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Abstract

In this paper, deliberate level clipping and Turbo-coding are combined to

achieve an Orthogonal Frequency Division Multiplexing (OFDM) transmission

system with a low Peak-to-Average power Ratio (PAR) and a good perfor-

mance. Using the linear approximation technique, we first modify the metric

computation for the Turbo-decoding in order to consider the distortion effects

of the nonlinearity, caused by the Cartesian clipping. The linear approximation

of the nonlinear device is based on the Minimum Mean Square Error (MMSE)

criterion. By exploiting the linear model, the receiver calculates a modified

metric considering the effects of the nonlinearity. Also, this paper introduces

a modified Turbo-decoder which simultaneously performs the data estimation

and signal reconstruction. In other words, the Turbo-decoder iteratively recovers

the clipped signal by using the estimated data, and then improves the data

estimation by using the newly recovered signal. Numerical results are presented

showing an improvement in the performance of the OFDM transmission system

over the nonlinear channel, an increase in the efficiency of the High Power

Amplifier (HPA), and/or an expansion of the transmitter coverage area.
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I. I NTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM), a popular type of multicarrier

transmission [1]–[5], is an effective modulation technique for high-data-rate wireless

and wire-line applications, including Digital Subscriber Line (DSL) [6], Digital Audio

Broadcasting (DAB) [7], Digital Video Broadcasting (DVB) [8], and Wireless Local Area

Network (WLAN) [9]–[11]. The main advantage of OFDM is its ability to encounter mul-

tipath fading without requiring complex equalizers [12]. Moreover, OFDM is a bandwidth

efficient transmission system and can be easily implemented by the FFT [13].

The superposition of several subcarrier signals leads to a Gaussian-like time domain

OFDM waveform [2], [3] with significant envelope variations or a high Peak-to-Average

power Ratio (PAR) [14]. This undesirable feature renders the OFDM particularly sensitive

to nonlinear distortions [15]–[19].

In practice, transmission devices such as the High Power Amplifier (HPA) have a

limited dynamic range [20]. Therefore, to ensure a distortion-less transmission, hardware

with a high power back-off is required, but it restricts the OFDM system from utilizing

the transmitted power effectively.

There are many approaches to deal with this power control problem [21]–[38]. One

class of approaches are based on generating OFDM signals with a low PAR [21]–[33].

Recently, many PAR reduction methods have been proposed in the literature. The most

widely known techniques in this category are based on selective mapping [21]–[24],

phase shifting [24]–[28], or some form of coding [29]–[33]. Selective mapping and

phase shifting offer a considerable reduction of the PAR, but at the price of a significant

increase of the overall system complexity. Coding techniques with the capabilities of both

PAR reduction, as well as error correction (Reed-Muller codes) [29]–[31], are attractive.

However, these codes significantly reduce the overall throughput of the system, especially

if there is a relatively large number of subcarriers [29], [30].

Level clipping is a simple technique to reduce the PAR of the OFDM signal [34]–

[38]. However, clipping is a nonlinear process, which distorts the transmitted signal [39].
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OFDM signal can be clipped at the Nyquist rate or at over-sampling rates. Clipping the

over-sampled signal produces in-band noise and out-of-band radiation, whereas clipping

the Nyquist rate signal generates clipping noise that falls in-band resulting in a more

serious degradation of the performance [34], [39]. Conventional coding techniques such

as the Turbo-code [40]–[42] are attractive tools for mitigating such a high performance

loss, caused by the nonlinear distortion [43], [44]. Consequently, the combination of

clipping and Turbo-coding can be used as an effective approach for both PAR reduction

and error correction with a reasonable coding redundancy and system complexity.

To mitigate the nonlinear distortion, a Turbo-decoder requires knowledge of the charac-

teristic of the clipping noise. This paper shows that a linear approximation of the clipper

in the Minimum Mean Square Error (MMSE) [45] sense can be used as an accurate

model for a nonlinear device. After this model is employed for metric computation, the

Turbo-decoder implicitly incorporates for the effects of the clipping distortion in the

decoding procedure.

If the nonlinear characteristic of the transmitter is known, the nonlinear distortion is a

deterministic function of the transmitted data. Therefore, by using the estimated data, after

some initial Turbo-decoding iterations, the Turbo-decoder can partially compensate for

the effects of the signal clipping. In other words, the Turbo-decoder recursively recovers

the clipped signal by using the estimated data, and then uses the newly recovered signal

to improve its data estimation.

The idea of the decision-aided reconstruction of the clipped signal in an uncoded

OFDM system is introduced in [47], and further developed in [48]. In this paper, however,

this idea is applied to a Turbo-coded OFDM system by adopting iterative decoding at

the receiver end. Although, throughout this work, we assume that the clipping operation

is performed in the baseband at the Nyquist sampling rate and the clipper is an ideal soft

limiter, the suggested technique can be easily generalized to other forms of nonlinearities.

The rest of the paper is organized as follows. Section II is a brief description of the

Turbo-coded OFDM transmitter under consideration. After the linear model of the clipper,
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based on the MMSE criterion, is derived in Section III, the linear model is adopted to

modify the metric in Section IV. Section V introduces the corresponding Turbo-decoder

and the process of the signal reconstruction. Section VI is devoted to some numerical

examples. The paper finally concludes in Section VII.

Throughout this paper,E{·} denotes expectation,j =
√−1, the small letters indicate

the time domain samples, the capital letters represent the frequency domain samples, and

the letters in bold denote the vectors of these time or frequency domain samples.

II. OFDM OVERVIEW

The baseband model of the underlying OFDM transmission system is represented in

Fig. 1. Each input block ofk bits passes through a systematic Turbo-encoder [40] of rate

rc (= k/`). The block of` bits at the output of the Turbo-encoder is interleaved, and

then mapped toL (= `/m) complex samples, selected fromX , an M -ary Quadrature

Amplitude Modulation (M -QAM) constellation in which each point representsm (=

log2 M) bits. This stream ofL symbols is partitioned intoL/N modulating vectors so

that each has the dimensionN . The final OFDM signal is the sum of theN subcarriers,

each being modulated by the corresponding element of the modulating vector.

If Xi, i = 0, 1, . . . , N − 1, is defined as the QAM symbol, associated with theith

element of the modulating vectorX then the vector of the Nyquist rate samples of the

OFDM baseband signal is expressed as

x = (x1, x2, . . . , xN−1)

= IDFT(X), (1)

where

xn =
1√
N

N−1∑

i=0

Xie
j 2πin

N , n = 0, 1, . . . , N − 1. (2)

We assume that the average power of the QAM symbols is equal to2σ2. Due to the

orthogonality of the subcarriers, the average power of the OFDM samples is also the

same and is equally distributed among the real and imaginary parts.
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III. N ONLINEARITY MODELING

The clipper is the source of the nonlinearity of the model in Fig. 1. Consequently, this

section first describes the characteristics of the nonlinear device, and then models the

distortion effects of the nonlinearity on the OFDM signal.

Typically, we can distinguish between two classes of nonlinearity [49]: 1) Cartesian

distortion that acts separately on the real part and the imaginary part of the baseband

signal (e.g. in D/A conversion), and 2) polar distortion that acts on the envelope and

phase of the OFDM signal (e.g. in high power amplification). According to Fig. 2, the

Cartesian distortion limits the signal within a square, whereas the polar distortion limits

the signal in a circle. In this paper, without the loss of generality, we confine our study

to the Nyquist rate Cartesian soft limiter, which belongs to the first class.

Most of the common nonlinear devices in the transmitter can be accurately modeled

as memoryless systems [48]. The distorted signal at the output of the memoryless clipper

is written as

d = g(x) =





−A, x ≤ −A,

x, −A < x < A,

A, x ≥ A,

(3)

whereA is the saturation level. With some misuse of the notation,x denotes either the

real part or the imaginary part ofxn. If d is rewritten as follows:

d = x + c, (4)

then c represents the distortion term of the clipped signal.

We know that whenN is a large number,x can be modeled as a Gaussian random

variable [2], [3] with the Probability Distribution Function (PDF), given by

px(x) =
1

σ
G(x/σ), (5)

whereG(τ) = 1√
2π

e−τ2/2 is the zero-mean, unit-variance Gaussian function. As a result,
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the average power of the clipped OFDM sample can be obtained as follows:

σ2
d=

∫ ∞

−∞
g(x)px(x) dx

=σ2
[
1− 2Q(

√
ibo)−

√
2ibo/πe−ibo/2

+2 iboQ(
√

ibo)
]
, (6)

where Q(x) =
∫∞
x G(τ) dτ . The input back-off,ibo, is defined as the ratio of the

maximum allowable input power to the average input power (e.g., refer to [10]), which

is described as

ibo = A2/σ2. (7)

The output back-off,obo, is another parameter of the clipper which indicates the relative

level of the clipping, and is defined as the ratio of the maximum output power to the

average power of the clipped signal, i.e.,

obo = A2/σ2
d. (8)

Indeed, the parameterobo is equal to the maximum PAR of the clipped signal. If (6) is

substituted into (8),obo is described as a function ofibo,

obo = ibo/
[
1− 2Q(

√
ibo)−

√
2ibo/πe−ibo/2

+2 iboQ(
√

ibo)
]
, (9)

which is illustrated in Fig. 3. We can see that for the high values of back-off,obo and

ibo are approximately the same.

Let us approximate the nonlinear functiong(x) by the linear functionαx. The linear

coefficientα can be set so that the error of the approximation,

e = g(x)− αx, (10)

is minimized in the mean square sense, i.e.,

α = arg min
α

E{e2}. (11)
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As a result,

α = 1− 2Q(
√

ibo), (12)

and

σ2
e=E{e2} = σ2

d − α2σ2

=σ2
[
2Q(
√

ibo)
(
1− 2Q(

√
ibo)

)

−
√

2ibo/πe−ibo/2 + 2iboQ(
√

ibo)
]
. (13)

Consequently, according to the following equation:

d = αx + e, (14)

the effect of the nonlinear distortion is modeled as an attenuationα and an additive

“nonlinear” noisee. In addition, due to the property of the MMSE approximation, the

nonlinear noise is uncorrelated with the input signalx.

According to (14), the signal to nonlinear noise power ratio is defined as

SNRe =
α2σ2

σ2
e

. (15)

If (12) and (13) are substituted into (15),SNRe is expressed as a function ofibo as

follows:

SNRe=
(
1− 2Q(

√
ibo)

)2
/

[
2Q(
√

ibo)
(
1− 2Q(

√
ibo)

)

−
√

2iboπe−ibo/2 + 2iboQ(
√

ibo)
]
. (16)

Fig. 4 exhibits thatSNRe is obviously an ascending function of theibo, because

increasingibo reduces the distortion effects of the clipper.

Although these equations are derived for the clipper, their generalization to other forms

of g(x) is straightforward.
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IV. OFDM RECEIVER

The transmitted signaldn is corrupted by an Additive White Gaussian Noise (AWGN)

wn with an average power equal to2σ2
w. Therefore, the transmit signal to the AWGN

power ratio is equal to

SNRw =
σ2

d

σ2
w

. (17)

The received signal,

rn = dn + wn, (18)

passes through the OFDM FFT demodulator where the output is expressed as

Ri = Di + Wi. (19)

The Maximum A-posteriori Probability (MAP) [45], [46] receiver requires the knowl-

edge of the following conditional probability:

P (Xi = X|R0, R1, . . . , RN−1) (20)

to compute the metrics that are used in the Turbo-decoding. The presence of the nonlinear

device results in a dependency among the subcarriers. An ideal Turbo-decoder uses (20)

to compute the Turbo-decoding metric. However, due to the enormous computational

complexity that is associated with (20), we employ the following conditional probability:

P (Xi = X|Ri). (21)

If it is assumed that all constellation points are acquired with equal probability, the

following conditional distribution probability is used to compute the Turbo-decoding

metric:

p(Ri|Xi = X). (22)

Using the linear model, we rewrite the received signal as

Ri = αXi + Ei + Wi, (23)
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whereEi, i = 0, 1, . . . , N − 1, is a zero-mean, nonlinear noise in the frequency domain

that is described as

Ei =
1√
N

N−1∑

n=0

ene−j 2πin
N , (24)

or

E = DFT(e). (25)

Since N is large, by invoking the Central Limit theorem,Ei can be modeled as a

Gaussian variable [15], [18], [49]. This is accurate, especially in a practical situation,

where the clipping levelA is not very large, causing most of theen samples to have

nonzero values. Consequently,Ei is, approximately, a Gaussian variable, independent of

Xi and with a power that is equal to2σ2
e . Considering this fact and according to (23),

we represent the Turbo-decoder metric as

p(Ri|Xi = X) ∝ exp(−|Ri − αX|2/2σ2
t ), (26)

where

2σ2
t = 2σ2

e + 2σ2
w, (27)

is the total noise power.

Without using the linear model, it is directly shown in the appendix that for a large

N ,

E{Ri|Xi = X} ≈ αX. (28)

This is a match to (23) and (26), and therefore, justifies the validity of the linear model.

According to (23), the signal to the total noise power ratio is

SNRt =
α2σ2

σ2
t

, (29)

which, by using (15), (17), and (27), is

SNRt =
SNReSNRw

1 + SNRe + SNRw

. (30)
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V. M ODIFICATION OF THE TURBO-DECODER

The conventional Turbo-decoder cannot mitigate the effects of the nonlinear distortion.

Therefore, to achieve a reasonable performance through a nonlinear transmission, the

Turbo-decoder must be modified to correspond to the behavior of the channel. The block

of the metric calculation in Fig. 1 usesp(Ri|Xi = X) to compute the probability of the

pth bit p = 0, 1, . . . ,m− 1, associated to the received signalRi as follows:

P (bp = b; Ri, i) ∝
∑

X∈X (p,b)

p(Ri|Xi = X). (31)

In (31), b ∈ {0, 1} andX (p, b) ⊂ X is the set of the QAM points for which thepth bit

is equal tob.

The Logarithmic Likelihood Ratio (LLR) is related to the bit probabilities as follows

[40]:

LLRp(Ri, i) = 10 log
P (bp = 1; Ri, i)

P (bp = 0; Ri, i)
. (32)

The modified Turbo-decoder uses (26) to incorporate the distortion, caused by the non-

linearity. Substituting (26) in (32), we can write

LLRp(Ri, i) = 10 log

∑
X∈X (p,1)

exp(−|Ri − αX|2/σ2
t )

∑
X∈X (p,0)

exp(−|Ri − αX|2/σ2
t )

. (33)

Therefore, the Turbo-decoder requires the knowledge of the clipping parameters to cal-

culate the modified metric.

As described in the standards [6]–[11], the pilots and data subcarriers are transmitted

simultaneously in the same OFDM symbol. Therefore, the pilots like the data subcarriers

are affected by the nonlinear device. Fortunately, in this situation, the clipper parameters

can be found by using the pilots during the channel and noise power estimation operations

[50] without an additional estimator block. In this way, a conventional Turbo-decoder

implicitly calculates the modified metric.

The sequence of the modified LLRs, corresponding to all` coded bits after channel

deinterleaving, passes through the Turbo-decoder to estimatek information bits.
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This procedure assumes that the receiver has no knowledge of the distortion term and

can only model the nonlinearity effects as signal attenuation and additive noise. The

performance of the Turbo-decoder can be further enhanced by estimating the distortion

term toward compensating the effect of the nonlinear device. According to (4), the

received signal over theith subcarrier can be written as

Ri = Xi + Ci + Wi. (34)

Obviously,C = (C0, C1, . . . , CN−1) is a function of the transmitted QAM vector,X

C = DFT(g(IDFT(X)))−X, (35)

whereg(Y) = (g(y1), g(y2), . . . , g(yN−1)).

SinceX is unknown, the receiver must use an estimate ofC, denoted aŝC , by knowing

g(·) and having an estimate ofX from the previous iterations of the Turbo-decoding.

This process can be continued in an iterative manner.

Let us assumePt(b), t = 0, 1, . . . , ` − 1, b ∈ {0, 1} is the interleaved output of the

Turbo-decoder which denotes the probability of thetth transmitted bit to be equal to

b. Since the interleaved bits are approximately independent, theith transmitted QAM

symbol, i = 0, 1, . . . , L − 1, is X ={b0, b1, . . . , bm−1 | bp = 0 or 1, 0≤ p≤m − 1} ∈ X
with the probabilityPi(X) being expressed as

Pi(X)=Pi({b0, b1, . . . , bm−1})

≈
m−1∏

p=0

Pim+p(bp). (36)

The estimate ofXi is defined as the average of the constellation points, i.e.,

X̂i =
∑

X∈X
Pi(X)X. (37)

Let us define∇·(·) as the previous procedure that estimatesXi’s of the all transmitted

OFDM symbols from the sequence ofLLRp(Ri, i), p = 0, 1, . . . ,m−1, i = 0, 1, . . . , L−
1, denoted asLLR, i.e.,

(X̂0, X̂1, X̂2, . . .) = ∇I(LLR), (38)
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whereI is the number of Turbo-decoding iterations. The modified Turbo-decoding pro-

cedure can be summarized in the following steps, starting withu = 1. In the following

discussion, the subscript within the parentheses denotes the stage number.

1) The LLR of the first stageLLR(0) is calculated as a function of the received signal

by utilizing (33).

2) Theuth estimate ofXi’s, after the(u− 1)th reconstruction of the received signal,

is (see (38))

(X̂
(u)
0 , X̂

(u)
1 , X̂

(u)
2 , . . .) = ∇I(LLR(u−1)). (39)

3) According to (35), the estimate of the distortion term is

Ĉ(u) = DFT(g(IDFT(X̂
(u)

)))− X̂
(u)

. (40)

This procedure is performed on all the OFDM symbols.

4) The received signal is reconstructed as follows:

R
(u)
i = Ri − Ĉ

(u)
i . (41)

5) If we neglect the remaining distortion term after the signal reconstruction, then,

according to (34) and (41), the new LLR can be written as

LLR(u)
p (R

(u)
i , i) =

10 log

∑
X∈X (p,1)

exp (−|R(u)
i −X|2/2σ2

w)

∑
X∈X (p,0)

exp (−|R(u)
i −X|2/2σ2

w)
. (42)

6) The next stage of the signal reconstruction begins withu← u+1. Go to the step 2.

If U represents the number of times that the Turbo-decoder withI iterations is used,

then the total number of the Turbo-decoding iterations isH = IU . Therefore, this

modified decoding algorithm is comparable with the classical Turbo-decoder with a total

of H iterations. However, this algorithm requires two additional FFTs and one additional

LLR computation in the decoder for each stage of the signal reconstruction.
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VI. N UMERICAL RESULTS

In all of the following, the OFDM system has a Turbo-code with a rate of1
2
, a memory

size of4, and an interleaver length of4096, and therefore, the channel interleaver is the

length,8192 bits.

Fig. 5 displays the performance of the256-QAM OFDM system for the different

subcarrier numbers. The vertical axis is the Bit Error Rate (BER), and the horizontal

axis is the signal to noise ratio per information bit that is defined as

Eb

No

=
SNRw

rcm
. (43)

The Turbo-decoder has12 iterations without any signal reconstruction, and the Turbo-

decoder uses only the modified metric. From this point in the paper, this type of Turbo-

decoder is called the “classical decoder”. In Fig. 5,ibo is set to5 dB. The accuracy

of the modified metric depends on the number of subcarriers. As plotted in Fig. 5, the

performance of the1024-subcarrier system is better than the system withN = 64 and

N = 256. Although the metric modification significantly improves the performance, but

there is still a substantial performance degradation, compared to the performance of the

system in an ideal channel.

The results of exploiting the proposed Turbo-decoder (the modified decoder) are illus-

trated in Fig. 6. The system achieves a better performance, if the number of the signal

reconstruction iterations is increased. It seems thatU is a dominant factor in comparison

to I. For example, a system withI = 2 andU = 4 (H = 8) has approximately the same

performance as the system withI = 3 and U = 4 (H = 12). However, forH = 12, it

is possible to increaseU to 6 which leads to a further improvement. As Fig. 6 confirms,

there is a little improvement forU > 6; consequently, the performance of the system

with I = 3 and U = 8 (H = 24) appears to be the best that can be achieved by this

modified Turbo-decoder. In this case, the degradation in performance, due to the signal

clipping, is approximately1.4 dB when the BER is equal to10−4.

In Fig. 7, we decrease the number of the subcarriers from256 to 64. The proposed

decoder still converges so that the performance is improved but at a slower rate.
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The results in Fig. 8 are forN = 256, M = 256, and a higher clipping level of

ibo = 7 dB. Obviously, due to less clipping distortion, the remaining degradation, with

respect to the ideal channel, is less than0.8 dB for I = 2 andU = 6 (H = 12).

Fig. 9 depicts the BER of the 1024-subcarrier, 256-QAM OFDM system for practical

conditions as a function of the amplifier clipping level,obo. These results are for several

values of the noise back-offnbo, which is defined as follows:

nbo =
A2

σ2
w

. (44)

In fact, nbo is the maximum achievable signal to noise power ratio in a transmission

channel for which the maximum transmit power is2A2, and the noise power of the

channel is2σ2
w. Consequently,nbo indicates the quality of the transmission channel.

When the channel is in a deep fade (or equivalently the relative noise power is high),

nbo is low; in contrast, when the received power is high, the channel is in a good

condition, andnbo has a relatively high value.

Fig. 9 exhibits that for a fixednbo, when obo is high, and as a result, the HPA

works in the linear region, by decreasingobo (or equivalently by increasing the average

transmit power), the system performance improves. However, this situation changes when

the HPA approaches the saturation level, and the nonlinear noise becomes dominant.

Therefore, after a specificobo, which is the optimum operating point of the HPA, despite

an increase in the transmit power, the nonlinear noise distorts the transmit signal and

prevents the system from achieving a better performance. Consequently, the HPA is not

able to effectively utilize all of its dynamic range due to the nonlinearity. This causes

the system to fail, especially when the receiver is far from the transmitter, or when the

channel is in deep fade and so,nbo is relatively low. For example, fornbo = 22.5 dB,

the classical decoder is not able to achieve a BER of less than1.27× 10−2.

Fig. 9 compares the performance of the classical Turbo-decoder,I = 12, U = 1 (H =

12), and the modified Turbo-decoder,I = 3, U = 4 (H = 12). When the channel has

a good quality; for examplenbo = 25 dB, both decoders behave approximately the

same, because the system can achieve a good performance with a relatively low transmit
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power in which obo is sufficiently high, and the HPA behaves like a linear system.

However, if the channel quality degrades; for examplenbo drops to 23 dB, then the

transmitter has to increase the transmit power to keep the system performance within

a reasonable range at an acceptable level. In this situation, the classical decoder cannot

offer a performance that is better than1.3× 10−3, whereas the best BER of the modified

decoder is approximately1.88 × 10−4. Therefore, the ability of the modified decoder,

to improve the system performance, is especially pronounced in a degraded channel

condition (when the transmit power is required to be high, and the HPA is forced to

operate in the nonlinear region with a comparatively lowobo).

Fig. 10 illustrates the BER of the classical and the modified decoder as a function of

nbo and forobo = 6.5, 7.0, and 7.5 dB. These results are extracted from Fig. 9. Fig. 10

depicts that the modified decoder can handle the worse channel quality while holding the

BER at the same level as the BER of the classical decoder, operating in a better channel

condition. For example, the gain ofnbo is approximately 0.6 dB for BER= 10−5 and

obo = 7.0 dB, indicating that for the modified decoder, the signal attenuation can be

0.6 dB greater, in comparison to that of the classical decoder, while maintaining a BER

that is equal to10−5. Therefore, by exploiting the modified decoder, the transmitter can

either expand its coverage area without requiring additional power, or retain its coverage

area, and the average output power is decreased by 0.6 dB.

The average transmit power gain, with the value of the BER as a parameter, is offered

in Fig. 11, in which the classical and modified decoder are compared. These BERs are

selected at the optimum performance of the classical decoder so that the dark points

correspond to the optimum operating point of the HPA for a givennbo. According to

this figure, the modified decoder can achieve the same performance as the classical one

but with a lower transmit power (higherobo). This is the case forobo at approximately

the optimum point of operation, whereobo is relatively low, and the HPA operates near

the nonlinear region. Therefore, by using the modified decoder, the transmission system

can save the power through the higherobo selection.
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The behavior of the classical and the modified decoder at the optimum operating points

are compared in Fig. 12(a) and (b). The minimum BER is shown as a function ofnbo

in Fig. 12(a). Similar to Fig. 10, this figure signifies that the functionality threshold of

the modified decoder is approximately 0.5 dB higher than the functionality threshold of

the classical one. Fig. 12(b) illustrates the minimum BER as a function of the optimum

obo. Each point in each curve indicates the optimum operation point of the amplifier. As

shown in Fig. 12(b), the optimumobo of the modified decoder is approximately 0.4 dB

less than the optimum point of the classical decoder. This demonstrates that the modified

decoder utilizes the dynamic range of the HPA more effectively; i.e., the HPA efficiency,

in converting the DC to AC power, is better when the system performs at the optimum

operating point. It is clear that with the same BER, the channel quality of the modified

receiver is worse than that of the classical one.

VII. C ONCLUSION

The combination of clipping and Turbo-coding is used to reduce the PAR, and simul-

taneously, achieve an acceptable performance with a reasonable redundancy. First, we

demonstrate that the linear MMSE approximation of the memoryless, nonlinear device

leads to an almost optimal symbol-wise metric. This linear model is more accurate for

a large number of subcarriers. If the Turbo-decoder metric is computed with this model,

the Turbo-decoder can reduce the BER by several orders of magnitude. In the next step,

the Turbo-decoder is modified to recursively reconstruct the distorted signal during the

decoding iterations. The numerical examples confirm that for a fixed number of decoding

iterations, the modified Turbo-decoder results in a noticeable improvement in the BER

with a slight increase in the complexity. Finally, the modified decoder is tested in a

practical situation. The simulation results prove that a system, in which the modified

decoder is exploited, can develop its coverage area and use the dynamic range of the

HPA more effectively.
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APPENDIX

PROOF OF(28)

Let us start withE{dn|Xi = X}, n, i = 0, 1, . . . , N − 1. According to (2),xn,

n = 0, 1, . . . , N − 1, can be rewritten as follows:

xn = x̄(i)
n +

1√
N

N−1∑

q=0

Xqe
j 2πqn

N , (45)

where

x̄(i)
n =

1√
N

Xej 2πin
N (46)

is the mean ofxn|Xi = X. WhenN is large, the summation term in (45) is, approxi-

mately, a complex Gaussian process with a variance that is expressed as follows:

2σ̃2 =
N − 1

N
2σ2. (47)

Therefore, ifx and x̄ respectively denote either the real part or the imaginary part of

xn and x̄(i)
n , then the PDF ofx|Xi = X can be expressed as follows:

px|X(x|Xi = X) =
1

σ̃
G

(
x− x̄

σ̃

)
. (48)

According to (3), the clipped signal is a function ofx, and then, we can easily show

that

E{d |Xi = X} =
∫ ∞

−∞
g(x)px|X(x|Xi = X) dx. (49)

If (3) and (48) are substituted into (49), after some manipulations, we can write

E{d |Xi = X}=σ
{[

G(ξ+)−G(ξ−)
]

−
[
ξ+Q(ξ+)− ξ−Q(ξ−)

]}
+ x̄, (50)

where

ξ± =
A± x̄

σ̃
. (51)

If N →∞, it is clear from (46), (47), (51), and (7) that




x̄ −→ 0

σ̃2 −→ σ2
=⇒





ξ± −→ √ibo

ξ+ − ξ− −→ 2x̄
σ

,
(52)
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and then, 



G(ξ+)−G(ξ−) −→ 0,

ξ+Q(ξ+)− ξ−Q(ξ−) −→ 2x̄
σ

Q(
√

ibo).
(53)

Therefore, according to (53) and (12), whenN is large, (50) reduces to

E{dn|Xi = X} ≈ αx̄(i)
n . (54)

Transforming from the time to the frequency domain, (54) is changed as follows:

E{Dh|Xi = X} ≈ 1√
N

N−1∑

n=0

αx̄(i)
n e−j 2πhn

N , h = 0, 1, . . . , N − 1, (55)

which, by using (46), is reduced to

E{Dh|Xi = X} ≈ αXδh−i, (56)

whereδµ is a Dirac function. Therefore

E{Di|Xi = X} ≈ αX. (57)

SinceWi is a zero mean noise, (28) can be inferred from (19) and (57).
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Fig. 1. The block diagram of the underlying OFDM transmission system.
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