
1

PALS: Distributed Gradient Clocking on Chip
Johannes Bund, Matthias Függer, Moti Medina

Abstract—Consider an arbitrary network of communicating modules on a chip, each requiring a local signal telling it when to execute a
computational step. There are three common solutions to generating such a local clock signal: (i) by deriving it from a single, central
clock source, (ii) by local, free-running oscillators, or (iii) by handshaking between neighboring modules. Conceptually, each of these
solutions is the result of a perceived dichotomy in which (sub)systems are either clocked or asynchronous. We present a solution and
its implementation that lies between these extremes. Based on a distributed gradient clock synchronization algorithm, we show a novel
design providing modules with local clocks, the frequency bounds of which are almost as good as those of free-running oscillators, yet
neighboring modules are guaranteed to have a phase offset substantially smaller than one clock cycle. Concretely, parameters
obtained from a 15nm ASIC simulation running at 2GHz yield mathematical worst-case bounds of 20ps on the phase offset for a
32× 32 node grid network.

Index Terms—on-chip distributed clock generation, gradient clock synchronization, GALS

✦

1 INTRODUCTION

Consider a circuit of dimension W × W consisting of
comparably small modules of normalized dimension 1 that
predominately communicate with physically close modules.

Local clock signals. Each circuit module requires a local
clock signal to trigger its computational steps. There are
two extreme approaches to provide these clock signals: (i)
In the synchronous approach, a clock signal is distributed
via a clock tree. The clock’s period is chosen to ensure lock-
step computational rounds between all modules and, thus,
in particular, for communicating modules. (ii) In the asyn-
chronous approach, modules, potentially as small as a single
gate, generate the clock signal locally via handshaking with
all communication partners.

From the modules’ perspective, both methodologies pro-
vide local clock ticks with different guarantees. We focus on
three measures: (a) Whether they ensure a round structure,
i.e., there is a time-independent tick offset R, such that data
that is provided at tick k is guaranteed to be available at the
receiving module at tick k + R. (b) The local skew, i.e., the
maximum difference in time between any two kth ticks at
modules that communicate with each other. (c) The waiting
time, i.e., the maximal time between two successive ticks.
Note that (b+c) combined with a minimal time between
successive ticks allows one to construct a round structure.

Limits of the extremes. Ideally, one would wish for a circuit
with a round structure, a small local skew, and a small
waiting time. While fully synchronous and asynchronous
circuits provide a round structure, they have significant
local skew or waiting times. The local skew in synchronous

• J. Bund was with the Engineering Faculty at Bar-Ilan University, Ramat
Gan, Israel. Major parts where carried out when J. Bund was with CISPA
Helmholtz Center for Information Security, Saarland, Germany. E-mail:
bundjoh@biu.ac.il

• M. Függer was with CNRS, LMF, ENS Paris-Saclay, Université Paris-
Saclay, 91190 Gif-sur-Yvette, France. E-mail: mfuegger@lmf.cnrs.fr

• M. Medina was with the Engineering Faculty at Bar-Ilan University,
Ramat Gan, Israel. E-mail: moti.medina@biu.ac.il

A conference version of this work appeared at IEEE ASYNC [1].

circuits has been shown to grow linearly with the circuit
width W ; see Section 6.3. On the other hand, causal ac-
knowledge chains in asynchronous systems can span the
entire system, resulting in waiting times that grow linearly
with W .

Fully synchronous or asynchronous systems are indeed
rare in practice: in current synchronous systems, there are
numerous clock domains with asynchronous interfaces in
between [2]. Full asynchronous, delay-insensitive circuits [3]
suffer from substantial computational limitations [4], [5], [6]
and provide no timing guarantees, rendering them unsuit-
able for many applications. Accordingly, most real-world
asynchronous systems will utilize timing assumptions on
some components.

A systematic tradeoff: GALS. Globally Asynchronous Lo-
cally Synchronous (GALS) systems [7], [8] are a system-
atic approach between both extremes. Unlike a single syn-
chronous region (clocked circuits), and no clocked regions
(delay-insensitive), GALS systems have several clock is-
lands communicating asynchronously via handshakes. If
the width W of the synchronous islands is small, the clock
islands can maintain small skew locally. However, the gain
comes at the expense of no round structure: Clocks on dif-
ferent islands may drift apart arbitrarily. Furthermore, com-
munication across clock domains requires passing through
synchronizers [8], [9]. Besides the disadvantage of a non-zero
probability to cause metastable upsets, the synchronizers incur
2 or more clock cycles of additional communication latency if
they are in the data path.

Alternative solutions without synchronizers in the data
path have been proposed in [10], [11]. The designs either
skip clock cycles or switch to a clock signal shifted by half a
period when the transmitter and receiver clock risk violating
setup/hold conditions. The signal that indicates this choice
(skip/switch) is synchronized without additional latency
to the data path. Depending on the implementation and
intended guarantees, the additional latency is in the order of
a clock period. While this can, in principle, be brought down

ar
X

iv
:2

30
8.

15
09

8v
1 

 [
cs

.A
R

] 
 2

9 
A

ug
 2

02
3



2

to the order of setup/hold-windows, such designs would
require considerable logical overhead and fine-tuning of
delays. An application-level transmission may be delayed
by such a time slot. In [10], this additional delay can be up
to 2 clock periods when a so-called no-data packet is over-
sampled. Further, there is a non-zero probability of metastable
upsets, and applying such a scheme has to insert no-data
packets periodically.

Finally, consider a potential application that runs on top
of such schemes and uses handshaking to make sure all its
packets of a (logical) time step have arrived before the next
time step is locally initiated. It faces the same problem as
a fully asynchronous design: the waiting time grows linearly
with the circuit dimension.

Solutions with round structure. A fully synchronous sys-
tem provides two convenient properties: (i) metastability-
free communication, and (ii) a round structure, that is, no
need for handshaking between the synchronous islands of a
GALS system. Abandoning the synchronous structure leads
to the loss of these properties.

Solutions that directly provide a round structure have
been proposed. Examples are GALS architectures with pau-
sible clocks [12], [13], distributed clock generation algo-
rithms like DARTS [14] and FATAL [15], wave clock dis-
tribution [16], and distributed clocking grids [17]. However,
pausible clocks suffer from potentially unbounded waiting
times due to metastability, and DARTS and FATAL require
essentially fully connected communication networks. The
solution in [16] employs analog cross-coupling of clock
buffers to distribute a single clock source over a grid net-
work. Here, we show how to design a purely digital system
that utilizes an algorithmic approach to synchronize many
clock domains. A digital version of the Fairbanks clock
generation grid [17] is analyzed in this work and shown
to lead to linear waiting times; see Section 6.4.

The PALS approach. In this work, we present a different
approach that combines a round structure with low local skew,
a low waiting time, and provable absence of metastable-upsets.
The PALS approach can be regarded as a drop-in replace-
ment for GALS systems; it uses locally synchronous islands
and global communication between islands. It improves
over GALS systems by adding a round structure.

Our design is based on the distributed gradient clock syn-
chronization (GCS) algorithm by Lenzen et al. [18], in which
the goal is to minimize the worst-case clock skew between
adjacent nodes in a network. In our setting, the modules
correspond to nodes; an edge connects them if they directly
communicate (i.e., exchange data). More precisely, let D be
the diameter of the network and ρ be the (unintended) drift
of the clock of a clocked region, µ > 2ρ a freely chosen
constant, and δ an upper bound on how precisely the phase
difference to neighboring clocked regions is known. Then:

• The synchronized clocks are guaranteed to run at nor-
malized rates between 1 and (1 + µ)(1 + ρ), i.e., have
constant waiting time.

• The local skew is bounded by O(δ logµ/ρ D).
• The global skew, i.e., the maximum phase offset between

any two nodes in the system, is O(δD).

In other words, the synchronized clocks are almost as good
as free-running clocks in a GALS system, with drift ρ, yet
the local skew grows only logarithmically in the chip width W .

We extend the conference version [1] by an in-depth
analysis of the PALS algorithm and additional simulations
demonstrating its performance. We further add a compari-
son to a state-of-the-art clock generation grid [17].

Outline and results. After the introduction in this section,
we discuss the computational model in Section 2. In Sec-
tion 3, we briefly present the GCS algorithm before dis-
cussing a variant of the algorithm (called OffsetGCS) used
in this work. We break down the OffsetGCS into hardware
modules and specify these modules in Section 4. The algo-
rithm carried out by the hardware modules is denoted by
ClockedGCS. Our main theorem (Theorem 4.6) states that
every hardware system that implements ClockedGCS main-
tains the skew bounds of the GCS algorithm. An implemen-
tation of the hardware modules on register-transfer-level,
which we denote by GCSoC, is discussed in Section 5. We
conclude this work with simulations of this implementation
in Section 6. Implementation and simulation are carried out
in the 15 nm FinFET-based NanGate OCL [19]. For 2GHz
clock sources with an assumed drift of ρ = 10−5, and
µ = 10−3, our simple sample implementation guarantees
that δ ≤ 5 ps in the worst case. The resulting local skew is
20 ps, which is well below a clock cycle. We stress that this
enables much faster communication than handshake-based
solutions, which incur synchronizer delay. We conclude
with a comparison of the performance of our solution by
SPICE simulations to a digital version of a Fairbanks grid.

2 COMPUTATIONAL MODEL

Network, Communication, and Timing. The network of
communicating synchronous PALS islands is modeled by
an undirected graph G = (V,E), where the set of nodes
V is the set of islands and there is an edge (v, w) ∈ E, if
v and w communicate. Edges are bidirectional, i.e., edges
(v, w) and (w, v) are the same edge. Furthermore, for each
v ∈ V , E contains edge (v, v). The diameter D of a network
is the maximum distance over all pairs of nodes, where the
distance between two nodes is the length of a shortest path
connecting those nodes in the network.

We denote real time, i.e., an external reference time
for analysis, by Newtonian time. A node has no access to
Newtonian time, but has its own (internal) time reference.

Nodes communicate by sending content-less messages,
known as pulses. A pulse is sent via broadcast to all neigh-
boring nodes. The message delay is the time a pulse travels
between the sender and receiver. It is constrained by a
maximum delay d and a minimum delay d− U , where U is
the delay uncertainty. A pulse sent by a node at Newtonian
time t is received between time t+ d− U and time t+ d.

Hardware Clock. Each node can locally measure the
progress of time. For example, a node may do this via a local
ring oscillator. For the analysis, we abstract any such device
by the mathematical concept of a hardware clock. A hardware
clock is prone to uncertainty, which we model by a variable
rate that may change over time. The uncertainty is called
the hardware clock drift (short clock drift). Formally, for each



3

node v ∈ V there is an integrable function hv : R≥0 → R
called the hardware clock rate. Parameter ρ > 0 is an upper
bound on the one-sided hardware clock drift of all nodes.
The hardware clock rate satisfies 1 ≤ hv(t) ≤ 1 + ρ for all
t ∈ R≥0. The hardware clock value of v at time t, Hv(t), is
then defined by

Hv(t) =

∫ t

0
hv(τ)dτ +Hv(0) ,

where Hv(0) is the initial value of v’s hardware clock at
Newtonian time 0. A node that has measured its hardware
clock to advance by T knows that the real time difference is
in [T/(1 + ρ), T ].

Logical Clock. While a hardware clock allows a node to
measure time differences, its rate cannot be controlled. The
logical clock is a hardware clock that can also be controlled.
Indeed, we will use an adjustable ring oscillator in this
work as a logical clock. Formally, the local clock signal a
node produces is given by Lv : R≥0 → R, where Lv(t) is
the phase (normalized by 2π) of the clock signal since the
first clock tick.1 A node’s logical clock is initialized to Hv(0)
and follows the hardware clock’s rate but is adjustable by
a constant factor. In our algorithm, the logical clock will be
implemented by the node’s local adjustable ring oscillator
that has only two modes: slow and fast. Their rate differs by
factor µ, slow has (normalized) rate 1 and fast has (1 + µ).

Skew. The skew between two nodes describes the difference
in their logical clock values. The upper bound on the skew
is a figure of merit for clock synchronization algorithms. We
regard two types of skew in a system, the global skew and
the local skew.

Definition 2.1 (global and local skew). The global skew G(t)
is the maximum skew between any two nodes in the network.
Formally, it is defined by

G(t) := max
v,w∈V

{Lw(t)− Lv(t)} .

The local skew L(t) is the maximum skew between any two
neighboring nodes in the network. Formally, it is defined by

L(t) := max
(v,w)∈E

{Lw(t)− Lv(t)} .

Our Goal. Given a network of nodes and the nodes’ local
oscillator parameters, the goal is to provide an algorithm
(i.e., a circuit) that controls the slow and fast clock speed
signals at each node such that small, bounded, local, and
global skews are ensured.

3 ALGORITHM AND SKEW BOUND GUARANTEES

3.1 Gradient Clock Synchronization
We start by recalling the class of GCS algorithms studied by
Lenzen et al. [18].

Intuitively, a GCS algorithm executed by node v con-
tinuously measures the skew to each neighbor w. By a
set of rules, the algorithm decides whether to progress the

1. For example, a (perfect, non-drifting) logical clock with frequency
f has phase 2π · f · t at time t, and normalized (by 2π) phase f · t. The
logical clock thus advances by a full step of one every 1/f time but
continuously advances in between.

logical clock at a fast or a slow rate. Lenzen et al. showed
that such GCS algorithms achieve close synchronization
between neighboring nodes in an arbitrary network, i.e.,
minimize L(t). Let δ be an upper bound on how precisely
the skew between neighbors is known. Provided that the
global skew does not exceed a bound of O(δD), GCS
achieves asymptotically optimal local skew bounded by
O(δ logµ/ρ D). In other words, local skew grows only log-
arithmically in the hop diameter of the network; still, we
have clocks that progress at a minimum rate of 1. The local
and global skew bounds are asymptotically optimal [18].

3.2 GCS and OffsetGCS Algorithm

The GCS algorithm by Lenzen et al. computes a logical clock
from the hardware clock in two different modes, fast and
slow. In slow mode, the logical clock follows the rate of the
hardware clock. In fast mode, the logical clock advances at
the hardware clock rate and speedup factor µ > 0. Formally,
a node in fast mode advances its logical clock with rate (1+
µ)hv(t), where µ is chosen by the designer. A node controls
its binary mode signal γv(t) ∈ {0, 1} to adjust its logical
clock. In fast mode γv is set to 1 and, accordingly, in slow
mode γv is set to 0. The logical clock value of v at time t with
initial value Hv(0) thus is

Lv(t) =

∫ t

0
(1 + µ · γv(τ))hv(τ) dτ +Hv(0) .

A node in fast mode must be able to catch up to a node in
slow mode. Hence, we pose the constraint that fast mode
(without clock drift) can never be slower than slow mode
(with clock drift). This can be formalized as

1 + ρ < 1 + µ .

The algorithm specifies two conditions that control when to
switch between fast and slow modes. Accordingly, condi-
tions are named fast condition (FC) and slow condition (SC).
The algorithm is parameterized by κ, which determines the
synchronization quality.

Definition 3.1 (fast and slow condition). Let κ ∈ R+ be
a positive, non-zero, real number. A node v ∈ V satisfies
the fast condition at time t if there is a natural number
s ∈ N = {0, 1, . . . } such that both:

∃(v, x) ∈ E : Lx(t)− Lv(t) ≥ (2s+ 1)κ (FC-1)
∀(v, y) ∈ E : Ly(t)− Lv(t) ≥ −(2s+ 1)κ (FC-2)

Node v ∈ V satisfies the slow condition at time t if there is a
natural number s ∈ N such that the following conditions hold:

∃(v, x) ∈ E : Lx(t)− Lv(t) ≤ −2sκ (SC-1)
∀(v, y) ∈ E : Ly(t)− Lv(t) ≤ 2sκ (SC-2)

Node v satisfies the fast condition if there is at least one
node u, that is ahead of v and no other node behind v
exceeds the absolute skew between v and u. The slow
condition is satisfied if there is a node u behind v that has
a larger absolute skew to v than all nodes ahead of v. The
thresholds use odd multiples of κ for the fast condition and
even multiples of κ for the slow condition to ensure mutual
exclusion.



4

If v is the node with the largest logical clock value in
the network, then all other nodes are behind v, they have
negative skew. Thus, the slow condition is satisfied for s =
0. Accordingly, if v is the node with the smallest clock value
in the network, then it satisfies the fast condition as all skews
to other nodes are positive.

Definition 3.2. An algorithm is a GCS algorithm with pa-
rameters ρ, µ, κ if the following invariants hold, for every node
v ∈ V and all times t, t′:

µ > ρ (I1)
Lv(t

′)− Lv(t)∈ [1, 1 + µ] · (Hv(t
′)−Hv(t)) (I2)

if v satisfies FC at time t then v is in fast mode at time t (I3)
if v satisfies SC at time t then v is in slow mode at time t (I4)

Invariant (I2) states that the rate of the logical clock is at least
the rate of the hardware clock and at most (1 + µ) times the
rate of the hardware clock.

Remark. Every algorithm that meets Definition 3.2 is a GCS
algorithm. In this work we focus on the algorithm by
Lenzen, Locher, and Wattenhofer [18], which we state in
Algorithm 1.

Maximal and Minimal Offsets. The conditions in Defini-
tion 3.1 can be reformulated using the maximal and minimal
offset. Maximal and minimal offsets at node v are given by

Omax(t) := max
(v,x)∈E

{Lx(t)− Lv(t)} , (3)

Omin(t) := min
(v,x)∈E

{Lx(t)− Lv(t)} . (4)

The node with the largest offset to v is the node that is ahead
of v the most, and the node with the smallest offset to v is
the node most behind v.

A node v ∈ V satisfies the fast condition if some neigh-
bor reached a (positive) threshold and no other neighbor
crossed the corresponding negative offset. If the Omax(t)
reached a certain threshold we are certain that some neigh-
bor reached this offset. Accordingly if Omin(t) is larger
than the corresponding negative offset, no neighbor crossed
the corresponding negative offset. Formally, we replace
Eqs. (FC-1) and (FC-2) and Eqs. (SC-1) and (SC-2) in
Definition 3.1 by

Omax(t) ≥ (2s+ 1)κ , (FC-1)
Omin(t) ≥ −(2s+ 1)κ , (FC-2)
Omin(t) ≤ −2sκ , and (SC-1)
Omax(t) ≤ 2sκ . (SC-2)

Offset Estimates. Nodes have no access to logical clocks of
their neighbors. Hence, precise skews remain unknown to
the node. In order to fulfill the invariants of the algorithm
a node maintains an estimate of each offset to a neighbor.
Offset and skew are the same, we use the terms inter-
changeably. The offset estimate of node v to its neighbor w is
denoted by Ôw. Intuitively, we have Ôw(t) ≈ Lw(t)−Lv(t).
Parameter δ gives a two-sided bound on the estimates.∣∣∣Ôw(t)− (Lw(t)− Lv(t))

∣∣∣ ≤ δ (5)

Algorithm 1 GCS algorithm at node v, where ft1s, ft2s, and
ow are variables.

1: at each time t do
2: for each neighbor w do
3: ow ← Ôw(t) ▷ save offset estimate to w

4: ft1s ← ∃w : ow ≥ (2s+ 1)κ− δ
5: ft2s ← ∀w : ow ≥ −(2s+ 1)κ− δ
6: if ∃s : ft1s ∧ ft2s then
7: γv(t)← 1 ▷ switch to fast mode
8: else
9: γv(t)← 0 ▷ switch to slow mode

Given an estimate of each neighboring clock, the GCS algo-
rithm specifies the fast trigger (FT). Each node determines by
FT whether to go fast or slow. A node that satisfies FC must
satisfy FT, but a node that satisfies SC must not satisfy FT.

Definition 3.3 (fast trigger). Let κ ∈ R+ be a positive, non-
zero, real number. A node v ∈ V satisfies the fast trigger at
time t if there is a natural number s ∈ N such that both:

∃(v, x) ∈ E : Ôx(t) ≥ (2s+ 1)κ− δ (FT-1)

∀(v, y) ∈ E : Ôy(t) ≥ −(2s+ 1)κ− δ (FT-2)

We are now able to state the GCS algorithm in Algo-
rithm 1.Intuitively, the GCS algorithm checks the FT at
all times. If v satisfies FT then v switches to fast mode,
otherwise v defaults to slow mode.
Remark. As the decision to run fast or slow is a discrete
decision, a circuit implementation will be prone to metasta-
bility [20]. We focus on this problem in Section 4.4.

Maximal and Minimal Offset Estimates. The fast trigger of
Lenzen et al. can be redefined using the largest and smallest
offset estimate of node v. We define the maximal and the
minimal estimate of v’s offset estimates by

Ômax := max
(v,x)∈E

{Ôx} , and Ômin := min
(v,x)∈E

{Ôx} .

Then, we replace Eqs. (FT-1) and (FT-2) in Definition 3.3 by

Ômax(t) ≥ (2s+ 1)κ− δ , (FT-1)

Ômin(t) ≥ −(2s+ 1)κ− δ . (FT-2)

We are thus able to restate the GCS algorithm (Algo-
rithm 1)in Algorithm 2. Rather than quantifiers “exists” and
“for all” over all outgoing edges we make use of Ômax and
Ômin. The algorithm, referred to as OffsetGCS, is stated in
Algorithm 2.

Next, we show that in OffsetGCS we can also bound the
number of thresholds, i.e., we bound the maximum value of
s in Algorithm 1, line 6.

Bound on s. In case of a bounded local skew, which we will
later show to be the case, we can bound the maximal num-
ber of steps s that need to be measured. Let L := supt L(t)
be the largest skew between two neighbors. Let ℓ be the
largest number such that (2ℓ+1)κ−δ ≤ L. Then, node v ∈ V
satisfies the fast trigger at time t if there is an s ∈ [ℓ+1] such
that Eqs. (FT-1) and (FT-2) hold.

Visualization. In Fig. 1 we depict the conditions of
OffsetGCS. Along the axis we mark the offsets, where the



5

Algorithm 2 OffsetGCS algorithm at node v, where ow,
omax, omin, ft1s, and ft2s are variables that store a value.

1: at each time t do
2: for each adjacent node w do
3: ow ← Ôw(t) ▷ save offset estimate to w

4: omax ← max(v,w)∈E{ow} ▷ compute and save max
5: omin ← min(v,w)∈E{ow} ▷ and min estimates
6: for s ∈ [ℓ+ 1] do
7: ft1s ← omax ≥ (2s+ 1)κ− δ
8: ft2s ← omin ≥ −(2s+ 1)κ− δ

9: if ∃s ∈ [ℓ+ 1] : ft1s ∧ ft2s then
10: γv(t)← 1 ▷ switch to fast mode
11: else
12: γv(t)← 0 ▷ switch to slow mode

x-axis marks the maximal and the y-axis marks the minimal
offset. Conditions FC, SC and FT can be marked as areas.
The fast condition, defined by Eqs. (FC-1) and (FC-2), is
marked in yellow. The slow condition, defined by Eqs. (SC-
1) and (SC-2), is marked in blue. The fast trigger, defined
by Eqs. (FT-1) and (FT-2), is a translation of FC by δ to the
left and δ down. It is marked by the orange are (including
the yellow area). We require that κ > 2δ (see Definition 3.5),
thus, the gap between FC and SC is larger than 2δ.

Fix a node v, we mark maximal and minimal offsets
as a point (Omin, Omax). In the GCS algorithm v goes to
fast mode at any time where (Omin, Omax) falls into the FC
(yellow) region. Similarly, if (Omin, Omax) falls into the SC
(blue) region, v goes to slow mode. In between both regions
v is free to choose any speed between fast and slow mode.
The offset estimates of v are given by point (Ômin, Ômax),
which we mark as a cross. Due to Eq. (5) the cross may fall
into the δ surrounding of (Omin, Omax). We mark this by a
larger box surrounding (Omin, Omax).

A node that executes OffsetGCS chooses to go to fast or
slow mode depending on whether (Ômin, Ômax) falls into
the FT (orange and yellow) region. From the visualization
one can see that for any (Omin, Omax) in the FC region,
(Ômin, Ômax) will be within the FT region, and can never
cause OffsetGCS to go slow. Similarly any (Omin, Omax) in
the SC region can never cause OffsetGCS to go fast.

3.3 Analysis of the OffsetGCS Algorithm
In what follows, we prove that for a suitable choice of
parameters (i.e., ρ, µ, κ, δ, and ℓ), OffsetGCS is a GCS
algorithm as defined in Definition 3.2. Theorem 3.4 implies
that OffsetGCS maintains tight skew bounds. For the proof
of Theorem 3.4, we refer the reader to [21].

Theorem 3.4. Suppose algorithm A is a GCS algorithm accord-
ing to Definition 3.2 with µ > 2ρ. Then, A maintains global and
local skew of

G(t) ≤ µκD

µ− 2ρ
L(t) ≤

(⌈
logµ/ρ

µD

µ− 2ρ

⌉
+ 1

)
κ

either 1) for all t > 0 if L(0) ≤ κ or 2) for sufficiently large
t ≥ T , where T ∈ O((G(0) + κD)/(µ− 2ρ)).

Uncertainty sources in OffsetGCS implementations. In
our analysis, we distinguish between two sources of un-

fast condition (FC)

slow condition (SC)

δ

δ

> 2δ

> 2δ

−2κ−4κ

κ

3κ

2κ

−κ−3κ

4κ

min

max

fast trigger (FT)

2δ

2δ

Fig. 1: Visualization of FC, SC and FT in the plane
of min and max of the offsets. The exact measurement
(Omin, Omax) is denoted by a point. The actual measurement
(Ômin, Ômax) is depicted as a small cross. We denote the
maximum measurement error by a square surrounding the
exact measurement. The OffsetGCS algorithm switches to
fast when (Ômin, Ômax) is within the FT region and to slow
otherwise.

certainty: (i) The propagation delay uncertainty δ0. This is the
absolute timing variation added to the measurement error
due to propagation delays, e.g., wire and gate delays on the
path from the clock source to the measurement module. (ii)
The measurement error resulting from unknown clock rates.
Denote by Tmax the time between initiating a measurement
and using it to control the logical clock speed. During this
time, logical clocks advance at rates that are not precisely
known. This adds to the measurement error because the
actual difference might increase or decrease compared to
the measured difference.

We denote an upper bound on the combined error by δ;
the relation of δ to δ0 and Tmax is elaborated in Section 4.4.
Given δ, we seek to choose κ as small as possible to obtain a
small local skew bound according to Theorem 3.4. In the fol-
lowing, we show constraints on parameters like κ such that
an instance of OffsetGCS, we will refer to it as a particular
implementation of OffsetGCS, is a GCS algorithm.

Theorem 3.5. An implementation of OffsetGCS is a GCS
algorithm if for all times t it satisfies (i) µ > 2ρ

(ii)
∣∣∣Ôw(t)− (Lw(t)− Lv(t))

∣∣∣ ≤ δ (iii) κ > 2δ (iv) sup{s ∈
N|(2s+ 1)κ ≤ L+2δ} ≤ ℓ <∞

Proof. To show the statement, we verify the conditions of
Definition 3.2. By assumption condition (I1) is satisfied.
Condition (I2) is a direct consequence of the algorithm
specification. For Condition (I3), suppose first that v satisfies
the fast condition at time t. There exists some s ∈ N and
neighbor x of v such that Lx(t) − Lv(t) ≥ (2s + 1)κ.
Therefore, by (5), Ôx(t) ≥ (2s + 1)κ − δ, so that (FT-1)
is satisfied. Further, from the definitions of the local skew



6

and δ, L+δ ≥ Ôx(t). Combining the above inequalities
yields L+δ ≥ (2s + 1)κ − δ. By assumption, s fulfills
s ≤ ℓ <∞. Thus, ft1s is set to true.

Similarly, since v satisfies the fast condition, all of its
neighbors y satisfy Lv(t)−Ly(t) ≤ (2s+1)κ ≤ L. Therefore,
Ôy(t) ≥ −(2s+ 1)κ− δ ≥ −L−δ, hence (FT-2) is satisfied
for the same value of s. From −(2s + 1)κ − δ ≥ −L−δ, it
is (2s + 1)κ ≤ L. Thus, s ≤ ℓ < ∞ and ft2s is set to true.
Consequently, v runs in fast mode at time t.

It remains to show that if v satisfies SC at time t, it does
not satisfy FT at time t and is in slow mode. Suppose, for
contradiction, that v satisfies SC and FT at time t. Fix s ∈ N
such that SC is satisfied and s′ ∈ N such that FT is satisfied.
Then, by (5) and SC-2,

Ômax(t) ≤ 2sκ+ δ .

Thus, by FT-1, (2s′ + 1)κ − δ ≤ 2sκ + δ. Since 2δ < κ, the
previous expression implies that s′ < s. Similarly, by (5),
SC-1, and FT-2 we obtain −2sκ ≥ −(2s′ + 1)κ − δ, such
that, s < s′ + 1. However, this contradicts s′ < s. Thus FT
cannot be satisfied at time t if SC is satisfied at time t, as we
assumed.

Combining Theorems 3.4 and 3.5, we finally obtain that an
implementation of OffsetGCS fulfilling the conditions in
Theorems 3.5, maintains the skew bounds in Theorem 3.4.

4 DECOMPOSITION INTO MODULES

To implement the OffsetGCS algorithm in hardware, we
break down the distributed algorithm in this section into
circuit modules. Here we are concerned with the clock
generation network that comprises an arbitrary number
of nodes connected by links. To focus on the clock gen-
eration circuitry, we do not discuss the circuitry for the
data communication infrastructure that can be implemented
using gradient clocking and communication links between
clocked modules.

We distinguish between the implementation of a node
and the implementation of a link. 2 Per node, we have
a tunable oscillator that is responsible for maintaining the
logical clock of a node, and a control module that sets the
local clock speed if the fast trigger FT is fulfilled. Per link, we
have two phase offset measurement modules, one for each node
connected by the link, that measures the clock offset Ôw(t)
of a node to its neighbor w (see Figure 8 for a high-level
architecture comprising of the control module, the VCO as
the tunable oscillator, and the measurement modules).

Metastability-Containing Implementation. The three mod-
ules form a control loop: Skews are measured and fed into
the control module, which acts upon the tunable oscillator.
Any measurement circuit that round-wise measures a con-
tinuous variable, in our case, the skew, and outputs a digital
representation can be shown to become metastable [20]. In
[24], a technique to compute with such metastable or unsta-
ble signals was presented. The term metastability-containing
circuit was coined for a circuit that guarantees that the
provably minimal amount of metastability carries over from

2. For an in-depth survey of related work and state-of-the-art link-
level FIFO buffer controllers, we refer the reader to [22], [23].

the inputs to the outputs. In this work, we will build on
this technique and design the circuitry to be metastability-
containing: (i) The measurement circuit outputs the mini-
mal number of metastable outputs, (ii) the controller only
produces metastable outputs if its inputs are unstable, and
(iii) the tunable oscillator frequency is bounded even in the
presence of metastable/unstable signals.

4.1 Tunable Oscillator
The logical clock signal of node v is derived from a tunable
oscillator. Each node is associated with its own oscillator
that can be tuned in its frequency. The tunable oscillator
module has one input and one output port. The binary
input mdv controls the mode (slow/fast) of the oscillator.
The binary output clkv is the oscillator’s binary clock signal
whose phase is the logical clock Lv . The oscillator has a
maximum response time Tosc ≥ 0, by which it is guaranteed
to change frequency according to the mode signal. Formally,
we require the following conditions to hold:

L(0) < κ . (C1)

If mode signal of node v is constantly 0 for time Tosc, the
oscillator with output clkv is in slow mode at time t:

∀t′ ∈ [t− Tosc, t]. mdv(t
′) = 0⇒ Lv(t) ∈ [1, 1 + ρ] . (C2)

If a mode signal is constantly 1 for time Tosc, the respective
oscillator is in fast mode at time t:

∀t′ ∈ [t− Tosc, t]. mdv(t
′) = 1⇒

Lv(t) ∈ [1 + µ, (1 + µ)(1 + ρ)] . (C3)

Otherwise, the respective oscillator is unlocked at time t:

∃t′, t′′ ∈ [t− Tosc, t]. mdv(t
′) ̸= mdv(t

′′)⇒
Lv(t) ∈ [1, (1 + µ)(1 + ρ)] . (C4)

The requirements on the oscillator are as follows: if the
control signal is stable for Tosc time, the oscillator needs
to guarantee the respective frequency. At any other time, it
is not locked to a fixed mode and may run at any frequency
between the slowest and fastest possible. In particular, the
unlocked mode may be entered when the mode signal is
metastable, unstable, or transitioned recently, i.e., an oscilla-
tor that satisfies (C4) can cope with meta-/unstable inputs
in the sense that it produces stable outputs. We stress that a
tunable oscillator satisfying (C4) is not pausible.

It is an essential requirement of the algorithm that the
skew between two nodes cannot increase if the algorithm
tries to reduce that skew. We maintain the requirement µ >
2ρ, ensuring that the phase offset between the two clocks
cannot increase further when a clock in fast mode is chasing
a clock in slow mode.

4.2 Phase Offset Measurement Module
To check whether the FT conditions are met, a node v needs
to measure the current phase offset Lw(t) − Lv(t) to each
neighbor w. This is achieved by a time offset measurement
module between v and each neighbor w. Node v has no
direct access to Lw(t) as propagation delays are prone to
uncertainty. Hence, a node can only estimate the offset to w,
where the offset estimate is denoted by Ôw(t).



7

00

u0

1u

11

10

111000 10 1uu0

slow condition

min

max

−2κ

κ

3κ

2κ

−κ− δ−3κ− δ

κ− δ

δ

δ

ε

ε

> δ

> δ

Q−1,−2
max

Q2,1
min

2δ

2δ

fast conodition (FC)

fast trigger (FT)

(SC)

metastable region

Fig. 2: Update of Fig. 1 including the decision separator.
As in Fig. 1 we visualize FC and SC with respect to Omin

and Omax. FT and the metastable region are visualized
with respect to Ômin and Ômax. Along the axis we show
the encodings Q2,1

min and Q−1,−2
max , marking also the effect of

meta-/instability.

Inputs to the offset measurement are signals clkv and
clkw. The outputs are denoted by q±i

w (t) for i ∈ {1, . . . , ℓ}.
They represent a unary encoding of Ôw(t) of length 2ℓ.
As mentioned before, the offset measurement module may
produce metastable estimates. We next discuss the module’s
specifications.

Thresholds. The algorithm does not require full access to the
function Ôw(t), but only to whether Ôw(t) has reached one
of the thresholds defined by (FT-1) and (FT-2). FT defines
infinitely many thresholds, i.e., the algorithm has to check
for each s ∈ N whether (FT-1) or (FT-2) is satisfied.

However, practically the system can only measure
finitely many thresholds. Since the algorithm guarantees a
maximum local skew, there is a maximum s until which
the algorithm needs to check. Let ℓ ∈ N be the largest
number such that (2ℓ + 1)κ + δ < L, where L is the
upper bound on the local skew. Then Ôw(t) is defined as
a binary word of length 2ℓ. The bits are denoted (from left
to right) by Qℓ

w, . . . , Q
1
w, Q

−1
w , . . . , Q−ℓ

w . For i ∈ {1, . . . , ℓ}
each output bit Q±i

w (t) denotes whether Ôw(t) has reached
the corresponding threshold. For example, a module with
ℓ = 2 has 4 outputs Q2

w, Q1
w, Q−1

w , and Q−2
w corresponding

to thresholds −3κ− δ, −κ− δ, κ− δ, and 3κ− δ. Each signal
Qℓ

w, . . . , Q
1
w, Q

−1
w , . . . , Q−ℓ

w is a function of time. For better
readability, we omit the function parameter t when it is clear
from context.

Decision Separator. Any realistic hardware implementa-
tion of the offset measurement will have to account for
setup/hold times of the registers it uses. We dedicate
the decision separator ε to account for (small) additional
setup/hold times, and the effect of a potentially metastable
output in case a setup/hold time is violated. A visualization
of the decision seperator is given in Fig. 2.

We require that signal Q±i
w (t) is 1 at time t if the offset

exceeds the ith threshold and we require that signal Q±i
w (t)

is 0 at time t if the offset does not exceed the ith threshold.
When the offset is close to the threshold (within ε), then we
allow that Q±i

w (t) is unconstrained, i.e., Q±i
w (t) ∈ {0,M, 1},

where M denotes a metastable or unstable value, e.g., a tran-
sition, a glitch, or a value between logical 0 and 1. Formally,
we define the module’s outputs to fulfill the following:

Definition 4.1 (decision separator). Let ε be a (small) timespan
with κ ≫ ε > 0. At time t, we require the following constraints
for all i ∈ {1, . . . , ℓ}. Signal Q±i

w (t) is set to 1 if the offset
estimate is larger than ∓(2i− 1)κ− δ.

Ôw(t) ≥ −(2i− 1)κ− δ ⇒ Qi
w(t) = 1

Ôw(t) ≥ (2i− 1)κ− δ ⇒ Q−i
w (t) = 1

(M1)

Signal Q±i
w (t) is set to 0 if the offset measurement is smaller than

∓(2i− 1)κ− δ − ε.

Ôw(t) ≤ −(2i− 1)κ− δ − ε ⇒ Qi
w(t) = 0

Ôw(t) ≤ (2i− 1)κ− δ − ε ⇒ Q−i
w (t) = 0

(M2)

Otherwise, Q±i
w (t) is unconstrained, i.e., within {0,M, 1}.

Figure 3 (middle) shows the timing of signals Q−1
w (t), Q1

w(t),
and Q2

w(t) in relation to the clock of neighbor w. When clkv
transitions to 1, the measurement module takes a snapshot
of the outputs Q±i

w . In Figure 3 (right), we show two
examples.

Figure 3 (left) depicts transitions of the signals Q±i
w (t).

The figure shows increasing Ôw (along the x-axis), resulting
in more and more bits Q±i

w (t) flip to 1. The decision separa-
tor ε is small enough that no two bits can flip at the same
time. If Ôw(t) = 0 we obtain Qi

w(t) = 1 and Q−i
w (t) = 0 for

all i ∈ {0, . . . , ℓ}.
Figure 3 (middle) also depicts transitions of the signals

Q±i
w (t), but along the x-axis Lv(t) increases while Lw is

fixed. We mark time Lw at which Lv(t) = Lw. A digital
implementation is only able to measure the offset on a clock
event, e.g., a rising clock transition. Hence, Lw will be the
time where clkw rises. When Lv(t) = Lw, we have that
Ôw(t) = 0, such that all bits Qi

w(t) = 1 and Q−i
w (t) = 0.

As Lv(t) increases, Ôw(t) decreases. Hence, in Figure 3,
(middle) is a mirror image of (left).
Example 4.2. Regarding Figure 3 (right), a measurement
module with ℓ = 2 can have output Qu(t) = 1100 if
κ − δ − ε ≥ Ôu(t) ≥ −κ − δ. The output may become
Qw(t) = 11M0 if κ− δ > Ôw(t) > κ− δ − ε.

In general, closely synchronized clocks have output
Q±i

w (t) = 1ℓ0ℓ. If the clock of v is ahead of w’s clock, the
measurement Q±i

w (t) contains more 0s than 1s. Similarly, if
v’s clock is behind the clock of w, the outputs contain more
1s than 0s. Further, at most one output bit is M at a time if
the ε-regions in Figures 3 (left) and (middle) do not overlap:

Lemma 4.3. At every time t there is at most a single i ∈
{1, . . . ℓ} such that Q±i

w is unconstrained.

Proof. Assume for i > 0, that Qi
w(t) is unconstrained. Then

we have that

−(2i− 1)κ− δ − ε < Ôw(t) < −(2i− 1)κ− δ .

Hence, for all i′ < i it holds that Ôw(t) < −(2i′ − 1)κ − δ,
such that, by Definition 4.1, Qi′

w = 0 and Q−j
w = 0 for all



8

Ôw

Q−1
w

Q−2
w

−3κ− δ

ε
Q1
w ε

ε

Q2
w

ε

3κ− δκ− δ−κ− δ 0 Lw + κ + δ
Lv(t)

clkw

Q1
w

Q−1w

LwLw − κ + δ

ε

Lw + 3κ + δ

Q2
w

ε

ε

clkw

clku

q±iu

q±iw

clkv

Lv

11M0

1110

ε

Tmeas

Lv − κ− δ Lv + κ− δ Lv + 3κ− δ
t

Fig. 3: Timing diagrams of the measurement module including the decision separator. (left) Output bits Q±i
w relative to the

actual measurement Ôw(t). (middle) Output bits Q±i
w (t) relative to the logical clock Lv(t), assuming that Lw(t) is known

to v. (right) Example measurements from node v to nodes u and w, relative to Newtonian time t.

j. For all i′ > i we obtain Ôw(t) > −(2i′ − 1)κ − δ − ε,
as κ > ε. Thus, by Definition 4.1, Qi′

w = 1. An analogous
argument shows that there is only one unconstrained bit if
Q−i

w (t) is unconstrained.

Latency. Besides setup/hold times, we have to account fur-
ther for propagation delays. Let Tmeas denote the maximum
end-to-end latency of the measurement module, i.e., an
upper bound on the elapsed time from when Q±i

w (t) is set,
to when the measurements are available at the output. More
precisely, we require that if Q±i

w (t′) is set to x ∈ {0, 1} for
all t′ in [t − Tmeas, t], then the corresponding output q±i

w (t)
is x as depicted in Figure 3 (right).

4.3 Control Module

Each node v is equipped with a control module. Its input is
the (unary encoded) time measurement, i.e., bits q±i

w (t), for
each of v’s neighbors. Output is the mode signal mdv(t).

The control module is required to set the mode signal
according to Algorithm OffsetGCS, i.e., to fast mode if
FT is satisfied, otherwise the algorithm defaults to slow
mode. Denote by Tctr the maximum end-to-end delay of
the control module circuit, i.e., the delay between its inputs
(the measurement offset outputs) and its output mdv(t). We
then require the following: If OffsetGCS continuously maps
the algorithm’s switch γ(t) to 0 for time Tctr, then the output
of the control module is 0 at time t:

∀t′ ∈ [t− Tctr, t]. γv(t
′) = 0⇒ mdv(t) = 0 . (L1)

If OffsetGCS continuously maps the switch γ(t) to 1 for
time Tctr, then the output of the control module is 1 at time t:

∀t′ ∈ [t− Tctr, t]. γv(t
′) = 1⇒ mdv(t) = 1 . (L2)

Otherwise, the output is unconstrained, i.e., within {0,M, 1}.
Intuitively, FT triggers when there is an offset that

crosses threshold i and no other offset is below threshold
−i for some i ∈ {1, . . . , ℓ}. Hence, we select the maximum
and minimum of the offsets Q±i

w to all neighbors w.
Since the network also includes self-loops (cf. Section 2),

each node, conceptually, measures the offset to itself. The
offset to self is always 0. In practice, that means that the
maximum only needs to consider neighbors that are ahead
and the minimum only needs to consider neighbors that are
behind. For i ∈ {1, . . . , ℓ}, signals Q−i

w (t) indicate whether
node w is ahead and similar bits Qi

w(t) indicate whether w

is behind. Thus, the ℓ-bit encodings of maximum (Q−i
max(t))

and minimum (Qi
min(t)) are computed as

Q−i
max(t) :=

∨
{Q−i

w (t) | w is neighbor of v} ,

Qi
min(t) :=

∧
{Qi

w(t) | w is neighbor of v} .

As FT is satisfied if Q−i
max(t) and Qi

min(t) are both 1 for any
i in {1, . . . , ℓ}. Signal mdv(t) is computed by

mdv(t) :=
∨
{Q−i

max ∧Qi
min | i ∈ {1, . . . , ℓ}} .

Metastability-containment. Any metastability-containing
implementation of mdv(t) has the following properties: (i)
If the slow condition is satisfied, then mdv(t) = 0 (ii)
if the fast condition is satisfied, then mdv(t) = 1 (iii) if
no condition is satisfied then mdv(t) may output M. For
a formal definition of metastability-containment, we refer
the reader to [24]. In Section 5, we present a metastability-
containing implementation of the control module.

4.4 ClockedGCS Algorithm

Clocked Algorithm. We are now in the position to assemble
the modules into the so-called Clocked Gradient Clock
Synchronization (ClockedGCS) algorithm (see Algorithm 3).
In the following we prove Theorem 4.6, showing that the
ClockedGCS algorithm implements the OffsetGCS algo-
rithm, and hence maintains tight skew bounds. For the
measurement module, we defined a possibly metastable
assignment if the signal changes within an ε window dur-
ing which it is assigned. We denote the assignment with
propagation delay and possibly metastable result by←M.

Algorithm 3 Clocked algorithm ClockedGCS at v. The
assignment←M denotes a possibly unstable assignment.

1: at each clock tick, at time tclk do
2: for each i ∈ {1, . . . , ℓ} do
3: for each adjacent node w do
4: qiw ←M Ôw(tclk) ≥ −(2i− 1)κ− δ
5: q−i

w ←M Ôw(tclk) ≥ (2i− 1)κ− δ

6: at each time t do
7: qimin ←M

∧
{qiw(t) | w is neighbor of v}

8: q−i
max ←M

∨
{q−i

w (t) | w is neighbor of v}
9: mdv ←M

∨
{qimin(t) ∧ q−i

max(t) | i ∈ {1, . . . , ℓ}}

The ClockedGCS implements the OffsetGCS Algorithm.
An essential difference of the ClockedGCS to the contin-
uous time OffsetGCS algorithm is that measurements are



9

clkv

mdv

q±i
w

˙clkv

t
Tmeas ToscTcnt

fast rateslow rate

1100 1110

Tmax

Fig. 4: Example timing diagram of the control module, de-
picting signals clkv , q±i

w , mdv and rate ˙clkv over Newtonian
time t.

performed only at discrete clock ticks. We will, however,
show that the clocked algorithm implements the OffsetGCS
algorithm, with a properly chosen measurement error δ that
accounts for the fact that we measure clock skew only at
discrete points in time rather than continuously.

For that purpose, we denote the maximum end-to-
end latency of the computation by Tmax. This end-to-end
latency combines the delays of the three modules, i.e.,
Tmax = Tmeas + Tctr + Tosc. Thus, Tmax is the time it takes
from a rising clock edge until the oscillator guarantees a
stable rate. For a simple implementation, Tmax naturally
becomes a lower bound on the clock period. Designs with
a clock period beyond Tmax are possible when buffering
measurements and mode signals.

Example 4.4. A timing diagram with the module outputs
and the clock rate is given in Fig. 4. The offset measurement
switches from 1100 (close to synchronous) to 1110 (v lagging
behind w) and causes the oscillator to go to fast mode.

We are now in the position to relate the module delays to δ.
We split δ into two parts, the propagation delay uncertainty
and the maximum end-to-end latency. The propagation delay
uncertainty accounts for variations in the time a signal takes
to propagate from a node’s oscillator to the measurement
module of its neighbors. Suppose clock signals arrive at the
measurement module with a larger or smaller delay than
expected (usually due to variation in the fabrication process
or environmental influences), then the module may measure
larger or smaller offsets. We denote the propagation delay
uncertainty by δ0.

The second source of error is the drift of the clocks when
not measuring. The offset is measured once per clock cycle
and it is used until the next measurement is made. During
this time, the actual offset may change due to different
modes and drift of oscillators. We denote the duration of
a clock cycle (in slow mode with no drift) by Tclk. The
maximum difference in rate between any two logical clocks
is bounded by (1 + ρ)(1 + µ) − 1 = ρ + µ + ρµ. Thus, the
maximum change of the offset during a clock cycle is at most

(ρ+ µ+ ρµ)(Tclk + Tmax) .

This is the second contribution to the uncertainty of the
measurement. Summing up both contributions, the mea-
surement error becomes

δ = δ0 + (ρ+ µ+ ρµ) · (Tclk + Tmax) .

Formally, we have the following:

Lemma 4.5. Let δ = δ0+(ρ+µ+ρµ) ·Tclk, then ClockedGCS
satisfies Inequality (5) at all times t.

Proof. The algorithm measures the offset Ôw(t) at each clock
tick. Hence, we show that between two clock ticks the
uncertainty never grows beyond δ. Let tclk and t′clk be two
consecutive clock ticks at node v. By the specification above,
the measurement at time tclk has precision δ0, such that∣∣∣Ôw(tclk)− (Lw(tclk)− Lv(tclk))

∣∣∣ ≤ δ0 .

During time interval [tclk, t′clk) ≤ Tctr the clock rates may
be different for neighbors. The difference between logical
clocks grows at most by (1 + ρ)(1 + µ) · Tclk − Tclk = (ρ +
µ+ ρµ) · Tclk, such that for t ∈ [tclk, t

′
clk),∣∣∣Ôw(t)− (Lw(t)− Lv(t))

∣∣∣
≤

∣∣∣Ôw(tclk)− (Lw(tclk)− Lv(tclk))
∣∣∣+ (ρ+ µ+ ρµ) · Tclk

≤ δ0 + (ρ+ µ+ ρµ) · Tclk .

Hence, at every time the error is at most δ, such that
Inequality (5) is satisfied.

We are now in the position to prove the section’s main result:
under certain conditions on the algorithm’s parameters,
ClockedGCS implements OffsetGCS. If, in addition, the
algorithm’s parameters fulfill the conditions in Theorem 3.5,
it follows that the skew bounds from the GCS algorithm
apply to ClockedGCS.

Theorem 4.6. Algorithm ClockedGCS is correct, i.e., it main-
tains the skew bounds in Theorem 3.4, if its parameters ε, δ0, and
ρ fulfill constraints (C1) – (C4), (M1), (M2), (L1), and (L2) and
parameters µ, κ, and ℓ are chosen according to Theorem 3.5.

Proof. By choosing δ as in Lemma 4.5, Equation (5) is satis-
fied. A bounded local skew at all times t ≥ 0 follows from
(C1) and Theorem 3.5. This further implies the finiteness
of parameter ℓ. For the correct choice of ℓ, lines 2–5 in
ClockedGCS correspond to lines 2 and 3 of OffsetGCS ac-
cording to (M1) and (M2). Given a metastability-containing
implementation, line 7 (respectively 8) of ClockedGCS cor-
responds to line 4 (respectively 5) of OffsetGCS according
to Boolean logic. Line 9 of ClockedGCS corresponds to lines
6–12 of OffsetGCS, where switching to fast (respectively
slow) mode is ensured by (L1) and (C2) (respectively (L2)
and (C3)). In case of a metastable assignment, (C4) ensures
a correct behavior of the oscillator.

If constraints (C1) – (C4), (M1), (M2), (L1), and (L2) are
fulfilled, then ClockedGCS implements OffsetGCS. By The-
orem 3.5, every algorithm that implements OffsetGCS and
satisfies the constraints in Theorem 3.5 maintains the skew
bounds of Theorem 3.4.

5 HARDWARE IMPLEMENTATION

We next present a hardware implementation of the
ClockedGCS algorithm, which we refer to as GCSoC. We
then discuss its performance and how the system’s parame-
ters affect the achieved skews. For the latter, we designed
an ASIC in the 15 nm FinFET-based NanGate OCL [19]
technology. The design is laid out and routed with Cadence
Encounter, which is also used for the extraction of parasitics



10

clkv

clkw

2κ

5κ+ δ

Q3
w Q2

w Q1
w Q−1

w Q−2
w Q−3

w
D Q D Q D Q D Q D Q D Q

Fig. 5: Schematic of the time offset measurement module for
ℓ = 3.

and timing. Local clocks run at a frequency of approximately
2GHz, controllable within a factor of 1 + µ ≈ 1 + 10−4.
We use a larger factor µ to make the interplay of ρ and µ
better visible. We compile two systems of 4 respectively. 7
nodes connected in a line. To resemble a realistically sparse
spacing of clock regions, we placed nodes at distances of
200µm. Hence, the PALS systems shown in the simulations
are designed to cover floorplans of width 200µm and length
800µm respectively 1.4mm.

Offset Measurement. Figure 5 shows a linear TDC-based
circuitry for the module which measures the time offsets
between nodes v and w. Buffers are used as delay elements
for incoming clock pulses. The offset is measured in steps of
2κ, hence, buffers in the upper delay line have a delay of 2κ.
The delay line is tapped after each buffer for corresponding
Q±i

w . A chain of flip-flops takes a snapshot of the delay line
by sampling the taps. We require Q−i

w = 0 and Qi
w = 1, for

all i, when Ôw ≥ −κ − δ and Ôw ≤ κ − δ − ε according to
(M1) and (M2). Thus, we delay clkv by 5κ + δ + ε. The
decision separator ε accounts for the critical setup/hold
window of the flip-flop.
Example 5.1. If both clocks are perfectly synchronized,
i.e., Lv = Lw, then the state of the flip-flops will be
Q3

wQ
2
wQ

1
wQ

−1
w Q−2

w Q−3
w = 111000 after a rising transition

of clkv . Now, assume that clock w is ahead of clock v, say
by a small ε > 0 more than κ+δ, i.e., Lw = Lv+κ−δ+ε. For
the moment assuming that we do not make a measurement
error, we get Ôw = Lw−Lv = κ− δ+ ε. From the delays in
Fig. 5 one verifies that in this case, the flip-flops are clocked
before clock w has reached the second flip-flop with output
Q1

w, resulting in a snapshot of 110000. Likewise, an offset of
Ôw = Lw−Lv = 3κ− δ+ ε results in a snapshot of 100000.

Control Module. Given node v’s time offsets to its neigh-
bors in unary encoding, the control module computes the
minimal and maximal threshold levels which have been
reached. The circuit in Figure 6 implements the control
module for 3 neighbors w1, w2, and w3. As described in
Section 4.3, we only need to compute the maximal value
of bits Q−i

w and the minimal value of bits Qi
w; which can

be easily computed by an or respectively and over all
neighbors.

Given the maximal and minimal values, the circuit in
Fig. 6b computes FT and sets mdv to 1 if it holds.

Metastability-Containing Control Module. As described
in Section 4, the inputs to the control module may be
metastable, i.e., unknown or even oscillating signals be-
tween ground and supply voltage. It remains for us to

Q−i
max

Qi
min

Qi
w1

Qi
w2

Qi
w3

Q−i
w1

Q−i
w2

Q−i
w3

(a) minimum and
maximum offset, for
i ∈ {1, 2, 3}

mdv

Q−3
max Q−2

max Q−1
max

Q1
minQ2

minQ3
min

(b) mode signal

Fig. 6: Schematics of the control module for three neighbors
(w1, w2, and w3).

show that the control module, given in Figure 6, fulfills
specifications (L1) and (L2). In particular, we need to ensure
that the specifications are met for metastable inputs.

The circuit in Figure 6 follows from the definition of mdv
in Section 4.3, when replacing each conjunction (respectively
disjunction) by an and (respectively or) gate. Due to the
masking properties of and and or gates, the output mdv
can only become metastable when there is an i such that
one of Qi

min or Q−i
max is M and the other is 1 or M. This

is only the case when Eq. (L1) and Eq. (L2) do not apply.
It follows that the output of the control module can only
become metastable when the mode signal is unconstrained
and the conditions are met.

Tunable Oscillator. As a local clock source, we use a ring
oscillator inspired by the starved inverter ring presented
in [25]. We use a ring of inverters, where some inverters
being current-starved-inverters, to set the frequency to ei-
ther fast mode or slow mode. Nominal frequency is around
2GHz, controllable by a factor 1+µ ≈ 1+10−4 via the mdv
signal. For our simulations, we choose ρ ≈ µ/10 ≈ 10−5,
assuming a stable oscillator. While this requirement poses
a challenge to an oscillator design, it can be relaxed in
different ways: (i) By choosing larger parameters µ and ρ
such that their ratio remains fixed, i.e., µ/ρ = 10, this forces
us to choose a larger κ, and hence requires to measure larger
time offsets. This is at the cost of a larger skew and circuit
(this follows from combining Theorem 3.4, Theorem 3.5, and
Lemma 4.5). (ii) By locking the local oscillators to a central
quartz oscillator. The problem is different from building a
balanced clock tree since the quartz’s skew can be neglected
here. (iii) We conjecture that with a refined analysis of the
algorithm: rather than absolute drift, the drift with respect
to a neighboring oscillator is determinant. Neighboring os-
cillators show reduced drift due to common cause effects.

The tunable ring oscillator comes with the advantage
that for any input voltage it runs at a speed between fast
and slow mode, hence, (C4) is satisfied. In the following
paragraph, we define an upper bound on Tosc such that
constraints (C2) and (C3) are satisfied.

Timing Parameters. We next discuss how the modules’
timing parameters relate to the extracted physical timing
of the above design.

The time Tosc required for switching between oscillator
modes is about the delay of the ring oscillator, which in our
case is about 1/(2 · 2GHz) = 250 ps. An upper bound on
the measurement latency (Tmeas) plus the controller latency



11

Starved invs
#inv = 2i+ 1

mdw

κ κ

2κ 2κ

Q1
w

D Q Q D
Q−1

w

clkv

Q D
Q−2

wQ2
w

D Q

Lw + 3κ+ δ Lw − 3κ+ δ

Lw − κ+ δLw + κ+ δ
clkw

δ
Lw

Lw + δ

Fig. 7: Schematic of the improved offset measurement imple-
mentation. Node v’s offset measurement is integrated into
w’s ring oscillator. Labels of the delay elements denote their
delay. We also annotate the measured phase offsets.

(Tctr) is given by a clock cycle (500 ps) plus the delay (25 ps)
of the circuitry in Figure 6. In our case, delay extraction of
the circuit yields Tmeas+Tctr < 500 ps+25 ps. We thus have,
Tmax < Tmeas + Tctr + Tosc = 775 ps.

The uncertainty, δ0, in measuring if Ôw has reached a
certain threshold is given by the uncertainties in latency of
the upper delay chain plus the lower delay chain in Fig. 5.
For the described naive implementation using an uncal-
ibrated delay line, this would be problematic: Extracting
delays from the design after layout, the constraints from
Definition 3.5 were met for delay uncertainties of ±1%, but
not for the ±5% we targeted. We thus redesigned the Offset
Measurement circuit as described in the following.

Improved Offset Measurement. Figure 7 shows an im-
proved TDC-type offset measurement circuit that does not
suffer from the problem above. Conceptually, the TDC of
the node v that measures offsets w.r.t. node w is integrated
into the local ring oscillator of the neighboring node w. If w
has several neighbors, e.g., up to 4 in a grid, they share the
taps but have their own flip-flops within the node w.

Figure 7 presents a design for ℓ = 2 with 4 taps and a
single neighbor v. In our hardware implementation we set
ℓ = 2, as even for µ/ρ = 10 this is sufficient for networks
of diameter up to around 80 (see how to choose this set of
thresholds in the specification of this module in Section 4).
The gray buffers at the offset measurement taps decouple
the load of the remaining circuitry. At the bottom of the ring
oscillator, an odd number of starved inverters are used to
set the slow or fast mode for node w. The delay elements at
the top are inverters instead of buffers to achieve a latency
of κ = 10ps. We inverted the clock output to account for the
negated signal at the tap of clock w at the top.

When integrating the measurement into the ring oscilla-
tor, the constraints (C2) – (C4) and (M1), (M2) are still met
for a suitable choice of Tosc. Integration of the TDC into
w’s local ring oscillator greatly reduces uncertainties at both
ends: (i) the uncertainty at the remote clock port (of node
w) is removed to a large extent since the delay elements
which are used for the offset measurements are part of w’s

Qi
min, Q

−i
max

mdv

Q±i
w1,v

Q±i
w3,v

min,max

mode

Q±i
w2,v

VCO

measw2

measw3

measw1

Q±i
v,w1

Q±i
v,w3

clkv

Q±i
v,w2

clkw1

clkw2

clkw3

Fig. 8: Schematic of a node v with neighbors w1, w2, and w3,
using the improved offset measurement integrated in the
VCO. Note that measurement Q±i

a,b is the difference between
nodes a and b, as measured by b.

oscillator, and (ii) the uncertainty at the local clock port is
greatly reduced by removing the delay line of length 5κ+ δ.
The remaining timing uncertainties are the latency from taps
to the D-ports of the flip-flops and from clock v to the clkv-
ports of the flip-flop. Timing extraction yielded δ0 < 4 ps in
presence of ±5% gate delay variations.

Full Hardware Implementation. We depict in Fig. 8 the
schematic of a node with three neighbors. From Theo-
rem 3.5, we obtain κ ≈ 10 ps and δ ≈ 5 ps which
matched the previously chosen latencies of the delay el-
ements. Applying Theorem 3.4, finally, yields the global
and local skew bounds: G(t) ≤ 1.223κD = 12.23D ps
and L(t) ≤ (⌈log10(1.223D)⌉ + 1)κ. For our design with
diameter D = 3 this makes a maximum global skew of
36.69 ps and a maximum local skew of 2κ = 20ps. With
regard to diameter D = 6, we obtain a maximum global
skew of 73.38 ps and a maximum local skew of 2κ = 20ps.

As described above, GCSoC satisfies constraints (C2) –
(C4), (M1), (M2), (L1), and (L2). Parameters ε, δ0, and ρ are
restricted by the technology. For our choices of ℓ, µ, and κ
GCSoC satisfies the conditions of Theorem 3.5. Thus, from
Theorem 4.6 it follows that our implementation maintains
the skew bounds of the GCS algorithm.

Corollary 5.2. Given (C1), GCSoC is an implementation of
ClockedGCS. Hence, it maintains global skew G(t) ≤ O(δD)
and local skew L(t) ≤ O(δ logµ/ρ D).

Remark. (i) Note that this section gives a “recipe” for real-
izing a GCSoC system for any network, e.g., how the hard-
ware parameters affect the local and global skews. Also note
that because a GCSoC system implements a ClockedGCS
algorithm, all skews are provably and deterministically
guaranteed.

(ii) Considerably larger systems, e.g., a grid with side
length of W = 32 nodes and diameter D = 2W − 2 = 62,
still are guaranteed to have a maximum local skew of 2κ =
20ps. If we choose µ = 10−3, the base of the logarithm in
the skew bound increases from 10 to 100.

6 SIMULATIONS

We ran SPICE simulations of the post-layout extracted design
with Cadence Spectre. Simulated systems had 4 and 7 nodes
arranged in a line, as described in Section 5. We chose



12

a line setup since it allows us to compare local (between
neighbors) versus global (typically the line ends) skew best.
Nodes are labeled 0 to 3 (respectively 6). For the simu-
lations, we set µ = 10ρ (instead of 100ρ), resulting in a
slower decrease of skew, to observe better how the skew is
removed. Operational corners of the SPICE simulations were
0.8V supply voltage and 27 ◦C temperature.

Simulation with a small initial skew yields a peak power
of 20.25mW during stabilization and an average power of
5.26mW. The performance measure of our system is given
by the quality of the local skew. We discuss in detail the
local skew for different set-ups in the next section.

6.1 SPICE Simulations on a 4 Node Topology

Scenarios. We designed three simulation scenarios with
different initial skews that demonstrate different properties
of the algorithm: AHEAD: node 1 is initialized with an
offset of 40 ps ahead of all other nodes, BEHIND: node 1 is
initialized with an offset of 40 ps behind all other nodes, and
GRADIENT: nodes are initialized with small skews on each
edge, that sum up to a large 105 ps global skew. Simulation
time for all scenarios is 1000 ns (≈ 2000 clock cycles).

Figure 9a depict the local and global skews of all scenar-
ios. Observe that all local skews decrease until they reach
less than 9 ps. The local skew then remains in a stable region.
This is well below our worst-case bound of 20 ps on the local
skew. We observe that the global skew slightly increases at
the beginning of scenario AHEAD and after roughly 500 ns
in scenario BEHIND.

One Node Ahead. Figure 10 shows the clock signals of
nodes 0 to 3 at three points in time for scenario AHEAD:
(i) shortly after the initialization, (ii) around 100 ns, and
(iii) after 175 ns. The skews on the three nodes’ edges are
depicted in Fig. 9b.

For the mode signals, in the first scenario, we observe
the following: Since node 1 is ahead of nodes 0 and 2, node
1’s mode signal is correctly set to 0 (slow mode) while node
0 and 2’s mode signals are set to 1 (fast mode). Node 3 is
unaware that node 1 is ahead since it only monitors node 2.
By default, its mode signal is set to slow mode. Node 2 then
advances its clock faster than node 3. When the gap between
2 and 3 is large enough, node 3 switches to fast mode. This
configuration remains until nodes 0 and 2 catch up to node
1, where they switch to slow mode not to overtake node 1.
Again, node 3 sees only node 2, which is still ahead, and
switches to slow mode only after it catches up to 2.

One Node Behind. The skews on the edges (0, 1), (1, 2),
and (2, 3) are depicted in Fig. 9c. We plot the absolute value
of the skew, e.g., at roughly 500 ns node 1 overtakes node
0. The simulation shows that the algorithm immediately
reduces the local skew. After the system reaches a small
local skew after 200 ns, nodes drift relative to each other,
e.g., node 2 drifts ahead of node 3, and node 1 overtakes
node 0. The local skew remains in the stable (oscillatory)
state after 200 ns and does not increase significantly.

Gradient Skew. The scenario GRADIENT demonstrates how
the OffsetGCS algorithm works. It reduces the local skew in
steps of (odd multiples of) κ, as seen in the plot in Fig. 9d

that looks like a staircase. The algorithm reduces skew on
one edge at a time until it reaches the next plateau.

Figure 9d demonstrates how skew is removed.
OffsetGCS starts by reducing skew on edge (1, 2) until it
reaches the plateau of (0, 1) and (2, 3). One by one it then
reduces skew on edges (0, 1), (1, 2) to (2, 3) until they reach
the next plateau. Finally, it reduces the skews one by one (in
reverse order) down to a stable range. Figure 11 shows the
same trace in a plot similar to Fig. 1.

Remark. For the sake of a clearly visible convergence of the
skew over time, we chose initial skews that are beyond the
bound in (C1). Thus, the weaker self-stabilizing bound from
Theorem 3.4 applies. All simulations showed convergence
to a small local skew despite the less conservative initializa-
tion – demonstrating the robustness of our algorithm also
to larger initial skews. For our stronger bounds to hold,
the reader may consider only a respective postfix of the
simulation.

6.2 Process Variations

In order to show resilience of our implementation towards
process variations, we introduce variations to the extracted
netlist and run further SPICE simulations. We initialize node
1 with a small offset to nodes 0, 2, and 3. Variations affect
the width and length of n-channel and p-channel transistors
and the supply voltage, where all parameters are simulated
at 90%, 100%, and 110% of their typical value. The resulting
skew on edge (0,1) for each simulation is depicted in Fig. 12.
The simulations show that our system performs well even
under process variations. The local skew after stabilization
is below the theoretical bound of 20 ns.

6.3 Comparison to a Clock Tree

For comparison, we laid out a grid of W × W flip-flops,
evenly spread in 200µm distance in x and y direction across
the chip. The data port of a flip-flop is driven by the
or of the up to four adjacent flip-flops. Clock trees were
synthesized and routed with Cadence Innovus, with the
target to minimize skews. Parameters for delay variations
on gates and nets were set to ±5%.

For a 2×2 grid, Innovus reported an area of 1.48µm2 and
power of 0.231mW for the clock tree. Reported numbers
for the PALS system, which comprises 4 nodes in a line,
are 67.09µm2 area and 0.023mW power. Numbers for the
PALS system do not include the 4 starved inverter ring
oscillators. We point out that the size of 67.09µm2 covers
only 0.04% of the floorplan. The PALS system uses 171 gates
from the standard cell library.

The resulting clock skews are presented in Fig. 13. We
plotted skews guaranteed by our algorithm for the same
grids with parameters extracted from the implementation
described in Section 5. Observe the linear growth of the
local clock skew measured in the simulation compared to
the logarithmic growth of the analytical upper bound on
the local skew in our implementation. The figure also shows
the simulated skew for a clock tree with delay variations of
±10%. This comparison is relevant, as δ0 is governed by
local delay variations, which can be expected to be smaller
than those across a large chip.



13

0ps

10ps

20ps

30ps

40ps

50ps

60ps

70ps

80ps

90ps

100ps

110ps

0ns 200ns 400ns 600ns 800ns 1000ns

ahead, local skew
ahead, global skew
behind, local skew
behind, global skew
gradient, local skew
gradient, global skew

(a) Maximum local skew and
global skew for all scenarios

0ps

5ps

10ps

15ps

20ps

25ps

30ps

35ps

40ps

45ps

0ns 200ns 400ns 600ns 800ns 1000ns

edge 01
edge 12
edge 23

(b) Scenario
AHEAD

0ps

5ps

10ps

15ps

20ps

25ps

30ps

35ps

40ps

45ps

0ns 200ns 400ns 600ns 800ns 1000ns

edge (0,1)
edge (1,2)
edge (2,3)

(c) Scenario
BEHIND

5ps

10ps

15ps

20ps

25ps

30ps

35ps

40ps

45ps

50ps

0ns 200ns 400ns 600ns 800ns 1000ns

edge (0,1)
edge (1,2)
edge (2,3)

(d) Scenario
GRADIENT

Fig. 9: Skews on edges (0, 1), (1, 2), and (2, 3) in the 4 node topology, showing the skew (y-axis) over simulated time
(x-axis) for SPICE simulations of scenarios AHEAD, BEHIND, and GRADIENT.

0V

0.8V

0.48ns 0.5ns 0.52ns 0.54ns 100.04ns 100.08ns 175.22ns

Fig. 10: Excerpt of scenario AHEAD. Clock signals of node 0
(purple), 1 (green), 2 (blue), and 3 (yellow). We show voltage
of the clk signals on the x-axis over simulated time on the y-
axis. Nodes from left to right: (i) 1 before 0, 2, 3, (ii) 1 before
0, 2 before 3, (iii) 1 before 0, 0 slightly before 2, 2 before 3.

−2κ−4κ

κ

3κ

2κ

−κ−3κ

4κ

min

maxfast condition (FC)

fast trigger (FT)

slow condition (SC)

Fig. 11: Simulated trajectory of Ômax and Ômin of node
1 (purple) and node 2 (green) from scenario GRADIENT
plotted in Fig. 1

30.0

27.3

24.5

21.8

19.1

16.4

13.6

10.9

8.18

5.45

2.73

0.0

ed
ge

	0
1	

(p
s)

0.4115 249.9
time	(ns)

90%	VDD

110%	VDD

100%	VDD

Fig. 12: Simulation results for skew (y-axis) over simulated
time (x-axis) for edge (0, 1) under 90%, 100%, and 110%
variation of the supply voltage and transistor sizes.

0 20 40 60 80 100
W

0

50

100

150

200

250

300

350

ps

clock tree (10%)
clock tree (5%)
ClockedGCS

Fig. 13: Local skew (ps) between neighboring flip-flops in
the W ×W grid, with unit length 200µm. Clock tree with
±5% delay variation (solid green) and our algorithm with
±5% delay variation (solid magenta). The dotted line shows
the clock tree with ±10% delay variation, demonstrating
linear growth of the skew also in a different setting. Clock
trees are shown up to W = 32 (i.e., floorplan of width and
length 6.4mm) after which Innovus ran out of memory.

While a priori the observed linear local skew may be
due to the tool, it has been shown that no tool can obtain
a local skew less than proportional to W [26]. This follows
from the fact that there are always two neighboring nodes in
the grid which are in distance proportional to W from each
other in the clock tree [26], [27]. Accordingly, uncertainties
accumulate in the worst-case fashion to create a local skew
which is proportional to W . Our algorithm, on the other
hand, manages to reduce the local skew exponentially to
being proportional to logW .

To gain intuition on this result, note that there is always
an edge that, if removed (see the edge which is marked
by an X in Fig. 14), partitions the tree into two subtrees
each spanning an area of Ω(W 2) and hence having a shared
perimeter of length Ω(W ). Thus, there must be two adjacent
nodes, one on each side of the perimeter, at distance Ω(W )
in the tree.

6.4 Comparison to Distributed Clock Generation
We next compare our findings to distributed clock genera-
tion schemes. Natural are wait-for-all and wait-for-one, where
a node produces its next clock tick once it receives a tick by
one or all its neighbors. Both approaches are vulnerable to
large local skews, however.



14

Ω(W ) distT = Ω(W )

dist = 1
W

Fig. 14: A low stretch spanning tree of an W ×W (W = 8)
grid [28]. The bold lines depict the spanning tree, i.e., our
clock tree in this example. The two neighboring nodes that
are of distance 13 in the tree are circled (at the middle right
side of the grid).

Q

RS

Q

R S

Q

RS

clki clkj

pull-uppull-down

Fig. 15: Schematic of the digital abstraction of the Fairbanks
clock generation on a line showing one pull-down and one
pull-up node.

A clever combination of both schemes is used by the
clock generation grid by Fairbanks and Moore [17]. In the
grid, both approaches alternate for adjacent nodes. For
comparison, we simulated a digital abstraction of the clock
generation grid. Based on ideas of the lower bound proof
for local skews [29], we construct a simulation scenario that
demonstrates that large local skew are possible in the clock
grid, however.

Clock Generation Grid. The clock generation grid is a
self-timed analog circuit that provides local, synchronized
clocks. It is based on the Dynamic asP FIFO control by Molnar
and Fairbanks [30]. While the optimized version of the clock
generation grid is an analog implementation that involves
rigorous transistor sizing and layout, we focus on a digital
version [17] which is easier to adapt and manufacture in
a standard design process. We distinguish two types of
nodes: pull-up nodes and pull-down nodes (see Fig. 15).
On every edge between two nodes, there is a set-reset latch.
Pull-up nodes set the latch and pull-down nodes reset the
latch. Pull-up nodes compute the logical nor of incoming
edges (equivalent to a wait-for-all approach) and set the
latch. Pull-down nodes compute the logical and of incoming
edges (equivalent to a wait-for-one approach) and reset the
latch. The clock of a node is derived by the output of
the respective nor or and. The grid’s frequency is easily
adjusted by adding a delay between the nodes and the
latches.

Setup. We next conducted simulations that examine the

slow

slow

slow fast

slow

slow

slow

fast fast

fast fast fast

5 60 4321

Fig. 16: Delay setup with fast and slow message delays for
the Fairbanks clock generation on a line. The setup achieves
a large local skew. Round nodes denote pull-down nodes
and rectangular nodes denote pull-up nodes. In the lower
bound simulation dashed edges are swapped from fast to
slow communication.

10ps

15ps

20ps

25ps

30ps

35ps

40ps

0ns 10ns 20ns 30ns 40ns 50ns

fb nocap
fb fullcap

fb large-local
gcs nocap

gcs large-local

(a) Fairbanks (fb) and GCS

25ps

30ps

35ps

40ps

45ps

50ps

55ps

60ps

65ps

0ns 20ns 40ns 60ns 80ns 100ns

local skew
global skew

(b) Fairbanks Line

Fig. 17: Comparison of Fairbanks to ClockedGCS. (a) Local
skews of the experiments NOCAP, FULLCAP, and LARGE-
LOCAL. (b) Local and global skew of the lower bound
simulation.

behavior of different communication delays. In order to sim-
ulate slower communication paths, we add a small capacity
(0.01 pF) to the communication channel. For simplicity, we
differentiate between two delays: fast and slow.

Formally, the algorithm combining wait-for-all and wait-
for-one approaches can have a local skew that grows linearly
with the network diameter. Through our simulations, we
demonstrate that this is indeed possible in the clock gener-
ation grid and that OffsetGCS can cope with this situation.
The setup of the simulated delays is depicted in Fig. 16:
outgoing edges of nodes 2, 3, and 4 are fast and edges
outgoing from 0, 1, 5, and 6 are slow.

Results for Clock Generation Grid. The digital clock gener-
ation grid runs at a frequency of about 2.5GHz. By simula-
tions, we determined that an additional capacity of 0.01 pF
on an edge adds a delay of approximately 7 ps. We next
conducted simulations with three different delay settings:
NOCAP: the grid without additional delays, FULLCAP: the
grid with the capacity added to every edge, and LARGE-
LOCAL: the grid with the setting from Fig. 16.

Local skews of simulation scenarios NOCAP, FULLCAP,
and LARGE-LOCAL are shown in Fig. 17a. We observe that
the grid achieves a low skew if the delay is uniform on
all edges. For scenario NOCAP (respectively. FULLCAP) we
measure a local skew of 15 ps (respectively. 16 ps) and global
skew of 22 ps (respectively. 23 ps). By contrast, the grid
experiences poor synchronization for non-uniform delays
(LARGE-LOCAL) where we obtained a local skew of 38 ps
and a global skew of 61 ps.

Lower Bound Simulation. In this simulation, we apply
ideas from the formal argument for lower bounds on wait-
for-all and wait-for-one approaches. The idea is to build up



15

a large global skew and then change the edges’ delays step
by step, pushing the global skew onto a single edge. The
simulation in Fig. 17b shows one of these push-steps. In the
first part of the simulation (until 50 ns) the system builds
up a large local skew. At 50 ns we switch delays of edges
outgoing from nodes 3 and 4 as described in Fig. 16. As
expected, the global skew is pushed onto the local skew
right after (we measure 47 ps). Following the argument of
the lower-bound proof, one can repeat the procedure to
push the complete global skew (temporarily) onto a single
edge.

Comparison to GCSoC. Our clock generation algorithm
runs at a frequency of about 2GHz. By simulations, we
measured that the added capacity of 0.01 pF adds a delay
of approximately 1 ps. We observed a local skew of 18 ps
and a global skew of 20 ps in the absence of additional
communication delay. This is slightly worse than the local
skew of the grid (see Fig. 17a). However, by our theoretical
findings, our algorithm does not suffer from a large skew in
the setting where delays in the center are fast or switched
from fast to slow: simulations of Fig. 16 showed a local skew
of 19 ps and a global skew of 20 ps.

7 CONCLUSION

The presented ClockedGCS algorithm is a clock syn-
chronization algorithm that provably maintains the skew
bounds of the GCS algorithm by Lenzen et al. [18]. The al-
gorithm can be deconstructed into parts that hardware mod-
ules can implement. Asymptotically, the algorithm main-
tains a local skew that is at most logarithmic in the chip’s
width, whereas clock trees are shown to perform only linear
in the width of the chip.

By simulation, we show that our GCSoC implementa-
tion of these modules in a 15 nm FinFET achieves small
skews between neighbors even under process variations.
We discuss different simulation setups that show how the
algorithm behaves.

In future work, we aim to improve the analysis of the
GCS algorithm by showing its correctness for oscillators
with less stringent requirements. Additionally, we plan to
conduct simulations of a full design, incorporating PVT and
PPA experiments, and eventually produce an ASIC chip for
comparison to a cutting-edge GALS design.

ACKNOWLEDGMENTS

The authors would like to thank the team of EnICS Labs
for support and helpful discussions. In particular, we thank
Benjamin Zambrano and Itamar Levi, Itay Merlin, Shawn
Ruby, Adam Teman, Leonid Yavits. This project has received
funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation
programme (grant agreement 716562). This research was
supported by the Israel Science Foundation under Grant
867/19 and by the ANR project DREAMY (ANR-21-CE48-
0003).

REFERENCES

[1] J. Bund, M. Függer, C. Lenzen, M. Medina, and W. Rosenbaum,
“PALS: plesiochronous and locally synchronous systems,” in
26th IEEE International Symposium on Asynchronous Circuits
and Systems, ASYNC 2020, Salt Lake City, UT, USA, May
17-20, 2020. IEEE, 2020, pp. 36–43. [Online]. Available:
https://doi.org/10.1109/ASYNC49171.2020.00013

[2] H. D. Foster, “Trends in functional verification: a 2014
industry study,” in Proceedings of the 52nd Annual Design
Automation Conference, San Francisco, CA, USA, June 7-11,
2015. ACM, 2015, pp. 48:1–48:6. [Online]. Available: https:
//doi.org/10.1145/2744769.2744921

[3] A. J. Martin, “Compiling communicating processes into delay-
insensitive VLSI circuits,” Distributed Comput., vol. 1, no. 4,
pp. 226–234, 1986. [Online]. Available: https://doi.org/10.1007/
BF01660034

[4] ——, “The limitations to delay-insensitivity in asynchronous cir-
cuits,” in Beauty is our business. Springer, 1990, pp. 302–311.

[5] R. Manohar and Y. Moses, “The eventual c-element theorem
for delay-insensitive asynchronous circuits,” in 23rd IEEE
International Symposium on Asynchronous Circuits and Systems,
ASYNC 2017, San Diego, CA, USA, May 21-24, 2017. IEEE
Computer Society, 2017, pp. 102–109. [Online]. Available:
https://doi.org/10.1109/ASYNC.2017.15

[6] ——, “Asynchronous signalling processes,” in 25th IEEE
International Symposium on Asynchronous Circuits and Systems,
ASYNC 2019, Hirosaki, Japan, May 12-15, 2019. IEEE, 2019, pp.
68–75. [Online]. Available: https://doi.org/10.1109/ASYNC.2019.
00018

[7] D. M. Chapiro, “Globally-asynchronous locally-synchronous sys-
tems.” Stanford Univ CA Dept of Computer Science, Tech. Rep.,
1984.

[8] P. Teehan, M. R. Greenstreet, and G. G. Lemieux, “A
survey and taxonomy of GALS design styles,” IEEE Des. Test
Comput., vol. 24, no. 5, pp. 418–428, 2007. [Online]. Available:
https://doi.org/10.1109/MDT.2007.151

[9] R. R. Dobkin, R. Ginosar, and C. P. Sotiriou, “Data Synchronization
Issues in GALS SoCs,” in 10th International Symposium on Advanced
Research in Asynchronous Circuits and Systems (ASYNC 2004), 19-23
April 2004, Crete, Greece. IEEE Computer Society, 2004, pp.
170–180. [Online]. Available: https://doi.org/10.1109/ASYNC.
2004.1299298

[10] L. R. Dennison, W. J. Dally, and T. Xanthopoulos, “Low-latency
plesiochronous data retiming,” in 16th Conference on Advanced
Research in VLSI (ARVLSI ’95), March 27-29, 1995, Chapel Hill,
North Carolina, USA. IEEE Computer Society, 1995, pp. 304–315.
[Online]. Available: https://doi.org/10.1109/ARVLSI.1995.515628

[11] A. Chakraborty and M. R. Greenstreet, “Efficient self-timed
interfaces for crossing clock domains,” in 9th International
Symposium on Advanced Research in Asynchronous Circuits and
Systems (ASYNC 2003), 12-16 May 2003, Vancouver, BC, Canada.
IEEE Computer Society, 2003, pp. 78–88. [Online]. Available:
https://doi.org/10.1109/ASYNC.2003.1199168

[12] K. Y. Yun and R. P. Donohue, “Pausible clocking: A first
step toward heterogeneous systems,” in 1996 International
Conference on Computer Design (ICCD ’96), VLSI in Computers
and Processors, October 7-9, 1996, Austin, TX, USA, Proceedings.
IEEE Computer Society, 1996, pp. 118–123. [Online]. Available:
https://doi.org/10.1109/ICCD.1996.563543

[13] X. Fan, M. Krstic, and E. Grass, “Analysis and optimization
of pausible clocking based GALS design,” in 27th International
Conference on Computer Design, ICCD 2009, Lake Tahoe, CA, USA,
October 4-7, 2009. IEEE Computer Society, 2009, pp. 358–365.
[Online]. Available: https://doi.org/10.1109/ICCD.2009.5413130

[14] M. Függer and U. Schmid, “Reconciling fault-tolerant distributed
computing and systems-on-chip,” Distributed Comput., vol. 24,
no. 6, pp. 323–355, 2012. [Online]. Available: https://doi.org/10.
1007/s00446-011-0151-7

[15] D. Dolev, M. Függer, U. Schmid, and C. Lenzen, “Fault-tolerant
algorithms for tick-generation in asynchronous logic: Robust pulse
generation,” Journal of the ACM (JACM), vol. 61, no. 5, p. 30, 2014.

[16] T. C. Fischer, A. K. Nivarti, R. Ramachandran, R. Bharti, D. Carson,
A. Lawrendra, V. Mudgal, V. Santhosh, S. Shukla, and T.-C. Tsai,
“9.1 D1: A 7nm ML training processor with wave clock distri-
bution,” in 2023 IEEE International Solid-State Circuits Conference
(ISSCC). IEEE, 2023, pp. 8–10.

https://doi.org/10.1109/ASYNC49171.2020.00013
https://doi.org/10.1145/2744769.2744921
https://doi.org/10.1145/2744769.2744921
https://doi.org/10.1007/BF01660034
https://doi.org/10.1007/BF01660034
https://doi.org/10.1109/ASYNC.2017.15
https://doi.org/10.1109/ASYNC.2019.00018
https://doi.org/10.1109/ASYNC.2019.00018
https://doi.org/10.1109/MDT.2007.151
https://doi.org/10.1109/ASYNC.2004.1299298
https://doi.org/10.1109/ASYNC.2004.1299298
https://doi.org/10.1109/ARVLSI.1995.515628
https://doi.org/10.1109/ASYNC.2003.1199168
https://doi.org/10.1109/ICCD.1996.563543
https://doi.org/10.1109/ICCD.2009.5413130
https://doi.org/10.1007/s00446-011-0151-7
https://doi.org/10.1007/s00446-011-0151-7


16

[17] S. Fairbanks and S. W. Moore, “Self-timed circuitry for global
clocking,” in 11th International Symposium on Advanced Research
in Asynchronous Circuits and Systems (ASYNC 2005), 14-16 March
2005, New York, NY, USA. IEEE Computer Society, 2005, pp. 86–96.
[Online]. Available: https://doi.org/10.1109/ASYNC.2005.29

[18] C. Lenzen, T. Locher, and R. Wattenhofer, “Tight bounds for
clock synchronization,” J. ACM, vol. 57, no. 2, pp. 8:1–8:42, 2010.
[Online]. Available: https://doi.org/10.1145/1667053.1667057

[19] M. G. A. Martins, J. M. Matos, R. P. Ribas, A. I. Reis,
G. Schlinker, L. Rech, and J. Michelsen, “Open cell library in
15nm freepdk technology,” in Proceedings of the 2015 Symposium on
International Symposium on Physical Design, ISPD 2015, Monterey,
CA, USA, March 29 - April 1, 2015, A. Davoodi and E. F. Y.
Young, Eds. ACM, 2015, pp. 171–178. [Online]. Available:
https://doi.org/10.1145/2717764.2717783

[20] L. R. Marino, “General theory of metastable operation,” IEEE
Trans. Computers, vol. 30, no. 2, pp. 107–115, 1981. [Online].
Available: https://doi.org/10.1109/TC.1981.6312173

[21] J. Bund, M. Függer, C. Lenzen, M. Medina, and W. Rosenbaum,
“PALS: plesiochronous and locally synchronous systems,”
CoRR, vol. abs/2003.05542, 2020. [Online]. Available: https:
//arxiv.org/abs/2003.05542

[22] D. Konstantinou, A. Psarras, C. Nicopoulos, and G. Dimitrakopou-
los, “The mesochronous dual-clock fifo buffer,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 1, pp.
302–306, 2019.

[23] J. Bund, M. Függer, C. Lenzen, and M. Medina, “Synchronizer-free
digital link controller,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 67, no. 10, pp. 3562–3573, 2020.

[24] S. Friedrichs, M. Függer, and C. Lenzen, “Metastability-containing
circuits,” IEEE Trans. Computers, vol. 67, no. 8, pp. 1167–1183, 2018.
[Online]. Available: https://doi.org/10.1109/TC.2018.2808185

[25] D. Ghai, S. P. Mohanty, and E. Kougianos, “Design of
parasitic and process-variation aware Nano-CMOS RF circuits:
A VCO case study,” IEEE Trans. Very Large Scale Integr.
Syst., vol. 17, no. 9, pp. 1339–1342, 2009. [Online]. Available:
https://doi.org/10.1109/TVLSI.2008.2002046

[26] A. L. Fisher and H. T. Kung, “Synchronizing large VLSI processor
arrays,” IEEE Trans. Computers, vol. 34, no. 8, pp. 734–740, 1985.
[Online]. Available: https://doi.org/10.1109/TC.1985.1676619

[27] P. Boksberger, F. Kuhn, and R. Wattenhofer, “On the approxima-
tion of the minimum maximum stretch tree problem,” Technical
report/ETH, Department of Computer Science, vol. 409, 2003.

[28] M. James, “Linear solver in linear time.” [Online]. Avail-
able: https://www.i-programmer.info/news/181-algorithms/
5573-linear-solver-in-linear-time.html

[29] R. Fan and N. A. Lynch, “Gradient clock synchronization,”
Distributed Comput., vol. 18, no. 4, pp. 255–266, 2006. [Online].
Available: https://doi.org/10.1007/s00446-005-0135-6

[30] C. E. Molnar and S. M. Fairbanks, “Control structure for a high-
speed asynchronous pipeline,” Aug. 10 1999, US Patent 5,937,177.

Johannes Bund is a post-doc researcher at
the Faculty of Engineering at Bar-Ilan University
since 2022. He graduated with his M. Sc. studies
in 2018 at the Saarland Informatics Campus and
Max-Planck Institute for Informatics. In 2018 he
joined Christoph Lenzen’s group at Max-Planck
Institute for Informatics as a Ph. D. student.
In 2021 he switched, together with Christoph
Lenzen, to CISPA Helmholtz Center for Informa-
tion Security, where he finished his Ph. D. stud-
ies.

Matthias Függer received his M. Sc. (2006),
and his Ph. D. (2010) in computer engineering
from TU Wien, Austria. He worked as an assis-
tant professor at TU Wien and as a post-doctoral
researcher at LIX, Ecole Polytechnique, and at
MPI for Informatics. Currently, he is a CNRS
researcher at LMF, ENS Paris-Saclay, where he
leads the Distributed Computing group.

Moti Medina is a faculty member in the engi-
neering faculty at Bar-Ilan University since 2021.
Previously he was a faculty member at the
School of Electrical & Computer Engineering at
the Ben-Gurion University of the Negev since
2017. Previously, he was a post-doc researcher
in MPI for Informatics and in the Algorithms and
Complexity group at LIAFA (Paris 7). He gradu-
ated with his Ph. D., M. Sc., and B. Sc. studies at
the School of Electrical Engineering at Tel-Aviv
University, in 2014, 2009, and 2007 respectively.

Moti is also a co-author of a text-book on logic design “Digital Logic
Design: A Rigorous Approach”, Cambridge Univ. Press, 2012.

https://doi.org/10.1109/ASYNC.2005.29
https://doi.org/10.1145/1667053.1667057
https://doi.org/10.1145/2717764.2717783
https://doi.org/10.1109/TC.1981.6312173
https://arxiv.org/abs/2003.05542
https://arxiv.org/abs/2003.05542
https://doi.org/10.1109/TC.2018.2808185
https://doi.org/10.1109/TVLSI.2008.2002046
https://doi.org/10.1109/TC.1985.1676619
https://www.i-programmer.info/news/181-algorithms/5573-linear-solver-in-linear-time.html
https://www.i-programmer.info/news/181-algorithms/5573-linear-solver-in-linear-time.html
https://doi.org/10.1007/s00446-005-0135-6

	Introduction
	Computational Model
	Algorithm and Skew Bound Guarantees
	Gradient Clock Synchronization
	GCS and OffsetGCS Algorithm
	Analysis of the OffsetGCS Algorithm

	Decomposition into Modules
	Tunable Oscillator
	Phase Offset Measurement Module
	Control Module
	ClockedGCS Algorithm

	Hardware Implementation
	Simulations
	spice Simulations on a 4 Node Topology
	Process Variations
	Comparison to a Clock Tree
	Comparison to Distributed Clock Generation

	Conclusion
	References
	Biographies
	Johannes Bund
	Matthias Függer
	Moti Medina


