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Quantizer Design for Channel Codes With
Soft-Output Decoding

Jan Bakus and Amir K. Khandani, Member, IEEE

Abstract—A new method of combined source-channel coding
for the scalar quantization of a discrete memoryless source is
presented, which takes advantage of the reliability information
produced by a soft-output channel decoder. Numerical results are
presented for a memoryless Gaussian source in conjunction with
turbo code showing up to 1-dB improvement in the end-to-end
distortion with respect to a traditional channel optimized scalar
quantizer. The results include a Gaussian source designed using
closed-form expression without the need for a training sequence,
as well as image pixels using a training sequence. Furthermore,
certain issues related to the effect of the channel mismatch and
spectral efficiency of the system are studied. It is shown that the
increase in distortion due to a channel mismatch can be substan-
tially reduced by using an adaptive receiver.

Index Terms—Quantization, soft-output decoding, turbo code.

I. INTRODUCTION

OPTIMUM fixed-rate scalar quantizers, introduced by Max
[1] and Lloyd [2], minimize the average distortion for

a given number of threshold points. This approach was later
extended by Linde et al. to vector quantizer [3]. The original
Lloyd–Max algorithm does not consider the effect of channel
noise. Kurtenbach and Wintz were among the first researchers
who investigated the effect of the channel noise in a quantiza-
tion system [4].

In [5], Farvardin and Vaishampayan presented an algorithm
based on the Lloyd–Max algorithm for the quantizer design
over a noisy channel resulting in the so called channel-opti-
mized scalar quantizer (COSQ). The COSQ algorithm was fur-
ther extended by the same researchers to vector sources in [6]
and [7], which is known as the channel-optimized vector quan-
tizer (COVQ).

One of the first attempts to design a quantizer with soft recon-
struction decoding was made by Vaishampayan and Farvardin
by extending the COVQ design algorithm to include the mod-
ulation signal set [8]. Another approach to soft reconstruction
was proposed by Phamdo and Alajaji, who applied the COVQ
algorithm to the case that the demodulator output is uniformly
quantized to allow for a soft-decision decoding [9], [10]. This
increases the number of channel output symbols and results in
a finer reconstruction than the classical COVQ. This approach

Manuscript received June 10, 2002; revised November 24, 2003, July 17,
2004, and October 7, 2004. This work was supported in part by Communica-
tions and Technology Ontario (CITO). The review of this paper was coordinated
by Prof. J. Shea.

J. Bakus is with Maplesoft, Waterloo, ON, N2V 1K8 Canada.
A. K. Khandani is with the University of Waterloo, Waterloo, ON, N2L 3G1

Canada.
Digital Object Identifier 10.1109/TVT.2004.841557

has successfully been used by Zhu and Alajaji [11] to design a
COVQ for the turbo-code channel.

In [12] and [13], Skoglund and Hedelin study the vector quan-
tization problem and present a soft decoder that is optimal in
the mean-square sense and discuss rules to design the corre-
sponding quantizer and reconstructor pair. This method is fur-
ther adapted for image transmission [14], multiuser decoding
[15], and channels with memory [16]. The algorithms based
on Lloyd–Max quantizers are essentially gradient descent algo-
rithms, which are not guaranteed to result in a global minimum.
Some nondeterministic techniques have been proposed to deal
with this; for example, deterministic annealing [17] and noisy
channel relaxation [18]. An overview of such probabilistic tech-
niques can be found in [19].

Ho [20] uses the reliability information and the same soft
reconstruction rule as in this work. The design algorithm is
based on the iterative COVQ and the effects of the channel noise
are incorporated by transmitting the encoded training sequence
through a turbo-code channel at every iteration. In our approach,
we capture the effect of the turbo code in a model and design the
quantizer using this model. Several other works have been de-
voted to using turbo code as part of a combined source-channel
coding system for image transmission [21], [22] combining the
JPEG standard [23] with channel coding by turbo code.

This work studies the transmission of a discrete time con-
tinuous amplitude signal over a noisy channel using a scalar
quantizer in conjunction with a channel-coding scheme that re-
lies on a soft-output channel decoder.1 An improvement in the
end-to-end quantization distortion is achieved by providing a
soft reconstruction rule using the reliability information gen-
erated by the soft-output channel decoder. The corresponding
quantization and reconstruction rules are iteratively optimized
using a procedure similar to the Lloyd–Max algorithm [1], [2].

The main contribution of this paper is to formulate these two
basic principles explicitly for the case of a scalar quantizer and
a channel decoder producing analog (unquantized) bit log like-
lihood ratio (LLR) values. The main differences between this
paper and our earlier related work [26], [27] are: 1) improve-
ment in the reconstruction level design by solving a system of
linear equations and 2) using closed-form expressions to design
the quantizers for the Gaussian distributed samples (instead of
a training sequence).

This paper is organized as follows. Section II outlines the
overall system including the design procedure for the quantizer
and reconstructor. This is followed by several models for the

1A soft-output channel decoder can be efficiently implemented by applying
the BCJR algorithm [24] to the trellis diagram of the code with iterations be-
tween decoders in the case of turbo code [25].
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Fig. 1. System block diagram.

behavior of the channel-coding structure. Section III presents
some numerical results for a memoryless Gaussian source in
conjunction with turbo code. This includes a study of certain is-
sues related to the effect of the channel mismatch and spectral
efficiency of the system. Finally, the summary is given in Sec-
tion IV.

II. SYSTEM OVERVIEW

The block diagram of the system is shown in Fig. 1. The scalar
quantizer maps the input sample to a quantizer partition

and each quantizer partition is represented
by a binary code word composed of bits
each, where . Note that as the channel noise increases
some of the quantizer partitions may be empty and, therefore,
fewer than code words would be used. At the receiver side, for
each transmitted code word , the soft-output decoder produces
a reliability information vector composed of log likelihood
ratio (LLR) values. The reconstructor maps the reliability
information vector to an output sample .

For each bit , the turbo decoder provides us with the LLR
value defined as

channel output
channel output

(1)

where the channel output is the entire received sequence for
one block. The LLR value can be used to calculate the bit
a posteriori probability according to [28]

(2)

The encoder, noisy channel, and decoder can be considered as
an equivalent channel with input and output , as shown
in Fig. 1. The turbo-decoding algorithm is based on bit inter-
leaving, which results in a memoryless channel.

Given a source sample drawn from a source sample dis-
tribution that is encoded in partition has the resulting
distortion as

(3)

where

(4)

The structure of the quantizer is captured in the quantities
and given in (4). The optimal partition for the sample is
given by

(5)

The overall distortion for the entire system is given by

(6)

We examine two approaches to reconstruct the sample. The
output sample is reconstructed with either hard reconstruc-
tion rule or soft reconstruction rule.

A. Hard Reconstruction Rule

The hard reconstruction rule selects the code word that is
most likely transmitted and outputs the corresponding recon-
struction level. Systems with this reconstruction rule are well
established in the literature [1], [2], [4]–[7]. The hard noiseless
channel [1], [2] model ignores the effect of the channel noise,
such that the quantities and in (4) become

(7)

and the reconstruction level is given by

(8)

The hard binary symmetric channel [5] models the channel
as a binary symmetric channel with a crossover probability .
With this model, the quantities and in (4) become

(9)

and the reconstruction level is given by

(10)
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As the channel noise increases, one of the consequences is that
not all partitions are used in the quantizer, which causes no prob-
lems in (10). However, since can be nonzero for
the empty partitions, valid reconstructor levels are required for
all partitions (including the empty ones).

B. Soft Reconstruction Rule

The soft reconstruction rule generates the reconstructed
sample as a sum of the code word probabilities multiplied with
their corresponding reconstruction levels, i.e.,

(11)

Using this soft-decision model, the parameters and are
given by

(12)

where

(13)

The optimal reconstruction level corresponds to the minimum
mean-square error (mmse) estimator , which
leads to

(14)

One of the characteristics of this design approach is that as
the channel noise increases some of the partitions may be left
empty, i.e., . As a consequence of this, the value

is undefined for those empty partitions. One way
to deal with this is to assign the value to the empty parti-
tions, resulting in

(15)

We refer to this case as the expected value, which was presented
in [26].

In this work, we present a different approach to deal with
the empty partitions that is based on minimizing the average
distortion in (6) through setting its derivative with respect to

, equal to zero. This results in equations
in terms of the reconstruction levels

(16)

where . By substituting and from (12), we
obtain a set of linear equations

(17)

where . This set of linear equations can be ex-
pressed in matrix form as

...
...

. . .
...

... (18)

where

(19)

The solutions to this set of equations result
in the optimal reconstruction levels. Note that, in the case of no
empty partitions, i.e., , this system of equa-
tions is equivalent to the expected value case in (15). We refer
to this case as the system of equations and we show numerically
that, in the case of empty partitions, it performs better than the
expected value case. The derivation of this system is presented
in the Appendix.

Note that the existence of empty partitions cannot be captured
in our channel model because the basic assumption is that the
conditional symbol probabilities are computed by multiplying
the conditional probabilities of their bit components. This is a
crucial ingredient of the turbo-decoding algorithms based on
bit interleaving. This model “cannot capture” the effect of the
empty partitions because the probabilities of the symbols (com-
puted by multiplying the probabilities of their bit components)
will be always nonzero. In other words, using the bit indepen-
dence assumption and (2), one obtains a nonzero probability

even for an empty partition . The presented
formulation accounts for this effect in a proper manner.

C. Channel-Parameters Estimation

The two sets of parameters, and , capture
the characteristics of the channel with soft reconstruction
rule. The indexes and denote the individual code words
and are computed for all possible code word
combinations. To calculate these parameters, we first compute
the single bit versions and where

(20)
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The indexes , and in (20) can take the binary values 0 or
1. The two quantities are evaluated for all possible bit combina-
tions, resulting in four different values for and eight dif-
ferent values for . Using the independence assumptions,
the set of parameters and are calculated by mul-
tiplying their single bit components, i.e., and .

In order to estimate the channel parameters and
, the equivalent channel in Fig. 1 is replaced by a

reliability information channel model. This channel is based
on the assumption that the equivalent channel model outputs a
reliability information value for each input bit

, where . We define the reliability information
variables and as

(21)

At each time step, the values and are different depending
on the channel noise, transmitted bit, and the decoding algo-
rithm and, therefore, we can treat them as random variables with
a probability density function (pdf) of and , respec-
tively. Equation (2) is functions that map to and as

(22)

Since these two functions are strictly monotone, we can define
the relationship between the pdf of and the pdf of and .

(23)

Conditioning both sides of the equation on results in

(24)

Substituting (21), (24) in (20) results in

(25)

The quantity is measured by passing a test bit
stream through the channel and observing the channel output.

The quantity is calculated by defining four random
variables as

(26)

Similarly, we define the relationship between the pdf of and
the pdf of as

(27)

Conditioning both sides on results in

(28)

Finally, substituting (26), (28) in (20) results in

(29)

The quantity is also measured by passing a test
bit stream through the channel and observing the output. Using
the parameters and , we calculate the parameters

and and design the quantizer as outlined before.

III. NUMERICAL RESULTS

A. Simulation Setup

The proposed quantization scheme has been simulated for an
independent and identically distributed (i.i.d.) Gaussian input.
The channel is additive white Gaussian noise (AWGN) with bi-
nary phase-shift keying (BPSK) modulation.2 The quantizers are
designed and tested with a turbo code with a block length of
10 000 bits. The turbo codes presented use an -random inter-
leaver [29] with and the number of iterations for the
turbo decoder is equal to 5. The main simulation is performed
using a rate turbo code, composed of two component codes
with memory elements, forward polynomial (101) and
backward polynomial (111). The BER curve for this code are
shown in Fig. 2(a).

To show the tradeoff between the source and channel coding,
some simulations are also performed with rates , and

turbo code. The turbo code used for these simulations has
memory elements and block length of 10 000 bits. To

generate the different rates, the basic turbo-code structure has
been modified by replacing each of the component codes with a
pair of encoders. The two encoders in each pair have the forward
polynomials (1011), (1111) and the same backward polynomial
(1101), as well as different coding rates achieved by puncturing
the encoder outputs. The BER curves for these codes using a
block length of 10 000 are shown in Fig. 2(b).

The total of four different quantizers are designed and tested,
as listed in Table I. The first quantizer is the classical Lloyd–
Max quantizer designed assuming noiseless channel and tested
over a noisy channel with hard decision rule. The channel-op-
timized quantizer is designed for the noisy channel and tested
with a hard decision rule. Two soft-decision rule quantizers are
designed using the reliability information channel. The first is
designed using the expected value in (33) to calculate the re-
construction levels (where the undefined reconstruction levels

2The specific model of AWGN channel with BPSK modulation is used as
a framework to present numerical results. However, the quantization methods
proposed are general and can be used in conjunction with other channel models
and/or modulation schemes.
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Fig. 2. BER curves for turbo-code channel coding. (a) M = 2, rate 1=3; N = 10000. (b) M = 3; N = 10000.

TABLE I
QUANTIZERS TESTED

are selected as the mean of the source sample distribution),
while the second one uses the system of equations in (17).

To reduce the impact of the initialization, the code words are
initialized randomly and the best of 100 designs is chosen. In
each case, the quantizer and reconstructor design algorithms are
iterated until the relative change in the mean-square error (mse)
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Fig. 3. SNR (SNR) for 3- and 5-bit quantizers with rate 1=3 turbo code withM = 2 memory elements. (a) Three-bit quantizers. (b) Five-bit quantizers.

is less that . Since the source sample distribution is known
to be Gaussian, the quantizers are designed with the closed-form
expression without the use of a training sequence.

B. Quantizer Results

The results for 3- and 5-bit quantizers are shown in Fig. 3. As
expected, the Lloyd–Max quantizer operating with hard recon-
struction rule results in the worst performance. The channel-op-
timized quantizer also uses a hard reconstruction rule; how-

ever, the design takes the effect of the channel noise into ac-
count and the performance is substantially improved. The soft
reconstruction quantizers offer an improvement over both of the
hard reconstruction quantizers. Of the two soft-decision quan-
tizers, the system of equations design performs better than the
expected value design. Fig. 4 shows the effect of using soft re-
construction rule with the Lloyd–Max and channel-optimized
quantizers, where the performance of both quantizers is im-
proved using the soft reconstruction rule.
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Fig. 4. SNR for 3- and 5-bit Lloyd–Max and channel-optimized quantizers using hard and soft reconstruction rules with rate 1=3 turbo code withM = 2memory
elements. (a) 3 bit quantizers, (b) 5 bit quantizers.

The soft-decision quantizer is designed using both the
system of equations in (17) and the expected value in (33).
During the design, the algorithm relies on the assumption that

the bits within a code word are independent of each other.
However, in practice, this assumption is not entirely valid.
To improve the independence assumption, the entire block of
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Fig. 5. Soft-decision quantizer with rate 1=3 turbo code with M = 2 memory elements, illustrating the effect of interleaving the quantized bits before channel
coding. (a) Quantizer designed with system of equations. (b) Quantizer designed with expected value.

10 000 bits is interleaved with an -random interleaver before
encoding with turbo code. Fig. 5 shows the effect of inter-
leaving the bits before the channel code and an improvement
in performance is achieved for both of the soft-decision quan-
tizers. The results shown in Fig. 6 indicate that the quantizer
designed with the system of equations offers an improvement

over the expected value in both cases with and without inter-
leaving of the bits.

C. Channel Mismatch

All the quantizers presented in this paper operate under the
assumption that the channel noise level is known and does not
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Fig. 6. Soft-decision quantizer with rate 1=3 turbo code with M = 2 designed with the system of equation and expected value methods. (a) Quantizer with no
bit interleaving. (b) Quantizer with bit interleaving.

change during the transmission. In practice, the channel noise
level fluctuates over time and Fig. 7 shows the effect of such
mismatch for the 5-bit quantizers. The curve labeled fully op-
timized corresponds to the case that the quantizer and recon-

structor are designed to match the operating channel-noise level.
The curve labeled not optimized corresponds to the case that the
quantizer is designed for dB and operated at dif-
ferent channel noise levels.
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Fig. 7. Channel mismatch for the channel-optimized and soft-decision
(expected value and system of equations) quantizers with rate 1=3 turbo code
with M = 2. (a) hard decision channel optimized. (b) Soft decision (expected
value). (c) Soft decision (system of equations).

In another variation, the quantizer is designed for a fixed noise
level; however, at the last step, the decoder is recalculated for the
actual noise level, which results in a class of quantizers with the

same quantizer and different reconstructors. This is done by de-
signing the quantizer for dB and at the last step
the reconstructor is tuned to a particular value of using
one of (10), (14), and (16) (depending on the system that is being
designed) with the values of the parameters and
that correspond to the (tuned to) value of the . This situ-
ation is shown with the curve labeled reconstructor optimized.
This situation is realistic because a soft-output channel decoder
(including a turbo decoder) usually assumes knowledge of the
channel noise variance and the reconstructor structure can be
adjusted accordingly.

Fig. 7(a) shows the channel mismatch for the 5-bit channel-
optimized quantizer with a rate turbo code. At

dB, the mismatch results in a 4.2-dB degradation in the
sample SNR from the fully optimized case and the adaptive re-
constructor reduces this degradation to 3.4 dB. Fig. 7(b) shows
the channel mismatch for the 5-bit soft-decision quantizer de-
signed with expected value. The sensitivity to the mismatch at

dB is 4.0 dB; however, since the reconstructor de-
sign in (33) is independent of the noise level, no further gain can
be achieved with reconstructor optimization. Fig. 7(c) shows the
channel mismatch for the 5-bit soft-decision quantizer designed
with the system of equations. The distortion at dB
is 4.5 dB below the fully optimized case; however, it is 0.3 dB
better than the soft-decision quantizer designed with expected
value. Optimizing the reconstructor further improves the distor-
tion by 0.3 dB.

D. Quantization of Images

To show the effect of the different design algorithms, we de-
signed the quantizer to encode image pixels. The quantizers
were designed using 18 images and tested using the 256 256
Lena image. Four different quantizers were tested, Lloyd–Max
and channel-optimized quantizers with hard decision rule and
the expected value and system of equations with the soft-deci-
sion rule.

Fig. 8 shows the SNR for the quantizer using 5-bit code
words for different values. We see up to a 1-dB im-
provement of the system of equation relative to expected value
soft-decision and the channel-optimized quantizer. Fig. 10.
shows the images for the four different quantizers encoded at
5 bits and transmitted over a channel with dB.
Fig. 9 shows the Lena image encoded using discrete cosine
transform using 4 4 blocks, where only the DC coefficients
were encoded using 5-bit quantizers and transmitted over a
channel with dB.

Figs. 9(a) and 10(a) show the Lloyd–Max quantized image
and we see that the images have a significant salt-and-pepper
noise present. Figs. 9(b) and 10(b) show the quantizer with bi-
nary symmetric channel. The images show that the salt-and-
pepper noise is still present, but is reduced. Figs. 9(c) and 10(c)
show the soft quantizer with the reconstruction levels calculated
as the expected value. The amount of noise is reduced compared
to the Lloyd–Max quantizer. Figs. 9(d) and 10(d) show the soft
quantizer with the reconstruction levels. These images show the
least amount of noise present. Therefore, the soft reconstruction
quantizer with system of equations seems to be the best suited
for image coding.
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Fig. 8. SNR for the 256� 256 Lena image quantized with 5-bit quantizers.

Fig. 9. Quantization and coding of the 256� 256 Lena image with only the DC coefficients of the DCT transform with 4� 4 blocks using a 5-bit quantizer with
the channel noise of E =N = 0:4 dB. (a) Lloyd–Max algorithm. (b) Binary symmetric. (c) Soft (expectation). (d) Soft (system of equation).
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Fig. 10. Quantization and coding of the 256� 256 Lena image using a 5-bit quantizer with the channel noise of E =N = 0:2 dB. (a) Lloyd–Max algorithm.
(b) Binary symmetric. (c) Soft (expectation). (d) Soft (system of equation).

IV. SUMMARY

We have discussed a new method of combined source-
channel coding using turbo codes or, more generally, a channel
code with reliability information. A system is presented that
transmits a discrete time, continuous amplitude signal over a
noisy channel. The transmitted samples are encoded using a
fixed rate scalar quantizer and turbo-code channel coding is
used for error correction. The system performance is improved
by using a soft reconstruction of samples using the reliability
information available at the channel decoder. The performance
of the presented quantizers has been shown to be up to 1.0 dB
better than the channel optimized scalar quantizer. The effect
of the tradeoff between the rates allocated to the source and
channel coders, as well as the effect of the channel mismatch,
are studied. It is shown that the increase in distortion due to a
channel mismatch can be reduced from approximately 3.5 dB
to approximately 1.5 dB with an adaptive receiver.

APPENDIX

Consider the definition of the overall distortion given in (6).
This average distortion is minimized by setting its derivative

with respect to , equal to zero. This results
in equations in terms of the reconstruction levels

(30)

where . To optimize the system for a soft-decision
quantizer with reconstruction function given in (11), we substi-
tute and defined in (4) to obtain a set of linear equations
in (17), restated here as

(31)

where . By a direct replacement of (13) into (31)
and using the identity

for (32)

the set of (17) simplifies to the trivial case where the reconstruc-
tion level is equal to expected value of the source samples in
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the corresponding partition , i.e., . How-
ever, this requires all the partitions to be nonempty in order to
use the identity in (32), i.e.,

if (33)

As the channel noise increases, some of the quantizer partitions
become empty. In mathematical terms, the th partition will be
empty if for all inputs , we have

such that (34)

where are given in (2). Note that such empty par-
titions are decided by the design algorithm to optimize the overall
performance and should not be confused with the cases of having
empty partitions due to using a small training data sequence.

This situation arises because the known turbo-decoding algo-
rithms are based on multiplying the probability of the bits to com-
pute the probability of the symbols (note that the iterative turbo-
decoding operation is heavily dependent on this independence
assumption). Due to this feature, the reconstruction levels should
be optimized in each step of the iterative design algorithm, taking
into account that some of the partitions may be empty. The pre-
sented system of equations computes these reconstruction levels
( ’s) in an optimum manner for the given iteration.
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