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Performance Analysis of Channelized Cellular
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Abstract—We present an analytical model to compute the
blocking probability in channelized cellular systems with dynamic
channel allocation. We model the channel occupancy in a cell
by a two-dimensional (2-D) Markov chain, which can be solved
to obtain the blocking probability in each cell. We apply our
analytical model to linear highway systems with and without log-
normal shadowing and then extend it to 2-D cellular systems with
lognormal shadowing. We show that, for linear highway systems,
distributed dynamic channel-allocation schemes perform similarly
to the centralized dynamic channel-allocation schemes in terms
of blocking probability. However, for 2-D cellular systems, the
improvement in the performance is significant and the reduction
in the blocking probability in systems with distributed dynamic
channel allocation is by almost one order of magnitude, when
compared to that in systems with centralized dynamic channel
allocation. In practice, our analysis of linear highway systems is
applicable to digital European cordless telephony (DECT) and
that of 2-D cellular systems is applicable to global systems for
mobile communications (GSM).

Index Terms—Centralized dynamic channel allocation, channel-
ized cellular systems, distributed dynamic channel allocation.

I. INTRODUCTION

M ANAGING radio resources in cellular systems has
always been a very important aspect of system design,

due to the limited availability of resources. In channelized
[time-division multiple-access (TDMA)/frequency-division
multiple-access (FDMA)] cellular systems, the radio resource
under consideration is a channel, which can be defined as a
time slot, a carrier frequency, or a combination of both. Several
studies have been done on the capacity of cellular systems with
fixed channel allocation (FCA) [2]–[8]. In [2], Gamst presented
a lower bound on the required number of channels in cellular
systems with FCA. In [3], McEliece and Sivarajan presented
bounds on system capacity of channelized cellular systems
with FCA. The blocking probability was then computed from
the system capacity by the Erlang-B loss formula. Sarkar and
Sivarajan presented channel-assignment algorithms for cellular
systems with FCA to achieve the bounds given in [3]–[5]. In [6],
Gupta obtained improved bounds to those in [5 ] by including
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co-site constraints. In [7], Jayateertha and Sivarajan studied the
performance of FCA algorithms for different traffic conditions
and obtained the optimal traffic distribution to maximize the
Erlang capacity and to minimize the number of cells. In [8],
Sidi and Starobinski devised andimensional Markov chain
model (where was the total number of available channels)
and arrived at product form solutions to compute the blocking
probability for cellular systems with FCA. The above studies
considered cellular systems with FCA only. In [3], McEliece
and Sivarajan noted that an analysis of the Erlang capacity for
cellular systems with dynamic channel allocation is complex.

Dynamic channel allocation (DCA) offers the flexibility of
using any channel in any cell, as long as the interference levels
are below a specified threshold. This added flexibility results in
a lower blocking probability or a higher Erlang capacity. With
cell sizes diminishing in the next generation of cellular systems
(i.e., 3G and 4G cellular systems), micro- and pico-cells likely
to be dominant. It would then be more efficient for the base sta-
tions to allocate channels oblivious of the neighboring base sta-
tions. This motivates the study of distributed DCA. In [9], Ci-
mini et al.studied cellular systems with DCA and performed the
analysis for computing blocking probability with an ad hoc Er-
lang-B approximation for each cell and showed the performance
to be better than that of FCA. A more accurate approximation
was suggested by Sidi and Starobinski in [8], as an extension to
their analysis of systems with FCA. However, the model is very
complex computationally and required solving a Markov chain
with states, where was the number of cells andwas
the number of available channels.

We propose a two dimensional (2-D) Markov chain with
states and solve this Markov chain to obtain

the blocking probability. Each state in the Markov chain is a
two-tuple of integers, where represents the number
of channels in use in a give cell andrepresents the number of
unusable channels in the cell due to violation of interference
constraints. We first analyzelinear highway systemswith
centralized and distributed DCA. If we consider a cellular
system along the corridors of an office or along a busy street,
then the base stations of this system are collinear. Such a
system is called a linear highway system. Digital European
cordless telephony (DECT) [1] is one such system, where the
base stations are collinear. We consider two cases in systems
like DECT. One is along the corridor of an office, where the
effects of shadowing are lesser and, hence, the power loss is
predominantly due to path loss arising because of the distance
between the base station of a cell and the users in the other cells.
Such a system could deploy either centralized or distributed
dynamic channel allocation, since the number of cells would
be small. We first perform our analysis on such a system with
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centralized channel allocation and show that the 2-D Markov
chain model we propose is accurate. We also prove the validity
of our model when applied to analyze linear highway systems
with distributed dynamic channel allocation, in which power
loss due to lognormal shadowing is neglected.

The second case in DECT-like systems is that of a set of
buildings in a busy street. In such an environment, power loss
due to lognormal shadowing cannot be ignored; we extend our
model to such systems. However, both through our analysis and
simulations, we show that the performance of a linear system
with distributed dynamic channel allocation remains the same
in terms of blocking probability, irrespective of whether or not
we take lognormal shadowing into account. We also show that
the performance of linear highway systems with centralized and
distributed dynamic channel allocation is similar in terms of
blocking probability. However, distributed dynamic channel as-
signment provides ease of subscriber data management.

We then study 2–D cellular systems such as global systems
for mobile communications (GSM). In such systems, the
number of cells are large and we perform our analysis on
such systems with distributed dynamic channel allocation
only and show the accuracy of our Markov chain model. A
cellular system with each cell being a circle is called acircular
cellular system. In such systems (for example, as in GSM), we
have power loss due to path loss and lognormal shadowing.
We show that the blocking probability in the distributed
channel-allocation scheme in circular cellular systems is one
order of magnitude less than those with a centralized dynamic
channel-allocation scheme.

The Markov chain in our model has states
for channels, irrespective of the number of cells. Therefore,
we need to solve the Markov chain only once if the mean arrival
rates are the same in all the cells and the mean call-holding times
are also same in all the cells, which is the case with which we
usually deal. Practically, both mean arrival rates and mean call-
holding times could vary across different cells because there
could be some cells that generate more traffic than others due
to the location of the cells. For example, in a system with both
urban and rural settings, the cells in the urban settings are likely
to have a larger arrival rate and fewer holding times, as we ex-
pect calls to be more official in nature and the cells in rural set-
tings are expected to have more informal calls with fewer arrival
rates. However, the differences may arise only across a few cells
and, by and large, most of the cells have the same mean arrival
rate and mean call-holding times. Hence, we will most often
be required to solve the Markov chain given in our model only
once; even if the mean call-arrival rates and call-holding times
vary across cells, the Markov chain needs to be solved for at
most three or four times, even for a large system (large in terms
of the number of cells).

II. SYSTEM MODEL

A typical linear highway cellular system is shown in Fig. 1.
denote the positions of the base stations in the

highway of length . We consider in our study as is
usually the case in systems like DECT. A typical 61-cell cir-
cular cellular system is shown in Fig. 2. All cells are of equal
size and each cell has radiuswith the base stations located

Fig. 1. AnN -cell linear highway system.

at the center of each cell. The base station of cellhas coor-
dinates . It is noted that for 2-D cellular systems, a
hexagonal model for each cell would be more accurate, because
the circular model for a cell leaves the “holes” in between cells
uncovered. However, the circular model for cells enables easier
analytical tractability. The cells could be modeled as interlaced
circles to avoid the holes, but then the cells cannot be treated
independently of each other, which would result in an increased
analytical complexity. Also, the probability of a call arriving in
the hole areas is small. Hence, for ease of analysis, we model
the circular cellular system as shown in Fig. 2.

The objective is to devise an analytical model for computing
the blocking probability on the uplink (mobile-to-base station
link) for the 18-cell linear highway system with centralized and
distributed dynamic channel allocation and the 61-cell circular
cellular system with distributed dynamic channel allocation.

The channel-allocation strategy is as follows. Each base sta-
tion measures the power it receives from users of all the other
cells on all the channels. The users areperfectly power con-
trolled, i.e., each base station receives unit power from the users
attached to it, irrespective of the position of the user in the cell.1

Hence, the parameter the base stations measure is the ratio be-
tween the interference and signal (denoted by). The
measured at the base station on every channel is compared with
a threshold and a new call is allocated one of the channels that
has . A channel is called as afeasible channelin cell

if the at the base station of cellon channel is below
. The assignment of a channel among the feasible channels can

be based on strategies such as the clearest channel (the feasible
channel that has the least ), thenearestchannel (the feasible
channel with the largest ), and therandomallocation (any
of the feasible channels at random). The performances of all the
three strategies were simulated and compared by Varghese in
[10]. It was shown that their performance is similar. In our anal-
ysis, we consider the random channel-allocation scheme since
it is easier to analyze.

The difference between the admission-control strategy of the
centralized and distributed dynamic channel-allocation schemes
is as follows.

• In the centralized dynamic channel-allocation scheme, a
new call arriving at position in cell with the base sta-
tion positioned at a point can be allocated a channel
if the at is below the thresholdand if the at
all the other base stations located at in cell
that have a user positioned at using channel remain
below after admitting the call at . If such a channel
does not exist, then the call at is blocked. We redefine
the feasibility of a channel in cell for cellular systems
with centralized dynamic channel allocation as admissi-
bility of a call in cell on channel .

1In practice, power control is not performed in DECT. We perform our anal-
ysis for DECT-like systems with power control.
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Fig. 2. A 61-cell circular cellular system.

• In the distributed dynamic channel-allocation scheme, a
new call arriving at position in cell is alloted a channel

if the at is below threshold. If no such channel
is available, then the call at is blocked. However, ad-
mitting the call at on channel could cause the at
the base station of some cell, located at with
a user at position using channel to go above . In
such cases, the user at undergoes anintracell handoff,
whereby it is treated as a new call in cellor will try to
find some other channel to continue the call. If no such
channel is available, then the call at is dropped.

Blocking probability is defined as the probability that a new
call is blocked. We make the following assumptions in our
analysis.

• There are cells in the linear highway system of
length . All the cells have equal length , with the
base stations located at the center of each cell.

• There are cells in the circular cellular system. All
the cells have equal radiuswith the base stations located
at the center of each cell.

• There are channels available for allocation.
• The call-arrival process in any cell is a Poisson process

with mean arrival rate in each cell.
• The call-holding time in each cell is exponentially dis-

tributed with mean seconds.
• The position of the a newly arriving call in any cell is

uniformly distributed over the length of the cell for linear
highway systems and is uniformly distributed over the area
of the cell for circular cellular systems. The positions of
the calls in the system are statistically independent of each
other.

Fig. 3. An 18-cell linear highway system with the base stations located at the
center of each cell.

• The radio-frequency (RF) signal that propagates in the air
interface undergoes a short-term Rayleigh fading, a
long-term lognormal shadowing , and attenuation due
to the distance between the user and the base station. If
a power is transmitted by the user, then the power
received by the base station at a distanceaway from
the user is given by [11], [12], where

is a path-loss exponent that is taken to be four for our
analysis. We assume that the Rayleigh-fading term is av-
eraged out with . This is valid due to the large
holding times of voice calls [11], [12]. In linear highway
systems along the corridor of a building, we neglect the
loss due to shadowing and, hence, the loss of power is due
to distance attenuation alone. In linear highway systems
along a busy street and in circular cellular systems, the
loss due to shadowing, , is given by
where .

• The base station of a cell experiences significant from
users located at the neighboring cells alone, i.e., the two
immediate flanking cells for linear highway systems and
the first tier of neighboring cells for the circular cellular
system.

• No two calls in the same cell can use the same channel.
Hence, there is at most one call in every cell on a given
channel.

• The users have very low mobility or no mobility.
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Fig. 4. Markov chain model for the channel occupancy in a cell with centralized DCA.

III. PERFORMANCEANALYSIS

Consider an 18-cell linear highway system as shown in Fig. 3
and an 61-cell circular cellular system as shown in Fig. 2.

Let be the experienced at the base station of cellon
channel . Let denote the set of neighboring cells to cell. For
linear highway systems, , (

and ). For the circular cellular system,
is the first tier of cells neighboring cell (for example,

). Let be the number of significant interferers
to cell on channel . Since there is at most one call on every
channel, for linear highway systems and

for circular cellular systems.
Let the user in cell in the linear highway system occupy a

position , which has a coordinate . is a random variable
uniformly distributed in . In a linear highway system,
the distance between the user situated at a pointin cell and
the base station of cell , located at with coordinate , is
given by

(1)

In a circular cellular system, the distance between a user at posi-
tion in cell having coordinates and the base station

of cell with coordinates , is given by

(2)

and are random variables uniformly distributed over the
area of a circle of radius with center at . We define

as the probability that a channelcannot be used
in cell due to the presence of significant interferers. We
define as the probability that a channel is not feasible in cell.

is obtained by averaging over . If the probability
that a channel be used in cell is denoted by , then can

be modeled as a binomially distributed random variable with
probability mass function given by

otherwise
(3)

for linear highway systems and given by

otherwise
(4)

for circular cellular systems. is then given by

(5)

where for linear highway systems andmax

for circular cellular systems. We will use the value ofobtained
from (5) in Section III-C to compute the blocking probability.

A. Centralized Dynamic Channel Allocation

In cellular systems with Centralized Dynamic Channel Al-
location, we model the channel occupancy in any cellas a
two-tuple ( , ) of nonnegative integers where the state (, )
indicates that there are channels being used in cell(i.e.,
there are ongoing calls in cell , and channels are unus-
able because the at the base station of cellon those
channels are above the threshold. We model the state space of
( , ) as a 2-D continuous-time Markov chain (CTMC) with
transition rates as shown in Fig. 4. From Fig. 4, it is noted
that there exist transition rates of the form and , where

, . To compute and , we model the feasi-
bility of the channel in any cell as a two-state CTMC as shown
in Fig. 5. In Fig. 5, the “channel usable”state indicates that a
channel is feasible in that cell and the “channel not usable”state
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Fig. 5. Markov chain model for channel state in a cell.

indicates that a channel is not feasible in the cell. The proba-
bility that a channel is feasible is given by and that of a
channel not being feasible is given by, where is obtained
from (5). The CTMC shown in Fig. 5 is a simple model to ob-
tain the value of . To obtain the exact values ofand , one
must consider the exact of a channel (which can be mod-
eled as a continuous state space Markov chain) and obtain the
distribution of the state occupancy time [13]. However, we will
later show in (6) that the exact values ofand are not required
to compute the blocking probability and that the fraction is
sufficient. Therefore, the model shown in Fig. 5 is used for an-
alytical simplicity.

B. Distributed Dynamic Channel Allocation

In cellular systems with distributed dynamic channel alloca-
tion, the channel occupancy in a cell is modeled by a CTMC,
as shown in Fig. 6. The interpretation of state (, ) in Fig. 6
is the same as that in Fig. 4. The transition ratesand in
Fig. 6 mean the same as in Fig. 4, but their values differ in the
two CTMCs because the values ofdiffer for the centralized
and distributed dynamic channel-allocation schemes, as will be
explained in detail in Sections III–D-F. The CTMCs shown in
Fig. 4 and Fig. 6 are valid both for linear highway systems and
circular cellular systems, both with and without considering log-
normal shadowing. The difference occurs in the values of rates
and . The CTMC in Fig. 6 can be solved by the Reiman–Smith
procedure, given by Reiman and Smith in [15]. However, we
simplify the analysis by neglecting all transitions from states
( , ) to ( , ) to reduce the CTMC in Fig. 6 to one
similar to the CTMC shown in Fig. 4. This is valid because if the

on channel is close to the threshold, then the probability
that this channel is allocated to a new call in its neighboring cells
is very small. If the on channel is very small and much
below , then the probability of a new call in the neighboring
cell causing the on this channel to go above the threshold is
small. Hence, the event that a call on a particular channel leaves
the system is more likely due to a call departure than to an intra-
cell handoff. To compute the blocking probability, the CTMC
shown in Fig. 4 needs to be solved. We reemphasize that though
the CTMCs for the channel occupancy in each cell for cellular
systems with centralized and distributed dynamic channel allo-
cation can be made to looksimilar, they are not the same be-
cause the transition ratesand are different. The similarities
and differences are the same for linear and circular cellular sys-
tems with and without lognormal shadowing. The method to ob-
tain the blocking probability from the CTMC in Fig. 4 is given
below in Section III-C.

C. Blocking Probability

The steady-state probability of a state given state (, ),
, in the CTMC shown in Fig. 4 is given by [16]

otherwise
(6)

where and is a normalization term given by

(7)

To evaluate , the two state CTMC in Fig. 5 is solved to obtain

(8)

The probability that a channel is used in a cell is given by

(9)

The value of obtained from (9) is then used in (3) and (4) to
obtain from (5), which in turn is used to computeand, hence,

and, hence, . Therefore, by solving (3), (4), (5), (8),
(6), and (9) iteratively, can be obtained. The blocking
probability, , is given by

(10)

The value of obtained from (10) is also the value of the
handoff call-blocking probability in cellular systems with dis-
tributed dynamic channel allocation, since there is no priority
for handoff calls.

It is observed that, for large values of the number of chan-
nels , evaluating from (6) and (7) becomes compu-
tationally inefficient. Therefore, to evaluate efficiently
for large , recursive algorithms developed by Kaufman in [17]
are used.

The difference in the methods of computing for
linear and circular systems with and without lognormal shad-
owing lies in the way is evaluated, which, from (5), depends
upon . We derive expressions to evaluate
for linear highway systems with centralized and distributed
dynamic channel allocation without lognormal shadowing
in Section III-D, for linear highway system with distributed
dynamic channel allocation and lognormal shadowing in
Section III-E, and for circular cellular systems with distributed
dynamic channel allocation in Section III-F.

D. : Linear Highway Systems: No Lognormal
Shadowing

For any cell in the linear highway system, the experi-
enced at the base station of cell, on a channel conditioned
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Fig. 6. Markov chain model for the channel occupancy in a cell with distributed DCA.

on the positions of the users and neglecting power loss due
to lognormal shadowing is given by

(11)
In (11), . The terms in the summation in (11) are sta-
tistically independent of each other and, hence, the probability

is given by

(12)

where, if is the probability density function (pdf) of (1)
averaged over , then is a convolution of with
itself times. is given by

otherwise

(13)

For linear highway systems with distributed dynamic channel
allocation and neglecting power loss due to lognormal shad-
owing, is given by

(14)

where is given by (12). The value offor linear
highway systems with distributed dynamic channel allocation
and neglecting loss of power due to lognormal shadowing is
obtained by substituting (14) in (5).

For linear highway systems with centralized dynamic channel
allocation and neglecting power loss due to lognormal shad-
owing, is given by

(15)

where is given by (12). We obtain the value of
for linear highway systems with centralized dynamic channel

allocation and neglecting loss of power due to lognormal shad-
owing by substituting (15) in (5).

E. : Linear Highway Systems With Lognormal
Shadowing

For linear highway systems with distributed dynamic channel
allocation and with loss of power due to lognormal shadowing,

is given by

(16)

where and are given by (1) and ,
. and denote the loss of

power due to lognormal shadowing from the user in cellto the
base station of cell and the base station of cell, respectively.
Conditioned on the positions of the users, each term in the sum-
mation of (16) is lognormally distributed of the form
where . is given by

(17)
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Equation (14) is valid for linear highway systems with
distributed DCA when lognormal shadowing is also taken into
account. However, to evaluate , it is necessary to
obtain the pdf and cumulative distribution function (cdf) of

. To obtain the pdf and the cdf of , we approximate
the sum of lognormally distributed random variables by a
lognormally distributed random variable, as done by Fenton
in [14]. Making this approximation. is given by

(18)

where is the vector that contains posi-
tions of the interfering users to cell. In (18),

(19)

and if , then

(20)

and

(21)

The value of in (20) and (21) is given by (17).
The value of in (18) is substituted in (5) to obtain

the value of for linear highway systems with distributed dy-
namic channel allocation and considering the loss of power due
to lognormal shadowing.

F. : Circular Cellular Systems With Lognormal
Shadowing

For circular cellular systems, the base station of cellis po-
sitioned at with coordinates and a user in cell
is positioned at a point with coordinates . The expres-
sion for is then given by

(22)

where and are obtained from (2) and
, . Each term in the summation of (22) is a

lognormally distributed random variable of the form
where . is given by

(23)
As in Section III-E, the sum of lognormally distributed

random variables is approximated by a lognormally dis-
tributed random variable of the form , where

. and are given by (20) and (21),
respectively, and using the value of from (23). Averaging
over the positions of the users, is given by

(24)

where is the vector that contains
the coordinates of the interfering users to cell and

is the vector that contains the
coordinates of the interfering users to cell. It is observed from
(24) that for interferers, integrations have to be
performed to evaluate . This means that if ,
then 13 integrations will have to be performed. Therefore, we
simplify the analysis as follows.

Equation (24) was derived from the fact that the caused
by each of the interfering users to cell are independent of
each other. This follows from the system model that the loca-
tions of individual users are statistically independent of each
other. We make another assumption that the caused by
the interferers to cell are independent and identically dis-
tributed (i.i.d.). This assumption is valid due to the symmetry of
the system. By making this assumption, the expressions for
and can be rewritten as

(25)

and

(26)

can then be written as

(27)

It is noted from (27) that, irrespective of the value of, only
three integrations need to be performed to evaluate .
The value of from (27) is substituted in (5) to obtain
the value of for circular cellular systems with distributed dy-
namic channel allocation and loss of power due to lognormal
shadowing. is taken to be 6. From the value of, we
compute the values of blocking probability as explained in Sec-
tion III-C.

IV. RESULTS AND DISCUSSION

In this section, we present the numerical results for the
blocking probability obtained by our model and compare them
with simulations. We have considered the following values for
our computations: s , cells, cells,
and , 3 (this leads to a load of , 300
Erlangs per cell). The number of channelsvaries from
10, 20 300 for the linear highway system and 10, 20600
for the circular cellular system. (16 dB) for
linear highway systems and (17 dB) for circular
cellular systems. for circular cellular systems and
for linear highway systems and dB.
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Fig. 7. Blocking probability: Linear highway system with centralized DCA.N = 18 cells,� = 200 Erlangs per cell.

Figs. 7 and 8 present the blocking probability for linear
highway systems with centralized dynamic channel allocation
for and , respectively. The results obtained by
our analysis are compared with those obtained by simulations.
It is observed that the analytical results closely match those ob-
tained by simulations, thus validating the 2-D CTMC model for
channel occupancy in linear highway systems with centralized
dynamic channel allocation. The accuracy of our results also
justify the assumption that significant to a base station is
caused only by the users located in the neighboring cells alone.

Figs. 9 and 10 present the blocking probability for linear
highway systems with distributed dynamic channel allocation
and neglecting the loss of power due to lognormal shadowing.
Since the model is accurate for linear highway systems with dis-
tributed dynamic channel allocation, the approximation of the
CTMC shown in Fig. 6 to one similar to the CTMC shown in
Fig. 4 is valid. Note that the blocking probabilities for linear
systems with centralized and distributed dynamic channel allo-
cation are comparable. This was also observed by Ciminiet al.
in [9].

In Figs. 11 and 12, we present the blocking probability for an
18-cell linear highway system, taking into account the loss of
power due to lognormal shadowing. Once again, it is shown that
the analytical results closely match the simulations. This vali-
dates the application of Fenton’s method to compute .

In Fig. 13, we compare the blocking probability obtained by
our analysis with those obtained by simulations for a 61-cell
circular cellular system with centralized dynamic channel
allocation, including the loss of power due to lognormal shad-

owing. We compute for circular cellular systems
with centralized dynamic channel from (15) by substituting for

from (27) and replacing the upper limit for
by 6.

In Figs. 14 and 15, we present the results for the blocking
probability in circular cellular systems with distributed dynamic
channel allocation, including loss of power due to lognormal
shadowing. The comparison with simulations validate the ap-
proximation that the from the users.

It is also noted that the blocking probability for circular cel-
lular systems with distributed dynamic channel allocation is one
order of magnitude less than those with centralized dynamic
channel allocation. This is because, for the call to be accepted in
the centralized scheme, the at the base station of the cell in
which the call arrives, as well as the at the base stations of
all the neighboring cells must be below the specified threshold,
whereas in the distributed scheme, it is sufficient if the at
the base station of the cell in which the call arrives is below the
threshold. This result is encouraging because cellular systems of
the next generation are expected to have micro- and pico-cells,
where distributed dynamic channel allocation is a more feasible
option than centralized dynamic channel allocation.

The difference in the magnitudes of blocking probability is
not significant in linear highway systems. This is because the
number of neighboring cells to a cell in linear highway sys-
tems is two, whereas it is six in circular cellular systems. The
reduction in blocking probability in cellular systems with dis-
tributed DCA is penalized in the form of call dropping. Since we
have not given any priority for ongoing calls in our analysis for
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Fig. 8. Blocking probability: Linear highway system with centralized DCA.N = 18 cells,� = 300 Erlangs per cell.

Fig. 9. Blocking probability: Linear highway system with distributed DCA,N = 18 cells,� = 200 Erlangs per cell. Lognormal shadowing neglected.
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Fig. 10. Blocking probability: Linear highway system with distributed DCA,N = 18 cells,� = 300 Erlangs per cell. Lognormal shadowing neglected.

Fig. 11. Blocking probability: linear highway system with distributed DCA,N = 18 cells,� = 200 Erlangs per cell. Lognormal shadowing included.
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Fig. 12. Blocking probability: linear highway system with distributed DCA,N = 18 cells,� = 300 Erlangs per cell. Lognormal shadowing included.

Fig. 13. Blocking probability: circular cellular system with centralized DCA,N = 61 cells,� = 200 Erlangs per cell.
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Fig. 14. Blocking probability: circular cellular system with distributed DCA,N = 61 cells,� = 200 Erlangs per cell.

Fig. 15. Blocking probability: circular cellular system with distributed DCA,N = 61 cells,� = 300 Erlangs per cell.
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blocking probability, the blocking probability computed as in
Section III-C is also the probability of dropping the handed-off
calls.

Equation (13) shows that the value of and, hence,
is independent of the value ofand . Similarly,

from (18) and (27), it can be observed that the values in the
numerator and denominator are weighted by the same order
for various values of and . Hence, the value of blocking
probability is invariant to changes in the cell dimensions for
both the linear highway and circular cellular systems in the
presence of lognormal shadowing. Since we have considered
significant to be caused only by the users present in the
immediate neighboring cells, the blocking probability is also
invariant to the number of cells. Hence, our analysis can be
applied to large systems (in terms of number of cells) and
obtains accurate results efficiently.

V. CONCLUSION

We devised an analytical model to compute the blocking
probability for linear highway and circular cellular systems
with centralized and distributed dynamic channel allocation.
We showed that our model is accurate. The analysis can be
extended to the downlink of cellular systems with DCA.
Our approach can also be applied to wireless data networks
incorporating the effects of the Rayleigh fading and to systems
without power control. Our analysis can be extended to eval-
uate quality-of-service parameters such as the mean delay and
the average system throughput in OFDM-based 4G cellular
systems [18], [19] with dynamic packet assignment.
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