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Some Remarkable Properties of Diagonally Correlated
MIMO Channels

Hüseyin Özcelik and Claude Oestges

Abstract—This paper investigates so-called diagonally correlated multi-
ple input-multiple output (MIMO) channels, which provide higher ergodic
capacity than independent and identically distributed (i.i.d.) fading chan-
nels. The presented analysis details physical scenarios leading to such chan-
nels, some properties of the channel matrix, and an analytical expression
for its ergodic capacity.

Index Terms—Capacity, correlation, Multiple-Input Multiple-Output
(MIMO), polarization.

I. INTRODUCTION

It is well known that the ergodic multiple input-multiple output
(MIMO) channel capacity grows asymptotically linearly with the num-
ber of antennas in a symmetric channel [1]. For Rayleigh-fading chan-
nels, it is usually believed that channel correlations always reduce
capacity and that, therefore, independent identically distributed (i.i.d.)
channels would yield maximum ergodic capacity. In the case of n
antennas at both link ends and disregarding bandwidth, the ergodic
capacity of i.i.d. channels can be expressed as

C̄iid = E{log2 κ} = E
{

log2 det
(
In +

ρ

n
HHH

)}
(1)

where E{·} stands for the expectation operation, In denotes the
n × n identity matrix, ρ is the average receive SNR, (·)H is Hermitian
conjugation, and H is the normalized channel matrix, respectively.

It was recently shown in [2] and [3] that a simple mutual infor-
mation metric equal to E{κ} allows for analysis of ergodic MIMO
capacity as a function of the correlations between different channel
matrix elements. A most surprising result was that ergodic mutual in-
formation and capacity1 are not maximized by i.i.d. fading conditions
but by channels with so-called high diagonal correlations. Are such
channels realistic? Actually, there is so far no clear picture on what
propagation scenarios that result in such channels look like. The char-
acterization of such scenarios is the goal of this paper. We will also
illustrate through analytical results that these diagonally correlated
channels exhibit higher ergodic capacity2 than i.i.d. channels. Finally,
we will introduce an approach on how to construct n× n diagonally
correlated channels in general.
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1Equation (1) represents the capacity in the strict Shannon sense only for i.i.d.
channels. For correlated channels, (1) is only the mutual information with equal
power allocation, although it is often called capacity through a well-accepted
abuse of language.

2This is true not only for the ergodic mutual information, but also for the
ergodic capacity in the true Shannon sense (as the mutual information with
equal power allocation is a capacity lower bound for non-i.i.d. channels).

Fig. 1. Illustration of a 2× 2 diagonally correlated channel.

II. DIAGONALLY CORRELATED 2× 2 MIMO CHANNELS

A. Channel Matrix and Covariance

In the case of a 2× 2 system, the channel matrix reads as

H =

[
h11 h12

h21 h22

]
. (2)

From [3], it is clear that for 2× 2 MIMO Rayleigh-fading channels,
the capacity is maximized if the absolute value of the full MIMO
correlation matrix RH = E{vec(H)vec(H)H }, with vec(·) denoting
the column-wise stacking of matrix elements into a column vector,
fulfills

|RH| =




1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1


 . (3)

In (3), antenna amplitude correlations E{hij h
∗
lj } (receive correlation

when transmitting from antenna j) and E{hij h
∗
i l} (transmit correla-

tion when receiving on antenna i) are equal to 0(i �= j �= l = 1, 2; (·)∗
denotes complex conjugate). Simultaneously, the remaining entries,
which we define as diagonal correlations, are equal to unity. Such
channels are defined as 2× 2 diagonally correlated. Henceforth, the
amplitudes of the matrix elements of a 2× 2 diagonally correlated
channel read as

|Hdiag| =

[
|h11| |h12|
|h12| |h11|

]
(4)

with E{h11h
∗
12} = 0.

B. Physical Scenarios

A first illustration of a diagonally correlated 2× 2 MIMO chan-
nel is shown in Fig. 1. Such a channel occurs in scenarios in which
only two, nearly equally powered, independent Rayleigh-fading mul-
tipath components with orthogonal directions-of-arrival (DoAs) and
directions-of-departure (DoDs) exist. It is easy to observe that if a sin-
gle DoD couples into a single DoA and vice versa, then the diagonally
correlated channel results [4]. Note that the orthogonality of directions
is a sufficient condition but is not necessary. It is required that the cor-
responding steering/response vectors are orthogonal. Clearly, a fixed
wireless access channel might occasionally be diagonally correlated
(i.e., for a given base station, at any subscriber’s location where there
are no more than two major scatterers, with orthogonal DoDs and DoAs
at both link ends). Yet, it must be acknowledged that this situation is by
no means a very common situation. However, it can be shown that 2× 2
dual-polarized links constitute a highly practical scenario offering the
diagonal correlation structure of (3). Indeed, it has been illustrated
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in [5] that a dual-polarized channel (assuming collocated antennas at
both link ends) can be represented by the following matrix:

H ≈ α

[
1 µχej φ

χej φ µ

]
(5)

where α is a random time-varying fading variable, φ is a random
time-varying angle uniformly distributed over [0, 2π], and µ and χ ∈
[0, 1] are random time-varying variables that represent respectively the
ratio of the propagation loss in orthogonal components and the cross-
polar discrimination (XPD). In slanted schemes (antennas oriented
along ±45◦), it is evident that µ = 1 due to the array symmetry. For
horizontal/vertical (HV) schemes, the average value of µ depends on
the polarization selectivity of the environment. However, it is generally
assumed that µ ≈ 1 in most HV scenarios. Furthermore, experimental
results [6] suggest that, for large receive-to-transmit distances or in
large excess path-loss areas, α is Rayleigh distributed (the Ricean K-
factor is very low) and that χ ≈ 1 (the XPD is about 0 dB). Note
that since the K-factor and the XPD are strongly correlated [6], the
Rayleigh behavior might be a sufficient condition to obtain both a
low K-factor and χ ≈ 1. So, in these cases, the dual-polarized channel
matrix reduces to

H ≈ α

[
1 ej φ

ej φ 1

]
. (6)

In (6), the matrix elements are Rayleigh fading. The receive and trans-
mit antenna correlations are also equal to 0, owing to the random phase
shift between co- and cross-polar components (E{ejφ } = 0). By con-
trast, the diagonal correlations are both equal to 1. This exactly fulfills
the requirement of (3).

Finally, it is worth noting that the formalism of the finite scatterer
model [7] or the approach presented by [8] allows the diagonally cor-
related channel Hdiag to be expressed as

Hdiag = ARx(D ◦G)AT
Tx. (7)

Here, (·)T denotes transposition, is the element-wise Schur–Hadamard
multiplication, while G is a 2× 2 i.i.d. complex Gaussian random-
fading matrix. The two columns of the unitary matrix ATx(ARx)
constitute orthogonal steering (response) vectors of DoDs (DoAs). The
2× 2 coupling matrix D is either a diagonal or antidiagonal matrix
with identical entries, producing equally powered, one-to-one coupling
between DoDs and DoAs. By contrast, the popular Kronecker model
is not able to represent diagonally correlated channels.

C. Ergodic and Outage Capacity

A closer look at (7) allows the distribution of the singular values
of Hdiag to be derived. The orthogonal steering vectors of the unitary
receive (transmit) matrix ARx(ATx) constitute the left (right) singular
vectors, except for a constant phase term. The magnitudes of the
singular values of Hdiag, |si |, are given by the magnitudes of the
complex-Gaussian-distributed, nonzero elements of (D ◦G). Hence,
|si | follows a Rayleigh distribution. As a consequence, the eigenvalues
λi = |si |2 of the Gramian HdiagH

H
diag are chi-squared distributed

with two degrees of freedom. Since we normalize to unity the average
power of each channel matrix coefficient, the Rayleigh parameter of
the distribution of |si | becomes unity, too. The ergodic capacity in a
2× 2 diagonal channel is then exactly given by

C̄ = E

{
2∑

k=1

log2

(
1 +

ρ

2
x2

)}

= 2 · E
{

log2

(
1 +

ρ

2
x2

)}

Fig. 2. Ergodic capacity of diagonally correlated and i.i.d. channels as a func-
tion of SNR.

= 2

∫ ∞

0

log2

(
1 +

ρ

2
x2

)
xe−

x 2
2 dx

= 2 log2 (e) e
1
ρ E1

(
1

ρ

)
(8)

where E1(z) is the En-function [9] for n = 1 that satisfies
E1(z) =

∫ ∞
1

(e−tz /t)dz.
Close scrutiny of (8) reveals that the diagonally correlated channel

exhibits a higher ergodic capacity than the corresponding i.i.d. chan-
nel, irrespective of the SNR ρ. Note also that the low-SNR behavior is
similar to the high-SNR behavior. It should be remembered that cor-
relations are already specified via (3), so that (8) does not exhibit any
dependence toward correlation coefficients.

In Fig. 2, the ergodic capacity is plotted as a function of SNR. The
capacity advantage of diagonally correlated channels is also confirmed
by dual-polarized experimental results [6] in large excess path-loss
conditions (note that the capacity results in [6] are normalized to re-
move any path-loss effect on the SNR, so that the comparison with i.i.d.
channels using such normalization is fair and similar to the normaliza-
tion used to derive the analytical result). Finally, we performed Monte
Carlo simulations with 5 · 105 realizations each to show the capacity
cumulative distribution functions (CDFs) of both channels at a given
SNR of 20 dB (Fig. 3). Interestingly, while the ergodic capacity of the
diagonally correlated channel is larger than the i.i.d. counterpart, the
CDF presents a flatter slope than that of the i.i.d. channel; i.e., its outage
capacity is lower for outage levels less than approximately 15%.

An intuitively appealing reason for this capacity behavior is as fol-
lows. The channel amplitudes |h11| and |h22| = |h11| in (4) fade strictly
in tandem, and so do the off-diagonal elements, but these pairs fade
independent of each other, providing two perfectly separated virtual
subchannels on their own. This improved separation of thesubchannels
results in a higher ergodic capacity. Since the degrees of freedom re-
duce from four to two, diversity in diagonally correlated channels is
lower than for i.i.d., leading to a flatter slope of the capacity CDF.

III. DIAGONALLY CORRELATED n × n MIMO CHANNELS

The concept of the 2× 2 diagonally correlated channel can be gen-
eralized as follows. Consider a symmetric n × n MIMO channel with
n orthogonal DoDs and n orthogonal DoAs. We call such a channel
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Fig. 3. Capacity CDF of a 2× 2 i.i.d. and diagonally correlated channel at 20
dB receive SNR.

diagonally correlated if each single DoD couples into a single DoA and
vice versa. The analytical modeling stays the same and follows (5). Of
course, the dimensions of the unitary steering and response matrices
ATx and ARx, the coupling matrix D, and the random fading matrix
G must change to n × n. Further, D is a sparse matrix with only
one entry in each row and column, producing the needed one-to-one
coupling. The entries of D have to be identical. The actual shape of
D determines the appearance of the channel matrix and therefore the
full correlation matrix. Interestingly enough, the amplitudes of the
corresponding channel matrix entries exhibit a specific symmetry. It
can be shown that the rows have to be cyclically shifted, either left [as
in (7)] or right. As an example for 3× 3 MIMO, the amplitudes of the
channel matrix may result, for a given choice of D, in

|Hdiag| =

[ |h11| |h12| |h13|
|h12| |h13| |h11|
|h13| |h11| |h12|

]
. (9)

This would also correspond to, e.g., tri-polarized schemes (using
three orthogonal polarizations at both the transmit and the receive
sides).

Similarly to the 2× 2 case, the eigenvalues λi = |si |2 of the
Gramian HdiagH

H
diag are still independently identical chi-squared dis-

tributed with two degrees of freedom, independent of the actual shape
of D. If the channel is normalized to unity average power of each
channel matrix coefficient, the variance of the Rayleigh-distributed
|si | increases linearly with the number of antennas. For n antennas
at both link ends, it equals (n/2). Hence, the ergodic capacity of an
n × ndiagonal channel is exactly given by

C̄ = n log2(e)e
1
ρ E1

(
1

ρ

)
. (10)

In the above expression, the capacity only depends on the SNR and
on the number of antennas (as the covariance matrix of the chan-
nel is fully determined through the diagonal-correlation assumption).
Interestingly, the capacity grows exactly linearly with the number
of antennas whereas the capacity of i.i.d. channels grows in n only
asymptotically.

IV. CONCLUSION

This letter has proved that diagonally correlated channels have the
remarkable property of providing higher ergodic capacity than i.i.d.
channels but lower outage capacity at low outage levels. The study also
answers which propagation scenarios would allow for such behavior
to take place. An important class of diagonally correlated channels is
constituted by dual-polarized Rayleigh-fading channels. We also show
that, mathematically, the rows of the amplitudes of the channel coeffi-
cients have to be cyclically shifted versions of each other. Analytical
formulas of ergodic capacity of symmetric n × n MIMO systems, n
arbitrary, have finally been detailed.
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