, which conse-
quently increases the amount of memory accesses, latency,
and power consumption. As shown in [15], memory accesses
dominate over arithmetic operations in terms of energy dis-
sipation, and thus become the biggest bottleneck in RNNs.
All these issues impede the deployment and execution of
RNNs in low-power and resource-constrained HIs that operate
with a few milliwatts (mW) and require audio latency below
30 ms [16], [17] to ensure optimal sound quality and comfort.
Moreover, they need to last around 16–18 h every day [18] on
a miniature-sized battery. Therefore, to enable RNN inference
in HIs, it is crucial to reduce multiply-accumulates (MACs)
and corresponding memory accesses that are the main sources
of power consumption and latency.

A typical approach to decrease the number of memory
accesses (and consequently MACs) is static pruning. Static
pruning compresses the size of the original model by perma-
nently removing weights that contribute very little to the final
outcome. A myriad of pruning methods have been proposed
throughout the years, as surveyed in [19] and [20]. Some of the
RNN approaches include magnitude-based and load-balance-
aware pruning of weights using an empirical threshold [21],

1063-8210 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 19,2023 at 12:22:57 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1292-8634
https://orcid.org/0000-0003-1663-5599
https://orcid.org/0000-0002-0961-9438

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

structured pruning with a learnable threshold [22], and iterative
compression of randomly selected weight blocks [23]. Static
pruning of RNNs is generally challenging as a recurrent unit
is shared across all the timesteps. Compressing the unit thus
impacts all the steps in the sequence. Permanently discard-
ing weights destroys the original network structure which
may lead to decreased capability, representation power, and
efficiency of a model [20], [24]. It has also been shown
that small SE networks have difficulties learning the neces-
sary relationship between the noisy features and the target
SNRs [25].

Dynamic pruning, on the other hand, is a data-driven
approach, where computations are conditioned on the input
at runtime. Dynamic pruning on its own does not reduce the
model size. However, it counterbalances this issue with several
other advantages [24] that are missing in static models such
as the following:

1) Efficiency: Allocating computations on demand at run-
time.

2) Representation power: Identifying “easy” and “hard”
samples and hence computational redundancy.

3) Adaptiveness: Achieving a desired trade-off between
accuracy and efficiency at runtime.

4) Generality: Seamlessly adapting to a wide range of
applications.

An example of dynamic pruning includes an accelerator
in [26] that prunes attention layers in transformer neural
networks using the top cumulative importance scores. Further-
more, temporal sparsity based on a threshold is exploited in
several works. These include [27] that skips state updates using
also a skip-criterion, [28] that prunes hidden state vectors in
LSTMs, and [29] implemented as GRU [30] and LSTM [31]
accelerators, where dense state vectors are substituted with
their sparse delta versions obtained as a temporal difference
across two adjacent timesteps. However, the actual compu-
tation time in all of these state-of-the-art threshold-based
dynamic pruning approaches is unpredictable, which is an
issue for real-time systems like HIs.

To the best of our knowledge, none of the existing accel-
erators supports dynamic pruning of RNNs that results in
deterministic inference, targeting HIs and relevant use cases
such as SE. Our accelerator fills this gap and offers adaptive
yet computationally predictable inference that is absent in the
state-of-the-art RNN accelerators. The main contributions of
this work are as follows.

1) Min-heap engine, a low-area and energy hardware unit,
that selects the top K elements in a stream of N
elements, where N > K . The engine is used to sup-
port our deterministic PeakRNN [32] pruning algorithm.
Moreover, its application is versatile and not limited to
neural networks only.

2) PeakEngine, the first ASIC accelerator for HIs that
enables deterministic on-the-fly pruning of RNNs. Peak-
Engine is configurable and portable thanks to its stan-
dard interfaces, and it encompasses the Min-heap engine.

3) A thorough investigation of PeakEngine for different K
values with regard to saved energy and reduced latency.

4) A bit-accurate software framework for parameter space
exploration of different Q formats, wordlengths, and K

Fig. 1. Illustration of a GRU. The multiplications with weight matrices and
summations of the partial dot products are excluded for clarity.

values for GRU-based and fully connected (FC) neural
networks.

The rest of the article is structured as follows. Section II pro-
vides the necessary background for the PeakRNN algorithm,
while Section III describes the algorithm itself. Section IV
introduces an emulated HI setup used for experiments with SE.
Information about the DNN architecture, datasets, and training
is stated in Section V. Section VI details the PeakEngine
design, and Section VII talks about the software frame-
work. The experimental setup is described in Section VIII.
Section IX presents and discusses the results as well as com-
parisons to state-of-the-art works. Finally, Section X concludes
the article.

II. BACKGROUND

This section presents the original GRU [14] and DeltaGRU
[29] algorithms, on top of which our modified version called
PeakGRU [32] is built.

A. GRU Algorithm

A GRU (see Fig. 1) has a feedback connection called a
hidden state h(t) that maintains both short- and long-term
dependencies. It is controlled by two internal gate mecha-
nisms, reset r(t) and update u(t) gate, that regulate the flow
of information in the unit using sigmoid (σ) activation

r(t) = σ(Wxr x(t) + Whr h(t − 1) + br) (1)
u(t) = σ(Wxu x(t) + Whuh(t − 1) + bu). (2)

A GRU processes two types of inputs: 1) an input sequence
x(t) for the current timestep and 2) a sequence of previous
hidden states h(t − 1). The sequences are multiplied with
their respective weight matrices W and summed with bias
values b. The reset gate then determines how much of the past
information should be forgotten. The relevant past information,
on the other hand, is stored in a candidate state c(t) that
applies hyperbolic tangent (tanh) activation function

c(t) = tanh(Wxcx(t) + r(t) ⊙ (Whch(t − 1)) + bc). (3)

The update gate decides on the importance of both the past
information h(t − 1) and the new information c(t)

h(t) = u(t) ⊙ h(t − 1) + (1 − u(t)) ⊙ c(t). (4)

Finally, a new hidden state h(t) that also serves as an output
for the current timestep is generated. Based on (1)–(3), the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 19,2023 at 12:22:57 UTC from IEEE Xplore. Restrictions apply.

JELČICOVÁ et al.: PeakEngine: A DETERMINISTIC ON-THE-FLY PRUNING NEURAL NETWORK ACCELERATOR 3

number of matrix–vector multiplications (and corresponding
memory fetches) in a GRU can be expressed as

3 × (X H + H 2) (5)

where X and H correspond to the dimensions of input
sequences x(t) and h(t − 1), respectively. The computational
complexity grows quadratically with respect to the h(t − 1)

that consequently increases the number of memory accesses
and hence power.

B. DeltaGRU Algorithm

DeltaGRU, also called Delta Networks [29], dynamically
reduces the number of MAC operations and memory fetches
by transforming a dense matrix–vector multiplication into a
highly sparse matrix–vector multiplication in every timestep

x̂(t) =

{
x(t), if |x(t) − x̂(t − 1)| > 2

x̂(t − 1), otherwise
(6)

ĥ(t − 1) =

{
h(t − 1), if |h(t − 1) − ĥ(t − 2)| > 2

ĥ(t − 2), otherwise
(7)

1x(t) =

{
x(t) − x̂(t − 1), if |x(t) − x̂(t − 1)| > 2

0, otherwise

(8)

1h(t−1)=

{
h(t−1)−ĥ(t−2), if |h(t−1)−ĥ(t−2)|>2

0, otherwise

(9)
Mr (t) = Wxr1x(t) + Whr1h(t − 1) + Mr (t − 1) (10)
Mu(t) = Wxu1x(t) + Whu1h(t − 1) + Mu(t − 1) (11)

Mxc(t) = Wxc1x(t) + Mxc(t − 1) (12)
Mhc(t) = Whc1h(t − 1) + Mhc(t − 1) (13)

r(t) = σ [Mr (t)] (14)
u(t) = σ [Mu(t)] (15)
c(t) = tanh[Mxc(t) + r(t) ⊙ Mhc(t)] (16)
h(t) = u(t) ⊙ h(t − 1) + (1 − u(t)) ⊙ c(t). (17)

The dense-to-sparse transformation is achieved by applying a
threshold 2 on the magnitude of input change across adjacent
timesteps; see (6)–(9). The magnitude of change, i.e., the
absolute value of the delta change, is calculated by subtracting
previously cached inputs, x̂(t − 1) and ĥ(t − 2), from the
current inputs, x(t) and h(t − 1). The initial value of hat
states x̂(t − 1) and ĥ(t − 2) is 0. The magnitudes above 2

are then selected, and their actual subtraction results are used
in MACs as 1x(t) and 1h(t − 1), as shown in (10)–(13).
The hat state updates are subsequently only performed for
the magnitudes above 2. DeltaGRU needs additional delta
memory states M to track the delta changes across timesteps.
Finally, a new hidden state h(t) [see (17)] for the current
timestep is generated the same way as shown in (4) in Section
II-A.

The hat and memory states inflict memory and computa-
tional overhead. However, this is compensated with substantial
reduction of MACs and memory fetches as demonstrated with
PeakGRU in Section IX.

Fig. 2. Example of calculating a sparse delta vector along with the hat states
across three timesteps (t1–t3) for x(t) using PeakGRU. X = 4, Kx = 2, and
the black vertical lines around the subtraction represent absolute value.

III. PEAKGRU ALGORITHM

Our PeakGRU algorithm builds on the top of Delta-
GRU. This section describes the differences between the two
approaches, and explains how PeakGRU is efficiently realized
in hardware.

A. Top-K Magnitudes

PeakGRU and DeltaGRU share the underlying computations
in (6)–(17). The difference between the two algorithms is in
the method of how the 1 elements are obtained in (8)–(9).
While DeltaGRU uses a threshold-based approach, PeakGRU
selects the top Kx and the top Kh subsets of elements from
x(t) and h(t − 1) sequences, respectively

x̂(t) =

{
x(t), if |x(t) − x̂(t − 1)| among Kx

x̂(t − 1), otherwise

(18)

ĥ(t − 1) =

{
h(t − 1), if |h(t − 1)−ĥ(t − 2)| among Kh

ĥ(t − 2), otherwise

(19)

1x(t) =

{
x(t)− x̂(t−1), if |x(t)− x̂(t−1)| among Kx

0, otherwise

(20)

1h(t − 1) =

h(t − 1)−ĥ(t − 2), if |h(t − 1) − ĥ(t − 2)|

among Kh

0, otherwise.

(21)

This modification is illustrated in Fig. 2, where 1x(t) is
calculated across three timesteps, along with the propagation
of x̂(t−1). The matching colors in x(t) and x̂(t) vectors denote
the updates of x̂(t − 1) with x(t). The same visualization
applies to 1h(t − 1) and ĥ(t − 2).

Since the number of elements to process is known in
advance, the actual computation time in PeakGRU is deter-
ministic. This is an important characteristic for real-time
and resource-constrained embedded devices, where the worst
case execution guarantees are imperative. Moreover, since
the algorithm selects elements based on the range of inputs
and not a threshold, it is robust to variations in data com-
pared to threshold-based approaches such as DeltaGRU [29].
Therefore, PeakGRU prevents significant fluctuations in the
number of nonzero values from one timestep to another that
are inherent in threshold-based methods.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 19,2023 at 12:22:57 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 3. Example of a min-heap with K = 7 and its memory implementation
as a simple array, where the last level is not fully filled (index 6).

B. Top-K Selection

Processing only the top K elements offers numerous advan-
tages but it also imposes a challenge of how the elements
should be selected. For instance, sorting the N elements
first and selecting a top K subset afterwards would cause
unnecessary computational and memory overhead since the
order of elements is irrelevant. Instead, a binary heap [33] can
be used for efficient selection, imposing: 1) minimal storage
requirements O(K) when implemented as a simple array and
2) low worst-time computational complexity O(N log K).

A binary heap is a complete binary tree, where all the levels
(⌈log2(K + 1)⌉) are fully filled, except possibly the deepest
one, as shown in Fig. 3. The elements are inserted into the
heap from left to right and level by level, with the worst-time
complexity of O(log K) per element, which corresponds to
a swap across all the heap levels. The nodes in the deepest
level (leaves) start at index ⌊K/2⌋. To support PeakGRU,
we employ a min-heap binary tree, where all the nodes within
a level are numerically greater than or equal to their parent
nodes in the level above. The parent, left, and right child nodes
in an array implementation have indices ⌊(i−1)/2⌋, (2×i)+1,
and (2×i)+2, respectively, where i is the index of the current
node.

In our design, the very first data are directly inserted
into the min-heap. Subsequent data become a leaf and is
compared against its parent node. It is traversed up the tree
(swapped) until numerically smaller than the parent, or the
root, the smallest element in the min-heap, is reached. Once
the min-heap is full, the data are inserted from the top. The first
comparison is hence always done against the root. If the new
data are smaller than/equal to the root, data are immediately
skipped, and no more comparisons are needed. Otherwise, data
replace the root and are swapped with one of their child nodes
until they are greater or become a leaf node.

All these operations are executed by the proposed Min-
heap engine that is used to support the PeakGRU algorithm.
However, the engine design is not tied to the algorithm or
neural networks, and it could be applied in many other contexts
such as priority queues [34] and data compression [35].

C. Top-K Storage

An on-chip implementation of the min-heap memories can
be realized with either: 1) a standard-cell based memory
(SCM), i.e., an addressable array of flip-flops or latches or
2) an SRAM macro. Since the memory requirements for our
min-heaps are small (3.25 kb each) and below the area break-
even point with SRAMs [36], [37], SCMs (with latches) are

Fig. 4. Overview of the gain-based SE system in a HI used for the
experiments, where the DNN generates postfilter gains g(f, t).

selected for storing the top Kx and Kh values. Furthermore,
we use three-port (2R1W) SCMs to parallelize min-heap com-
putations (fetching of the child elements). Our SCM design is
based on [38].

IV. HI APPLICATION

Deterministic on-the-fly pruning supported in PeakEngine is
demonstrated in a SE task. The sections below present details
about the emulated HI setup and objective metrics used for
evaluating the performance of the system. The setup is based
on our previous work on the PeakGRU [32] algorithm.

A. SE System

A DNN architecture described in Section V-A is used in
a gain-based single-microphone SE system that simulates the
inner parts of a HI. The system is illustrated in Fig. 4, where a
DNN substitutes a traditional signal processing-based module
for generating postfilter gain values g(f, t), with f and t
corresponding to a frequency bin and time-frame, respectively.
The input for a DNN is generated by preprocessing samples
(i) of a noisy 20-kHz single-microphone signal y(i) in an
analysis filter bank (AFB), where the noisy signal is clean
speech s(i) corrupted with noise n(i). The AFB applies a
1024-point fast Fourier transform (FFT) and a square-root
Hanning window, downsampling the time-domain microphone
signal to 40 Hz and producing a time-frequency representation
y′(f, t). In our specific scenario, the result is a new frame of
512 frequency bin values every 25 ms without overlapping.
The y′(f, t) values are passed to a DNN that generates
512 postfilter gain values g(f, t). The gain values are applied
on the noisy signal y′(f, t) to obtain an estimate of the clean
speech magnitude spectrum. Finally, the synthesis filter bank
(SFB) reconstructs the time-domain signal ŝ(i) and forwards
the result to the speaker.

B. Objective Measures

To evaluate the performance of a DNN under a varying
number of the top K elements and full- and reduced-precision,
the HI system in Fig. 4 is extended with postprocessing. The
postprocessing phase saves the enhanced signals from the SFB
along with their corresponding clean speech and noise that are
used for calculating the following three objective metrics.

1) Perceptual Evaluation of Speech Quality (PESQ): Eval-
uates the quality of noisy speech by estimating mean
opinion score (MOS). MOS is judged using a discrete
scale of 1 (bad) to 5 (excellent). The result is an average
of these ratings. Mean opinion score-listening quality
objective (MOS-LQO) [39] is used as a unit.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 19,2023 at 12:22:57 UTC from IEEE Xplore. Restrictions apply.

JELČICOVÁ et al.: PeakEngine: A DETERMINISTIC ON-THE-FLY PRUNING NEURAL NETWORK ACCELERATOR 5

2) Short-Time Objective Intelligibility (STOI): Evaluates
the intelligibility of noisy speech (ability to recognize
word, syllables, etc.), and it thus produces a scalar value
in a range of 0 to 1, where 1 corresponds to fully
intelligible speech.

3) Signal-to-Noise Ratio (SNR): Compares the level of
a desired signal to the level of background noise,
expressed in dBs.

PESQ and STOI approximate human ranking and thus replace
time-consuming and expensive listening tests [40].

V. DNN FOR SE

After introducing the HI and SE setup, we can now focus
on the DNN itself, the selected architecture, datasets, as well
as training procedure. The architecture and datasets were also
used in our original algorithmic study [32].

A. DNN Architecture

The neural network used in the experiments consists of three
layers. The first and the last layer are FC, and the hidden
layer is a GRU. Each of the layers has 512 output neurons.
A nonlinearity is introduced after the first FC layer with the
ReLU activation function. The GRU layer is swapped with
a PeakGRU layer to evaluate and compare the performance
and computational savings of the two methods against each
other. A GRU accounts for a significant part (75%) of the
vectorized operations, i.e., MACs and memory accesses, while
the remaining 25% accounts for both of the two FC layers.

B. Dataset

A noisy DNN input, y, is created by combining 30-s
segments of clean speech, s, with noise, n, i.e., y = s + n.
The resulting noisy speech has up to three speakers with
a silence gap of approximately 300 ms and up to 30%
overlap to mimic a regular conversation. The speech dataset
is composed of VCTK Corpus [41] and Akustiske Database
for Dansk [42]. Thirteen noise environments were selected
to represent a wide variety of the typical daily situations.
These were obtained from EigenScape [43] (Beach, Busy
Street, Park, Pedestrian Zone, Quiet Street, Shopping Centre,
Train Station, Woodland), and Demant’s database (Bar, Cafe,
Canteen, Car, Office). Additionally, two stationary types of
noise, pink and white, were simulated. The 25-h noisy speech
consisting of both left and right channel data is divided into
training (19.5 h), validation (2.7 h), and test (2.7 h) subsets.

C. Training Target and Hardware-Aware Training

The DNN learns to match its output against a linear Ideal
Ratio Mask (IRM) target. IRM represents an ideal scenario,
i.e., when speech and noise are perfectly separated. The
IRM outputs a continuous gain value between [0, 1] that is
computed as a ratio between the magnitude of a clean speech
signal and a sum of the magnitudes of the clean and noise
signal

IRM =

(
|s(f, t)|

|s(f, t)| + |n(f, t)|

)
(22)

where s(f, t) and n(f, t) are the time-frequency representa-
tions of the clean speech and noise, respectively. The error
between the IRM and the postfilter gain values estimated
by the DNN is obtained with the mean-squared error loss
function. The baseline DNN with a GRU layer, i.e., when all
computations are performed, was trained in TensorFlow using
32-bit floating point with a batch size of 128, where each
input sequence was 2.5 s long (100 samples). The trained
parameters were then transferred to the PeakGRU network
for inference to: 1) replace computationally demanding and
tedious training from scratch; 2) enable a fair comparison
of both methods; and last but not least 3) simulate a real-
world scenario, where new weights would not be transferred
to a HI whenever a different number of K values should
be processed. Instead, a single, robust DNN model capable
of executing both a full and a pruned model should be
used while still delivering sufficient performance in terms
of objective measures. Naturally, retraining the model for a
specific number of K values further improves its performance,
as also demonstrated in our previous work [32].

To prepare a DNN for inference in a hardware environment
with limited precision and computational resources, several
hardware-aware constraints were incorporated into the train-
ing. First, the weights are limited to the [−1, 1] range. Second,
a challenge is represented by the activation functions. For
instance, the output of ReLU can theoretically be within a
range of [0, +∞]. While a 32-bit floating point is sufficient
to handle large numbers, a fixed-point representation needs
too many bits on the integer part. Therefore, we use Capped
ReLU that applies a maximum upper bound (in our case 6).
Furthermore, computing sigmoid (σ) and hyperbolic tangent
(tanh) activation functions would be expensive due to their
exponential terms

σ(x) =
1

1 + e−x
(23)

tanh(x) =
ex

− e−x

ex + e−x
. (24)

Typical methods for computing these functions are based on
piecewise linear/nonlinear approximations [44], lookup tables
(LUTs) [45], and hybrid techniques [46]. Although LUTs
outperform the other methods in terms of speed as they need
the fewest computations, they require additional area, which,
depending on the necessary precision, might grow into a
significant overhead. Therefore, we train the DNN and run
inference with approximated versions called hard sigmoid and
hard tanh that are expressed as

σ(x) =

0, if x <= −2.5
1, if x >= 2.5
0.2 × x + 0.5, otherwise

(25)

tanh(x) =

−1, if x <= −1.25
1, if x >= 1.25
0.75 × x, otherwise.

(26)

In terms of hardware, each of these approximations requires
only one multiplier and two comparators [and an adder for
σ(x)]. Moreover, whenever the input value exceeds the upper

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 19,2023 at 12:22:57 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 5. Potential concurrence that can be exploited in (a) PeakGRU and
(b) GRU, where blue, red, and green correspond to operations in the Peak
Unit, the Mac Unit, and the Activation Unit, respectively.

and lower bounds, the output values are immediately saturated
without performing any further computations.

VI. PeakEngine DESIGN

This section presents architectural design choices
(Section VI-A) and describes the design of Peak-
Engine (Section VI-B) along with implementation details
(Section VI-C).

A. Architectural Design Choices

PeakEngine is designed to support both dense and dynami-
cally pruned GRU layers with a focus on low energy, resource
sharing, and configurability to make DNN inference viable in
HIs. Each of these points is further described below.

1) Opportunities for Parallelism: The architecture of Peak-
Engine is tailored for the needs of GRU and PeakGRU.
It is derived from (10)–(21) that can be grouped based
on functionality, suggesting three core units in the system:
1) Peak Unit - selecting the top K elements (18)–(21); 2) Mac
Unit - computing dot products (10)–(13); and 3) Activation
Unit - producing M states and output activations (14)–(17).
Further analysis of the equations shows intrinsic paral-
lelism and dependencies between these units, also illustrated
in Fig. 5(a).

PeakGRU computation begins with finding the Kh subset
(Step 1). Thereafter, a dot product with 1h(t−1) (and weights)
is obtained, while the selection of the top Kx is executed in
parallel (Step 2). Once dot products with all 1h(t − 1) for
the first neuron are produced, the operations for an output
activation start [loading previous memory states Mhc(t − 1)].
Computations of dot products with 1x(t) commence as well,
assuming that the Kx subset is available (Step 3). Complet-
ing a dot product with all 1x(t) enables computation of
Mr (t), Mu(t), and Mxc(t) memory states, and consequently
r(t), u(t), and c(t) terms, along with the first output activation
h(t). Concurrently, 1h(t −1) dot product computations for the
next neuron begin (Step 4). Steps 4–5 are repeated until all
output activations have been computed (Step 6). This means
that the current timestep for PeakGRU is completed, and the
system will start again from Step 1 in the next timestep. The

steps are almost identical for the baseline GRU in Fig. 5(b).
The main difference is the absence of the K subsets, which
reduces the flow by one step. Also, no M states are produced.

The computations in the Peak Unit and the Mac Unit
can be further refined. While the insertion into the min-heap
is carried out, delta changes for the subsequent neurons
are calculated. Such optimization minimizes idle time and
maximizes hardware utilization. Similarly, when the K subset
stored in the min-heap is used in the Mac Unit, the fetched
data (specifically an index of each K , i.e., a neuron index) are
simultaneously used to update x̂(t) and ĥ(t − 1) in (18)–(19).
This avoids expensive re-fetching of the same data. The hat
update operations can thus be coupled with the Mac Unit,
producing an UpdateMac Unit in PeakEngine.

This analysis leads to a design of five hierarchically interact-
ing units (FSMDs). Such a co-operation results in optimized
execution of GRU-based layers and reduced processing time at
negligible hardware costs. The FSMDs are orchestrated by the
Main FSM that handles a coarse-grain top control, as shown
in Fig. 6(a). The final PeakEngine architecture can be seen
in Fig. 6(b).

2) Minimizing Energy: High-speed processing is not a
driving factor in low-power devices such as HIs. Instead,
some HIs may operate at lower clock frequencies and need to
finish computations just “in time.” When the units complete
the execution before the timestep is over, they idle and still
consume a certain amount of dynamic and static (leakage)
power. Moreover, memories that DNNs heavily rely on are
often the major source of leakage. Such factors have a signifi-
cant impact on battery-powered wearables like HIs. Therefore,
we employ clock-gating and memory retention techniques
to prevent additional leakage and energy dissipation when
PeakEngine idles.

3) Resource-Sharing and Reuse: To accomplish the objec-
tive of minimizing hardware resources yet completing the
execution of DNNs in time, it is necessary to perform addi-
tional optimizations on multiple levels. First, we only use
single-port SRAMs to minimize area. Second, we employ
multiple smaller memories instead of a single shared one,
which enables the proposed units to operate concurrently.
Most of the memories are shared among multiple units. The
scheduling of memory accesses in the five cooperating FSMDs
minimizes memory access conflicts and stalling. The memory
accesses are time-multiplexed via memory management units
(MMUs) to guarantee that only one unit accesses any memory
at any given point in time. Finally, our small Mac unit
represents a tradeoff between area and computations with a
focus on minimum hardware resources, while still delivering
parallelized dot product computations.

4) Configurability: It is essential to enable the execution
of different DNN configurations (type of layers/activation
functions, number of neurons, etc.) to provide the neces-
sary flexibility. Therefore, PeakEngine is configurable (see
Section VI-C1) and supports, among others, three layer types
(FC, GRU, PeakGRU) and four activation functions (ReLU,
Capped ReLU, hard sigmoid, and hard tanh).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 19,2023 at 12:22:57 UTC from IEEE Xplore. Restrictions apply.

JELČICOVÁ et al.: PeakEngine: A DETERMINISTIC ON-THE-FLY PRUNING NEURAL NETWORK ACCELERATOR 7

Fig. 6. (a) Hierarchical relationship among the Main FSM and the FSMDs in the system. (b) Top-level overview of PeakEngine with a simplified dataflow
indicated by the arrows.

B. Top-Level Architecture

Fig. 6(b) shows a high-level architecture of PeakEngine
with the arrows representing a simplified dataflow. Besides
the previously mentioned MMUs, SRAMs, and the three main
units (Peak, UpdateMac, Activation), the top level consists
of a configuration module (Config), a clock management
unit (CMU) for coarse-level clock-gating, and a power man-
agement unit (PMU) for the retention of SRAMs. Model
parameters are stored in a big SRAM WB outside PeakEngine.
All these modules are further described in Section VI-C.

The accelerator communicates with the Master Processor
via a 24-bit advanced peripheral bus (APB) interface that
is used for writing and reading configuration registers in the
Config module. This includes writing the start_nne register to
trigger the execution of PeakEngine and reading the nne_done
register to check whether the accelerator has completed infer-
ence for the current timestep. PeakEngine has two other
interfaces: 1) a 32-bit memory interface (MEM) for writing
inputs and reading the final results for the current timestep
stored in SRAM X and SRAM H, and reading weights and
biases from SRAM WB and 2) a clock and reset interface
(CLK/RST). Thanks to these three generic interfaces, Peak-
Engine is easily configurable and can be ported to any system
that supports such communication.

C. Implementation

This section describes details about the main modules and
submodules in the system.

1) Config: PeakEngine is configurable, i.e., all network
parameters can be specified at runtime by writing configuration
registers via the APB interface. These parameters are: the
number of inputs, layers, and neurons per each layer, layer
and activation type, starting weight address for each layer, K
values to process in a PeakGRU layer, input and result loca-
tions (SRAM X, SRAM H), and a fixed-point format per layer,
along with the previously mentioned start_nne and nne_done
registers. In the future, the K values could also be specified as
a percentage out of N to generalize the configuration across
architectures, which can be easily supported by PeakEngine.

2) SRAMs and MMUs: SRAM X and SRAM H are
1536-word memories that store 16-bit inputs, outputs, and hat
states in separate memory blocks. Corresponding MMU X and
MMU H track which of the blocks should be used for reading
and writing in different layers. If neural network inference is
not needed, the memories can be reused to store other data
for a HI.

SRAM WB stores up to ∼2.07 MB of 96-bit vectors com-
posed of 12×8-bit model parameters (see Table I). When
smaller networks are executed, the unused part of the memory
can be utilized for another purpose. SRAM WB is implemented
as eleven memory banks of 16 384 words each. Unused
memory banks are put into a retention mode during inference.
For GRU and PeakGRU, each bias and weight vector is a
concatenation of four r , u, and c terms, which enables four
new h(t) states to be calculated simultaneously.

SRAMs are supplied by the foundry and operated on
two supply voltages: 0.6 V (logic) and 0.8 V (bit cells). All
memories in the system (including SCMs) have a delay of
one clock cycle for both read and write.

3) Peak Unit: The Peak Unit consists of two main submod-
ules, Delta and MinHeap (see Fig. 7), MMU Heap, and two
SCMs for storing the top Kx and Kh elements. If a PeakGRU
layer is not used in a neural network, the entire module is
clock-gated by CMU.

PeakEngine executes inference on a per-layer basis and
performs the top K selection in parallel with computations
in other layers. For instance, while the first FC layer in the
demonstrated DNN performs MACs, the Peak Unit meanwhile
selects the top Kh values for 1h(t − 1). Similarly, when
MAC operations with 1h(t − 1) values are performed in the
PeakGRU layer, the selection of Kx for 1x(t) begins. Hence,
the latency of selecting the top K elements in both cases
is hidden. We also optimize the algorithm by skipping the
selection of Kh in the first timestep since both the hidden and
hat states are 0.

a) Delta: This unit performs the subtraction, absolute
value, and comparison operations in (18)–(19). It reads x(t),
x̂(t − 1), h(t − 1) and ĥ(t − 2) from SRAM X and SRAM
H. The unit has registers for storing a tuple composed of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 19,2023 at 12:22:57 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 7. Simplified overview of the Delta and MinHeap submodules.

Fig. 8. Simplified overview of Activation along with its six-stage pipeline
for the GRU and PeakGRU layers.

sign-magnitude-index data, where the sign of the subtraction
is necessary for decoding the magnitudes later during the
MAC operations. Furthermore, only nonzero data are passed
to MinHeap. We optimize the delta algorithm by skipping
subtractions in the first timesteps when x̂(t − 1) and ĥ(t − 2)

are still 0.
b) MinHeap: MinHeap selects the top K elements by

utilizing a min-heap data structure (see Section III-B). The K
elements are stored as 26-bit tuples (sign-magnitude-index) in
the three-port latch-based SCM X and SCM H that consist of
128 words each. Since the root is the most accessed element in
the min-heap, we store it locally to avoid unnecessary memory
fetches. To further reduce memory accesses, we write a new
element to a memory only when its correct position in the
heap is found.

Mac and MinHeap alternate their access between the two
SCMs. While the Mac module reads data from SCM X,
MinHeap uses SCM H for the top Kh selection, and vice versa.
Hence, both SCMs are fully utilized. To optimize subsequent
multiplications, the amount of inserted nonzero Kx and Kh

elements is stored locally as they can be fewer than K specified
in the Config.

4) UpdateMac Unit: It receives input data from either:
1) SRAM X or SRAM H for GRU and FC layers or 2) SCM X
or SCM H for a PeakGRU layer. In the latter case, it checks
the sign of the sign-magnitude-index input tuple to extract the
original value stored as a magnitude. This value is needed for
the multiplications in the Mac unit.

a) Mac: The Mac submodule loads biases and per-
forms vectorized multiplications between inputs and weights.
It utilizes: 1) output stationary technique, where the twelve
intermediate dot products are kept in local registers until the
final result has been computed, which is then passed to the
Activation Unit; and 2) input parallelism, where the input is
used for twelve multiplications at a time.

For GRU and PeakGRU layers, the accumulators store
four r, u, and c dot products. While the accumulators for
r and u hold the final weighted sum, the accumulators for
c always keep the results of multiplications with either the
input or hidden state vector at a time since these are not
directly summed together, as shown in (3) and (16). The four
partial c weighted sums are passed to the Activation Unit. The
weights for PeakGRU are fetched based on the extracted tuple
index.

b) HatUpdate: This small submodule updates x̂(t) and
ĥ(t − 1); see (18)–(19). It is triggered only when a new K
input, for which a hat update has not been performed yet, has
been fetched. If a PeakGRU layer is not used, HatUpdate is
clock-gated.

When a new element is fetched from one of the SCMs for
a MAC operation, its index is stored in a small local buffer.
The hat update process requires two cycles to update a single
hat value. First, it fetches x(t) or h(t − 1) based on the stored
index. Then a write is initiated in the next clock cycle to update
x̂(t) or ĥ(t − 1) with the previously fetched value, where the
address is generated using the same index.

5) Activation Unit: It consists of Activation (see Fig. 8),
MMU M, and SRAM M. When a DNN does not contain a
PeakGRU layer, SRAM M is powered down.

a) Activation: This unit uses 16 registers for storing
the MAC results; twelve primary for all the layers, and four
secondary specifically for the GRU and PeakGRU layers to
temporarily store the c dot products as described in the Mac
submodule.

When a FC layer is processed, the MAC results are extracted
and stored in the primary registers. The twelve output acti-
vations are calculated and written one by one to a memory
(SRAM X or SRAM H) defined in the Config module. If no
activation function is specified, the final result will be extracted
directly from the weighted sum.

For GRU and PeakGRU, output activations are computed in
a six-stage pipeline illustrated in Fig. 8. As shown in (13) and
in Fig. 5(a) for PeakGRU, previous 24-bit Mhc delta memory
values are fetched from 2048-word SRAM M and added to
the dot product with 1h(t − 1). Once the multiplications
with 1x(t) are completed, the results are written to the
primary registers. Thereafter, previous Mr , Mu , and Mxc states
are fetched from SRAM M, updated, and stored back while
the pipeline runs. We optimize the memory accesses and
computations by skipping zero M states in the first timesteps.

VII. PARAMETER SPACE EXPLORATION FRAMEWORK

A bit-accurate in-house software framework supporting FC,
GRU, and PeakGRU layers was developed to find the most
optimal wordlengths, Q formats, and K values for DNNs

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 19,2023 at 12:22:57 UTC from IEEE Xplore. Restrictions apply.

JELČICOVÁ et al.: PeakEngine: A DETERMINISTIC ON-THE-FLY PRUNING NEURAL NETWORK ACCELERATOR 9

TABLE I
FINAL WORDLENGTH AND Q FORMAT VALUES USED

IN THE PRESENTED EXPERIMENTS

executed on PeakEngine. It was also used to verify the
accelerator outputs. The framework contains identical modules
as PeakEngine to mimic it bit-accurately during inference.
It supports both floating-point and custom fixed-point formats,
where the latter is based on the library in [47]. The frame-
work contains a configuration file where wordlengths and Q
formats can be defined independently for the network inputs,
weights (and biases), outputs, accumulators, and M states.
The formats of the remaining intermediate terms are derived
automatically based on the other wordlengths specified. The
framework supports the creation of a neural network with
any number of layers, where each layer is defined as: layer
type, number of outputs, activation function, and K value for
a PeakGRU layer. The framework performs quantization of
network inputs and model parameters, and stores the DNN
outputs for the subsequent postprocessing phase. During infer-
ence, it exploits multiprocessing to run several noisy speech
recordings concurrently and hence speeds up the fixed-point
execution.

Table I shows the selected configuration where almost no
drop in the objective measures (SNR, PESQ, and STOI)
compared to its hardware-aware model (see Section V-C) was
observed. The framework was validated against TensorFlow
with a maximum error of 10−6 (floating point).

VIII. EXPERIMENTAL SETUP

The PeakEngine accelerator is evaluated by executing two
main DNN architectures.

1) The baseline model with a GRU layer that performs all
computations every timestep.

2) The PeakGRU-based model that performs a subset of
computations every timestep based on the top K values.
Various K values were tested.

The objective of the PeakGRU is, besides reducing com-
putations and power consumption, to decrease latency and
hence make real-time inference of big DNNs possible. At the
same time, it is important to ensure that the impact of the
reduced computations on the objective measures is within
acceptable boundaries. Therefore, the selection of the top
K values was guided by both: 1) the need to fit within a
specified time window and 2) the amount of degradation in
the improvement of the objective measures. The following
four top K configurations were selected for the final hardware
tests: {128, 96, 64, 48}. K = 128 represents a setup with no
performance degradation compared to the baseline GRU, while
K = 48 corresponds to improvements in SNR and PESQ, but
no improvement in STOI compared to the unprocessed speech.

Lower top K values than 48 result in worse STOI than the
unprocessed speech. The same number of K values is used
for both input and hidden state sequences, i.e., Kx = Kh .

When PeakEngine completes inference, it idles until the
25 ms have elapsed and the Master Processor writes new
data to SRAM X or SRAM H. Our objective is low-power
inference and completing computations “in time” instead of
achieving extremely low latency and idling for the remainder
of the timestep. Therefore, the design operates at a low
clock frequency to utilize the majority of the 25 ms win-
dow. Several timesteps of a 30-s noisy speech with Busy
Street background noise are used for the demonstration of
PeakEngine for all the setups. The results are presented
in Section IX.

IX. RESULTS AND DISCUSSION

The PeakEngine design (including SRAM WB) was synthe-
sized in a 22-nm ultralow leakage CMOS process for a 4-MHz
clock frequency. The entire system uses ultrahigh density and
ultralow leakage SRAMs that are supplied by the foundry and
operated on two supply voltages: 0.6 V (logic) and 0.8 V
(bit cells).

This section presents results in terms of area, energy,
latency, memory requirements, and objective measures for the
tested configurations. They are divided into three main sec-
tions: A. comparison between the algorithmic study [32] and
the hardware implementation of GRU and PeakGRU, B. com-
parison when PeakEngine executes GRU- and PeakGRU-based
DNNs, and C. Comparison of PeakEngine against previous
works.

A. Algorithmic Versus Hardware Implementation

Table II compares 32-bit floating-point DNN models (FP)
from the algorithmic study [32] and our fixed-point DNN
models (FX) executed by PeakEngine in terms of memory
requirements and relative improvements in the objective mea-
sures to the unprocessed speech. The FX models use word
lengths from Table I. The objective measures for most FP
models are derived from the plots in [32] (marked with *),
since those experiments were executed for a different number
of K than our final experiments. The unprocessed speech has
starting values of 4.39 dB (SNR), 1.85 MOS-LQO (PESQ),
and 0.83 (STOI). The results are averaged across all the noisy
speech in the test subset. The performance of the network
under a specific K value is influenced by the type of noise.
The impact of using the same K value on all the tested noisy
speech is illustrated in our algorithmic study [32].

As shown in Table II, the FX models have almost the
same performance as the FP DNNs, while being better suited
for hardware inference due to their fixed-point nature. The
differences between the two corresponding models cannot be
perceived in audio recordings. The knee point in [32], i.e.,
when the PeakGRU configurations show the first decrease in
performance, is around K = 111 for SNR. Until then the
measures are unchanged. Considering the reported PESQ, the
actual knee point is already around K = 128, matching the FX
model. The FP and FX results are therefore comparable, where

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 19,2023 at 12:22:57 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE II
REQUIRED MEMORY AND OBTAINED IMPROVEMENTS (1) IN OBJECTIVE MEASURES COMPARED TO THE UNPROCESSED SPEECH

FOR: 1) 32-BIT FLOATING-POINT MODEL (FP) [32] AND 2) FIXED-POINT MODEL (FX) RUNNING ON PeakEngine.
THE (*) DENOTES APPROXIMATED VALUES BASED ON [32]

Fig. 9. Area breakdown of (a) entire system and (b) PeakEngine only.

4× less memory is needed for 8-bit FX models, corresponding
to 6 MB saved.

B. PeakGRU Versus GRU

1) Area: Fig. 9(a) shows the area breakdown of PeakEngine
with SRAM WB and Fig. 9(b) without SRAM WB in kgates.
As expected, the majority, i.e., 98.22% of the whole area
(13 726 kgates, 2.95 mm2) is dominated by the large SRAM
WB (13 481 kgates, 2.9 mm2), while the accelerator itself
represents only the remaining 1.78% (245 kgates, 0.053 mm2).
Almost 30% of the PeakEngine area [Fig. 9(b)] is used by
SRAM X and SRAM H for storing inputs, results, and hat
states. The Activation and Mac modules used for all layer
types occupy ∼20%. The PeakGRU-related modules, i.e.,
the Peak Unit (Delta, SCMs, MinHeap), HatUpdate, and
SRAM M, comprise 46.1% of the area, where the SCMs
and SRAMs clearly dominate. The total PeakGRU overhead
area is in general insignificant (113 kgates), especially when
compared to the obtained energy savings described next.
Small modules such as MMUs, Config, and CMU along
with the logic in the top level are summed together and
represented as Miscellaneous. They account for only 6.5% of
the area.

2) Energy: Our energy evaluations are divided into two
parts: 1) comparing the total savings in terms of static and
dynamic energy to see the overall effect of pruning (Fig. 10)

Fig. 10. Comparison of total energy for GRU and four PeakGRU configu-
rations per inference, further divided into static and dynamic.

Fig. 11. Comparison of dynamic energy for GRU and four PeakGRU
configurations per inference.

and 2) comparing the savings of dynamic energy for all the
configurations (Fig. 11).

Fig. 10 shows the total energy dissipation (y-axis) of Peak-
Engine together with SRAM WB for different configurations
(x-axis) as stacked bars. In total, the baseline GRU DNN
dissipates 11.83 µJ per inference compared to only 5.04–
4.14 µJ for the PeakGRU configurations. The energy is further
divided into static and dynamic, where the static energy clearly
dominates for all five configurations (66.7%, 71.1%, 72.1%,
73.5%, and 74.4%, left to right). Almost all the static energy
comes from SRAM WB. Although the PeakGRU algorithm
targets dynamic pruning, it also assists in decreasing the
total leakage by 54.6%–61%, i.e., from 7.89 µJ (GRU) to
only 3.58–3.08 µJ per inference. These savings are a result
of completing the inference faster and consequently putting
SRAM WB into retention. Without the leakage of SRAM WB,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 19,2023 at 12:22:57 UTC from IEEE Xplore. Restrictions apply.

JELČICOVÁ et al.: PeakEngine: A DETERMINISTIC ON-THE-FLY PRUNING NEURAL NETWORK ACCELERATOR 11

PeakEngine in total dissipates 4.08 µJ for GRU and only 1.56–
1.16 µJ for the PeakGRU configurations per inference.

Fig. 11 shows the total dissipated dynamic energy per
inference, where our objective was minimizing energy spent
on weight memory accesses and MACs that dominate the
computations. GRU dissipates 3.94 µJ per inference. MACs
account for 0.78 µJ and weight memory accesses for 2.66 µJ,
which corresponds to 19.8% and 67.5% of the total dynamic
energy. All the PeakGRU-related modules are clock-gated
in the GRU setup, namely the Peak Unit (Delta, SCMs,
MinHeap) and HatUpdate, while the unused SRAM M is
powered down. A noticeable portion of dynamic energy (0.34
µJ, 8.5%) is spent on SRAM X and SRAM H memory accesses.
The Activation and the rest of the system (Miscellaneous)
constitute only 1.5% (0.057 µJ) and 2.2% (0.09 µJ) of the
total, respectively.

PeakGRU DNNs dissipate only 1.46–1.06 µJ per inference.
Although the PeakGRU-related modules (light blue bar) are
clock-gated in the GRU DNN, at the same time, they dissipate
less than 0.028 µJ per timestep for each of the four K con-
figurations, while saving 2.26–2.6 µJ of the original dynamic
energy spent on MACs and memory fetches. Moreover, as it
can be noticed in Fig. 11, the PeakGRU configurations also
decrease ∼55.2–67.1% of dynamic energy spent on SRAM X
and SRAM H (yellow bar). This reduction corresponds to fewer
x(t) and h(t −1) reads since their delta versions for the MAC
operations are fetched from smaller and cheaper SCMs instead.
Activation and Miscellaneous dissipate only ∼0.03 and ∼0.07
µJ, respectively.

3) Latency: The baseline GRU model performs 2 097 152
MACs and 175 104 96-bit vector memory fetches of weights
to compute 512 gain values every timestep. Approximately
75% of both MACs (1 572 864) and vector memory fetches
(131 072) are needed for the GRU layer itself. Executing
this amount of computations and memory fetches is not only
energy-intensive, but it also exceeds the real-time budget of
30 ms when running at a low clock frequency necessary for
HIs. The baseline GRU DNN executes inference in 44.04 ms,
where the GRU layer needs ∼33 ms and each FC layer
∼5.52 ms. Pruning considerably reduces the total inference
latency down to ∼20–14.83 ms (2.2–2.97×), i.e., below both
the limit and the 25 ms input data rate defined in Section IV-A.
PeakGRU layers require only ∼8.8–3.7 ms, which is compara-
ble with or even below the latency of a FC layer. The latency
of the first FC layer in the PeakGRU DNN slightly increases
to ∼5.68 ms. This is a result of configuring the inputs and
outputs of the first FC layer to be stored in the same memory
(SRAM X). Hence the Mac unit is stalled for few cycles every
time Activation writes the final outputs. This setup enables a
fast selection of the top Kh elements since the other memory
(SRAM H) is only accessed by the Peak Unit.

Overall, the achieved reductions enable DNN inference to
be completed within the real-time and energy budget of a HI.

C. PeakEngine Versus State-of-the-Art

Table III shows a comparison of PeakEngine to the state-
of-the-art accelerators. These span a wide variety of pruning

(model compression, skipping updates/computations) and non-
pruning techniques, target different platforms (FPGAs, micro-
controllers, ASICs), network architectures, use cases, and
requirements in terms of latency, power consumption, and
model size. All the stated ASIC accelerators report synthesis
results.

The EdgeDRNN [30] accelerator is most similar to our
work in terms of pruning approach, network type, and the
number of MAC operations. It utilizes threshold-based Delta
Networks [29], a GRU layer, and performs eight multiplica-
tions per cycle. The weights are stored in an off-chip memory.
However, the accelerator is developed for FPGA platforms,
consumes 2.3 W, and targets extremely low latency in the
range of µs. Additionally, the computation time is unbounded
due to using a threshold-based pruning.

SpAtten is [26] an ASIC accelerator that focuses on dynamic
pruning in huge transformer neural networks [51] for nat-
ural language processing tasks. It also applies the top K
selection, however by using a quick-select algorithm instead.
Nonetheless, the average and worst case time complexity of
quick-select is O(N) and O(N 2), compared to the min-heap’s
O(1) and O(N log K), respectively. Moreover, quick-select
requires significant memory space O(N), while the min-heap
only O(K). Furthermore, SpAtten runs at 1–2 GHz and
comprises of two parallel top-K engines that together per-
form 1024 MACs. This considerably higher parallelism results
in area of 18.71 mm2, excluding huge memories for storing
345 million weights, and it has a total power consumption of
8.3 W.

TinyLSTM [22] also focuses on supporting RNNs for SE in
HIs. The authors reduce computations and memory accesses
via static pruning and additionally introduce a scheme for
skipping LSTM state updates, which can be seen as a form of
dynamic temporal pruning. While the application and use case
match perfectly with ours, this work does not propose an actual
hardware accelerator. Instead, the STM32 microcontroller with
ARM Cortex-M7 is used to run the inference, consuming
0.54 W.

The E-PUR ASIC accelerator [48] targets the execu-
tion of large LSTM networks (1–272 MB) in low-power
mobile devices for various use cases such as video classi-
fication, speech recognition, and neural machine translation.
Table III states the biggest supported model (272 MB) that
is used for machine translation. The smallest model demon-
strated for speech recognition (LibriSpeech dataset) uses 4×

Bi-directional LSTMs and requires 42 MB of weight memory.
The accelerator does not apply pruning. Instead, it exploits a
novel technique, called maximizing weight locality (MWL),
that improves the temporal locality of the synaptic weights. E-
PUR provides 14 MB of on-chip memory: 8 MB for weights
to store one layer at a time (MWL applied) and 6 MB as
intermediate storage. The area and average power consump-
tion of the accelerator itself, excluding the large off-chip
memory, are 64.6 mm2 and ∼1 W (averaged across appli-
cations), which is amenable for mobile devices, however, not
for HIs.

Another ASIC accelerator called SHARP is presented
in [49]. Like E-PUR [48], it is demonstrated on the same

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 19,2023 at 12:22:57 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE III
COMPARISON OF PeakEngine WITH PRIOR STATE-OF-THE-ART WORKS. ALL THE STATED ASIC ACCELERATORS PRESENT Synthesis RESULTS

models (smallest 40 MB) and use cases, and does not apply
any pruning method. The accelerator is benchmarked for
different LSTM dimensions as well. SHARP also emphasizes
the importance of adaptive computations, however, via a
tiled-based dispatching mechanism to handle the data depen-
dencies, and not via dynamic pruning. Table III again shows
the biggest supported network. SHARP provides 26 MB
of on-chip weight memory to store one LSTM layer at a
time and 2.3 MB of buffers. The smallest configuration has
1 000 MACs, an area of 101.1 mm2, and consumes 8.1 W
(averaged across applications) - all infeasible for HIs.

Last but not least, the Skip [28] ASIC accelerator for edge
devices performs dynamic pruning of hidden state vectors
in an LSTM unit. The proposed method, however, requires
training and cannot be applied directly during inference like
PeakGRU. Additionally, it focuses on language modeling task,
i.e., predicting a next word in the sequence. The authors do not
report total power or energy, only the area of 1.1 mm2, energy
efficiency, and peak performance compared to previous works.

Our proposed PeakEngine serves as a first ASIC accelerator
for dynamic and deterministic pruning of RNNs that targets HI
applications and the SE use case. The example configuration
with K = 128 (Peak128, Table III) consumes 29 µW without
the big weight memory and 202 µW in total. PeakEngine has
a small total area of 2.95 mm2 while supporting big DNNs
within the given time and energy constraints. The weight
memory occupies 2.9 mm2 and the accelerator itself only
0.053 mm2. PeakEngine is configurable and easily portable,
and it can be used as a coprocessor to a typical digital
signal processor in HIs to take off the neural processing
workload from the system. Overall, PeakEngine is suitable
for low-power and resource-constrained embedded devices
such as HIs.

X. CONCLUSION

This article presented PeakEngine, a configurable ASIC
accelerator for low-power edge devices, such as HIs, that

supports dynamic and deterministic pruning of input and
hidden state sequences in a GRU layer. This is accomplished
via the top K element selection by utilizing the small and effi-
cient Min-heap engine. The algorithm-hardware codesign of
the PeakGRU algorithm and PeakEngine significantly reduces
total energy and latency up to 2.86× and 2.97×, respectively,
making the energy-efficient and real-time execution of even
bigger RNNs viable within the constraints imposed by HIs.
The accelerator was demonstrated in the SE task, and it
could be used as a coprocessor to a typical digital processor
found in HIs. Additionally, we developed a framework for
parameter space exploration to identify the most suitable data
word length, Q formats, and K values for DNNs executed by
PeakEngine. The accelerator is synthesized in a 22 nm CMOS
technology and evaluated at a 4 MHz clock frequency while
operating at two supply voltages: 0.6 V (logic) and 0.8 V (bit
cells). It occupies 0.053 mm2 without the weight memory and
2.95 mm2 in total. To the best of our knowledge, PeakEngine
is the first ASIC accelerator for low-power dynamic and deter-
ministic pruning of RNNs that targets support of HI-relevant
use cases such as SE.

REFERENCES

[1] D. Beck et al., “Audiologic considerations for people with normal hear-
ing sensitivity yet hearing difficulty and/or speech-in-noise problems,”
Hearing Rev., vol. 25, no. 10, pp. 28–38, 2018.

[2] S. Kochkin, “MarkeTrak V: ‘Why my hearing aids are in the drawer’ the
consumers’ perspective,” Hearing J., vol. 53, no. 2, pp. 34–36, 2000.

[3] H. B. Abrams and J. Kihm, “An introduction to MarkeTrak IX: A new
baseline for the hearing aid market,” Hearing Rev., vol. 22, no. 6, p. 16,
2015.

[4] M. Kolbæk, “Single-microphone speech enhancement and separation
using deep learning,” 2018, arXiv:1808.10620.

[5] Y. Ephraim and D. Malah, “Speech enhancement using a minimum-
mean square error short-time spectral amplitude estimator,” IEEE Trans.
Acoust., Speech, Signal Process., vol. ASSP-32, no. 6, pp. 1109–1121,
Dec. 1984.

[6] P. C. Loizou, Speech Enhancement: Theory and Practice, 2nd ed.
Boca Raton, FL, USA: CRC Press, 2013.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 19,2023 at 12:22:57 UTC from IEEE Xplore. Restrictions apply.

JELČICOVÁ et al.: PeakEngine: A DETERMINISTIC ON-THE-FLY PRUNING NEURAL NETWORK ACCELERATOR 13

[7] R. C. Hendriks, T. Gerkmann, and J. Jensen, “DFT-domain based single-
microphone noise reduction for speech enhancement: A survey of the
state of the art,” Synth. Lect. Speech Audio Process., vol. 9, no. 1,
pp. 1–80, Jan. 2013.

[8] G. Kim, Y. Lu, Y. Hu, and P. C. Loizou, “An algorithm that improves
speech intelligibility in noise for normal-hearing listeners,” J. Acoust.
Soc. Amer., vol. 126, no. 3, pp. 1486–1494, Sep. 2009.

[9] Y. Fan, X. Lu, D. Li, and Y. Liu, “Video-based emotion recognition
using CNN-RNN and C3D hybrid networks,” in Proc. 18th ACM Int.
Conf. Multimodal Interact., Oct. 2016, pp. 445–450.

[10] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. Adv. Neural Inf. Process. Syst., vol. 27,
2014, pp. 3104–3112.

[11] Y. Cui, S. Wang, and J. Li, “LSTM neural reordering feature for
statistical machine translation,” in Proc. Conf. North Amer. Chapter
Assoc. Comput. Linguistics, Hum. Lang. Technol. (NAACL HLT), 2016,
pp. 977–982.

[12] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., May 2013, pp. 6645–6649.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[14] K. Cho et al., “Learning phrase representations using RNN
encoder–decoder for statistical machine translation,” in Proc.
Conf. Empirical Methods Natural Lang. Process. (EMNLP), 2014,
pp. 1724–1734.

[15] M. Horowitz, “Computing’s energy problem (and what we can do about
it),” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
vol. 57, Feb. 2014, pp. 10–14.

[16] M. A. Stone and B. C. J. Moore, “Tolerable hearing aid delays.
III. Effects on speech production and perception of across-frequency
variation in delay,” Ear Hearing, vol. 24, no. 2, pp. 175–183,
Apr. 2003.

[17] Acceptable Processing Delay in Digital Hearing Aids. Accessed: Jan. 4,
2022. [Online]. Available: https://hearingreview.com/practice-building/
practice-management/acceptable-processing-delay-in-digital-hearing-
aids

[18] T. Litovitz, N. Whitaker, and L. Clark, “Preventing battery ingestions:
An analysis of 8648 cases,” Pediatrics, vol. 125, no. 6, pp. 1178–1183,
Jun. 2010.

[19] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag, “What is the
state of neural network pruning?” in Proc. Mach. Learn. Syst., vol. 2,
2020, pp. 129–146.

[20] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning and
quantization for deep neural network acceleration: A survey,” Neuro-
computing, vol. 461, pp. 370–403, Oct. 2021.

[21] S. Han et al., “ESE: Efficient speech recognition engine with sparse
LSTM on FPGA,” in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate
Arrays, Feb. 2017, pp. 75–84.

[22] I. Fedorov et al., “TinyLSTMs: Efficient neural speech enhancement for
hearing aids,” in Proc. Interspeech, Oct. 2020, pp. 4054–4058.

[23] D. Kadetotad, S. Yin, V. Berisha, C. Chakrabarti, and J.-S. Seo,
“An 8.93 TOPS/W LSTM recurrent neural network accelerator fea-
turing hierarchical coarse-grain sparsity for on-device speech recog-
nition,” IEEE J. Solid-State Circuits, vol. 55, no. 7, pp. 1877–1887,
Jul. 2020.

[24] Y. Han, G. Huang, S. Song, L. Yang, H. Wang, and Y. Wang, “Dynamic
neural networks: A survey,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 44, no. 11, pp. 7436–7456, Nov. 2022.

[25] J. Tchorz and B. Kollmeier, “SNR estimation based on ampli-
tude modulation analysis with applications to noise suppression,”
IEEE Trans. Speech Audio Process., vol. 11, no. 3, pp. 184–192,
May 2003.

[26] H. Wang, Z. Zhang, and S. Han, “SpAtten: Efficient sparse atten-
tion architecture with cascade token and head pruning,” in Proc.
IEEE Int. Symp. High-Perform. Comput. Archit. (HPCA), Feb. 2021,
pp. 97–110.

[27] J. Tao, U. Thakker, G. Dasika, and J. Beu, “Skipping RNN state updates
without retraining the original model,” in Proc. 1st Workshop Mach.
Learn. Edge Sensor Syst., Nov. 2019, pp. 31–36.

[28] A. Ardakani, Z. Ji, and W. J. Gross, “Learning to skip ineffectual
recurrent computations in LSTMs,” in Proc. Design, Autom. Test Eur.
Conf. Exhib. (DATE), Mar. 2019, pp. 1427–1432.

[29] D. Neil, J. H. Lee, T. Delbruck, and S.-C. Liu, “Delta networks for
optimized recurrent network computation,” in Proc. Int. Conf. Mach.
Learn. (ICML), vol. 70, 2017, pp. 2584–2593.

[30] C. Gao, A. Rios-Navarro, X. Chen, S.-C. Liu, and T. Delbruck,
“EdgeDRNN: Recurrent neural network accelerator for edge inference,”
IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 10, no. 4, pp. 419–432,
Dec. 2020.

[31] C. Gao, T. Delbruck, and S.-C. Liu, “Spartus: A 9.4 TOp/s FPGA-
based LSTM accelerator exploiting spatio-temporal sparsity,” IEEE
Trans. Neural Netw. Learn. Syst., early access, Jun. 10, 2022, doi:
10.1109/TNNLS.2022.3180209.

[32] Z. Jelcicová, R. Jones, D. T. Blix, M. Verhelst, and J. Sparseø,
“PeakRNN and StatsRNN: Dynamic pruning in recurrent neural net-
works,” in Proc. 29th Eur. Signal Process. Conf. (EUSIPCO), Aug. 2021,
pp. 416–420.

[33] J. W. J. Williams, “Algorithm 232: Heapsort,” Commun. ACM, vol. 7,
no. 6, pp. 347–348, Jun. 1964.

[34] C. N. G. Kumar, S. Vyas, R. K. Cytron, C. D. Gill, J. Zambreno,
and P. H. Jones, “Hardware-software architecture for priority queue
management in real-time and embedded systems,” Int. J. Embedded
Syst., vol. 6, no. 4, pp. 319–334, Sep. 2014.

[35] S. Rigler, W. Bishop, and A. Kennings, “FPGA-based lossless data
compression using Huffman and LZ77 algorithms,” in Proc. Can. Conf.
Electr. Comput. Eng., 2007, pp. 1235–1238.

[36] X. Fan, J. Stuijt, R. Wang, B. Liu, and T. Gemmeke, “Re-addressing
SRAM design and measurement for sub-threshold operation in view of
classic 6T vs. standard cell based implementations,” in Proc. 18th Int.
Symp. Quality Electron. Design (ISQED), Mar. 2017, pp. 65–70.

[37] P. Meinerzhagen, O. Andersson, B. Mohammadi, Y. Sherazi, A. Burg,
and J. N. Rodrigues, “A 500 fW/bit 14 fJ/bit-access 4 kb standard-
cell based sub-VT memory in 65 nm CMOS,” in Proc. Eur. Solid-State
Circuit Conf. (ESSCIRC), Sep. 2012, pp. 321–324.

[38] O. Andersson, B. Mohammadi, P. Meinerzhagen, A. Burg, and
J. N. Rodrigues, “Ultra low voltage synthesizable memories: A trade-off
discussion in 65 nm CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 63, no. 6, pp. 806–817, Jun. 2016.

[39] Perceptual Evaluation of Speech Quality (PESQ): An Objective Method
for End-to-End Speech Quality Assessment of Narrow-Band Telephone
Networks and Speech Codecs, document ITU-T Recommendation P.862,
2001.

[40] P. C. Loizou, “Speech quality assessment,” in Multimedia Analysis,
Processing and Communications, vol. 346. Berlin, Germany: Springer,
2011, pp. 623–654.

[41] C. Veaux, J. Yamagishi, and K. Macdonald. (2019). CSTR VCTK
Corpus: English Multi-Speaker Corpus for CSTR Voice Cloning Toolkit.
[Online]. Available: https://datashare.ed.ac.uk/handle/10283/3443

[42] G. Andersen. (2011). Akustiske Database for Dansk. [Online]. Available:
https://www.nb.no/sbfil/dok/nst_taledat_dk.pdf

[43] M. C. Green and D. Murphy, “EigenScape: A database of spatial acoustic
scene recordings,” Appl. Sci., vol. 7, no. 11, p. 1204, 2017. [Online].
Available: https://www.mdpi.com/2076-3417/7/11/1204

[44] C.-W. Lin and J.-S. Wang, “A digital circuit design of hyperbolic tangent
sigmoid function for neural networks,” in Proc. IEEE Int. Symp. Circuits
Syst., May 2008, pp. 856–859.

[45] J. S. P. Giraldo and M. Verhelst, “Laika: A 5 uW programmable
LSTM accelerator for always-on keyword spotting in 65 nm CMOS,” in
Proc. IEEE 44th Eur. Solid State Circuits Conf. (ESSCIRC), Sep. 2018,
pp. 166–169.

[46] P. Kumar Meher, “An optimized lookup-table for the evaluation of
sigmoid function for artificial neural networks,” in Proc. 18th IEEE/IFIP
Int. Conf. VLSI Syst.-on-Chip, Sep. 2010, pp. 91–95.

[47] Simple Python Fixed-Point Module (SPFPM). Accessed: Jan. 15, 2022.
[Online]. Available: https://github.com/rwpenney/spfpm

[48] F. Silfa, G. Dot, J.-M. Arnau, and A. Gonzàlez, “E-PUR: An energy-
efficient processing unit for recurrent neural networks,” in Proc.
27th Int. Conf. Parallel Architectures Compilation Techn., Nov. 2018,
pp. 1–12.

[49] R. Y. Aminabadi, O. Ruwase, M. Zhang, Y. He, J.-M. Arnau, and
A. González, “SHARP: An adaptable, energy-efficient accelerator for
recurrent neural networks,” ACM Trans. Embedded Comput. Syst.,
vol. 22, no. 2, pp. 1–23, Mar. 2023.

[50] Demant A/S. Accessed: Feb. 9, 2022. [Online]. Available:
https://www.demant.com/

[51] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), 2017, pp. 5998–6008.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 19,2023 at 12:22:57 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNNLS.2022.3180209

14 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Zuzana Jelčicová received the M.Sc. and Ph.D.
degrees in computer science and engineering from
the Technical University of Denmark (DTU),
Kongens Lyngby, Denmark, in 2019 and 2023,
respectively.

Since then, she has been with Demant A/S,
Smørum, Denmark, working as a Digital IC Engi-
neer. Her research interests include low-power
edge processing, neural networks, AI hardware
accelerators, and algorithm-hardware codesign for
resource-constrained embedded devices.

Dr. Jelčicová holds a patent for the algorithms proposed in her Ph.D. Her
project was awarded as the best “3MT-Three Minutes Thesis” at EUSIPCO
2021.

Evangelia Kasapaki received the M.Sc. degree in
computer architecture from the University of Crete,
Rethymno, Greece, in 2008, and the Ph.D. degree in
computer science and engineering from the Techni-
cal University of Denmark (DTU), Kongens Lyngby,
Denmark, in 2015.

Since then, she has been with Demant A/S,
Smørum, Denmark, currently working as a Senior
Digital IC Engineer. Her interests include networks-
ON-chip, multiprocessor system design, embedded
and real-time systems, low-power design, and neural
networks.

Oskar Andersson (Member, IEEE) received the
M.Sc. degree in computer science and engineering
and the Ph.D. degree in electrical engineering from
Lund University, Lund, Sweden, in 2010 and 2016,
respectively.

In 2015, he was an intern with Intel Laboratories,
Intel Corporation, Hillsboro, OR, USA. Since 2016,
he has been with Demant A/S, Smørum, Denmark,
as a Senior Digital IC Engineer. His research inter-
ests include power optimization of ultralow voltage
and near-threshold voltage circuits, energy-efficient

circuits techniques, and biomedical circuits for implantable devices.

Jens Sparsø (Member, IEEE) is a Professor with the
Technical University of Denmark (DTU), Kongens
Lyngby, Denmark. He has published more than
100 refereed conference and journal papers and is
coauthor of the book Principles of Asynchronous
Circuit Design—A Systems Perspective (Kluwer,
2001), which has become the standard textbook on
the topic. His research interests include: design of
digital circuits and systems, design of asynchronous
circuits, low-power design techniques, application-
specific computing structures, multi-core processors,

and networks-ON-chips; in short, hardware platforms for embedded and cyber-
physical systems.

Mr. Sparsø received the Radio-Parts Award and the Reinholdt W. Jorck
Award in 1992 and 2003, in recognition of his research on integrated circuits
and systems. He received the Best Paper Award at ASYNC 2005, and one of
his papers was selected as one of the 30 most influential papers of ten years
of the DATE conference.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 19,2023 at 12:22:57 UTC from IEEE Xplore. Restrictions apply.

