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An Approach to Connection Admission Control in
Single-Hop Multiservice Wireless Networks
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Abstract—We present an approach to connection admission con-
trol in single-hop multiservice wireless networks with quality of
service (QoS) requirements. The approach consists of two steps:
1) the specification of an admission region that captures the QoS
requirements and 2) the formulation of a generalized knapsack
problem that captures the connection admission control. To illus-
trate approach 1), we determine an outage-based admission region;
to illustrate approach 2), we investigate the performance of the
greedy admission policy in a generalized knapsack problem.

Index Terms—Connection admission, knapsack scheduling,
outage, quality of service (QoS), wireless communication.

I. INTRODUCTION

T HE mobile wireless environment provides serious chal-
lenges such as limited bandwidth, low-capacity channels,

and interference among users. As a result, an important network
layer problem in the design of wireless systems is how to allo-
cate the limited resources efficiently while providing quality of
service (QoS) guarantees to the applications in terms of bit rate
and loss. This problem becomes more acute for next-generation
integrated-services networks, which aim to support heteroge-
nous traffic. Next-generation networks will provide various ser-
vices such as data, voice, video, etc., each with its own QoS
requirements [which are expressed in terms of signal-to-inter-
ference ratio (SIR), outage probability, latency, loss rate, etc.],
statistical description, activity factor, and generated revenues
per unit of service. In such networks, the desirable resource al-
location is achieved by the base station through connection ad-
mission decisions in the presence of new connection requests. A
connection admission decision consists of granting or rejecting
connection to a specific service. Granting an admission is equiv-
alent to a contract where the newly connected service is guar-
anteed a set of desirable QoS measures for the full length of
connection while generating revenue at a prespecified rate. As
a result, an efficient allocation of resources is achieved by con-
structing a connection admission strategy that maximizes the
average expected revenue and satisfies the QoS requirements
of each connected service. Such a construction is the solution
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to a constrained stochastic dynamic optimization problem. No-
tice that quality of service for a connection is a dynamic vari-
able whose statistics depend on the chosen admission strategy.
Hence, a key feature of this optimization problem is that there is
a two-way coupling between the constraints resulting from the
QoS requirements and the admission policy. Such a two-way
coupling results in a computationally challenging and analyti-
cally intractable optimization problem.

In this paper, we present an alternative approach to the above
resource allocation problem. We propose a decomposition of
this problem into two subproblems: 1) the specification of an
admission region , which guarantees the QoS requirements
for each connected user, independently of the admission policy;
and 2) the determination of a connection admission policy that is
optimal within the class of policies restricted to the admis-
sion region . This reduces the complexity of the problem to a
great extent and allows us to understand the interaction among
different layers of wireless communication systems.

The remainder of this paper consists of four parts. In
Section II, we 1) formulate the CAC in single-hop multiservice
wireless networks with QoS requirements; 2) discuss the nature
of this problem and the need for alternative tractable methods
to solve it; and 3) propose the aforementioned decomposition.
In Section III, we present an approach to defining outage prob-
ability as a system-wide QoS measure for cellular systems. We
describe how to use this approach to define an admission region
where, independently of admission strategies, the requirements
on probability of outage are satisfied. We illustrate the approach
by constructing the aforementioned admission region for a few
examples. In Section IV, we address the CAC problem in the
presence of a predefined admission region. We show that
this problem is equivalent to the scheduling of a stochastic
“generalized knapsack.” We discuss the nature of the optimal
policy under different scenarios. Because of the difficulty of the
implementation of such policies, we focus on the greedy policy
that is easy to implement. We determine conditions on rates
of revenue associated with each class of users—with a known
average call-time and arrival rate—sufficient to guarantee
the optimality of the greedy policy. In Section V, we present
conclusions and reflections.

The contribution of this paper is threefold.

1) The decomposition of the problem of resource allocation
in a wireless network with QoS requirements into two
subproblems:

a) the construction of an admission region;
b) the generalized knapsack scheduling.
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Such a decomposition results in a tractable resource-allo-
cation problem and addresses important issues regarding
the interaction among various layers of the network.

2) The development of a statistical model for outage and
the analytical construction of an outage-based admission
region.

3) The determination of conditions on rates of revenue as-
sociated with each class of users with a known average
call time and arrival rate, sufficient to guarantee the opti-
mality of the greedy admission policy.

II. DECOMPOSITION OFCONNECTION ADMISSION CONTROL

PROBLEMS IN CELLULAR SYSTEMSWITH QOS REQUIREMENT

In a wireless system, the desirable resource allocation is
achieved through two separate mechanisms of power-rate
assignment (PRA) and connection admission control (CAC).
In other words, the resource-allocation mechanisms should be
designed such that the total generated revenue is maximized
while guaranteeing an acceptable quality of service to the
admitted connections. Let and be the CAC and PRA
strategies. Let be the vector of quality of service for
user of type under CAC and PRA strategiesand ; each
component of the vector determines the system performance in
terms of one of the QoS requirements as observed by userof
type . In general

(1)

where , is the number
of connections of type present at the system at time,
represents the power assignment vector at time, and is
the rate assigned to userat time . Note that the superscript

( ) in vector(s) ( and ) indicates that the
number of admitted connections (vector of assigned powers and
rates to admitted connections) depends on policy( ). In addi-
tion, the form of depends on the nature of the desirable QoS
criteria, the physical layer, and the power assignment rule. Total
expected reward generated over a finite horizonis as follows:

(2)

where is the rate of revenue generated by userof
type when it is assigned the rate . Here we assume that
there exists a bisection between the assigned rate and the rate of
information transmission.

In systems where the maximum rate of transmission of any
user and the power-control mechanism is fixed and known, CAC
is the only mechanism to guarantee a certain level of service
while maximizing total revenue over horizon. Mathemati-
cally, this problem can be formulated as

(3)

subject to

(4)

where is the rate of revenue generated by a user of type,
is the same as above, and is the set of acceptable QoS

for a connection of type. In this paper, we focus our attention
on the above CAC problem.

Notice that quality of service for a connection is a dynamic
variable whose statistics depend on the chosen admission
strategy. Hence, a key feature of this optimization problem
is that there is a two-way coupling between the constraints
resulting from the QoS requirements and the admission policy.
Such a two-way coupling results in a computationally chal-
lenging and analytically intractable optimization problem.

In this paper, we propose the two-step decomposition
described in the Introduction. Such a decomposition results
in a one-way coupling between the constraints present in
the resource-allocation problem and the determination of an
optimal allocation policy. In other words, we propose the
following problems.

P1) Find the largest coordinate convex setsuch that for
all

(5)

P2) Given the admission region [constructed in P1)],
solve the optimization problem

(6)

Though, in general, our approach results in a suboptimal
solution for the original problem, it reduces the complexity
of the problem. Furthermore, it creates a conceptual frame-
work for understanding the interaction among different
layers of wireless communication systems, such as phys-
ical layer concerns, QoS requirements, and network layer
resource allocation. In other words, the admission region

for conceptualizes the
physical channel and QoS requirements; and the constrained
optimization problem is reduced to an optimization over the set
of admissible policies , which is regulated at the network
layer.

Note that the coordinate convexity of setis a natural re-
quirements for any desirable admission region. Mathematically,
set is coordinate convex if and only if for any
and any , where is the unity
vector along dimension. Coordinate convexity of set cap-
tures the unacceptability of forced departures in an admission
region.

In the wireless scenarios, the QoS for each class of users
depends on the number and type of other users present in the
system, and, in general, performance decreases as the number
of users increases. As a result, QoS guarantees can create no-
tions of capacity or regions of admission. In other words, in
order to provide QoS guarantees, the possible combinations of
the number of each type of users present in the system must be
limited to a set called the admission region. Such an admission
region summarizes, for the purpose of resource allocation and
scheduling at the network layer, the physical layer characteris-
tics of the network, the characteristics of the potential users, the
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QoS requirements of each user, and the effects of interference
caused by different applications (see, for example, [1]–[6]).

After specifying the admission region, our goal is to design
a CAC strategy for the system. This leads to the following
problem: if CAC decisions are restricted to the admission
region (so as to satisfy the QoS requirements), and if each
class of users generates different rates of revenue, the objective
is to determine CAC strategies that maximize a long-run
average revenue. In general, the determination of optimal CAC
strategies depends on the statistical characteristics of arrivals
and service times, and the rate of revenue associated with each
class of users.

In this paper, we illustrate the above-described approach as
follows: we first construct an admission region based on QoS re-
quirements expressed by the probability of outage. Afterwards,
we determine an optimal admission strategy for a constrained
resource-allocation problem where the constraint is described
by a general admission region. Such a general admission re-
gion can be thought of as the intersection of an outage-based
admission region (described in this paper) with those based on
other reasonable QoS measures such as bit error rate, latency,
and throughput (as proposed in [1]–[6]).

III. OUTAGE-BASED ADMISSION REGION

Outage probability is an important performance measure in
cellular networks. In a cellular scenario, low signal-to-(noise
plus interference) ratios (SNIR) can increase bit error rate
(BER), but more importantly, if this ratio remains low for a
long enough duration, it can cause an outage in an ongoing
service (due to loss of synchronization, etc). This will result in
disconnection of an admitted call. In most common scenarios,
this is considered a more severe form of low performance than
blocking (which occurs when a new call is denied admission
to the cell, hence the network). As a result, our goal is to
find a way to quantify and measure the occurrence of this
undesirable event and its effect on system performance. An
appropriate measure of outage is considered a main perfor-
mance measure for traditional cellular networks. We believe
that outage probability together with average bit error rate
and throughput can form a reasonable set of performance
criteria or QoS requirements for certain types of traffic [e.g.,
voice and data streams in pre-third-generation code-division
multiple-access (CDMA) systems]. As the first step in our
approach to the connection admission control in a multiservice
wireless system with outage-based QoS requirements, the main
goal of this section is to summarize the outage-based QoS into
an admission region. In other words, we provide a procedure to
determine the admission region of a cellular system where the
probability of outage for each user cannot exceed a prespecified
threshold (depending on the class of the user).

We describe an outage by two parameters: 1) the SNIR
threshold and 2) a minimum duration. An outage occurs
when the SNIR remains below the thresholdfor a period
longer than or equal to. In most of the currently available
literature (e.g., see [7] and [1]), an outage is assumed to occur
when the SNIR falls below a threshold . We believe that
this is not sufficient to capture the essence of an outage, since

it ignores statistical correlation or burstiness in the incoming
traffic stream. It is intuitively expected that traffic streams with
a high level of burstiness are more likely to cause an outage
than nonbursty or independent identically distributed streams
with the same level of instantaneous instantaneous interference.
Similarly, the memory present in fading channels directly
affects how long the impairment will last, hence it affects the
occurrence of an outage. In other words, the drop in SNIR
below does not result in an outage instantaneously; an outage
results when the SNIR is low for an extended period of time,
i.e., a time period that exceeds a minimum duration. With
this definition, the occurrence of outage events strictly depends
on the second-order statistics of the interference and/or fading.
A characterization of outage in terms of both the threshold
and the time duration has appeared only in [8] and [9]. One
key feature of [8] and [9] is that the effect of other users on
the outage probability is not taken into account. That is, the
effect of the (random) number of active users and the statistical
variation of their channels on the outage probability is ignored.
Attention in both [8] and [9] is restricted to one user and the
effect of its physical channel on the outage probability. In gen-
eral, the performance of a wireless system critically depends
on two factors: 1) the condition of the physical channel and 2)
the interference created by other users. The approach to outage
that we propose captures both of the aforementioned factors.

In this paper, we propose two measures to quantify outage:
1) probability of outage and 2) frequency of outage. We will ex-
amine both measures as functions of the number and character-
istics of users in the system, and will critique the merit of each
measure. Since one of the components of our proposed approach
to the connection admission control problem is to construct an
admission region, where QoS requirements are satisfied, we be-
lieve that the outage probability is the appropriate measure for
quantifying outage. Indeed, we show that by incorporating the
effect of multiple-access interference into our approach, we are
able to relate the probability of outage to the number and type of
users present in the system and, therefore, to determine an ad-
mission region associated with the maximum acceptable outage
probability for each type of user.

The salient features of our approach are the following.

1) We model the statistical variation of the physical channel
by a Markov chain (as in [9]).

2) We consider several types of users in terms of their statis-
tical activity, and QoS requirements.

3) We fix the total number of users admitted by the system,
and we assume that the status of each user switches be-
tween “active” and “inactive” according to a Markov rule
[independent of 1)]. The status of a particular user is not
necessarily independent of that of another user.

As a result of the aforementioned features, we can construct a
model that allows us to define, for any multiple access scheme,
the SNIR ratio and, hence, determine for any parametersand

the outage probability as a function of the fixed number of
users present in the system. This in turn allows us to analyti-
cally determine the capacity of the system (described in terms
of an admission region) associated with maximum acceptable
probability of outage. Therefore, we achieve two main goals in
this section:
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1) the development of an approximate statistical model for
outage and calculation of the appropriate measures: fre-
quency and probability of outage;

2) the analytic determination of an admission region based
the on desired performance of the system with regard to
outage probability.

This section is organized as follows. In Section III-A, we con-
struct a stochastic model and analytically study and calculate the
probability of outage. In Section III-B, we present examples il-
lustrating the modeling and results in Section II-A.

A. Outage-Based Admission Region for Multiuser Systems
With Markov Channels

1) Philosophy of Our Approach:We address the issue of
outage within the context of QoS requirements. A user in the
system encounters an outage event when its received SNIR at
the base station falls below a threshold for an extended period
of time. Hence, an outage is experienced by each user individu-
ally. Therefore, the key conceptual issue is how to analytically
describe an outage event as a system-wide QoS criterion. We
address this issue by introducing a fictitious observer/user and
by defining an outage incurring during this user’s service time.
To guarantee that the outage-based QoS requirements are satis-
fied for every type of user that may be admitted by the system,
we proceed as follows. We consider a separate fictitious ob-
server/user for each type of traffic. Such a user is always active
and is identical to the actual users of the same type in terms of
the statistics of the physical channel, SNIR threshold, and min-
imum outage duration. Each fictitious observer/user does not
create any interference in the system, and hence has no effect
on the performance of the system. The probability or frequency
of outage for such a user is a conservative bound on the outage
probability of each user of the same type. The system-wide QoS
requirement in terms of probability or frequency of outage is
met if and only if the probability or the frequency of outage for
each of the aforementioned fictitious users is below a prespeci-
fied value (that depends on the type of user), which reflects the
QoS requirement.

In this section, we construct the outage-based admission
region following the above philosophy. In Section III-A2,
we formulate the outage problem associated with a fictitious
observer/user whose statistical variation of its channel, the
SNIR threshold , and the minimum outage duration are
given. We fix the number of admitted users and model the
effect of channel variations and interference as a super Markov
chain (SMC). Then, we identify the states of the SMC where
the combination of channel variation and interference causes
an SNIR below . In Section III-A3, we use the formulation
of Section III-A2 to calculate the probability and frequency of
outage associated with (when the number of admitted users
is fixed). In Section III-A4, we present examples illustrating
our results and critique the aforementioned formulation criteria.
In Section III-A5, we construct an admission region where the
system-wide QoS in terms of outage probability is guaranteed.

2) Outage Formulation for a Given Observer/User in the
Presence of a Fixed Number of Users:In this section, we fix the
number admitted users and then develop an approach to defining
and computing the probability and the frequency of an outage

for a fictitious observer/user , whose channel statistics, SNIR
threshold , and minimum outage durationare given.

In a wireless setting, the received SNIR of an observer/user
depends on two decoupled factors:

1) the effect of physical channel in the absence of other
users; this captures events like additive noise, fading,
and/or shadowing (in the presence or absence of
power-control mechanisms);

2) the effect of the presence, power, and channel statistics of
the other active users admitted in the system.

Therefore, to determine the probability of outage, we need
1) to model the channel degradation, 2) to model the inter-
ference of other admitted users, and 3) to construct a “super
Markov chain” combining 1) and 2) in order to describe the
received SNIR of .

It is very common to model the effect of the channel on SNIR
in the absence of other users as a Markov chain. The validity of
such model has been extensively studied and confirmed in the
literature (see [10]). The most commonly used example of this
kind is the Gilbert channel. In general, such an MC is defined by
its state-space , and its transition matrix

Prob (7)

Note that in the case of an ideal power-control mechanism, the
state-space is reduced to a singleton ; hence . In
the case of power control with quantized error, we have

. We assume that channel states of individual
users are mutually independent.

To model the interference of other admitted users, we assume
that there are types of users in terms of QoS requirements,
transmission power, and the activity factor [11], and there are
( ) users admitted to the system (not including

). At any time slot, each admitted user can be active (“on”)
or inactive (“off”). Since only active users interfere with the
received signal of , we need to find an appropriate model to
describe the evolution of the users’ “on” periods. In this paper,
we assume that active and inactive periods for a user of type
evolve according to a -order Markov chain. Consequently, we
can model the activity of userof type by a Markov chain of
size 2 ; we denote the states of this Markov chain by
an integer . In general, we assume that the
activity of all users can be correlated.

Based on the above, we can express the state of users (in terms
of being active or inactive) by the following random array:

(8)

By construction, this array evolves according to a known
Markov rule. Let be the transition matrix for this Markov
chain, i.e.,

Prob (9)

Note that is a square matrix of dimension .
To describe the received SNIR of , we construct an SMC,

which represents the variation of the physical channel for,
the channel variation of other users, and the state of the admitted
users. The states of this SMC are arrays of type
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where is the state of the channel between user
and the base station; for , and

is the state of the physical channel (in the absence
of other users) between userof type and the base station;
and , , is a vector of length defined in
(8). The state-space of this SMC is

. Since, by assumption, the state of
the physical channel for a user is independent of the number of
the other users and their channel state, the transition probability
for this SMC can be easily obtained, using (9). It is

(10)

where is the transition matrix of the Markov physical
channel between observer/userand the base station; for

is the transition matrix of the Markov physical
channel between a user of typeand the base station; and

denotes the Kronecker product of the matricesand .
To define an outage event mathematically, we must specify

the received SNIR of observer/user at each state .
This SNIR is a function . The exact form of

depends on the dynamics of multiple-access interference,
and possibly the power-control mechanism. For instance, for a
CDMA system where users of the same class have a common
transmitted power and there is no power control, the form of
function is

(11)

where is the noise power (that includes the expected total in-
terference from the adjacent cells), is the spreading gain for
user , is the channel gain between theth user of type
and the base station, is an indicator function that
is equal to one when theth type user is active, and is the
common transmitted power for all type-users. This form can
extend to CDMA systems with power control where each class
of users has a common targeted power and whererepresents
the error of the power-control mechanism.

After specifying the SNIR of user at each state, we define
the sets of “bad states” and “good states” as

(12)

(13)

Based on the above classification of states, we can now formally
define the following.

Definition 1: An outage is an event where the state of the
SMC enters and stays in for at least units of time.

Definition 2: The probability of an outage is defined as the
probability that a randomly selected time slot belongs to an
outage event; it is denoted by .

Definition 3: The frequency of outage is defined as the fre-
quency of entering outage events; it is denoted by .

Definition 4: The average outage duration is defined as the
expected length of an outage event; it is denoted by .

a) Worst case scenario:In general, the dimension of the
matrix can be very large. This creates a practical difficulty

in the calculation of frequency and probability of outage. To
deal with this difficulty, we can analyze the worst case condition
for user/observer , where all the other users are in their best
physical channel realization. In other words, we replacewith
a singleton , where ; hence . In
this situation, the SNIR can be expressed as

(14)

where is the the total number of active users of typeand, as
before, is the noise power, is the spreading gain for user

, is the channel gain between and the base station, and
is the common transmitted power for all type-users.
Equation (14) implies that, in this case, the effect of other

users is like a noise term proportional to the number of active
users. A state for the worst case scenario is a vector of the
form ( ). If we denote by ( ) the size
of set ( ), then the dimension of the state space in
the worst case scenario is , whereas
the state space in the original formulation is of dimension

. In
the worst case problem, the transition matrix of the SMC is

(15)

where is defined as

Prob
(16)

can always be determined from, defined by (9), but in most
cases can also be constructed using the traffic model of each
user type directly.

As before, the sets of “bad” and “good” states are

(17)

(18)

An outage occurs when the state of the Markov chain remains
in set for at least units of time.

Remark: In the worst case analysis, it is possible to upper
bound SNIR by function , which only depends on the
number of active users, rather than each user’s channel state.
This property allows for a reduction in the size of the state
space, and hence reduces the computational complexity in
determining the admission region. We note that any approxi-
mation of the SNIR function that reduces the dependency on
individual channel states results in a reduction in computational
complexity of the problem. On the other hand, the cost of
such reduction of complexity is the introduction of error in
the calculation of frequency and probability of outage. In
other words, there exists a tradeoff between the computational
complexity of the method and the tightness and/or the precision
of the constructed admission region.

3) Outage Analysis for a Given Observer/User in the
Presence of a Fixed Number of Users:The probability and
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frequency of an outage event in the constructed SMC can be
studied in the framework of [9].

Consider the constructed SMC and the associated transition
matrix with it. We follow [9] to establish the necessary
equations and relations that describe the probability of outage.
Note that the SMC is mathematically equivalent to the physical
Markov Channel studied in [9], even though the SMC, in
general, has a much larger state space, and it has a very specific
structure due to its construction. Hence, after introducing
the appropriate notation and definitions, we can use results
provided by [9] for the analysis of the probability of outage.

a) Definitions: Let the row-vector denote the stationary
distribution of the SMC.

Define and as

if
otherwise

(19)

if
otherwise.

(20)

Define as the matrix with entries

if
if

(21)

For any integer , define to be the probability that
the channel state is in at time and in at times

.
b) Results: We establish analytical expressions for prob-

ability and frequency of outage under the assumption that the
system is operating in steady-state. For that matter, we need
some results from [9], which we state in the form of facts.

Fact 1:

(22)

where is a column vector whose elements are all one.
Lemma 1:

(23)

Proof: We can write

(24)

where is the time duration of theth outage period and

there are at least outage periods

in the time interval

On the other hand, the random sequence is sta-
tionary. Hence

Lemma 1 can be used to establish the following.
Proposition 1:

(25)

Proof: We first prove that

(26)

Then from (23) and (26), we establish (25). To prove (26), we
consider the definition of . By the definition,
can be calculated as the sum of the probability of a time slot
belonging to a sequence of bad states weighted by the length of
the period. In other words

Prob state in for units of time

Prob state in for unit of time

Prob an outage period of length

Proposition 1 and Fact 1 establish the following analytic ex-
pression for the frequency of outage.

Corollary 1:

(27)

To obtain an analytic expression for , we use the fol-
lowing fact.

Fact. 2: The probability of outage is given as

(28)

Based on Fact 2, we establish an alternative analytical expres-
sion for the probability of outage. The new expression is easier
to compute, as it involves neither inversion of a matrix nor cal-
culation of vector .

Proposition 2:

(29)

Proof: From (28), we have

where the third equality holds since and the fourth
and sixth equalities result from the fact that .
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Fig. 1. P andf versusM for cases in Section III-A4.

4) Illustration and Critique of the Measures:The formula-
tion of outage presented in Section III-A2 and the analysis of
Section III-A3 provide an expression for the probability (fre-
quency) of outage of a fictitious user of type,
as a function ( ) of the vector
of admitted users .

For the case where there is only one class of users, we il-
lustrate the behavior of ( ) via the following example. We
consider a CDMA system with only one type of traffic, where
there is a power-control mechanism with error of 5% where the
maximum Doppler frequency of the channel is 100 Hz. We as-
sume that , where is the time-slot duration and
is the fading cycle, dB, spreading gain , and

(the value recommended by ITU-T [12]).
We assume that the traffic consists only of voice users, whose

activity model follows a simple memoryless process—i.e., if
represents the fixed number of users admitted to the system, the
transition probability of the number of active users at each time,
denoted by , can be expressed as

if
if
if
otherwise

where , is the activation rate of each inactive user, and
is the probability that an active user becomes inactive. Note

that is the voice activity factor and is around 0.4.
After identifying the transition matrix, determining the SNIR

at each state, and finally labeling “bad” and “good” states ac-
cording to (17) and (18), we calculate the probability and fre-
quency of outage as functions and , respectively.
Fig. 1 shows the result of such a calculation.

In Fig. 1, the frequency of an outage is not monotone in the
number of admitted users. This is due to the fact that as the
number of admitted users increases, the average number of time
slots where the state is in the “bad” setincreases. This implies
that as the number of admitted users increases, the probability
that at any time slot the state of the channel is good or that the
time slot does not belong to an outage decreases dramatically.
However, because of Proposition 1, entering an outage at any
time slot requires the state of the system at time1 to be
“good”; hence the probability of entering an outage event (fre-
quency of outage) ultimately decreases, since the probability of
being in a “good” state decreases.

The form of the function indicates that in a dynamic
system where there are connection arrivals and departures, the
frequency of outage can increase in the case of a connection
departure. On the other hand, the departure times are random
and independent of control actions (which only include the
admission decisions). This implies that even if at a particular
instance of time the frequency of outage is within an acceptable
range, it may not continue to be within that range no matter
what the connection admission control policy is. Hence, the fre-
quency of outage is not well suited to use in the construction of
an outage-based admission region or to define an outage-based
capacity.

The function , which is the probability of outage for our ex-
ample, is monotone in the number of admitted users. Other ex-
amples for one and two types of users, provided in Section III-B,
as well as in [13], show that (in case of examples with
one type of user, discussed in Section III-B1) and ,

(in cases studied in Section III-B2), are all monotone
increasing in and . Based on these numerical examples,
we propose Conjecture 1.
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Conjecture 1: In any cellular system, is compo-
nent-wise increasing for all .

Based on this conjecture, we propose that the probability of
outage is the appropriate measure to define an outage-based ad-
mission region. In Section III-A5, we present a procedure on
how to construct an admission region based on probability of
outage. The procedure does not depend on the validity of Con-
jecture 1. At the end of Section III-A5, we discuss how the va-
lidity of Conjecture 1 simplifies the procedure.

5) Construction of the Admission Region:We now discuss
how to use the results obtained in Section III-A3 to construct
an admission region when the probability of outage is the QoS
requirement under consideration. An admission region is the set
of all combinations of admitted users such that if connection ad-
missions are restricted to a subset of its interior, the probability
of an outage encountered by a fictitious observer/user of type
is less than a prespecified threshold for all .

The formulation of probability of outage presented in Sec-
tion III-A2 and the analysis of Section III-A3 provide an ex-
pression for the probability of outage of a fictitious user of type

( ) as a function of the vector
of admitted users . Therefore, for a
fixed type- fictitious user (i.e., , , ,

, and ), the region where QoS (expressed
by the probability of outage) is guaranteed for that type of user
is

(30)

Consequently, the region where the QoS is guaranteed for all
users is

(31)

Since it is not desirable for any admission strategy to terminate
an unfinished service, we define the admission regionas the
largest coordinate convex subset of, i.e.,

if then (32)

Recall that our analysis is valid for a fixed number of admitted
users. In a wireless system, the number of users (active and in-
active) present in the system varies with time. To establish the
validity of our analysis for wireless systems, we prove the fol-
lowing theorem.

Theorem 1: The admission region is a conservative bound
on the number of admitted users for which the QoS expressed
by the probability of outage is met.

Proof: Fix a fictitious observer/user, say, of type. Restrict
an admission policy to . Since is coordinate convex,

for all , where is the vector indicating the number
of users of each type present in the system at time. Hence

for all . Pick . Since
for all , the probability of outage in the dynamic

system for the aforementioned fictitious observer/user is less
than or equal to , and by the construction of

(33)

Since is arbitrary, the admission region, defined by (32),
is a conservative bound on the number of users admitted by the

dynamic system for which the QoS requirement expressed by
the probability of outage is satisfied.

Now we discuss the implication of Conjecture 1 on
the methodology used to construct the admission region
based on outage probability. If Conjecture 1 is true, then

, , is increasing in
each coordinate . This implies that region

defined by (30) is coordinate convex. This,
in turn, implies that region defined by (31) is coordinate
convex; hence .

B. Special Cases, Examples, and Discussion

In this section, we present examples illustrating our approach.
In all the examples, we consider the outage problem in a CDMA
pre-third-generation wireless systems. In such systems, traffic
mainly consists of voice, or data streams that are compressed
and then treated as voice [14]. This kind of traffic, when the
number of users is fixed, can be appropriately modeled by an
Engseth birth–death chain (see [15]). Therefore, it is appropriate
to follow the procedure given in Definition 4a.

In the remainder of the section, we formally introduce the
Engseth traffic model. In Section III-B1 and B3, we compute the
probability of outage and the resulting admission regions under
a variety of power-control scenarios and system parameters.

We consider types of traffic. Let the component
of the vector represent the fixed
number of users of type admitted to the system. Let

denote the vector of the number
of active users of each type. Then the transition probability for
the Engseth model is given as follows:

if
if
if

otherwise

where is a column vector whose elements are all zero except
for the th element, which is one, is the activation rate of
each inactive user of type, is the probability that an active
user becomes inactive, , and

. Note that is the activity factor of
each stream. For voice users, this is around 0.4. For data users, it
varies with the application, and it depends on the burstiness and
information bandwidth of the stream, as well as the compression
method employed.

1) Example: Homogeneous Traffic:We study the homoge-
neous traffic scenario. We first construct the SMC associated
with this model. Let denote the number of admitted users in
the system. We construct Prob . For
the cases that follow, we use different channel models ( ).
We construct the transition probability associated with each
( ) pair using (15).

For all the scenarios under study, we assume that
, ( is the time slot

duration, is the fading cycle, is the shadowing cycle),
dB, and the spreading gain is .

After identifying the transition matrix, determining the SNIR
at each state, and finally labeling “bad” and “good” states ac-
cording to (17) and (18), we calculate the probability of an
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Fig. 2. P versus number of admitted usersM for cases in Section III-B1.

outage as a function . Fig. 2 shows the result of such a
calculation for CDMA systems when:

1) the channel follows a Gilbert model with average burst
lengths of four, with steady-state probability of the bad-
channel-state equal to 0.1 and (the value recom-
mended by ITU-T [12]);

1’) channel is similar to 1) and ;
2) channel is an appropriate approximation to a log-normal

shadowing channel with the maximum Doppler frequency
of 100 Hz and correlation distance of 1 m, as given by [9],
and ;

2’) channel is similar to 2) and ;
3) an ideal power-control mechanism is implemented and

;
3’) channel is similar to 3) and ;
4) power control is applied with error of 5% and ;
4’) channel is similar to 4) and .

2) Example: Two Types of Traffic:We study the outage
problem for the same CDMA system as in Section III-B1
when the traffic consists of two classes of users with different
activity factors, spreading gains, and outage parameters; these
parameters are , ,

, , , dB, and
dB. We set the maximum acceptable probability of

outage to be equal to 10. Under this specification, Fig. 3
shows the admission region when

1) channel is described by a Gilbert model similar to that in
Section III-B1 and ;

1’) channel is described by a Gilbert model similar to that in
Section III-B1 and ;

2) there is an ideal power-control mechanism and ;
2’) there is an ideal power-control mechanism and .

IV. CONNECTION ADMISSION CONTROL

As discussed in the introduction, we propose to formulate the
CAC problem in a single-hop multiservice network with QoS
requirements as a constrained stochastic dynamic optimization
problem, where the constraint describes the admission region.
One standard approach to describing the admission region for
such a problem is to define a total capacity for the network and
associate an effective bandwidth to each class of users. This ap-
proach approximates the boundary of the admission region with
a linear function of the number of each type of users (see [16],
[4], and [5]). In cases where all the QoS requirements are sum-
marized by an effective bandwidth-based admission region, the
CAC problem is equivalent to a classical knapsack problem. In-
deed, when the admission region is described by a linear in-
equality, the CAC problem is reduced to the search of alloca-
tion schemes that share a resource of finite and fixed capacity
among several classes of traffic in a manner that is optimal with
respect to the total expected generated revenue. This problem is
equivalent to scheduling a stochastic knapsack, a well-studied
subject in stochastic networks and operations research. The clas-
sical knapsack problem involves a knapsack of capacityre-
source units and classes of connections, with each connection
of class- occupying units ( is the effective bandwidth of
class- users), and having random arrival and holding times with
rates and , respectively. A revenue of per unit of time is
incurred while a class-connection is placed into the knapsack.
The new connections may be admitted to the knapsack as long
as the sum of the occupied bandwidth does not exceed the knap-
sack capacity. The connections who are denied admission to the
knapsack are lost. The objective is to determine an admission
policy that maximizes the long-run average revenue (see [17,
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Fig. 3. Admission regions for cases in Section III-B2.

ch. 2–4] and the references therein for details on the classical
stochastic knapsack problem).

In general, all QoS requirements considered simultaneously
are summarized by an admission region, the boundary of which
need not be a line. In such a situation, a reasonable assumption
on the nature of the admission regions and their boundaries is
coordinate convexity, which implies that no forced termination
of service is required in order to meet QoS requirements. Based
on this observation, in this paper we propose the formulation and
investigation of a “generalized knapsack” whose scheduling is
equivalent to the CAC problem with a coordinate convex ad-
mission region. In a generalized knapsack problem, there are
class of connections. The number and configuration of served
connections are restricted to a coordinate convex set ;
we denote the boundary of the admission region by the set.
There are multiple identical parallel servers that serve the con-
nections admitted in the system. The rate of service and arrivals
for class- connections is and , respectively. Each class-
connection generates a revenue of ratewhile being served in
the generalized knapsack. New connections can be potentially
admitted if the resulting configuration and number of admitted
connections are still in the admission region. The connections
that are denied admission to the system are lost. The objective
is to determine an admission strategy to maximize the long-run
average revenue. A more detailed description of the generalized
knapsack problem that is necessary for the analysis of the CAC
problem will be given in Section IV-A.

To motivate the analysis of the CAC problem presented in
Section IV-A, we first briefly discuss and critique the results
available on the classical knapsack problem. Several variants of
the classical knapsack problem have been carefully studied in
the literature (for example, see [18]–[25], [17], [26]–[28]). In

[23]–[25], there is a one-time reward that is fixed and known,
and is obtained at the instance of admission. This feature makes
the problem considered in [23]–[25] distinctly different from the
problem we consider in this paper. In [22] and [28], it is assumed
that no job admitted to the knapsack leaves the system, i.e., the
problem changes to a packing problem. Such a problem is also
distinctively different from ours. The model and the formula-
tion of knapsack problem considered in [18], [20], [21], [17, ch.
4], [26], and [27] are similar to our problem. A Markov deci-
sion process (MDP) approach is used in this class of references
for the analysis of the classical knapsack problem. It has been
shown that solving the appropriate MDP, through standard nu-
meric programming methods, can be analytically intractable and
computationally complex. In [17] and [26], the authors propose
a standard linear programming (LP) technique to solve the dy-
namic programming (DP) equation associated with the MDP de-
scribing the classical knapsack problem and compare the com-
putational complexity of such a technique to the standard value
or policy iteration techniques. Furthermore, it is known that the
optimal solution to such MDP (which is the optimal admission
policy for the classical knapsack), in general, lacks any specific
structure or well-definable property (see [21]).

The general lack of structure in the optimal admission policy
for the classical knapsack motivated the study of high-perfor-
mance suboptimal policies that can be computed in reasonable
amount of time. The result in [20] provides an approximation
bound on the optimal performance and a heuristic in con-
structing efficient (suboptimal) policies. In [21] and [27], the
authors restrict their attention to the class of coordinate convex
(c-c) policies and attempt to characterize the optimal c-c policy.
Coordinate convex policies are easier to study since under any
c-c policy, the steady-state distribution is of a product form that
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makes the problem more tractable. Unfortunately, under special
case scenarios, it can be shown that the optimal c-c policy is far
from optimal (see [21]).

The complicated nature of the optimal connection admission
control policies creates a practical difficulty for their implemen-
tation as viable CAC policies in high-speed networks. Conse-
quently, in this paper, we consider the “greedy policy,” which
has a very simple implementation. The greedy policy admits any
request for connection if there are sufficient resources available.
We determine conditions on the rates of revenue generated by
different classes of connections sufficient to guarantee the op-
timality of the greedy policy. The problem we address can be
thought of as follows: how should each type of service provided
by the network be charged so that it should be optimal to admit
every request for connection provided that there are sufficient
resources?

The remainder of this section is organized as follows.
In Section IV-A, we formulate the CAC problem with two
classes of connections as a generalized knapsack problem,
called Problem (P). In Section IV-B, we define a new problem
related to Problem (P), referred to as Problem (P’). We analyze
Problem (P’) and show that an optimal solution to Problem
(P’) is also an optimal solution to Problem (P). Section IV-C
includes a brief discussion of future work and further extensions
of the CAC problem.

A. The Generalized Stochastic Knapsack Problem With Two
Classes of Connections

The generalized stochastic knapsack problem with two
classes of users can be formulated as follows.

Problem (P): Consider a finite coordinate-convex set
that contains the origin. A two-dimensional gener-

alized knapsack associated with setconsists of a system of
identical servers in parallel that can serve two classes of service
within its support region . That is, the knapsack may serve
number of class-1 connections and of class-2 connections
only if . Each connection of class, is
characterized by its arrival rate and the rate of its service
time . We assume that the arrival and service statistics of
each connection are independent of each other and independent
of the arrival and service statistics of other connections; the
service time for a connection of typeis a memoryless random
variable with mean ; and at each unit of time there is at
most one new connection arrival to the system. Each arriving
connection can be admitted to the knapsack if the resulting
number of connections is in . If a request for connection
is rejected, the connection is lost. An admitted connection
remains in the knapsack until its service is completed. Without
any loss of generality and for clarity, we assume that arrivals
and departures within the time slot from timeto 1 occur in
the open interval ( 1); furthermore, departures occur at the
end of a time slot, whereas arrivals occur at the beginning of a
time slot. Thus, if we define and as

is any time

after the arrival time of new

connection requests and also

admission decisions in slot

is any time

before the completion time of

any connection whose service

ends in time slot

we have . Each admitted connection of type
generates a revenue of ratewhile being served in

the knapsack. The goal is to find an optimal admission strategy
that maximizes the total expected revenue over a finite horizon

.
Remark: As a result of our formulation, a packet of type

may be admitted in the system at, complete service at
1 , and result in a revenue .

The main result of this section is summarized by the following
theorem.

Theorem 2: If

(34)

then the policy that follows the greedy rule at all times is optimal
for Problem (P).

B. Analysis of Problem (P)

We proceed to solve Problem (P) as follows. First, we formu-
late another problem, called Problem (P’), which includes the
original knapsack described in Problem (P), and an auxiliary
knapsack. Afterwards, we analyze Problem (P’). We determine
conditions sufficient to guarantee the optimality of the greedy
admission policy for Problem (P’). Finally, we show that condi-
tions that are sufficient to guarantee the optimality of the greedy
policy for Problem (P’) are also sufficient to guarantee the opti-
mality of the greedy policy for Problem (P).

Problem (P’) includes an auxiliary (generalized) knapsack
whose admission region is defined by

and (35)

where and are defined as

(36)

(37)

where is the integer boundary of , i.e.,
and . This auxiliary

knapsack is used in the same manner as the original one, but the
connections admitted to the auxiliary knapsack do not generate
any revenue. Knapsack can be used to provide information
about the service times of certain selected connections that were
denied admission to the original knapsack. Obviously, any ad-
missible connection control policy for Problem (P’) that does
not use the information provided by the auxiliary knapsack is
equivalent to an admissible admission policy for Problem (P).

Problem (P’): We consider a system consisting of the orig-
inal knapsack of Problem (P) and the auxiliary knapsackde-
fined by (35)–(37). The state of this system at any timeis de-
fined by ( ), where and

. The original knapsack operates in exactly the same manner
as in Problem (P). Connections admitted to the the auxiliary
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knapsack may be dropped before they complete their ser-
vice. The forced departure times of connections to knapsack
may depend on the admission policy. Forced departures from

in time slot , like admissions and rejections of arrived re-
quests from knapsack in time slot , occur at the beginning
of the time slot, i.e., before time . Each connection of type,

admitted to the original knapsack generates a revenue
at rate . Connections admitted to the auxiliary knapsackdo
not generate any revenue. An admissible policyis a sequence

of functions of the form

where for any , denotes
the number of arrivals of each type of connection requests at
time , , represents the number of connection ad-
missions of type into the original knapsack, i.e., if

, and if the original knapsack is
full, , and . The objective is
to determine an admission policy that maximizes the expected
revenue over a finite horizon.

To proceed with the analysis of Problem (P’), we need the
following.

Definition 5: A policy is said to follow thegreedyrule at
time if for any state

if
otherwise

if
otherwise.

Definition 6: A policy is said to follow the ( )-
tracking-greedyrule at time if for any state

if and

if and
and

otherwise

if and

if and
and

otherwise.

Definition 7: A policy is said to follow the emp-
tying-greedyrule at time if for any state

if
otherwise

if
otherwise.

A policy that follows the greedy rule admits to the original
knapsack any request for service at any time if the resulting
state is admissible, and empties the auxiliary knapsack. Such
a policy is a trivial extension of a complete sharing (greedy)
policy (see [17]) for Problem (P). In fact, the policy that fol-
lows the greedy rule is equivalent to a complete sharing policy
for Problem (P), since it always empties the auxiliary knapsack

and does not use the information provided by it. A policy
that follows the ( )-tracking-greedy rule and is applied to a
system with initial state ( ) attempts to duplicate, as
closely as possible, the admission decisions associated with a
greedy policy when it is applied to another system whose initial
state is ( ) and its arrival times and com-
pletion times are coupled with those of the original system. A
policy that follows the emptying-greedy rule and is applied to a
system with initial state ( ) duplicates the admission
decisions associated with a greedy policy when it is applied to
another system whose initial state is ( ), and
its arrival times and completion times are coupled with those of
the original system.

We now prove the following result for Problem (P’).
Theorem 3: Consider Problem (P’). If (34) holds, it is always

optimal to follow the greedy rule at each time.
Proof: We prove the assertion of the theorem by induc-

tion. We first establish the basis of induction by showing that at
horizon 1, it is optimal to follow the greedy rule. Then we
assume it is optimal to follow the greedy rule from time1 on
and show that it is optimal to follow the greedy rule at time.

Denote by the total revenue generated by
policy along a sequence of arrivals and departures from time

on, assuming that the system is in state ( ) at time
. Denote by the policy that follows the greedy rule at each

time . We need to show that under (34)

(38)

for any policy and any initial state ( ).
Basis of Induction:For , we have

for every policy and for any state ( )).
Induction Step:Assume that for any state ( )

and any policy , we have

(39)

To establish the optimality of the greedy policy, it is suffi-
cient to consider a policy that is different from the greedy
rule at time (assume ), then follows the greedy
rule from time 1 on, and show that for any ( ),

.
Without any loss of generality, we can assume that there is an

arrival at time (if not, then the two policies and generate
identical revenues). Let ( ) be the state at time.
The greedy policy admits the new connection into the original
knapsack. For policy , we consider the following cases.

Case 1: (This case holds only when or .)
Policy admits the new arrival into the original knapsack but
does not empty the auxiliary knapsack. In this situation, we have

(40)
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since connections served in the auxiliary knapsack do not gen-
erate any revenue.

Case 2: The arrival is of type 1, and policy does not admit
the new connection into the original knapsack. Then at time,
the knapsack state under policiesand is ( )
and ( ), respectively.

To prove the induction step, we construct a policyas fol-
lows: policy follows the greedy rule at time and marks
the accepted connection at this time slot as; from time 1
until the stopping time (defined below), follows the (1,
0)-tracking-greedy policy; from time until stopping time

(defined below), policy follows the emptying-greedy
policy; and from time , policy follows the greedy
policy. The stopping times above are defined as:

;
the occupation time of connection;
the first time under policy the auxiliary knap-
sack is empty of type-2 users, and a connection of
type-1 arrives, and cannot be admitted into the orig-
inal knapsack;
the first time after such that under policy, the
auxiliary knapsack is empty.

We compare the performance of policywith that of policies
and . First we compare policies and .

Lemma 2: Policy outperforms policy .
Proof :

(41)

The equality in (41) holds because and are identical at .
The inequality in (41) holds because of the induction hypothesis
given by (39).

Next we relate the performance of policiesand along any
sample path.

Lemma 3: For each realization of arrivals and departures
from time on, we have

(42)
where denotes the number of type-2 connections ad-
mitted to the auxiliary knapsack under policy; and

denotes the service time for each type-2 con-
nection to the auxiliary knapsack under policy.

Proof: By construction, the state of the system under poli-
cies and is the same after time , and and are
identical after . Therefore, to compare the performance
of and , we must compute the difference in revenue gener-
ated by and in . To compute this difference,
we compare the admission decisions ofand in the intervals

and ( ) separately.
By construction, policy admits the type-1 arrival at time,

and until time , the number of type-1 connections underis
one more than the corresponding number under. During the
interval , policy imitates policy and admits new ar-
rivals into the original knapsack as long as the system’s state
(under ) is not at the boundary (i.e., , where

( ) is the original knapsack’s state under). When the
system state under is at the boundary and a new arrival is ad-
mitted by , admits the same arrival and places it at the aux-
iliary knapsack. This is possible because of the specification of
the auxiliary knapsack, given by (35)–(37).

By construction, between and , policy follows
the emptying-greedy rule. Consequently, in
imitates in every admission decision. This is possible because
the extra connections of type-2 admitted into the original knap-
sack during the interval ( ] under policy are placed in
the auxiliary knapsack under policy.

Based on the above comparison of the admission decisions
of and in , the difference in revenue be-
tween and can be computed by considering the connec-
tion and all type-2 connections admitted by policyinto
the auxiliary knapsack in the time interval ( ]; we denote
by the number of these connections. Hence, the differ-
ence in performance betweenand along any sample path is

, where , , is the ser-
vice time of connection of type-2 admitted into the auxiliary
knapsack under policy.

Based on Lemma 3 and (34), we obtain the following result.
Lemma 4: Policy outperforms policy .

Proof: Use (42), fix , and calculate the difference be-
tween the conditional expectations of total generated revenues.
We obtain

(43)

where is the number of arrivals of type-2 in the time
window ( ). The first inequality holds since the number
of type-2 connections admitted in the time interval ( ) is
bounded by the total number of arrivals of type-2 connections in
that interval. Since is independent of the service time of
connections in the system, we use Wald’s lemma to get the third
inequality. The fourth equality is a consequence of the assump-
tion on the rate of arrivals, and the last inequality holds because
of (34).

Using the smoothing property of conditional expectation, we
obtain

(44)

which proves that policy outperforms policy .
Combining Lemmas 2 and 4, we obtain

(45)

Consequently, the assertion of the theorem is true in Case 2.
Case 3: The arrival is of type 2 and policy does not admit

the new connection into the original knapsack. Then at time,
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the knapsack state under policiesand is ( )
and ( ), respectively.

We construct policy such that follows the greedy policy
at time and marks the accepted connection at this time slot as

; from time until stopping time follows the (0,
1)-tracking-greedy policy, and from time until stopping
time policy follows the emptying-greedy policy;
and from time on, policy follows the greedy policy.
The stopping times above are defined as follows:

;
occupation time of connection ;
first time such that under policy the auxiliary
knapsack is empty of type-1 users, and a connection
of type-2 arrives and cannot be admitted to the orig-
inal knapsack;
first time after that under policy the auxiliary
knapsack is empty.

The following lemmas prove the induction step in this case.
The proofs of Lemmas 5 and 6 are similar to those of Lemmas
2 and 3, respectively.

Lemma 5: Policy outperforms policy .
Lemma 6: For each realization of arrivals and departures

from time on, we have

(46)
where denotes the number of type-1 connections ad-
mitted to the auxiliary knapsack under policy; and

denotes the service time for each type-1 con-
nection to the auxiliary knapsack under policy.

Lemma 7: Policy outperforms policy .
Proof: Use (46), fix , and calculate the difference be-

tween the conditional expectation of total generated revenues.
We have

(47)

where is the number of arrivals of type-1 in ( ). The
first inequality holds because the number of type-1 connections
admitted in the time interval ( ) is bounded by the total
number of the arrivals of type-1 connections in that interval.
Since is independent of service time of the connections
in the system, we use Wald’s lemma to get the third equality.
The fourth equality follows directly from the assumption on the
rate of arrivals, and the last inequality holds because of (34).

Using the smoothing property of the conditional expectations,
we obtain from (47)

(48)

which proves that policy outperforms policy .
From Lemmas 5 and 7

(49)

Therefore, the assertion of the theorem is true in Case 3. Be-
cause of (40), (45), and (49), the proof of induction step is now
complete. Hence, the proof of Theorem 3 is complete.

We use the result of Theorem 3 to prove Theorem 2.
Proof: [Theorem 2] Since the policy that the greedy rule

for Problem (P’) does not use any information provided by
the auxiliary knapsack, it is equivalent to the greedy rule for
Problem (P). Furthermore, the set of admissible policies for
Problem (P) is a superset of the set of admissible policies of
Problem (P). Therefore, because of Theorem 3, under (34), the
greedy admission policy is optimal for Problem (P).

C. Extensions, Generalization, and Future Work

In this section, we address extensions of Problem (P). Fur-
thermore, we discuss the sufficient condition for the optimality
of the greedy policy given by (34), and its equivalent in the ex-
tensions of Problem (P).

1) Infinite Horizon: The result of Theorem 2 is valid for the
infinite horizon version of Problem (P) with the criterion of av-
erage cost per unit time for the following reason: if a stationary
policy is optimal for a finite horizon ( ) problem with the total
expected revenue, then it is also optimal for its infinite horizon
counterpart with the corresponding average-cost-per-unit-time
criterion.

2) Generalized Knapsack Problem ( ) Classes of
Connections: It is possible to establish, by arguments similar
to those used in the proof of Theorems 2 and 3, the following
result for the generalized knapsack problem withtypes of
connections.

Theorem 4: Consider Problem (P) with types of users. If

(50)

then the policy that follows the greedy rule at all times is op-
timal.

We note that as increases, the sufficient conditions, de-
scribed by (50), for optimality of the greedy admission policy
become increasingly weak.

V. CONCLUSION

In this paper, we presented an approach to connection admis-
sion control for a single-hop multiservice wireless network with
QoS requirements. In general, a connection admission control
strategy creates a complicated two-way coupling between the
physical layer, i.e., QoS, and the network layer, i.e., the optimal
resource allocation. Our approach proposes a decomposition of
the problem into two subproblems: admission region construc-
tion and generalized knapsack scheduling. The result of such
decomposition is reducing the interaction of the two layers into
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a one-way coupling between the physical layer (QoS) and the
network layer (CAC). To demonstrate the methodology, we then
constructed an outage-based admission region. Simultaneous
consideration of QoS requirements such as outage probability,
average bit error rate, delay, etc., can be incorporated into the
admission control problem by taking the intersection of the cor-
responding admission regions resulting from the above QoS re-
quirements. Such an intersection defines the admission region
for a generalized knapsack problem. We investigated a general-
ized knapsack problem and established conditions sufficient to
guarantee the optimality of the greedy admission policy.
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