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Abstract

We consider the problem of quality of service (QoS) provisioning for K users sharing a downlink time-
slotted fading channel. We develop simple and efficient schemes for admission control, resource allocation,
and scheduling, which can yield substantial capacity gain. The efficiency is achieved by virtue of recently
identified multiuser diversity. A unique feature of our work is explicit provisioning of statistical QoS, which
is characterized by a data rate, delay bound, and delay-bound violation probability triplet. The results show
that compared with a fixed-slot assignment scheme, our approach can substantially increase the statistical
delay-constrained capacity of a fading channel (i.e., the maximum data rate achievable with the delay-bound
violation probability satisfied), when delay requirements are not very tight, while yet guaranteeing QoS at
any delay requirement. For example, in the case of low signal-to-noise-ratio (SNR) and ergodic Rayleigh
fading, our scheme can achieve approximately Ele % gain for K users with loose-delay requirements, as
expected from the classic paper [10] on multiuser diversity. But more importantly, when the delay bound
is not loose, so that simple-minded multiuser-diversity scheduling does not directly apply, our scheme can
achieve a capacity gain, and yet meet the QoS requirements.
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1 Introduction

Providing quality of service (QoS), such as delay and rate guarantees, is an important objective
in the design of future packet cellular networks [8]. However, this requirement poses a challenge
in wireless network design, because wireless channels have low reliability, and time varying signal
strength, which may cause severe QoS violations. Further, the capacity of a wireless channel is
severely limited, making efficient bandwidth utilization a priority.

An effective way to increase the capacity of a time-varying channel is the use of diversity. The
idea of diversity is to create multiple independent signal paths between the transmitter and the
receiver so that higher channel capacity can be obtained. Diversity can be achieved over time,
space, and frequency. These traditional diversity methods are essentially applicable to a single-user
link. Recently, however, Knopp and Humblet [10] introduced another kind of diversity, which is
inherent in a wireless network with multiple users sharing a time-varying channel. This diversity,
termed multiuser diversity [6], comes from the fact that different users usually have independent
channel gains for the same shared medium. With multiuser diversity, the strategy of maximizing
the total Shannon (ergodic) capacity is to allow at any time slot only the user with the best channel
to transmit. This strategy is called Knopp and Humblet’s (K&H) scheduling. Results [10] have
shown that K&H scheduling can increase the total (ergodic) capacity dramatically, in the absence
of delay constraints, as compared to the traditionally used (weighted) round robin (RR) scheduling
where each user is a priori allocated fixed time slots.

The K&H scheduling intends to maximize ergodic capacity, which pertains to situations of
infinite tolerable delay. However, under this scheme, a user in a fade of an arbitrarily long period
will not be allowed to transmit during this period, resulting in an arbitrarily long delay; therefore,
this scheme provides no delay guarantees and thus is not suitable for delay-sensitive applications,
such as voice or video. To mitigate this problem, Bettesh and Shamai [2] proposed an algorithm,
which strikes a balance between throughput and delay constraints. This algorithm combines K&H
scheduling with an RR scheduling, and it can achieve lower delay than K&H scheduling while
obtaining a capacity gain over a pure RR scheduling. However, it is very complex to theoretically
relate the QoS obtained by this algorithm to the control parameters of the algorithm, and thus
cannot be used to guarantee a specified QoS. Furthermore, a direct (Monte Carlo) measurement
of QoS obtained, using the queueing behavior resulting from the algorithm, requires an excessively
large number of samples, so that it becomes practically infeasible.

Another typical approach is to use dynamic programming [3] to design a scheduler that can
increase capacity, while also maintaining QoS guarantees. But this approach suffers from the curse
of dimensionality, since the size of the dynamic program state space grows exponentially with the
number of users and with the delay requirement.

To address these problems, this paper proposes an approach, which simplifies the task of explicit
provisioning of QoS guarantees while achieving efficiency in utilizing wireless channel resources.
Specifically, we design our scheduler based on K&H scheduling, but shift the burden of QoS pro-
visioning to the resource allocation mechanism, thus simplifying the design of the scheduler. Such



a partitioning would be meaningless if the resource allocation problem now becomes complicated.
However, we are able to solve the resource allocation problem efficiently using the recently devel-
oped method of effective capacity [22]. Effective capacity captures the effect of channel fading on
the queueing behavior of the link, using a computationally simple yet accurate model, and thus, is
the critical device we need to design an efficient resource allocation mechanism.

Our results show that compared to RR scheduling, our approach can substantially increase the
statistical delay-constrained capacity (defined later) of a fading channel, when delay requirements
are not very tight. For example, in the case of low signal-to-noise-ratio (SNR) and ergodic Rayleigh
fading, our scheme can achieve approximately Zszl % gain for K users with loose-delay require-
ments, as expected from [10]. But more importantly, when the delay bound is not loose, so that
simple-minded K&H scheduling does not directly apply, our scheme can achieve a capacity gain,
and yet meet the QoS requirements.

The remainder of this paper is organized as follows. In Section 2, we discuss multiuser diversity
and the recently introduced concept of effective capacity. Multiuser diversity, using K&H schedul-
ing, is our key technique to increase capacity, while effective capacity is our critical device for QoS
provisioning over a K&H scheduled wireless channel. Section 3 presents efficient QoS provisioning
mechanisms and shows how to use multiuser diversity to achieve a performance gain while yet
satisfying QoS constraints. In Section 4, we present the simulation results that demonstrate the
performance gain of our scheme. Section 5 discusses the related work. In Section 6, we conclude
the paper and point out future research directions.

2 Multiuser Diversity with QoS Constraints

In this section, we quantitatively discuss the performance gain obtained by multiuser diversity and
describe the technique of effective capacity.

2.1 Multiuser Diversity

We first describe the model. Fig. 1 shows the architecture for scheduling multiuser traffic over a
fading (time-varying) time-slotted wireless channel. A cellular wireless network is assumed, and
the downlink is considered, where a base station transmits data to K mobile user terminals, each
of which requires certain QoS guarantees. The channel fading processes of the users are assumed to
be stationary, ergodic and independent of each other. A single cell is considered, and interference
from other cells is modelled as background noise. In the base station, packets destined to different
users are put into separate queues. We assume a block fading channel model [4], which assumes
that user channel gains are constant over a time duration of length T (7 is assumed to be small
enough that the channel gains are constant, yet large enough that ideal channel codes can achieve
capacity over that duration). Therefore, we partition time into ‘frames’ (indexed as ¢t = 0,1,2,...),
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Figure 1: Downlink scheduling architecture for multiple users sharing a wireless channel.

each of length T,. Thus, each user k has a time-varying channel power gain' g (t),k = 1,..., K,
which varies with the frame index t. The base station is assumed to know the current and past
values of gi(t). The capacity of the channel for the k' user, cx(t), is

ck(t) = logy(l+ gi(t)) bits/symbol (1)

We divide each frame of length T into infinitesimal time slots, and assume that the channel can be
shared by several users, in the same frame. Further, we assume a fluid model for packet transmission,
where the base station can allot variable fractions of a channel frame to a user, over time. The
system described above could be, for example, an idealized time-division multiple access (TDMA)
system, where the frame of each channel consists of TDMA time slots which are infinitesimal. Note
that in a practical TDMA system, there would be a finite number of finite-length time slots in each
frame.

To provide QoS guarantees, we propose an architecture, which consists of scheduling, admission
control, and resource allocation (presented in Section 3). Since the channel fading processes of the
users are assumed to be independent of each other, we can potentially utilize multiuser diversity to
increase capacity, as mentioned in Section 1. Thus, to mazimize the ergodic capacity (i.e., in the
absence of delay constraints), the (optimal) K&H schedule at any time instant ¢, is to transmit the
data of the user with the largest gain gx(¢) [10]. The ergodic channel capacity achieved by such
a K&H scheduler is ¢, = E[max|ci(t), ca(t), - ,cx(t)]]. The ergodic channel capacity gain of
the K&H scheduler over a RR scheduler is ¢a./E[c1(t)]. The following proposition specifies the
ergodic channel capacity gain achieved by the K&H scheduler.

Proposition 1 Assume that the K users in the system have i.i.d. channel gains, which are station-
ary processes in time t. For Rayleigh fading channels (i.e., having exponentially-distributed channel
power gains), at low SNR, we have the approximation, cmag/E[c1(t)] ~ Zleé ~ log(K + 1) for
large K.

Lgr(t) = |hk(t)|*Po/o?, where the maximum transmission power Py and noise variance o are assumed to be

constant and equal for all users. hy(t) is the voltage gain of the channel for the k" user.
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Figure 2: Delay D(t) due to mismatch between the arrival and departure.

For a proof of Proposition 1, see Appendix. At high SNR, the ergodic channel capacity gain is
smaller.

Notice that K&H scheduling can result in a user experiencing an arbitrarily long duration of
outage, because of its failure to obtain the channel. Thus, it becomes important to efficiently
compute the QoS obtained by the user, in a K&H scheduled system. A direct approach may
be to model each gi(t) as a Markov process, and analyze the Markov process resulting from the
K&H scheduler. It is apparent that this direct approach is computationally intractable, since the
large state space of the joint Markov process of all the users would need to be analyzed and the
complexity of this queueing analysis is exponential in the number of users. In essence, the main
contribution of this paper is to show that we can compute the QoS obtained by the user, in a K&H
scheduled system, efficiently and accurately, using the concept of effective capacity.

2.2 Effective Capacity

We first formally define statistical QoS, which characterizes the user requirement. First, consider
a single-user system, where the user is allotted a single time varying channel (thus, there is no
scheduling involved). Assume that the user source has a fixed rate rs and a specified delay bound
Dinaz, and requires that the delay-bound violation probability is not greater than a certain value
€, that is,

sgp Pr{D(t) > Dz} <, (2)

where D(t) is the delay experienced by a source packet arriving at time ¢ (see Fig. 2), and Pr{D(t) >
Dz} is the probability of D(t) exceeding a delay bound D,,.,. Then, we say that the user
is specified by the (statistical) QoS triplet {rs, Dyaz,e}. Even for this simple case, it is not
immediately obvious as to which QoS triplets are feasible, for the given channel, since a rather
complex queueing system (with an arbitrary channel capacity process) will need to be analyzed.
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The key contribution of [22] was to introduce a concept of statistical delay-constrained capacity
termed effective capacity, which allows us to obtain a simple and efficient test, to check the feasibility
of QoS triplets for a single time-varying channel. That paper did not deal with scheduling and the
channel processes resulting from it.

In this paper, we show that the effective capacity concept can be applied to the K&H scheduled
channel, and is precisely the critical device that we need to solve the QoS constrained multiuser
diversity problem. Therefore, we briefly explain the concept of effective capacity, and refer the
reader to [22] for details.

Let r(t) be the instantaneous channel capacity at time ¢t. The effective capacity function of r(t)
is defined as [22]
1
a(u) = — lim P log E[e_“f(;5 T(T)dT], Vu>0. (3)

t—oo U

In this paper, since t is a discrete frame index, the integral above should be thought of as a
summation.

Consider a queue of infinite buffer size supplied by a data source of constant data rate p (see
Fig. 3). It can be shown [22] that if a(u) indeed exists (e.g., for ergodic, stationary, Markovian
r(t)), then the probability of D(t) exceeding a delay bound D,,,, satisfies

sup Pr{D(t) > Dpas} ~ e 0 Pmaz_ (@)
t

where the function 6(u) of source rate u depends only on the channel capacity process r(t). 0(u)
can be considered as a “channel model” that models the channel at the link layer (in contrast to
“radio layer” models specified by Markov processes, or Doppler spectra). The approximation (4)
is accurate for large D;nq-

In terms of the effective capacity function (3) defined earlier, the QoS exponent function 0(u)
can be written as [22]

0(p) = po " () (5)

where a~1(-) is the inverse function of a(u). Once (1) has been measured for a given channel,
it can be used to check the feasibility of QoS triplets. Specifically, a QoS triplet {rs, Doz, €} is
feasible if 0(rs) > p, where p = —loge/Dyas. Thus, we can use the effective capacity model a(u) (or
equivalently, the function 0(u) via (5)) to relate the channel capacity process r(t) to statistical QoS.



Base station Mobile terminals
User 1
Existing
(admitted)
connections Wireless channel User 2
Scheduler
Accept T User K
New connection . Admission Resource
requests : control alocation
Reject

Figure 4: QoS provisioning architecture in a base station.

Since our effective capacity method predicts an exponential dependence (4) between {Dyq0, €}, we
can henceforth consider the QoS pair {rs, p} to be equivalent to the QoS triplet {rs, Dyqz, €}, with
the understanding that p = —loge/ Dz

In Appendix, we present a simple and efficient algorithm to estimate 6(u) by direct measure-
ment on the queueing behavior resulting from r(¢). In Section 4.2.1, we show that the estimation
algorithm converges quickly, as compared with directly measuring the QoS.

Now, having described our basic techniques, i.e., multiuser diversity using K&H scheduling,
and effective capacity, in the next section, we present a QoS architecture consisting of admission
control, resource allocation and scheduling, which utilizes these techniques for efficient support of

QoS.

3 QoS Provisioning with Multiuser Diversity

The key problem is, how to utilize multiuser diversity while yet satisfying the individual QoS
constraints of the K users. To cope with this problem, we design a QoS provisioning architecture,
which utilizes multiuser diversity and effective capacity.

We assume the same setting as in Section 2.1. Fig. 4 shows our QoS provisioning architecture in
a base station, consisting of three components, namely, admission control, resource allocation, and
scheduling. When a new connection request comes, we first use a resource allocation algorithm to
compute how much resource is needed to support the requested QoS. Then the admission control
module checks whether the required resource can be satisfied. If yes, the connection request is
accepted; otherwise, the connection request is rejected. For admitted connections, packets that



belong to different connections?

are put into separate queues. The scheduler decides, in each frame
t, how to schedule packets for transmission, based on the current channel gains g (t) and the amount

of resource allocated.

In the following sections, we describe our schemes for scheduling, admission control and resource
allocation in detail. In Section 3.1, we consider the homogeneous case, in which all users have the
same QoS requirements {rs, Diqz, €} or equivalently the same QoS pair {rs, p = —loge/Dynqs } and
also the same channel statistics (e.g., similar Doppler rates), so that all users need to be assigned
equal channel resources. Section 3.2 addresses the heterogeneous case, in which users have different
QoS pairs {rs, p} and/or different channel statistics.

3.1 Homogeneous Case

3.1.1 Scheduling

As explained in Section 1, we simplify the scheduler, by shifting the burden of guaranteeing user
QoS to the resource allocation module. Therefore, our scheduler is a simple combination of K&H
and RR scheduling.

Section 2 explained that in any frame ¢, the K&H scheduler transmits the data of the user with
the largest gain gx(t). However, the QoS of a user may be satisfied by using only a fraction of the
frame B < 1. Therefore, it is the function of the resource allocation algorithm to allot the minimum
required 3 to the user. This will be described in Section 3.1.2. It is clear that K&H scheduling
attempts to utilize multiuser diversity to maximize the throughput.

On the other hand, the RR scheduler allots to every user k, a fraction ( < 1/K of each frame,
where ¢ again needs to be determined by the resource allocation algorithm. Thus RR scheduling

attempts to provide tight QoS guarantees, at the expense of decreased throughput, in contrast to
K&H scheduling.

Our scheduler is a joint K&H/RR scheme, which attempts to maximize the throughput, while
yet providing QoS guarantees. In each frame ¢, its operation is the following. First, find the user
k*(t) such that it has the largest channel gain among all users. Then, schedule user k*(¢t) with
B+ ¢ fraction of the frame; schedule each of the other users k # k*(t) with ¢ fraction of the frame.
Thus, a fraction 3 of the frame is used by K&H scheduling, while simultaneously, a total fraction
K( of the frame is used by RR scheduling. The total usage of the frame is § + K¢ < 1.

3.1.2 Admission Control and Resource Allocation

The scheduler described in Section 3.1.1 is simple, but it needs the frame fractions {(, 3} to be
computed and reserved. This function is performed at the admission control and resource allocation
phase.

Since Section 3.1 addresses the homogeneous case with K users, without loss of generality,

2We assume that each mobile user is associated with only one connection.



denote ag ¢ g(u) the effective capacity function of user £ = 1 under the joint K&H/RR scheduling
(henceforth called ‘joint scheduling’), with frame shares ¢ and [ respectively, i.e., denote the
capacity process allotted to user 1 by the joint scheduler as the process r(t) and then compute
ak.cg(u) using (3). The corresponding QoS exponent function g ¢ 3(1) can be found via (5).
Note that 0k ¢ 3() is a function of number of users K. Then, the admission control and resource
allocation scheme for users requiring the QoS pair {rs, p} is as below,

IIll{IE%IZG K(+p3 (6)
subject to Ok ¢ 5(rs) > p, (7)
KC+p <1, (8)
(20, B=0 9)

The minimization in (6) is to minimize the total frame fraction used. (7) ensures that the QoS pair
{rs, p} of each user is feasible. Furthermore, Egs. (7)-(9) also serve as an admission control test,
to check availability of resources to serve this set of users. Since we have the following relation for
A > 0 (see Appendix for a proof)

Ok.c.8(1) = O xeag(A), (10)

we only need to measure the 0 ¢ 5(-) functions for different ratios of (/0.

To summarize, given the fading channel and QoS of K homogeneous users, we use the following
procedure to achieve multiuser diversity gain with QoS provisioning:

1. Estimate Ok ¢ g(u), directly from the queueing behavior, for various values of {¢, 3}.
2. Determine the optimal {¢, 3} pair that satisfies users’ QoS, while minimizing frame usage.

3. If admission control is passed, provide the joint scheduler with the optimal ¢ and g,
for simultaneous RR and K&H scheduling, respectively.

This summary indicates that our approach needs to address the following issues. Our paper
[22] showed the usefulness of the effective capacity concept, only for a single-user system. But, it
is not obvious that the x ¢ g(1) estimate will converge quickly in the multiuser scenario, or even
that 0k ¢ g(1) can accurately predict QoS via (4) (although, theoretically, the prediction is accurate
asymptotically for large D4, ). Further, it needs to be seen whether the QoS can be controlled by
{¢,B}. Last, we also need to show that our scheme can provide a substantial capacity gain, over
RR scheduling. These issues will be addressed via simulations in Section 4.

3.1.3 Improvement

The aforementioned admission control and resource allocation, i.e., Egs. (6)—(9), may not be effi-
cient in terms of resource usage, when K is large and p takes a medium value. The reason is the



following. On one hand, as K increases, the maximum data rate ug ¢ (0 = p) achievable with a
specified QoS exponent p, also increases due to K& H scheduling; but this increase of pg ¢ g(0 = p)
is only achievable when p is small, i.e., the delay requirement is loose. Here, the function px ¢ g(.)
is an inverse function of O ¢ g(1). On the other hand, as K increases, the probability that a user
will be allowed to transmit is 1/K since there are K identical users share the channel; hence, the
probability that a user has a large queue length, increases as K increases; so, to achieve the same
QoS exponent p, the data rate pug ¢ (60 = p) has to be decreased as K increases. For a medium-
valued p, if K is small, the effect of capacity gain is dominant since the probability that a user is
allowed to transmit, i.e., 1/K, is large; if K is large, then the effect of less probability to transmit
is dominant, resulting in the reduction of data rate pug ¢ (0 = p). Hence, it may be better to
partition the users into groups and schedule the groups independently.

Before describing the partitioning scheme, we need to introduce some notations. Suppose
that the K users are partitioned into M groups (obviously, 1 < M < K). Each group m
(m = 1,2,--- ;M) has K, users with channel characterization (i.e., QoS exponent function)
OK B (1), Where {Gn, B} are the frame shares assigned to group m, for the joint K&H/RR

scheduling. Obviously, 2%21 K, =K.
Next, we describe scheduling and resource allocation/admission control, respectively.
Scheduling

For each group m, we use the joint K&H/RR scheduler with frame shares {(p,, 3 }. In each
frame ¢, it works as follows. First, find the user k¥ (t) such that it has the largest channel gain
among K, users of group m (not among K users). Then, schedule user k7, (¢) with 3, + (», fraction
of the frame; schedule each of other group-m users k # k7 (t) with (,, fraction of the frame. Thus,

the total usage of the frame by all M group is E%:l(KmCm + Bm) < 1.
Admission Control and Resource Allocation

The scheduler described above requires the frame fractions {(y,, 8} to be computed and re-
served. This function is performed at the admission control and resource allocation phase. With
dividing users into M groups, the admission control and resource allocation scheme for K users
requiring the QoS pair {rs, p} is as below,

M
minimize K. + B 11
pinimise S (G + ) (1)
subject to Ok, cn.Bm (Ts) = P, Vm (12)
M
S (K + Bim) < 1, (13)
m=1
Cm 20, fm =20,  Vm, (14)
M
Me{1,2,--- K}, Y Km=K (15)
m=1



Eq. (11) is to minimize the total frame fraction used. (12) ensures that the QoS pair {rs, p}
of each user is feasible. Furthermore, Eqgs. (12)-(15) also serve as an admission control test, to
check availability of resources to serve the K users. If M =1, Egs. (11)—(15) reduced to Egs. (6)—
(9). Therefore, the optimal solution in Egs. (6)—(9) is a feasible solution of Egs. (11)—(15). As a
result, the resource allocation/admission control in Eqgs. (11)—(15) is at least as efficient as that in
Egs. (6)—(9), if not more efficient.

Note that the improvement on efficiency achieved in Egs. (11)—(15) is at the cost of complexity.

3.2 Heterogeneous Case

For the heterogeneous case, in which users have different QoS pairs {rs, p} and/or different channel
statistics, the admission control/resource allocation problem can also be formulated, similar to
Egs. (11)—(15), as minimizing the resource usage over M, partitioning of the K users,(, and [,.
But solving this minimization problem has an exponential complexity, i.e., O(K K ), since we have
to try all the possible combinations. To reduce the complexity, we design a sub-optimal algorithm,
which has a complexity of O(K log K).

We first consider the case where the K users have different channel statistics but the same
{rs, p}. Figure 5 shows the flow chart of our algorithm for the resource allocation. The basic oper-
ations of this algorithm are sorting and partitioning. Sorting the users is to facilitate partitioning
the users. Partitioning is achieved through tests, which recursively check whether adding a user to
a K&H scheduled group can reduce the channel usage.

Next we describe the algorithm. According to Figure 5, we first measure the function u (0 = p)
for each user k, where p(0) is the inverse function of #(u) defined in (5); note that there is no
scheduling involved in (5). Then we sort the users in descending order of (0 = p), which results
in an ordered list denoted by Lys... We set a variable m to count the number of groups, each of
which uses the K&H scheduling with a fraction f,,. Denote S(m) the set that contains the users
in group m.

We partition the K users recursively, starting from group m = 1. Each time when we form a new
group m, we first remove the head element of list L., and put it into an empty set S(m); if Lyser
is not empty, we again remove the head v of list Ly s, and put v into S(m); now we have two users
and can apply the K&H scheduling to the two users; if the resulting channel usage is greater than
or equal to that due to applying the RR scheduling to the two users, we move the user v from S(m)
back to the head of Lyser, i.€., the new user v should not be added to the group m and group m will
only have one user; otherwise, we recursively continue this procedure, that is, adding a new user and
testing whether the resulting channel usage is reduced, i.e., 3., (S(m)) < B (S’ (M) +7s/ 1, (0 = p),
where (3,,(S(m)) is the channel usage of set S(m) and set §’'(m) is the difference S(m) — {v}, and
rs/pu (6 = p) is the channel usage for user v if the RR scheduling is used. We continue the
partitioning until L., is empty.

In the process of partitioning, we determine (,, and (,, for scheduling as below. If group m
has only one user, say user k, we only use the RR scheduling with ¢, = rs/ux(0 = p), and set

10
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Figure 5: Flow chart of resource allocation for the heterogeneous case.
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Bm = 05 if group m has more than one user, we only use the K&H scheduling with the 3,, obtained
in the test for S(m), and set ,;, = 0. The joint K&H/RR scheduling is not used, in order to reduce
complexity.

The outputs of the algorithm are 1) a partition of the K users, say, M groups, and 2) {(n, Bm}
(m = 1,---,M). After running the resource allocation algorithm, we do admission control by
testing whether the total channel usage of the M groups is not greater than unity.

If the admission control is passed, we schedule each of the M groups as follows. If group m has
only one user, we use the RR scheduling with (,,,; if group m has more than one user, we apply the
K&H scheduling with G, to all the users in group m.

Our algorithm reduces complexity at the cost of optimality. Specifically, the resource allocation
algorithm achieves O(K log K) complexity due to sorting. Note that we only have to try at most
K tests in partitioning the K users. The performance of the algorithm may not be optimal but our
simulations show that for practical range of Doppler rates, our algorithm improves the performance
by a factor of two, compared to the RR scheduling.

For the case where the K users have different {rs, p} and different channel statistics, we could
classify the users into N classes so that the users in the same class have the same QoS pair {rs, p}.
Then apply the resource allocation algorithm to each class. The admission control is simply to
check whether the total channel usage of the N classes is not greater than unity.

To summarize, given the fading channel and QoS of K users, we use the following procedure to
achieve multiuser diversity gain with QoS provisioning:

1. Use the resource allocation algorithm to partition the K users and determine {(,, G}
that satisfies users’ QoS.

2. If admission control is passed, provide the scheduler with (,, and 3,,, for the RR or K&H
scheduling.

4 Simulation Results

4.1 Simulation Setting

We simulate the system depicted in Fig. 4, in which each connection® is simulated as plotted in
Fig. 6. In Fig. 6, the data source of user k generates packets at a constant rate rﬁ’“). Generated
packets are first sent to the (infinite) buffer at the transmitter, whose queue length in frame ¢ is
Qr(t). The head-of-line packet in the queue is transmitted over the fading channel at data rate
r,(t). The fading channel has a random power gain g (t) (the noise variance is absorbed into gx(t)).
We use a fluid model, that is, the size of a packet is infinitesimal. In practical systems, the results

presented here will have to be modified to account for finite packet sizes.

3 Assume that K connections are set up and each mobile user is associated with a connection.

12



Transmitter Fading Received
Transmitted channel signal

data
Data .
m Receiver

source N/ X *
Rate = I’S( Q1) () «/F «/F

Gain Noise

gk(®)

Figure 6: The queueing model used for simulations.

We assume that the transmitter has perfect knowledge of the current channel gains g (t) in frame
t. Therefore, it can use rate-adaptive transmissions, and ideal channel codes, to transmit packets
without decoding errors. For the homogeneous case, under joint scheduling, the transmission rate
ri(t) of user k is equal to a fraction of its instantaneous capacity, as below,

t) if k= i(1);
(CHBlex(t) ifk =arg max gi(t)

r(t) = (16)
Cex(t) otherwise.

where the instantaneous channel capacity cg(t) is

ck(t) = Belogy(1 + gi(t)) (17)

where B, is the channel bandwidth. For the heterogeneous case, the rate r4(t) is computed within
each class as described in Section 3.2.

The average SNR is fixed in each simulation run. We define r4,,4, as the capacity of an equivalent
AWGN channel, which has the same average SNR. i.e.,

Tawgn = Belogy(1 + SN Reyg) (18)
where SN Rqyg = Elgi(t)]. Then, we can eliminate B, using Eqgs. (17) and (18) as,

Tawgn 1082 (1 + gx(t))

ok (t) = logy(1 + SNRgyg)

(19)

The sample interval (frame length) T is set to 1 milli-second and each simulation run is 100-
second long in all scenarios except in Section 4.2.1. Rayleigh flat-fading voltage-gains hg(t) are
generated by a first-order auto-regressive (AR(1)) model as below:

hk(t) =R X hk(t — 1) + Uk(t), (20)

where vi(t) are zero-mean i.i.d. complex Gaussian variables. The coefficient x determines the
Doppler rate, i.e., the larger the x, the smaller the Doppler rate. Specifically, the coefficient k can
be determined by the following procedure: 1) compute the coherence time T, by [19, page 165]

9
167 frn

(21)

c N
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Figure 7: Convergence of estimates.

where the coherence time is defined as the time, over which the time auto-correlation function of
the fading process is above 0.5; 2) compute the coefficient x by*

k= 0.5"/Te. (22)

For Ricean fading, the voltage-gains hy(t) are generated by adding a deterministic signal com-
ponent to Rayleigh-fading voltage-gains (see [17] for detail).

4.2 Performance Evaluation

We organize this section as follows. Section 4.2.1 shows the convergence of our estimation algorithm.
In Section 4.2.2, we assess the accuracy of our QoS estimation (4). Section 4.2.3 investigates the
effectiveness of the resource allocation scheme in QoS provisioning. In these sections (4.2.1 to 4.2.3),
we only consider the homogeneous case, i.e., all users have the same QoS requirements {rs, p} and
also the same channel statistics. In Sections 4.2.4 through 4.2.6, we evaluate the performance of
our scheduler in the homogeneous and the heterogeneous case, respectively.

4.2.1 Convergence of Estimates

This experiment is to show the convergence behavior of estimates. We do simulations with the
following parameters fixed: 74ugn = 1000 kb/s, K =10, x = 0.8, and SN Ry, = —40 dB.

“The auto-correlation function of the AR(1) process is x", where n is the number of sample intervals. Solving
kTe/Ts = 0.5 for K, we obtain (22).
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Figure 8: Actual and estimated delay-bound violation probability for (a) different source rates, and
(b) different SN Rgyg.

Fig. 7 shows the convergence of the estimate of 6 (6(u) for p = 200 kb/s) for the queue. It
can be seen that the estimate of § converges within 2 x 10% samples/frames (20 sec). The same
figure shows the (lack of) convergence of direct (Monte Carlo) estimates of delay-bound-violation
probabilities, measured for the same queue (the two probability estimates eventually converge to
1073 and 107, respectively). This precludes using the direct probability estimate to predict the
user QoS, as alluded to in Section 1. The reason for the slow convergence of the direct probability
estimate is that the K&H scheduling results in a user being allotted the channel in a bursty manner,
and thus increases the correlation time of D(t) substantially. Therefore, even 10% samples are not
enough to obtain an accurate estimate of a probability as high as 1073.

4.2.2 Accuracy of Channel Estimation

The experiments in this section are to show that the estimated effective capacity can indeed be
used to accurately predict QoS.

We do experiments under five different settings: 1) AR(1) Rayleigh fading channel with changing
source rate and fixed SN Ry,4, 2) AR(1) Rayleigh fading channel with changing SN R, and fixed
source rate, 3) AR(2) Rayleigh fading channel, 4) Ricean fading channel, and 5) Nakagami-m fading
channel (chi-distribution) [21, page 22].

Under the first setting, we do simulations with the following parameters fixed: 7449, = 1000
kb/s, K =10, k = 0.8, and SN R,y = —40 dB. By changing the source rate p, we simulate three
cases, i.e., i =100, 200, and 300 kb/s. Fig. 8(a) shows the actual delay-bound violation probability
sup; Pr{D(t) > Dz} vs. the delay bound D,,,,. From the figure, it can be observed that the
actual delay-bound violation probability decreases exponentially with D, ., for all the cases. This
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Figure 9: Actual and estimated delay-bound violation probability for (a) AR(2) channel, and (b)
Ricean channel.

confirms the exponential dependence shown in (4).

In addition, we use the estimation scheme, i.e., Egs. (36) through (40), to obtain an estimated
6; with the resulting 6, we predict the probability sup; Pr{D(t) > Dy} (using (4)). As shown in
Fig. 8(a), the estimated sup, Pr{D(t) > D4, } is quite close to the actual sup, Pr{D(t) > D4z }-
This demonstrates that our estimation is accurate, which justifies the use of (7) by the resource
allocation algorithm to guarantee QoS.

Notice that the (negative) slope of the sup, Pr{D(t) > Dyq.} plot increases with the decrease
of the source rate p. This is because the smaller the source rate, the smaller the probability of
delay-bound violation, resulting in a sharper slope (i.e., a larger decaying rate ).

Under the second setting, we do simulations with the following parameters fixed: 74y, = 1000
kb/s, K = 10, k = 0.8, and p = 100 kb/s. By changing SN R4, we simulate three cases, i.e.,
SN Ry = -40, 0, and 15 dB. Fig. 8(b) shows that the conclusions drawn from the first set of

experiments still hold. Thus, our estimation scheme gives consistent performance over different
SNRs also.

In the third setting, AR(2) Rayleigh fading voltage-gains hy(t) are generated as below:
hi(t) = K1 X hi(t — 1) + K2 X hy(t — 2) + vg(2), (23)

where vy (t) are zero-mean i.i.d. complex Gaussian variables. The parameters of the simulation are
Tawgn = 1000 kb/s, k1 = 0.7, ke = 0.2, K = 10, p =100 kb/s and SNR,,, = —40 dB. Fig. 9(a)
shows that the conclusions drawn from the first set of experiments still hold. Thus, our estimation
scheme consistently predicts the QoS metric under different autoregressive channel fading models.

Under the fourth setting, the parameters of the simulation are Ricean factor’= 7 dB, Tawgn =

SRicean factor is defined as the ratio between the deterministic signal power A? and the variance of the multipath

16



\\ — Actual Pr{D(t)>Dmax} ]
N —©- Estimated Pr{D(t)>Dmax}

5
/
/
I

Probability Pr{D(t)>Dmax}

5\
;
/
\

10" I I I ! I I LN I

5
Delay bound Dmax (msec)

Figure 10: Actual and estimated delay-bound violation probability for Nakagami-m channel (m =
32).

1000 kb/s, K = 10, k = 0.8, and p = 100 kb/s. Fig. 9(b) shows that the conclusions drawn from
the first set of experiments also hold for Ricean fading channels.

In the fifth setting, Nakagami-m fading power gains gi(t) are generated as below:
ge(t) = Gi(t), (24)

where m is the parameter of Nakagami-m distribution and takes values of positive integers, g;(t) are
AR(1) Rayleigh fading power gains. The parameters of the simulation are m = 32, rgygn = 1000
kb/s, K = 10, k = 0.8, SNRqy; = —40 dB, and p =90 kb/s. Fig. 10 shows that the estimate
does not give a good agreement with the actual sup, Pr{D(t) > Dya.}. The reason is that the
high diversity in high-order Nakagami fading models averages out the randomness in the fading
process. The higher diversity a fading channel has, the more like an AWGN channel the fading
channel is. It is known that for an AWGN channel, the actual sup, Pr{D(t) > Dya.} does not
decay exponentially with D, but takes values of 0 or 1. Therefore, the higher diversity a fading
channel possesses, the less accurate the exponential approximation (4) is, hence the less accurate
the estimate is.

In summary, the results for Rayleigh/Ricean flat-fading channels have shown the exponential
behavior of the actual sup; Pr{D(t) > Dy} and the accurateness of our estimation. We caution
however that such a strong agreement between the estimate and the actual QoS may not occur in all
situations with practical values of D4, (although the theory predicts the agreement asymptotically
for large Dynaz). We have shown that in the case of high-diversity channel fading models (e.g., high-
order Nakagami fading models), the estimation is not accurate.

202,, i.¢e., Ricean factor = A?/(202).
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4.2.3 Effectiveness of Resource Allocation in QoS Provisioning

The experiments here are to show that a QoS pair {rs, p} can be achieved (within limits) by choosing
¢ or B appropriately. In the experiments, we fix the following parameters: K = 10, x = 0.8, and
SNRgyy = —40 dB. We simulate three data rates, i.e., p =50, 60, and 70 kb/s, respectively. We
do two sets of experiments: one for the RR scheduling and the other for the K&H scheduling.

In the first set of experiments, only the RR scheduling is used; we change ¢ from 0.1 to 1
and estimate the resulting 0 for a given u, using Eqgs. (36) through (40). Fig. 11(a) shows that 0
increases with (. Thus, Fig. 11 can be used to allot ¢ to a user to satisfy its QoS requirements
when using RR scheduling.

In the second set of experiments, only the K&H scheduling is used; we change 3 from 0.1 to 1
and estimate the resulting 6, for a given p. Fig. 11(b) shows that 6 increases with the increase of
B, and thus the figure can be used to allot 8 to a user to satisfy its QoS requirements when using
K&H scheduling.

4.2.4 Performance Gains of Scheduling: Homogeneous Case

Under the setting of identical QoS requirements {rs, p} and ii.d. channel gain processes, the
experiments here demonstrate the performance gain of joint scheduling over RR scheduling, using
the optimum {(, 3} values specified by the resource allocation algorithm, i.e., Eqs. (6)—(9). In
particular, the experiments show that for loose delay constraints, the large capacity gains promised
by the K&H scheme can indeed be approached.

To evaluate the performance of the scheduling schemes under different SNRs and different
Doppler rates (i.e., different ), we simulate three cases: 1) k = 0.8, and SN R4,y = —40 dB, 2)
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k= 0.8, and SNRy,g = 15 dB, and 3) £ = 0.95, and SN R4,y = —40 dB. In all the experiments,
we set Tquwgn = 1000 kb/s and K = 10.

In Fig. 12, we plot the function 0(u) achieved by the joint, K&H, and RR schedulers, for a range
of source rate p, when the entire frame is used (i.e., K(+ [ = 1). The function §(u) in the figure is
obtained by the estimation scheme, i.e., Egs. (36) through (40). In the case of the joint scheduling,
each point in the figure corresponds to a specific optimum {(, 3}, while for the RR and the K&H
scheduling, we set K¢ = 1 and 3 = 1 respectively. The curve of §(u) can be directly used to check
for feasibility of a QoS pair {rs, p}, by checking whether 6(rs) > p is satisfied. Furthermore, for
a given 0, the ratio of p(6) of the joint scheduler to the p(6) of the RR scheduler (both obtained
from the figure), represents the delay-constrained capacity gain that can be achieved by using
joint scheduling.

Four important observations can be made from the figure. First, the range of # can be divided
into three segments: small, medium, and large 0, which correspond to three categories of the
QoS constraints: loose-delay, medium-delay, and tight-delay requirements. For small 6, our joint
scheduler achieves substantial gain, e.g., approximately 25:1 % capacity gain for Rayleigh fading

channels at low SNR. For example, in Fig. 12(a), when 6 = 0.001, the capacity gain for the joint

scheduler is 2.9, which is close to ,16021 % = 2.929. For medium 6, our joint scheduler also achieves

gain. For example, in Fig. 12(a), when # = 0.01, the capacity gain for the joint scheduler is 2.6. For
large 6, such as 6 = 0.1, our joint scheduler does not give any gain. Thus, the curve of 6(u) shows
the range of @ (delay constraints) for which a K&H type scheme can provide a performance gain.
When the scheduler is provided with the optimum {(, 3} values, the QoS pair {u, 6(u)} guaranteed
to a user is indeed satisfied; the simulation result that shows this fact, is similar to Fig. 8, and
therefore, is not shown.

Second, we observe that the joint scheduler has a larger effective capacity than both the K&H
and the RR for a rather small range of 6. Therefore, in practice, it may be sufficient to use either
K&H or RR scheduling, depending on whether 6 is small or large respectively, and dispense with the
more complicated joint scheduling. However, we have designed more sophisticated joint schedulers,
such as splitting the channel between the best two users in every slot, which perform substantially
better than either K&H and RR scheduling, for medium values of §. This is shown in Fig. 13. This
indicates that more sophisticated joint schedulers may squeeze out more channel capacity gain. We
leave this for future study.

Third, the figure of (u) can be used to satisfy the QoS constraint (7), even though it only

represent the K¢+ = 1 case, as follows. For the QoS pair {rs, p}, we compute the ratio A = ﬁ

using the u(#) function in the figure. Suppose the (6 = p) point in the figure corresponds to the
optimum pair {¢,3}. Since we have the relation 0z 5(1) = 05z \53(Aw), i.e., Eq. (10), we assert
that instead of using the entire frame (as in the figure), if we use a total fraction A of the frame,
then we can achieve the desired QoS {rs,p}. The joint scheduler then needs to use the {\(, \3}
pair to do RR and K&H scheduling respectively. This indicates a compelling advantage of our
QoS provisioning scheme over direct-measurement based schemes, which require experiments for
different A, even if the ratio ¢/f is fixed.
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Fourth, we observe that if 6 is larger than a certain value, the corresponding data rate u(6)
achieved by the K&H, approaches zero. This is because the probability that a user will be allowed
to transmit is 1/K since there are K identical users share the channel; hence, on average, a user
has to wait K — 1 frames before its next packet is scheduled for transmission, making a guarantee
of tight-delay requirements (large #) impossible.

4.2.5 Performance Improvement due to Partitioning

This experiment demonstrates the performance improvement due to partitioning of users as men-
tioned in Section 3.1.3. In particular, the experiment indicates the trade-off between performance
improvement and complexity.

Again, the setting of this experiment is i.i.d. channel gain processes and identical QoS require-
ments {rs, p}. We divide K users into groups and see how much gain can be achieved, compared
with non-partitioning. The parameters of the experiment is the following: 7gugn = 1000 kb/s,
k = 0.8, SNR,,y = —40 dB, 7, = 100 kb/s, p = 0.03.

The simulation result shows that the channel can support at most 13 users if the users is not
partitioned. If users are allowed to be partitioned, solving Eqs. (11)—(15), we find the maximum
number of users that the channel can support is 16, where the 16 users are partitioned into two
groups, each of which consists of 8 users. So partitioning increases the maximum admissible number
of users by 3. Note that this performance improvement is at the cost of complexity of solving
Egs. (11)—(15).
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Table 1: Parameters for AR(2) Rayleigh fading channels.

User 1 | User 2 | User 3 | User 4 | User 5 | User 6
K1 0.8 0.75 0.7 0.6 0.5 0.45
K9 0.1 0.05 0.2 0.2 0.3 0.4

4.2.6 Performance Gains of Scheduling: Heterogeneous Case

The experiments here show the performance gain of the K&H/RR scheduling over the RR schedul-
ing, using the {(m, Om} values specified by the resource allocation algorithm in Figure 5, under the
setting of identical QoS requirements {rs, p} and non-identical, independent channel gain processes.

We do two sets of experiments. In the experiments, we fix the following parameters: 74ugn =

1000 kb/s, SN Ryyy = —40 dB, 7, = 30 kb/s, p = 0.01.

The first set of experiments is done under three different settings: 1) K = 10, 2) K = 19,
3) K = 37. We use AR(1) Rayleigh fading channel and each user has different &, i.e., different
Doppler rate. We let k change from 0.6 to 0.99 with equal spacing for the three settings, that is,
user 1 has k = 0.6, the last user (10th, 19th, or 37th user) has x = 0.99, and other users’ k are
determined by equal spacing between 0.6 and 0.99.

In the first setting (K = 10), the resource allocation algorithm in Figure 5 results in a partition
with two groups, where the number of users in each group are K1 = 8 and Ko = 2. The total
channel usage under the K&H scheduling is 0.195, while the total channel usage under the RR
scheduling is 0.319.

In the second setting (K = 19), the resource allocation algorithm leads to a partition with
three groups, where K7 = 14, Ky = 4, and K3 = 1. The total channel usage under the K&H/RR
scheduling is 0.344, while the total channel usage under the RR scheduling is 0.597.

In the third setting (K = 37), the resource allocation algorithm obtains a partition with five
groups, where K1 = 27, Ko =6, K3 =2, K4, = 1, and K5 = 1. The total channel usage under the
K&H/RR scheduling is 0.69, while the total channel usage under the RR scheduling is 1.15, which
is rejected by admission control.

The second set of experiments is done under the following setting. We have K = 10 users in the
system. Among the ten users, four users have AR(1) Rayleigh fading channels and each of them
has different k. We let k change from 0.6 to 0.99 with equal spacing, that is, user 1 has x = 0.6,
the fourth user has k = 0.99, and other users’ k are determined by equal spacing between 0.6 and
0.99. The other six users have AR(2) Rayleigh fading channels, specified by (23). Table 1 lists
the parameters for the AR(2) Rayleigh fading channels of the six users. From the simulation, the
resource allocation algorithm obtains a partition with two groups, where K1 = 9 and Ko = 1. The
total channel usage under the K&H/RR scheduling is 0.1842, while the total channel usage under
the RR scheduling is 0.3215.
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Hence, our resource allocation algorithm in Figure 5 achieves smaller channel usage than that
using the RR scheduling; as a result, the system can admit more users.

In summary, the K&H/RR scheduler achieves performance gain when delay requirements are
not very tight, while yet guaranteeing QoS at any delay requirement.

5 Related Work

There have been many proposals on QoS provisioning in wireless networks. Since our work is
centered on scheduling, we will focus on the literature on scheduling with QoS constraints in wireless
environments. Besides K&H scheduling and Bettesh & Shamai’s scheduler that we discussed in
Section 1, previous works on this topic also include wireless fair queueing [12, 14, 18], modified
largest weighted delay first (M-LWDF) [1], opportunistic transmission scheduling [11] and lazy
packet scheduling [16].

Wireless fair queueing schemes [12, 14, 18] are aimed at applying Fair Queueing [15] to wireless
networks. The objective of these schemes is to provide fairness, while providing loose QoS guaran-
tees. However, the problem formulation there does not allow explicit QoS guarantees (e.g., explicit
delay bound or rate guarantee), unlike our approach. Further, their problem formulation stresses
fairness, rather than efficiency, and hence, does not utilize multiuser diversity to improve capacity.

The M-LWDF algorithm [1] and the opportunistic transmission scheduling [11] implicitly utilize
multiuser diversity, so that higher efficiency can be achieved. However, the schemes do not provide
explicit QoS, but rather optimize a certain QoS parameter.

The lazy packet scheduling [16] is targeted at minimizing energy, subject to a delay constraint.
The scheme only considers AWGN channels and thus allows for a deterministic delay bound, unlike
fading channels and the general statistical QoS considered in our work.

Static fixed channel assignments, primarily in the wireline context, have been considered [9], in
a multiuser, multichannel environment. However, these do not consider channel fading, or general
QoS guarantees.

Time-division scheduling has been proposed for 3-G WCDMA [8, page 226]. The proposed
time-division scheduling is similar to the RR scheduling in this paper. However, their proposal did
not provide methods on how to use time-division scheduling to support statistical QoS guarantees
explicitly. With the notion of effective capacity, we are able to make explicit QoS provisioning with
our joint scheduling.

6 Concluding Remarks

In this paper, we examined the problem of QoS provisioning for K users sharing a single time-slotted
fading downlink channel. We developed simple and efficient schemes for admission control, resource
allocation, and scheduling, to obtain a gain in delay-constrained capacity. Multiuser diversity
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obtained by the well-known K&H scheduling is the key that gives rise to this performance gain.
However, the unique feature of this paper is explicit support of the statistical QoS requirement
{rsy Dmaz, €}, for channels utilizing K&H scheduling. The concept of effective capacity is the
key that explicitly guarantees the QoS. Thus, the paper combines crucial ideas from the areas
of communication theory and queueing theory to provide the tools to increase capacity and yet
satisfy QoS constraints. The statistical QoS requirement is satisfied by the channel assignments
{¢, B}, which are determined by the resource allocation module at the admission phase. Then, the
joint scheduler uses the channel assignments {(, 3} in scheduling data at the transmission phase,
with guaranteed QoS. Simulation results have shown that our approach can substantially increase
the delay-constrained capacity of a fading channel, compared with the RR scheduling, when delay
requirements are not very tight.

Our future work will focus on the design of scheduling, admission control and resource allocation,
for multiple users sharing multiple channels. In addition, work is underway in applying our approach
to practical settings, such as non-negligible packet size.

Appendix

Proof of Proposition 1

In this proof, the time index t for channel gains and capacities is dropped, due to the assumption
of stationarity of the channel gains. Without loss of generality, the expectation of channel power
gain g can be normalized to one, i.e., E[gr] = 1,Vk. Then, for Rayleigh fading channels, the CDF
of each channel power gain g is

Folg) = 1—ev. (25)
For low SNR, i.e., very small g, the channel capacity of the k' user can be approximated by

ek = logy(1+ gk) ~ gi- (26)
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Then we have

cmaz/E[c1] = Elmax|ci,co, -, ckl]/E[eci] (27)
~ Emax[g1, 92, - ,9k]]/E[91] (28)
@[ @) (29)
- /f(l—Fé%g))dg (30)
I Savh (1-F&(9)
- /0 (1= Folo) (e 5 (31)
= /Oooe—g(Fg—l(g)+Fg—2(g)+---+1)dg (32)
= [ TEE @)+ R0 e+ DdFa(o) (33)

1 1

O 1 (34)

where (a) follows from the fact that the CDF of the random variable max[g1, g2, - , 9] is FE (g)
[20, page 248], and E[g;] = 1. It can be easily proved that

M=
x| =

log(K +1) < <1+logK. (35)

b
Il

1

So for large K, we can approximate Zle % by log(K + 1). This completes the proof. m

Estimation of QoS Exponent ()

We briefly describe a simple algorithm to estimate the function 6(u) (see [22] for details of deriva-
tion). Assume that the time-varying channel capacity process r(t) is stationary and ergodic. For a
given (unknown) fading channel and a given source rate u, we take measurements from the queue
(see Fig. 3). First, take a number of samples, say N, over an interval of length 7', and record
the following quantities at the nth sampling epoch: §,, the indicator of whether a packets is in
service® (S, € {0,1}), Q, the number of bits in the queue (excluding the packet in service), and
T,, the remaining service time of the packet in service (if there is one in service). Then, compute
the following sample means,

v =

N
> S, (36)
n=1

2]~

Q>

I
=] ~
WE

Qn; (37)

n=1

SA packet in service refers to a packet in the process of being transmitted.
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and

R 1
o= > T, (38)
n=1
Finally, we obtain the estimate of 6(u) by
=121 (39)
WX Ts+q

Egs. (36) through (39) constitute our algorithm for estimating the QoS exponent function 6(u).
Note that, to get the function 6(u), we need to estimate 6 for different source rate p.

The estimated § can be used to predict the QoS by approximating Eq. (4) with

sup Pr{D(t) > Dz} ~ ¢~ 0Dmaz (40)
t

Proof for Eq. (10)

We use the notation in Section 3.1.2. From (3), we have

—limy oo T log Ele™ Jo r(ndr]
u

agcplu) = , Vu>0. (41)
Since we only consider the homogeneous case, without loss of generality, denote ax ¢ ag(u) the
effective capacity function of user £ = 1 under K&H/RR scheduling, with frame shares A and \(3
respectively (A > 0). Denote the resulting capacity process allotted to user 1 by the joint scheduler
as the process 7(t). Then for u > 0, we have

a) —limy_o }log E[e" I f(T)dT]
aracas(u) =

—

u
fg )\T(T)dT]

—~
=

—lim; o0 % log E[e™™

U
—limy oo %ng[e—()\u) I T(T)dT]
AU

© A X ag ¢ p(Au) (42)

~

where (a) from (3), (b) using 7(t) = Ar(t), which is obtained via (16), and (c) from (41). Then by
agaxeg(u) = A X ag ¢ g(Au) = p, we have

u = O‘}_(,l,\g,A,g()‘U) (43)
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and

M= oz 5(0). (44)
Removing u in (43) and (44) results in
a}_(,lg,ﬁ(/‘) = AX 0‘[_(?)\47)\g()\ﬂ) (45)
Thus, we have
(a) -1
Okco(n) = X OéK,gg(N)

—
=
=

= UXAX a}}Ag,w(/\N)

Iz

O e s (ML) (46)

where (a) from (5), (b) from (45), and (c) from (5). This completes the proof. m
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