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Abstract

The uplink of code division multiple access (CDMA) cellularradio systems is often inter-
ference limited. The interference originates from many users whose transmission powers
are not observable for the system. This thesis introduces uplink load and applies means of
explicitly considering the users’ radio environment when approximating and controlling
the load.

A desirable property of all cellular radio systems is uplinkfeasibility, i.e., existence
of finite user transmission powers to support the allocated services. Uplink load can
be considered as a measure of how far from infeasibility the system is. The performed
characterization of uplink load lead to two concrete definitions related to the amount of
received and transmitted power, respectively.

An important part of the total load is the intercell load which is caused by users con-
nected to neighboring base stations. If not carefully handled, the intercell load can jeop-
ardize uplink feasibility. Conversely, knowledge of a lower intercell load can be used to
increase the resource assignments. A common denominator inall the work in this thesis
is that the intercell load is explicitly considered.

When approximating uplink load, a centralized approach is adopted to study infor-
mation gathered in several base stations. This yields good approximations of the average
load. However, centralized approximations can not detect momentarily peaks in the load.
A number of resource allocation algorithms making control decisions in the local base
stations are proposed based on experience from characterizing uplink load. As the al-
gorithms study the intercell load, yet without measuring the interference power, they are
robust in the sense that they will never assign resources yielding an infeasible system.

A straightforward way of controlling the uplink load is to use measurements of the
received interference power. This approach, just as the proposed load approximations, can
gain from knowing the background noise power. The same framework used for designing
robust resource allocation algorithms, is also used for estimating the background noise
power.
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1
Introduction

This chapter is meant to provide an overall picture of the rest of the thesis. After a brief
discussion on the background and objectives of the work in the next section, the remaining
chapters of the thesis are addressed one by one in Section 1.2. Main contributions and
concrete outcomes produced as the work progressed are summarized in Section 1.3.

1.1 Background and Objectives

Cellular radio systems providing speech service to users have been around long enough
to be a part of the every day living for a many people. The mobile phone is one of the
things you bring with you together with your wallet and keys as you walk on the street.
Radio systems providing a multitude of services to the users, on the other hand, can not
yet be called mature.

The radio resource management(RRM) problem can be defined as the problem of
deciding what service to provide to each specific user. The increased complexity due
to a multitude of services in the radio systems of today makesthe RRM problem more
challenging. In the systems considered in this work, using an inadequate RRM algorithm,
the algorithm solving the RRM problem, does not only correspond to inefficient resource
utilization, it can also mean that the ability to provide anyservice at all is jeopardized.

A fundamental criterion for a well operating RRM algorithm is accurate knowledge
of the amount of available resources, both currently and after a possible RRM decision
has been made. The systems considered in this work usecode division multiple ac-
cess(CDMA) as the scheme for sharing resources between users. Because of CDMA
characteristics, the total amount of resources in the uplink, i.e., communication from mo-
bile phone to the fixed base station, is not constant over time. Instead, it depends on
where in the service area users are located. This makes it hard to decide how much of the
resources that are currently used. Another word for this quantity, the ratio between used

1



2 1 Introduction

and total resources, isuplink relative load.
The objectives of this work have been to characterize, approximate and control the

uplink load of a CDMA cellular system.

Characterizing Even though it is well known that the primary resource in the uplink is
the total received power, it is interesting to derive a measure of how far the system is from
being overloaded. The first objective of this thesis is to provide definitions of uplink load
which can later be used in practice and/or theory.

Approximating A problem when trying to establish the uplink load in practice is that
it is hard to measure the received power accurately. Furthermore, the uplink load measure
used in practice also involves the unknown background noisepower, which is why sim-
ply using measurements of the uplink received power is not recommended. The second
objective of this thesis is to derive practically attractive approximations of the uplink load
using only readily available information.

Controlling The ability to provide service in one area covered by cellular radio system
depends on decisions made in other areas. Thus, making inappropriate decisions in the
own geographical area can ruin the possibilities to provideservices in the own area as well
as in other areas. This indicates that centralized control should be applied. On the other
hand, for increased performance, RRM decisions should be based on detailed information
on the local radio environment and momentarily transmission requests. Therefore, both
centralized and decentralized schemes seem to have advantages. The third objective of
this thesis is to develop robust and efficient RRM algorithmsbased on the knowledge and
experience gained from earlier parts of the thesis.

1.2 Thesis Outline

Below is a short explanation of the contents and purpose of the ten chapters in this thesis.
Figure 1.1 provides an overview of where the chapters fit intoan automatic control view
of a cellular radio system.

Chapter 2 is a presentation of the results of the thesis. The chapter is, in terms of
details, intermediate between the ordinary abstract and the entire thesis. Basic knowledge
of cellular radio systems is here assumed to be known by the reader.

Chapter 3 provides fundamentals of systems for radio communicationsin general and
CDMA cellular radio communications in particular along with the notation used through-
out the thesis.

Chapter 4 introduces different aspects on uplink load in CDMA cellular radio systems.
Uplink load from a practical point of view as well as from a more theoretical point of
view is given.
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Load Control
(Chapter 7) Power Control

System
(Chapter 3)

γtgt
i

pi

External Disturbance

Power Gain Values

γi

Observer
(Chapter 5)

Approximative
Load

Max Load
(Chapter 8)

Figure 1.1: Resource control implemented as a cascade control system.

Once the uplink load is characterized, the remaining chapters contain the main results
of this work. These results cover approximating and controlling the uplink load as well
as using the developed framework for advanced filtering techniques.

Chapter 5 contains the derivation of a number of load approximations suited for prac-
tical use. Each approximation can be seen as an observer of the true system. The chapter
also contains simulation where the approximations are evaluated under rather realistic
circumstances.

Chapter 6 looks at relations between the load approximations derivedin Chapter 5 and
more theoretical aspects of uplink load. The analysis leadsto a method for guaranteeing
convergence of the uplink load approximations.

Chapter 7 uses experience from earlier chapters to design robust loadcontrolling algo-
rithms. Included in the chapter is a simulation study to givean idea of the performance of
the algorithms.

Chapter 8 looks at the uplink load’s role in the always present trade off between net-
work performance and service quality for individual users.For a fixed maximum load,
for example, higher bit rates can be given to fewer users, or coverage can be increased at
the expense of less momentarily revenue for the operator.

Chapter 9 contains two applications of signal processing. The purpose of the first of
these is to provide a more stable load approximation, while the second application uses
nonlinear filtering to estimate the background noise power based on readily available
measurements.

Chapter 10 contains the conclusions of the thesis.



4 1 Introduction

1.3 Contributions and Publications

The main contribution is the overall results on uplink load in CDMA cellular radio sys-
tems. The results cover characterizing, approximating andcontrolling the uplink load.

Detailed contributions are:

• Development and evaluation of centralized load approximations in Chapter 5.

• The framework including the system matrix introduced in Chapter 6. Much of the
theoretical results are based on this framework.

• Development and evaluation of decentralized robust resource controlling schemes
in Chapter 7.

Results presented in this thesis are partially covered by the following publications.

• The work on characterizing load in Chapter 4 is to a great extent also provided in

Erik Geijer Lundin and Fredrik Gunnarsson. Characterizinguplink load
- concepts and algorithms. In Mohsen Guizani, editor,Wireless Com-
munications Systems and Networks, chapter 14, pages 425–441. Kluwer
Academic, 2003.

• The load approximations derived and evaluated in Chapter 5 were published in

Erik Geijer Lundin, Fredrik Gunnarsson, and Fredrik Gustafsson. Up-
link load estimation in WCDMA. InProceedings of the IEEE Wireless
Communications and Networking Conference, New Orleans, LA, USA,
March 2003c.

and

Erik Geijer Lundin, Fredrik Gunnarsson, and Fredrik Gustafsson. Up-
link load estimates in WCDMA with different availability of measure-
ments. InProceedings of the IEEE Vehicular Technology Conference,
Cheju, South Korea, April 2003a.
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Extended Summary

The purpose of this chapter is to give a short version of the thesis, but yet elaborate on
ideas and results. No complete results are given here, only enough to give an idea of
what the corresponding parts of the thesis contain. As the sections in this chapter have
the same name as the remaining chapters, it is hopefully fairly easy to find more detailed
derivations and results.

Section 2.1 introduces the notation used. Definitions of uplink load are made and
motivated in Section 2.2. Section 2.3 contains a short summary of the extensive work that
has been on deriving and evaluating a number of load approximations. The framework
for studying load from a more theoretical perspective and fundamental results are given in
Section 2.4. Experience from Section 2.4 is then used in Section 2.5 to derive a number of
robust algorithms for control of the uplink load. It is generally known that, for example,
high load implies a tighter trade off between coverage, capacity and service quality for
individual users. Both a theoretical and a more practical aspect of this trade off is touched
upon in Section 2.6. Finally, signal processing is used in Section 2.7 to extract a more
stable load approximation as well as estimating the background noise power.

2.1 Cellular Radio Communication

This section will only contain the introduced notation and is, unlike the corresponding
chapter, not an attempt to introduce the reader to cellular radio communications in general.
However, after having introduced the notation, the scope ofthe thesis is given from a
automatic control point of view.

2.1.1 System Model

Consider the uplink, i.e., communication from user to base station, of a code division
multiple access (CDMA) cellular radio system consisting ofM users andB base stations,

7
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or cells. The radio channel between useri and base stationj will simply be modeled as
a power gain,gi,j < 1. Using this model, the received carrier power from useri in base
stationj is

Ci,j = gi,jpi,

wherepi is the power useri transmits with.
The limiting resource in the uplink of a CDMA cellular radio system is often thetotal

received interference power, Itot. The total received interference power in base stationj
is modeled as the background noise power,Nj , plus the sum of received carrier powers
from users on the same frequency band,

Itot
j = Nj +

M∑

i=1

Ci,j , j = 1, 2, . . . , B. (2.1)

For the purpose of maintaining a suitable received signal quality, power control is imple-
mented in the systems considered here. It is useful to introduce the following notation for
the base stations a user is power controlled by.

Definition 2.1 (Link Matrix). The element on rowi and columnj of the link matrix,
K ∈ R

M×B , is defined as

Ki,j
△

=

{

1, if useri is power controlled by base stationj

0, otherwise.

A similar quantity is the setKi which contains the base stations that useri is power
controlled by, essentially

Ki
△

= {j|Ki,j = 1}.
The dual set is the set of users connected to a base station. For base stationj,

cj
△

= {i|Ki,j = 1}.

The setsKi and power gain values are visualized in Figure 2.1. A user whois power
controlled by several base stations, is said to be insoft handoverbetween these cells. To
characterize the number of cells a user may be power controlled by, the termconnectivity
is introduced.

Definition 2.2 (Connectivity). A system is said to haveconnectivityk if at least one
user is power controlled byk base stations.

In a system with connectivity one, each setKi, i = 1, 2, . . . ,M contains only one
base station. Uplink load is often related to uplinknoise risein the literature. The uplink
noise rise is defined as

Λj
△

=
Itot
j

Nj
.

The quality of the signal transmitted by useri and received in cellj is characterized by
thecarrier-to-interference ratio(CIR),

γi,j
△

=
Ci,j

Itot
j − Ci,j

.
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Ci,j Ci,k

Ci,ℓ
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ℓ
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Figure 2.1: Variables in a cellular radio system.

For notational ease,carrier-to-total-interference ratio(CTIR), β, is introduced,

βi,j
△

=
Ci,j

Itot
j

.

The relations betweenγ andβ are simply

β =
γ

1 + γ
andγ =

β

1 − β
.

The total perceived signal quality is related to the CIR and CTIR obtained by combining
the signals received in different base stations. These total CIR and CTIR will simply be
denoted byγi andβi, respectively. For example, in case of connectivity one,

γi = γi,Ki
andβi = βi,Ki

.

2.1.2 Assumptions and Scope of the Thesis

Communication systems are among the most complex systems built by man. As such,
there is much to gain from breaking down the system into smaller subsystems, which
can be handled relatively independently. Besides splitting the system into uplink and
downlink, mechanisms of the system operating on different time scales can be separated.

Systems operating on different time scales are often stumbled upon within automatic
control. The different time scales make the system well suited for a cascade control
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framework, as in Figure 1.1. In the inner loop, where fast updates are made, power control
adjusts the users’ transmission powers on a time scale of milliseconds. The purpose of
the power control loop is to adjust the transmission powers to maintain an experienced
CIR approximately equal to a target CIR, despite variationsin the radio environment and
background noise. The power control can only succeed if the individual target CIR values,
γtgt

i for each useri, are not set too high. The adjustment of the target CIR valuesis done
by a number of load controlling algorithms in the outer loop operating at a far slower rate
than the power control. It is customary to analyze the inner and outer loop of a cascade
system independently, which is motivated by the considerable difference in time scale.
When analyzing the outer loop, the inner loop is often assumedto operate perfectly on
the time scale that the outer loop operates on. This work is entirely devoted to the load
control part. Motivated by the cascade control view, it is always assumed that the system
has perfect power control when deriving the results.

2.2 Characterizing Uplink Load

Example 2.1 is meant to give an intuitive view of one of the twodefinitions of uplink load
that will be made, the noise rise relative load.

Example 2.1: Interference Limited System

Consider a system consisting of just one base station, i.e.,B = 1. The total received
interference power is

Itot
1 = N1 +

M∑

i=1

Ci,1 = N1 +
M∑

i=1

βiI
tot
1 ⇔

Λ1 =
Itot
1

N1
=

1

1 −∑M
i=1 βi

. (2.2)

The nature ofItot
1 implies that it should be positive. Thus, a basic requirement is

M∑

i=1

βi < 1. (2.3)

This puts a constraint on the maximum combined CTIR that the users can have, regardless
of how much transmission power they have available.

Because of the polynomial in the denominator of (2.2), this is often called the pole equa-
tion (Holma and Toskala, 2000). The above example shows thatthe system’s ability to
provide service to the users is limited, despite access to infinite transmission powers. This
is true also for a system consisting of several cells. A system with this property is called
an interference limited system.

Noise Rise Relative Load. Since the system is interference limited, a definition of
uplink load should be related to the received interference power. The most common
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definition of uplink load found in the literature is

Lnr △

= 1 − N

I
= 1 − 1

Λ
.

The indexnr, which is an acronym for noise rise, has been added to separate this load
from the other type of load defined below. This type of load, which will be callednoise
rise relative loadis especially used for practical applications in the literature. The def-
inition is natural, considering that the uplink interference power is the primary uplink
resource. Note that a noise rise relative load of zero corresponds to a noise rise of one,
i.e.,Itot = N .

When introducing this type of load, it is common to talk about the pole capacity.
This is the capacity, in whatever measure used, of the systemwhen the noise rise relative
load reaches one. This is a theoretical capacity since a noise rise relative load of one
corresponds to infinite interference powers.

For the purpose of establishing the noise rise relative loadin practice, the total re-
ceived interference power is often split into three parts. One being the background noise
and the other two are interference from users connected to the own base station,intra-
cell interference, and interference from users connected to other base stations, intercell
interference,

Itot = N + Iown + Iother.

The intercell interference depends on where users are located in the system. This
means that also the system’s pole capacity depends on where users are located and how
many users there are in different cells. Thesoft capacityof a system can only be reached
if soft characteristics, such as received interference power or power gain values between
users and base stations, are studied in theradio resource management(RRM). So, for ex-
ample, an RRM algorithm studying the system’shard capacity, as in for example counting
the number of users or measuring the throughput of the system, can not fully utilize the
system’s resources.

A common way of approximating the uplink load is to use anintercell-to-intracell
factor, f . When doing so, the intercell interference is assumed to be a fraction f of
the intracell interference,Iother = fIown. The uplink load in base stationj is then
approximated by

Lnr
j ≈ 1

1 − (1 + f)
∑

i∈cj
βtgt

i

.

The soft capacity of the system can not be achieved when usingthis method.
There are several reasons for operating a system at lower load than one. Lower load

means lower noise rise. A high noise rise indicates a high total interference power, some-
thing which can cause problems with coverage as the users have limited transmission
powers. Another reason is that it is harder for the power control to operate satisfactory
at a high noise rise level. Loosely speaking, small changes in the radio environment or
small changes by the load control algorithm in Figure 1.1 will make much higher impact
at high noise rise levels, see Figure 2.2.

Feasibility Relative Load. The second type of studied uplink load is related to the
existence of finite transmission powers to support the service requested by the load con-
trol. A system isfeasibleif it exists finite transmission powers to support the requested
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Figure 2.2: The nonlinear relation between noise rise relative load,Lnr, and noise
rise,Λ. Additional load,∆Lnr, gives different noise rise contribution,∆Λ, at dif-
ferent load levels.

signal qualities (Zander, 1993). If that is not the case, thesystem is infeasible. The uplink
feasibility relative loadis defined as one over the factor by which all users’ target CTIR
can be scaled by while maintaining a feasible system,

Lf
△

= sup
µ
{ 1

µ
: µβtgt

i leads to a feasible system}.

From the definition, it is clear that a feasibility relative load less than one,Lf < 1,
corresponds to a feasible system.

The noise rise relative load is related to the load in a specific base station while the
feasibility relative load is related to the entire system. Furthermore, the feasibility relative
load is more of a theoretical load, since it only applies as long as the users have transmis-
sion powers enough to support their target CTIR values. The noise rise relative load, on
the other hand, is always applicable and much easier to establish in a general, practical
system. A more detailed comparison between the two load definitions is made in Chap-
ter 6. It is concluded, for example, that as long as all users can maintain their target CIR
in a system with connectivity one, the feasibility relativeload is lower than or equal to the
noise rise relative load, i.e.,Lf ≤ Lnr. Equality holds only in a single cell system.

2.3 Approximating Uplink Load

A major part of this work has been spent on deriving and evaluating the performance of a
number of uplink load approximations of the uplink noise rise relative load. Using only
readily available information on the users’ target CTIR values and the power gain between
users and base stations, they provide approximations that are for free in a sense since they
do not require any additional signaling.

Due to the intercell interference part of the total inteference power, the noise rise
relative load in one base station depends on the situation inthe surrounding cells. This
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yields that an approximation in a base station using only local information can not con-
sider the whole interference power explicitly. The proposed load approximations, on the
other hand, use information gathered in several base stations and can therefore explicitly
consider all contributions to the total received interference power.

2.3.1 Derivation of Load Approximations

Inspired by what is done inWideband CDMA(WCDMA), a system utilizing soft han-
dover is studied in Chapter 5. A consequence of utilizing soft handover is that the setsKi

may contain several base stations. This makes the relation between the interference power
in different base stations quite complex. To exemplify, first approximate the combination
of signals received from one user in different cells with maximum ratio combining. Using
maximum ratio combining implies that the CIR of the combinedsignal equals the sum of
the separately received signals’ CIR, i.e.,

γi =
∑

k∈Ki

γi,k.

By neglecting the power control errors, received CIR can be approximated with target
CIR. Finally, transforming CIR into CTIR and using the modelof total received interfer-
ence power in (2.1) at timet yields

Itot
j (t) = Nj(t)+

M∑

i=1

pi(t)gi,j(t) ≈ Nj(t)+

M∑

i=1

gi,j(t)
βtgt

i (t)
∑

k∈Ki

gi,k(t)
Itot

k
(t)

, j = 1, 2, . . . , B.

(2.4)
An important property of the above equation is that it only contains variables that can be
expected to be known in a central node, i.e., the users’ target CTIR and measured power
gain values, and the quantity that will be solved for,Itot

j (t), j = 1, 2, . . . , B.
Considering that there is one equation like (2.4) in each base stationj, calculating

either the uplink noise rise,Itot
j /Nj , or the uplink noise rise relative load involves solving

a system of nonlinear equations. Two methods for doing this are proposed in Chapter 5,
one is based on linearization and the other uses fix point iterations.

Linearization. By approximatingItot
k (t) with Itot

j (t) in (2.4), the uplink noise rise
relative load in base stationj at timet can be approximated by

Llin
j (t) =

M∑

i=1

βtgt
i (t)

gi,j(t)
∑

k∈Ki
gi,k(t)

.

The indexlin has been added to emphasize the linearity in the users’ target CTIR. This
expression should be compared to (2.3), which relates to a single cell system. Since all
users in the system is considered byLlin

j , not only the load caused by users connected
to the own cell, but also the load caused by users connected toother base stations are
explicitly considered. There is thus no need for an intercell-to-intracell factor as is usually
the case in the literature.
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Fix Point Iterations. The system of nonlinear equations defined by (2.4) can be solved
through fix point iterations. by approximating the background noise power in all base
stations with a common, but yet unknown, background noise power, i.e.,Nj(t) ≈ N(t)
for all j, the nonlinear equations can be approximately solved usingfix point iterations,
as in Algorithm 2.1. The parameterN iter is the number of fix point iterations performed
before each update. The analysis in Chapter 6 yields that Algorithm 2.1 converges to the

Algorithm 2.1

Let Λ̃(t, 0) = ΛNMRC(t − 1)
Forn = 1 to N iter

For j = 1 to B

Let Λ̃j(t, n) = 1 +
∑M

i=1 βtgt
i (t)

gi,j(t)P
k∈Ki

gi,k(t)

Λ̃k(t,n−1)

ΛNMRC(t) = Λ̃(t,N iter)

true noise rise if provided with accurate power gain values and applied in a system with
connectivity one.

As the approximations derived here,Llin
j andΛNMRC

j , study the users’ relative power
gain and all cells simultaneously, a resource management algorithm using these approxi-
mations can in fact achieve the system’s soft capacity.

2.3.2 Error Sources

Besides the approximations made during the derivation, examples of the error sources that
appear in practice are the following.

• Inaccurate and incomplete knowledge of the power gain between users and base
stations.

• Inaccurate assumption on how signals received in differentcells are combined.

• TX increase, which is the increase in average intercell interference power due to
fast power control.

2.3.3 Evaluation

A rather complex simulator has been used to perform an extensive simulation study on
the performance of the uplink load approximations. Many weaknesses of a true system is
modeled, such as imperfect power control and sparsely sampled power gain reports that
do not include all base stations. The results from this studyare reported in Chapter 5.
The simulator models many characteristics of a true system such as fast fading, decoding
ability, soft handover and user mobility.

When deriving (2.4), which defines the system of nonlinear equations that is the bases
for the approximations, maximum ratio combining of the signals was assumed. Similar
expressions as (2.4) are derived by assuming selection combining1 or the actual mix of

1When combining signals using selection combining, the CIR of the combined signal is the maximum CIR
of the separately received signals.
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maximum ratio and selection combining that is used in the system. Applying fix point
iterations to these systems of nonlinear equations leads totwo more approximations of
the uplink noise rise. These will be referred to asΛNSEL andΛNBOTH , respectively.
Figure 2.3 shows the average error of the approximations with and without a compensa-
tion for the TX increase contribution to the true noise rise.The compensation requires
knowledge of the characteristics of the specific channels. The simulations indicate that
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Figure 2.3: Error in noise rise with 64 kbps users. The dashed lines represents
approximations with the proposed compensation for TX increase.

it is possible to approximate the uplink load to within 1 dB for as high noise rise levels
as 8 or even 9 dB. Even though not shown here, the variance of individual approxima-
tion errors is fairly small. The TX increase compensation comes with a slight increase in
variation in the errors.

Similar results for the approximations using linearization in Section 2.3.1 are reported
on in Chapter 5.

2.4 Analyzing Uplink Load

Relations between noise rise relative load and feasibilityrelative load are derived in Chap-
ter 6. These relations, together with relations to the uplink load approximations are also
found in Chapter 6, are used to provide a criteria for system feasibility. The results are
divided into those applicable to a system with connectivityone, and those applicable to
systems with higher connectivity.

A basis for much of the work in Chapter 6 is a framework using a matrix expression
for the total received interference powers in the base stations. In order to derive the matrix,
consider a system with connectivity one. This means that (2.4) simplifies to

Itot
j (t) = Nj(t) +

M∑

i=1

βtgt
i (t)

gi,j(t)

gi,Ki
(t)

Itot
Ki

(t) = Nj(t) +

M∑

i=1

βtgt
i (t)zi,j(t)I

tot
Ki

(t).
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Here,zi,j(t) is therelative power gainwhich is defined for any connectivity as

zi,j(t)
△

=
gi,j(t)

∑

k∈Ki
gi,k(t)

.

The duality betweenKi andck impliesKi = k, ∀i ∈ ck. The total interference power in
a system with connectivity one can therefore be expressed as

Itot
j (t) = Nj(t) +

B∑

k=1

∑

i∈ck

βtgt
i (t)zi,j(t)I

tot
Ki

(t) = Nj(t) +

B∑

k=1

Lk,j(t)I
tot
k (t),

where
Lk.j(t)

△

=
∑

i∈ck

βtgt
i (t)zi,j(t), k, j = 1, 2, . . . , B. (2.5)

Each elementLk,j(t) can be interpreted as the load that users power controlled bybase
stationk causes in base stationj at timet. Compiling allLk,j into a matrixL = [Lk,j ]
yields thesystem matrix. A matrix expression for the total received interference inall
base stations in a system with connectivity one is thus

Itot = N + LT Itot.

This expression is used repeatedly in Chapter 6 to derive various results. For example,
the feasibility relative load of a system with connectivityone is the maximum eigenvalue
of the system matrix, i.e.,

Lf = λ̄(L),

whereλ̄(L) is the eigenvalue of the system matrixL with maximum magnitude.
Other results found in Chapter 6 give several bounds on the uplink feasibility rela-

tive load, bounds that are possible to calculate before a resource management decision is
made. Feasibility relative load is also related to convergence of the fix point iterations
described in Section 2.3.1. For example, it is shown that Algorithm 2.1 converges to the
true noise rise vector in a feasible system with connectivity one. The results found in
Chapter 6 are summarized in a procedure for approximating uplink load of a system with
arbitrary connectivity.

2.5 Controlling Uplink Load

Various properties of the system matrix, whose elements aregiven by (2.5), are combined
with experience from the theoretical analysis to design resource allocation algorithms in
Chapter 7. More concrete, the proposed allocation algorithms are optimization problems
in which the constraints are inspired by the relations givenby the theoretical analysis. The
utilization function in these problems is the sum of maximumachievable rate normalized
with the signal bandwidth (Wozencraft and Jacobs, 1965, page 520),

∑

i

log2(1 + γtgt
i ).

Essentially, two resource allocation algorithms are proposed. They both make resource
allocations in local nodes while maintaining system feasibility. Neither of the algorithms
rely on measurements of the uplink noise rise.
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Decentralized Algorithm. The first proposed algorithm does not use a central node at
all. The algorithm is based on a result applicable to all square matrices,

λ̄(L) ≤ ||L||∞.

Since all elements ofL are positive, the matrix infinity norm is simply the maximum row
sum.

A single base station can control all elements of a row in the system matrixL. There-
fore, if all base stations make resource assignments such that the corresponding row is
less than some constantLtgt

f , so will the feasibility relative load,Lf , be. Obviously, by

choosingLtgt
f less than one, this yields a method for guaranteeing system feasibility.

A result by Gantmacher (1974) states that a lower bound onλ̄(L) is given by the
minimum row sum. Therefore, if all row sums equalLtgt

f , so doesLf .

The optimization problem solved in each base stationk at each time instantt is

max
βtgt

i
(t)∈ck

∑

i∈ck

log2(1 + γi(t)) = −
∑

i∈ck

log2(1 − βtgt
i (t))

s.t.

{∑

i∈ck
βtgt

i (t)
∑B

j=1 zi,j(t) ≤ Ltgt
f

βmin ≤ βtgt
i (t) ≤ βmax,∀i ∈ ck.

Semi-Centralized Algorithm. The second proposed algorithm uses a central node to
distribute resource pools to the base stations. Each base station then assigns resources to
the users connected to it. System feasibility is guaranteedthrough the use of a mutual
agreement between the central node and the base stations.

The purpose of the central node is to distribute resource pools to the base stations.
Typically, a base station with many users in it should receive a larger resource pool. By
feeding back information on where in the radio environment the users are located, soft
capacity can be studied in the central node just as it is in thebase stations. Feeding
complete information on each users’ location would requiretoo much signaling. The
information send back from base stationk at timet is

Yk,j(t)
△

=
1

∑

i∈ck
βtgt

i (t − 1)

∑

i∈ck

zi,j(t − 1)βtgt
i (t − 1) = Lk,j(t − 1), j = 1, 2, . . . , B.

Based on the information received from all the base stations, the central node compiles a
matrix L̄ = [L̄k,j ], with

L̄k,j = skYk,j(t).

The resource pools,sj(t), j = 1, 2, . . . , B, are given in the central node as the solution to



18 2 Extended Summary

the following optimization problem

max
s

B∑

j=1

sj(t)

s.t.







(

E L̄

L̄T Ltgt
f

2
E

)

� 0

L̄k,j = sk(t)Yk,j(t), k, j = 1, 2, . . . , B

sk(t) =
∑

i∈ck
βtgt

i (t)

βmin ≤ βtgt
i (t) ≤ βmax, i = 1, 2, . . . ,M.

Here,E is the identity matrix. The matrix inequality will guarantee that the maximum
eigenvalue of̄L is less than or equal to the target feasibility relative load, Ltgt

f . Now, if
each elementLk,j(t) in the system matrix is less than or equal to the corresponding ele-
ment inL̄, the maximum eigenvalue ofL(t) will also be less thanLtgt

f . This requirement
will be guaranteed by the way resources are assigned in the local nodes (the base stations).
Upon receiving the resource poolsk(t), the resource assignment made by local nodek
will be the solution to the following optimization problem

max
βtgt

i
(t)∈ck

∑

i∈ck

log2(1 + γi(t)) = −
∑

i∈ck

log2(1 − βtgt
i (t))

s.t.

{∑

i∈ck
βtgt

i (t)zi,j(t) ≤ Yk,j(t)sk(t)∀j

βmin ≤ βtgt
i (t) ≤ βmax, ∀i ∈ ck.

After the base stations have assigned target CTIR values, they calculate new values
Yk,j(t+1) and send them back to the central node. Using this iterative procedure, repeat-
edly solving the optimization problems in the different nodes, implies that the algorithm
can adapt to changes in the radio environment as well as to users moving between cells.

Simulations. For comparison, two additional algorithms are introduced.One is acen-
tralized algorithmwith complete knowledge of the radio environment in the entire system.
This algorithm is meant to give an idea of what can be achieved. The second algorithm in-
troduced for comparison do not use a central node nor relative power gain values, and will
therefore be referred to as theblind algorithm. Using this algorithm, each base station has
a resource pool ofs0 which it shares evenly over users connected to it. Figure 2.4shows
the result of a simulation study in which a small part of the service area has a considerably
higher user density. This implies that there is performanceto gain by moving resources
between base stations.

According to Figure 2.4a, both of the proposed robust algorithms provide practically
equal capacity as the completely centralized, while the blind algorithm gives significantly
lower capacity. Figure 2.4b shows the relative success rateof the robust algorithms. The
semi-centralized algorithm’s ability to distribute resources between base stations results
in a higher success rate for low target load levels. For example, in this specific scenario,
choosing the target feasibility relative load to 0.5 yieldsthat the semi-centralized algo-
rithm succeeds in approximately 80% of the cases while the decentralized algorithm only
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Figure 2.4: Comparison of radio resource management algorithms.βmin = −15 dB
(γmin ≈ −15 dB), βmax = 0.5 (γmax = 1). 50 Monte Carlo simulations.

manages to find a solution in 20% of the cases. Considering higher offered load, these
success rates would appear for a higher target feasibility relative load. The difference in
success rates between the different algorithms is due to thesemi-centralized algorithm’s
ability to distribute resources between the local nodes.

As a conclusion, by studying the relative power gain it is possible to design decen-
tralized algorithms that provide a throughput comparable to that given by a completely
centralized algorithm. This is done with considerably less, or no, signaling between local
and central nodes, without neglecting the robustness in terms of guaranteed feasibility.
Furthermore, since the algorithms use local nodes, they cantake advantage of local infor-
mation on for example the radio environment.

2.6 Feasibility versus Coverage

Thus far, focus has been on approximating or controlling theuplink load. By using a few
examples, the trade off between capacity, coverage and quality of service for individual
users is addressed in Chapter 8.

Assuming that the users have transmission powers to supporttheir service, the feasi-
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bility relative load in a single service scenario with two cells and one user in each is given
by (dropping the time index,t)

Lf = β0(1 +
√

z1,2z2,1) ⇔
√

z1,2z2,1 + 1 =
Lf

β0
,

whereβ0 is the target CTIR values for the only service provided. The right hand side
relation indicates a possible trade off between coverage, in terms of users’ relative power
gain, and capacity in terms of the target CTIR. This shows that the coverage is limited in
a multi cell scenario, even if the users have unlimited transmission powers. As isolated
cells correspond to zero relative power gain to other cells,better isolation between cells in
a system yields better capacity or possible higher service quality for the users. A possible
limit on the uplink noise rise is in this case arbitrary, since it is the feasibility requirement
that provides the limitations. In a scenario where the relative power gain values are small,
it is primarily the target CTIR,β0, that is constrained. This is scenario is referred to as a
capacity limited scenario.

Now consider limited transmission powers. In this case it isperhaps wise to choose a
low noise rise target for the resource allocation algorithms, in order to not lose too much
coverage. A stochastic approach to link budgets has been applied to calculate an approx-
imative relation between target CTIR, coverage and grade ofservice in a few example
scenarios. Figure 2.5 shows the relation between maximum allowed noise rise relative
load and cell radius. It is clear that the noise rise relativeload that a system can cope with
in practice decreases fast as the cell radius grow, especially in system deployments with
large cells. The actual numbers on the x-axis depend on the specific scenario studied,
such as the background noise power and maximum user transmission power. The shaded
area is where the system can be expected to be capacity limited, as opposed to coverage
limited.

A conclusion of this analysis, is thus that the target load for the resource allocation
algorithms depends on the specific power gain distribution.In some scenarios, the target
load is set by coverage demands, while in others it is the feasibility requirement that gives
the maximum allowed load. The system may thus be coverage limited or capacity limited.
Since the distribution depends on the specific system deployment such as the size of the
cells and antenna characteristics, it can be changed to someextent by choosing a different
system deployment.

2.7 Filtering and Estimating Uplink Load

Signal processing techniques have been used in two different applications in Chapter 9.
These two are here explained in separate subsections.

2.7.1 Noise Rise Relative Load Filtering

The noise rise relative load is constantly oscillating about a load level, as can be noticed
in practice. If these oscillations can be canceled, resource management algorithms can
be more aggressive, leading to better resource allocation.An ordinaryauto-regressive
(AR) signal model, describing oscillations with zero mean,was extended to abiased AR
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Figure 2.5: Relation between average noise rise relative load and cell radius when
the users have a 95% probability of experiencing coverage. Two different target
CTIR values are considered. A simple model has also been fitted to data. The shaded
area represents situations where the system is capacity limited, as opposed to cover-
age limited. Aβ̄0 of -9.5 dB approximately corresponds to a 384 kbps service and
β̄0 = −13 to a 144 kbps service.

model, describing oscillations around an arbitrary level.In the application, this level is
considered time varying and it is the primary quantity to estimate.

The developed signal model, Kalman filtering and change detection are applied to a
signal produced by the load approximations derived in Section 2.3. The result is a more
stable load approximation which is alert to sudden changes in the load level as well as
an estimate of the load levels derivative. Ordinary low passfiltering of the signal would
either be very slow to adapt to a new load level or not suppressthe oscillations to the same
extent as the Kalman filter. Figure 2.6 shows an example of howthe estimation quickly
adapts to a new load level, while simply low pass filtering theestimate results in slow
adaptation to a new load level.

2.7.2 Background Noise Power Estimation

When using measurements of the uplink interference power forresource management,
an inaccurate measure of the background noise power can leadto decreased performance
in terms of capacity and coverage. Signal processing is usedto estimate the background
noise power using only available measurements of the uplinkinterference power. A non-
linear signal model based on the system matrix, describing the relation between back-
ground noise power and measured received interference power, is developed. The model
incorporates uplink interference power measurements being corrupted by a base station
individual bias in logarithmic scale.

As a nonlinear signal model is used, the estimation performance can be improved by
using nonlinear filtering. Besides linearizing the state space model and applying a Kalman
filter, extended Kalman filter(EKF) and particle filters have been applied.

The EKF, in general, uses a linearized version of the nonlinear model where the lin-
earization point is repeatedly chosen to the latest estimated state variables. The particle
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Figure 2.6: Example of estimated average load level when simply low passfiltering
(dashed) and using a biased AR-model together with Kalman filtering and change
detection (solid thick). The thin solid line is the load approximation used as input to
the estimation process.

filter uses Monte Carlo integration to approximate the probability density function for the
true state space vector. The main strength with particle filters is that almost arbitrary prob-
ability density functions for the measurement and process noise can be modeled. When
using particle filters a nonlinear signal model does not haveto be linearized at any stage.

The application performs well, despite the rather unrealistic circumstances assumed
during the derivation. Even when soft handover is used in thesimulations, unlike in the
modeling, the algorithm manages to estimate the backgroundnoise power with usually
less than 1 dB error in bursty traffic. Figure 2.7 shows how an EKF and two different
particle filters with 5000 and 10000 particles, respectively adapts to a sudden change in
the background noise power in one out of nine base stations. Using more particles implies
a better approximation of the probability density functionfor the possible values of the
state vector. However, in this case, 5000 particles seem to be enough to still detect the
sudden change in the true background noise power.
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3
Cellular Radio Communication

A requirement for applying math to wireless communication systems is obviously a way
of mathematically describing how a signal changes as it travels through the air. Since the
exact behaviour of the propagation channel is far too complex to be described exactly, a
model is used. The first section of this chapter describes howthe propagation channel is
modeled. Besides the propagation channel, two other important parts of a radio system
are the transmitter and the receiver. Section 3.2 describesthe generic parts of these two
components.

For many reasons, one being that the bandwidth available forradio communication is
limited and therefore expensive, the radio spectrum must beefficiently utilized. Methods
for sharing the available bandwidth are presented in Section 3.3. Because of this sharing,
users will interfere with each other. However, if they can bespatially separated, a user will
share the available bandwidth with less users. This is one ofthe ideas behind cellular ra-
dio networks. Theory regarding cellular radio networks is further explored in Section 3.4.
There is a number of expectations on a radio system. What theseexpectations are de-
pends on what kind of relation you have with the system. An attempt to characterize the
performance of the system is done in Section 3.5. In order to utilize available resources
in an efficient manner, radio resource management algorithms are used. In Section 3.6
fundamental radio resource management algorithms are mentioned and their purpose ex-
plained.

Exactly how these algorithms are implemented is a choice of the individual system
manufacturers. However, successful operation over manufacture borders requires stan-
dardization, both in terms of radio network architecture and in protocols between for
example transmitters and receivers. The last section of this chapter presents details of
the architecture of a WCDMA system and, for the present work interesting, parts of the
current standard.

25
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3.1 Radio Wave Propagation

A signal propagating through the air is subject to attenuation. Given perfect knowledge
of the surrounding environment, this attenuation can be calculated using Maxwell’s equa-
tions. This, of course, is not practically feasible for manyreasons. Therefore, a simplified
version of the reality, a model, is used. A criteria for the model is that it will provide a
statistically correct description of the attenuation. Instead of modeling the attenuation, its
inverse,power gain, is often modeled. The received signal power can comprehensively
be expressed as transmitted power times the power gain. The model is often separated
into three components. The product of these three is the power gain

g = gpgsgmp < 1,

wheregp representspath gain1, gs shadow fadingandgmp multipath fading. These three
components are explained in a bit more detail below.

Path loss is the long term attenuation caused by the distance between transmitter and
receiver. Path loss is the dominating factor in for example satellite communications. It is
usually modeled as

gp = Cpr
−α, (3.1)

whereCp is a constant which depends on the gain at the receiving antenna and the wave-
length of the radio signals,r is the distance between transmitter and receiver andα is a
radio environment dependent,propagation exponentranging from 2 (free space propaga-
tion close to the antenna) to5.5 (far from the antenna in a very dense urban environment).
This model, with terrain dependentα andCp, was verified by Okumura et al. (1968)
and Hata (1980). In cellular radio systems,α is usually taken equal to4 (Gilhousen et al.,
1991).

Shadow fading is due to large obstacles in the radio environment, objects which may
absorb the radio wave. This part of the power gain is not, unlike the path loss, strictly
increasing with the distance. Shadow fading is usually modeled using a log-normal dis-
tribution (Hata, 1980; Okumura et al., 1968)

gs = 10ξ/10, ξ ∈ N (0, σs).

This model assumes that the user is standing still and thus experiences the same shadow
fading over time. A user moving around in the environment will experience time varying
shadow fading. The correlation between two consecutive samples of the shadow fading
depends on how fast the user is moving. Gudmundson (1991) proposes a model where
the correlation is expressed using a relation between the user’s speed,v, and acorrelation
distance, d0. This distance is chosen together with an additional constant ǫD such that
the correlation between the shadow fading at two points separated a distanced0 should be

1The transmitting antenna’s gain and performance of the algorithms in the receiver can also be incorporated
in the path gain.
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ǫD. The dependence between consecutive samples is then implemented by filtering the

ξ-values through a first order low pass filter with a pole atǫ
vT
d0

D

y(t) =
(1 − ǫ

vT
d0

D )q

q − ǫ
vT
d0

D

ξ(t), gs = 10y/10.

The constantT is the sampling time used,t = 1, 2, . . . represents the discrete time instants
andq is the shift operator (e.g.,q−1ξ(t) = ξ(t − 1)).

Multipath fading is caused by signals being reflected on obstacles in the radioenvi-
ronment. The reflections cause a signal to be received in several copies. Since these
copies may arrive at different times and with different strength, they interfere either con-
structively or destructively. Multipath fading depends onthe user’s position relative the
surrounding environment. Thus one position does not have a time constant multipath fad-
ing due to a time varying radio environment. This contribution can change very rapidly,
which is why it is also called fast fading. Further details onmulti path fading can be
found in Sklar (1997). The changes in the multi path fading produces deep fades in the
total power gain, but the multi path fading gain can occasionally be larger than 1 (0 dB).
Multipath fading also causes local deep fades in the frequency spectrum. In case of narrow
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Figure 3.1: Example of the multipath fading part of the total power gain after the
rake receiver, when adopting the characteristics given by 3GPP Typical Urban mul-
tipath model, (3GPP, 2000c).

band communication this can be devastating.

One way of decreasing the variations in experienced power gain which the multipath
fading causes is to use a rake receiver. A rake receiver estimates the relative delay of
separate signal copies (rays). The information from different rays can then be combined
providing a more stable total power gain after the rake receiver. Figure 3.1 illustrates the
multipath fading gain after the rake receiver.



28 3 Cellular Radio Communication

3.2 Radio Communication Systems

Figure 3.2 shows the generic parts of a radio system. A message given to the source
encoder can be in practically any format, such as a text file, apicture or speech. The
source encoder converts this information into a string of bits.

These bits are then given to a channel encoder. A channel encoder adds redundancy
bits, which in the receiver will be used to correct errors induced between sender and
receiver. Both information bits and redundancy bits are then used to modulate a carrier
signal. This process produces a high frequency signal whichis suited for transmission
over the air interface.

At the other end, on the receiver side, things are basically done in the opposite direc-
tion. However, algorithms here are much more complicated. For example, demodulation
usually requires accurate synchronization between receiver and sender. The channel de-
coder uses the redundancy bits introduced by the channel encoder to detect and possibly
correct bit errors. Finally, the source decoder converts the bits into the form of the orig-
inal information. In order to provide a certain service to the users, the system has to

Source
Encoder

Channel
Encoder Modulation

DemodulationChannel
Decoder

Source
Decoder

SIR CIR

Message

Estimated Message

Figure 3.2: The generic parts of a radio system.

provide each user with a receivedsignal-to-interference ratio(SIR). A user’s SIR is the
ratio between the received power of the user’s signal and theinterference power. The
interference power consists of the background noise power,N and the signal power from
all other users currently transmitting using the same frequency band (see Section 3.3).
SIR is closely related to the more generally known signal-to-noise ratio. The difference
lies in the fact that SIR considers the actual noise power, i.e., not just background noise
but also noise originating from other users. Another user quality related quantity is a
user’scarrier-to-interference ratio(CIR), denotedγi. This is a measure of the power of
the signal received from the user versus the interfering noise power, when measured at
the receiving antenna. Thus, CIR is measured in the radio frequency band and SIR is
measured in the base band, see Figure 3.2.
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3.3 Multiple Access

Because of limited availability of radio spectrum, it has tobe shared between several
users. This is done using some sort ofmultiple accesstechnique. Regardless of which
algorithm is used, the multiple access is implemented as a part of the modulation and
demodulation of Figure 3.2. Below is a description of the three most common techniques,
divided into two groups based on whether they use orthogonalsignals or not.

3.3.1 Orthogonal Signals

A rather simple, but yet in many areas wide spread, techniqueis calledFrequency Division
Multiple Access(FDMA). The idea here is simply to split the available radio bandwidth
into a number of (possibly differently sized) parts and assign each user one part. A pub-
licly known example of FDMA is radio broadcasting. A drawback when using FDMA
is that each user is limited to a (narrow) frequency band. Each user is stuck at using his
assigned frequencies, even if there is locally heavy interference on this frequency band or
the power gain is locally exceptionally low on these frequencies due to multipath fading.

The second generic technique,Time Division Multiple Access(TDMA), splits the
radio spectrum in time, instead of in frequency. This technique requires precise synchro-
nization between all users (which in some areas and applications even means taking the
propagation time into account). An example of where TDMA is used is when several
users share the same walkie talkie system. When using TDMA, each user is momentarily
allocated the system’s entire available frequency band. This means transmission over a
larger bandwidth, and therefore less sensitivity to local narrow band interference.

The signals in the above mentioned techniques are what is sometimes referred to as
orthogonal-signals. Ideally the users do not interfere with each other.

3.3.2 Nonorthogonal Signals

The third technique,Code Division Multiple Access(CDMA), uses non-orthogonal-
signals. Using this technique, the users transmit independently of each other, using the
same frequency. As this thesis is constrained to systems using CDMA, this technique for
sharing resources will be explained in a bit more detail.

The idea behind CDMA is that each user is assigned an individual spreading code.
The spreading code consists of a number of chips, each chip iseither 1 or -1. The number
of chips per second, thechip rate, is higher than or equal to the symbol rate at which
the user intends to send the information. The ratio between chip rate and symbol rate is
calledprocessing gain, PG ≥ 1. Because of the processing gain, each user needs a CIR
which is a factorPG lower than would be required in for example FDMA to maintain the
same SIR. It is the ability to use such a low CIR that has made CDMA popular in military
applications, the transmitted signal can easily be hidden in the background noise and
detecting it requires knowledge of the spreading code. In cellular applications however,
the interference power is far higher using CDMA compared to the two other multiple
access techniques shown here due to the concurrent transmission of several users on the
same frequency band. Thus the required transmission power is still not decimated a factor
PG. Due to the spreading, which is done in time domain (see Figure 3.3), the modulating
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Figure 3.3: The basic blocks of the modulator in a CDMA system.

signal,s, has a bandwidth which is a factorPG larger. With an increased bandwidth
the transmitted signal is less sensitive to multipath fading. The inherent usage of a large
bandwidth makes CDMA more spectrum efficient than the orthogonal signal techniques.

3.4 Cellular Radio Networks

Because of the attenuation between user and the access pointproviding the service, a too
large distance implies an impairment in service and in the extreme case lack of connection
due to limited transmission power. Hence, the distance has to be kept short.

By dividing the entire service area into a number ofcells, each served by an access
point which in this case is referred to as abase station, the attenuation can be kept at
moderate levels yielding lower requirements on transmission powers. The attenuation’s
dependence on distance is thus utilized here since users farfrom each other will create
negligible mutual interference if they belong to differentcells. A system providing radio
service over an area divided into several cells is called acellular radio network.

The radio environment, expected user density and type of traffic should be considered
when choosing the size of the cells. In an area where several users are expected to use high
bit-rate-services simultaneously, the cells are chosen tobe smaller. Typical cell radii are
between a couple of hundred meters (in a dense urban environment) to several tenths of
kilometers (in rural areas). In practice, a cell’s size is defined by the location of the users
connected to the cell. A user chooses cell based on the pilot signal from different base
stations; the user applies for a connection to the base station with the strongest pilot signal.
Therefore, since the transmission power of the pilot signalis variable, a cell can actually
be resized dynamically during operation in order to adapt tochanging user densities. This
technique is referred to as cell breathing (Jalali, 1998).

In radio systems in general one denotes the direction from user to the access point
(i.e., base station in the case of cellular networks) asuplink and conversely the opposite
direction asdownlink.

The uplink performance of a cellular radio network is highlydependent on the power
gains between each user and the base stations. A comprehensive way of representing
these power gains is through the (time varying) power gain matrix.
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Definition 3.1 (Power Gain Matrix). Thepower gain matrixof a system withM users
andB base stations is

G(t) =






g1,1(t) · · · g1,B(t)
...

. . .
...

gM,1(t) · · · gM,B(t)




 , (3.2)

wheregi,j(t) is the power gain at timet between useri and the base station serving cell
j.

The elements of the power gain matrix representing downlinkare in general different
from the corresponding ones in the power gain matrix representing the uplink.

Using the above notation for power gain between users and base stations, the uplink
CIR useri experiences in cellj is defined as

γi,j(t)
△

=
Ci,j(t)

Itot
j (t) − Ci,j(t)

=
pi(t)gi,j(t)

Nj(t) +
∑

l 6=i pl(t)gl,j(t)
, (3.3)

whereItot
j (t) is thetotal interference powerin base stationj, pi(t) is useri’s individual

transmission power,Ci,j(t) is the received carrier power of useri in base stationj and
Nj(t) is the background noise in cellj, all at timet. The sum is over all users using the
same frequency band. A similar ratio is thecarrier-to-total-interference ratio (CTIR), β.
The CTIR useri experiences in cellj is defined as

βi,j(t)
△

=
Ci,j(t)

Itot
j (t)

=
γi,j(t)

1 + γi,j(t)
< 1. (3.4)

The performance of a radio network is related to the CIR it canprovide to the users.
According to (3.3), the system performance is therefore dependent on the amount of in-
duced interference from other users. Hence, it is of utmost importance to maintain a
suitable transmission power at all times, a transmission power such that the required CIR
is maintained while not inducing excessive interference toother users. Because of this,
a fundamental mechanism of a cellular radio network ispower control. Power control
regularly decides what transmission power commands to sendto each transmitter in the
network (mobile phones and base stations). The intercell interference, which is due to the
fact that all cells use the same frequencies, makes the powercontrol problem much harder.
However, since all cells share the same frequencies in a CDMAcellular network, there
are no longer any hard frequency allocation problems to solve. In for example the second
generation system used in Europe,Global System for Mobile Communications(GSM),
huge amounts of efforts have been put into solving the complex optimization problem of
allocating frequencies to different cells.

As a user moves from one cell to another, the power gain to the base station controlling
the cell the user is connected to will decrease while the power gain to the neighbouring
cell will increase. It is therefore natural to, at some point, change the cell the user is
connected to. This maneuver is calledhandover. Since communication takes place on the
same frequency in all cells of a CDMA cellular system, a user can actually be connected
to several cells at a time. So, signals to/from a user locatedin between two or more cells
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can be send/received in several nearby located base stations. A user connected to several
cells is said to be insoft handover. The cells that useri is connected to is called theactive
set, denotedKi. Signals can be received usingmaximum ratio combiningor selection
combining. Maximum ratio combining utilizes correlation between thereceived signals
making the combined CIR equal to the separately received CIRvalues,

γi =
∑

k∈Ki

γi,k, (3.5)

Selection combining, on the other hand, means that the combined CIR is simply the max-
imum CIR,

γi = max
k∈Ki

γi,k. (3.6)

Since selection combining implies disregarding information, it is less efficient than max-
imum ratio combining. The notation introduced so far is summarized in Figure 2.1.

In practice, the users’ signals can not be decoded entirely correct. All users will
therefore experience a degree of self interference, i.e., apart of a user’s own signal will
be experienced as interference. The fraction of the own received signal power that can
not be subtracted in the denominator of (3.3) is called theself interference factor, α. The
relation between a user’s CTIR,β, the user’s perceived CIR,γ, and the self interference
factor is

γ =
C

Itot − (1 − α)C
=

β

1 − (1 − α)β
. (3.7)

Sinceγ tends to1/α asβ tends to one, a nonzero self interference factor decreases the
system performance and puts a limit on the maximum CIR that a user can perceive.

Example 3.1: Intercell Interference
Consider a system with two users and two cells. The power gainmatrix is

G =

(
g1,1 g1,2

g2,1 g2,2

)

.

User 1 is solely connected to base station one while user two is initially not connected to
the system at all. User one has a service requiring a carrier-to-interference ratio ofγ1 if
the self-interference can be neglected. User two’s transmission power is

γ1 =
p1g1,1

N
⇔ p1 =

γ1N

g1,1
,

whereN is the background noise power common to both cells. If user two is provided
another type of service requiring a carrier-to-interference ratio ofγ2 through a connection
with base station two, the required transmission powers satisfy the following system of
equations

{

γ1 =
p1g1,1

N+p2g2,1

γ2 =
p2g2,2

N+p1g1,2
.

Solving forP = (p1 p2)
T yields

P =

(
g1,1 −γ1g2,1

−γ2g1,2 g2,2

)−1(
γ1

γ2

)

N.
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Explicitly,

p1 = γ1
g2,2 + γ2g2,1

g2,2g1,1 − γ1γ2g1,2g2,1
N >

γ1

g1,1
N

p2 = γ2
g1,1 + γ1g1,2

g1,1g2,2 − γ2γ1g2,1g1,2
N.

Thus, user 1’s transmission power is affected by the decision to admit another user, even if
it is in a neighbouring cell. The factor by which user 1’s transmission power is increased
depends on bothγ1 andγ2.

User 1’s increase in transmission power in the above exampleis to compensate for the
increasedintercell interferencepower.

3.5 System Performance

The performance of the system is quite hard to measure. Firstof all one needs to define
what we expect from the system. This expectation clearly depends on what kind of user
you are; subscriber or operator.

A subscriber typically expects to have a high probability ofbeing allowed to use the
system at any given time. This defines a quantity calledGrade of Service(GoS). Once
connected, the subscriber expects to experience some sort of quality of service(QoS)
which is a truly subjective measure. For example, in the caseof a speech service, the sub-
scriber expects to hear the other person reasonably well, orin the case of a data-service,
that the connection is fast enough without a too long delay. Aconnected subscriber ex-
pects to be provided services without being disconnected, something that is considered
far worse than not getting a connection at all. These different measures, just from the
subscribers point of view, make defining the system performance a hard task.

The operator, who owns and manages the system, also puts expectations on the sys-
tem. These can for example be total throughput. However, maximizing the total through-
put often comes with a degrade in individual subscriber satisfaction, which then, in the
long run, means less customers for the operator.

This leads to a discussion of which policy to use, i.e., how toprioritize subscribers
and what service to give them. The result is of course a trade off between individual
subscriber satisfaction and maximum utilization of the resources.

Different choices of how resources are assigned to users will be compared in this
thesis. For this end, a definition of capacity motivated by Shannon’s theorem on the
maximum channel capacity (Wozencraft and Jacobs, 1965, page 520) is made below.

Definition 3.2 (Capacity). Thecapacityis

C
△

=
∑

i

log2(1 + γi),

where the sum is taken over a set of users.

The set of users considered in the definition depends on whether it is the capacity of
an entire system consisting of several base stations, a single base station or just a single
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Figure 3.4: Relation between CTIR,β, and capacity, parameterized by the self in-
terference factorα. The capacity loss due to self interfernce is negligible forlow
CTIR levels.

user connection. Figure 3.4 shows the relation between a single user’s capacity and CTIR
for two different choices of the self interference factorα. Figure 3.4 implies that the self
interference factor only has a practical interest for high CTIR values. The self interference
factor will therefore generally be omitted in the this thesis.

3.6 Radio Resource Management Algorithms

Obviously the ability of a system to provide service is limited. However, it is not as ob-
vious in what way it is limited. An always present trade off isthe one between capacity,
quality and coverage. It is desirable to provide service to as many subscribers as pos-
sible at any given time. Allocating one subscriber a higher data rate or lower bit error
probability means that his received signal power will be higher and thus higher interfer-
ence to other subscribers is introduced. This means that less users can be accommodated
into the system. Furthermore, since the mobiles’ transmission powers are limited, higher
interference power in the base stations means less coverage.

The choice of which subscribers to admit and what service they will be provided is a
matter of policy. The choices which repeatedly have to be made in order to follow this
policy are done byRadio Resource Management(RRM) algorithms. There is a wide
range of RRM algorithms, starting from algorithms making decisions several times each
millisecond such as fast power control to more long term decisions such as admission
control which considers time periods of whole sessions (e.g., expected length of a phone
call).

3.6.1 Power Control

Power control is used to set the users’ transmission power such that they experience the
block error rate(BLER) they have been guaranteed by other RRM algorithms, while not
inducing unnecessary interference power into the system. For uplink capacity reasons
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among others, users’ transmission powers have to be kept to aminimum while still pro-
viding satisfactory user individual SIR. Power control is often implemented as two loops,
inner and outer loop.

The inner loop, also known asfast power control, adjusts each user’s transmission
power such that the CIR equals a user individual target CIR,γtgt. The fast power control
is often based on decision feedback

Receiver:si(t) = sign(γtgt
i (t) − γi(t))

Transmitter:pi(t) = pi(t) + ∆si(t − n),

where∆ is a fixed value by which the transmission power is changed every time instant
t andn is a delay caused by measurement times and discrete transmission instants. This
is a well known technique for power control with limited feedback bandwidth. A fast
update rate enables tracking of the multipath fading at low velocities. In for example
WCDMA the fast power control updates each user’s transmission power 1500 times a
second. However, a fast update rate also induces a few problems. Perhaps most obvious is
the amount of signaling required between each user and the base stations, but most severe
is the ability to rapidly raise the transmission powers to levels which may jeopardize
system stability.

Theouter power controlloop, adjusts each user’s target CIR. Here, quality is simply
converted into a certain target BLER. The outer loop is necessary because an average CIR
can not be directly mapped to a BLER, i.e., if the carrier-to-interference ratio fluctuates
too much the received BLER increases. The outer loop adjustseach user’s target CIR at a
rate of somewhere around 10 to 100 Hz.

The power control implementation is thus a cascade control system. The inner loop
is the fast power control operating between base station andmobile to adjust the mobile
transmission power. The outer loop adjusts the target CIR for the inner loop such that the
resulting BLER is neither too high or too low. The outer loop operates only in the core
network.

3.6.2 Load Control

If the system has too many users, power control can not find transmission powers such
that all users achieve their target SIR, not even if they had access to infinite transmission
power. Too many users in the system simultaneously results in what is usually referred to
asparty effect, which can be understood by studying (3.3). An increase in the interference
power, results in power control demanding an increase in transmission power. Increased
transmission power means higher interference power, and soon. If a there exists finite
transmission powers providing required carrier-to-interference ratio to all users in the net-
work, the power control problem is said to befeasible, otherwise it isinfeasible(Zander,
1993). To avoid too high transmission powers caused by too many users in the system,
the load of the system needs to be controlled. Therefore, thesystem has a number of
load controlling resource management algorithms which operate on different time scales,
all much slower than the fast power control. Below is a brief explanation of some load
controlling radio resource management algorithms.

• Admission Controlis basically a door watchman. In order to send information,
a user needs a session. A new user is given a session only if thesystem is ex-
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pected to cope with that user’s request for system resourcesthroughout the entire
session. Note that, being granted a session does not always imply continuous ac-
cess to the network resources, see Packet Scheduling and Channel Switching below.
Admission control can for example study uplink received power as load measure,
see (Choi and Bahk, 2001; Dimitriou et al., 2000; Holma and Laakso, 1999; Huang
and Yates, 1996; Ishikawa and Umeda, 1997; Kuri and Mermelstein, 1999; Lei
et al., 1999; Outes et al., 2001; Timus and Pettersson, 2001).

• Packet Schedulingis the task of selecting which packet users that will be allowed
to send. This is typically done on a time scale of about two to twenty milliseconds.
This algorithm only applies to packet users, i.e., not for speech users. Laakso et al.
(1998) formulate the packet scheduling problem as an optimization problem. A
special mode of WCDMA in which higher data rates can be accomplished at the
price of less fairness is discussed by Kolding et al. (2002).

• Channel Switchinghandles users who already have a session. During the session,
a user’s channel conditions and the load of the base stationschange. To adapt
to these changes, channel switching increases and decreases the users’ maximum
transmission rate. A lower transmission rate means a lower target SIR. Channel
switching in WCDMA is studied by Gyung-Ho and Dong-Ho (2000).

• Congestion Controlcan be compared to a bouncer at a restaurant. In more extreme
cases, when neither Channel Switching or Packet Schedulingcan take the system
from an overload situation back to the target load, congestion control uses actions
which are stronger than the previous algorithms. Examples of possible actions are

– denying users’ requests for increased transmission power in the downlink

– move some users to an alternative network, e.g., GSM

– down switching speech users to a worse speech quality or evendrop some real
time users.

Being disconnected is usually consider far more annoying for a user than never
being connected at all. Hence disconnection is strongly avoided by the system.

• Link Admission is the algorithm considering users’ requests for augmenting their
active set with another cell. Important to note here is that the link admission de-
cision depends on the downlink only. The reason being that anextra link means
higher transmission power for the base station serving the new cell. In the uplink,
on the other hand, an additional link does not imply increased transmission power.
Therefore, the uplink can only gain from more soft handover links.
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3.7 WCDMA

The architecture of a WCDMA system contains a number of levels. Starting from cell
level, the service in each cell is provided by a base station,see Figure 3.5. A base station
hosts all lower level (link level) algorithms such as fast power control. The figure also

RNCRNC

BSBS BSBSBS BS

Outside WorldOutside World

Figure 3.5: The architecture of a WCDMA system. The outside world is connected
to the network at Radio Network Controllers (RNC). Each RNC is connected to a
number of base stations (BS). Lower down in the architecture, each base station is
connected to several mobiles.

shows how signals from different base stations are combinedfurther up in the hierarchy
in a Radio Network Controller(RNC). A radio network controller receives information
gathered in several cells, even from cells controlled by other RNCs. This, more complete,
information about the system as a whole can be used by radio resource management
algorithms in general and relative load estimates in particular.

A common standard is a requirement for product interaction over manufacture bor-
ders. The committee specifying the WCDMA standard is calledThird Generation Part-
nership Project(3GPP)2. They specify parameters regarding measurement accuracies,
possible data-rate configurations and power control frequency to mention a few. In this
section we will only mention the small part of the standardization process concerning this
work. To enable reasonable well tracking of the multipath fading while not using too

2http://www.3gpp.org
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much bandwidth, the power control feedback has a bandwidth of 1500 bps. The stan-
dard states that the system should contain RNCs. Each RNC controls a number of base
stations. Since the RNC has knowledge of the situation in a far larger area than a single
base station does, many of the load controlling schemes reside here such as admission and
congestion control.

An addition to the 3GPP standard is theenhanced uplink(EUL) (3GPP, 2005). The
idea with this addition is to move much of the load controlling algorithms operating on a
fast time scale from the RNC to the base stations. This decentralization will enable faster
load control. The base stations may also have more accurate information on the current
radio conditions in the base station’s immediate surroundings.

Each base station may control several cells in WCDMA. A user issaid to be insofter
handoverbetween cells in the active set controlled by one base station and in soft han-
dover between cells in the active set controlled by different base stations. When using
softer handover, the signals are combined using maximum ratio combining and when
using soft handover, selection combining is used. The reason for this is simple, maxi-
mum ratio combining requires information about the correlation between the signals as
the combining is done before decoding. Selection combining, on the other hand, is done
after decoding and therefore only needs a reliability tag such as the estimated received
CIR for the separately received signals. Hence, soft handover yields selection combining
and softer handover maximum ratio combining. Figure 3.6 explains how the signals are
combined at different levels of the hierarchy.

Central Node

Soft Handover
Selection Combining

Softer Handover Maximum Ratio Combining
Maximum Ratio Combining

Softer Handover

Figure 3.6: The combination of soft and softer handover in a WCDMA system.



4
Characterizing Uplink Load

The purpose of this chapter is to characterize uplink load and introduce various ways
of looking and approximating it. Inherent properties of CDMA yield that the uplink is
interference limited, i.e., the system performance is limited by the amount of received
interference power. A formal definition of uplink relative load is given Section 4.1. Since
an interference limited system is considered, the definition relates load to the amount of
interference power received in the base stations.

That the uplink is interference limited also means that there is not a one-to-one relation
between how loaded the system is and, for example, how many channels that are occupied.
This makes it harder to determine the fraction of available resources that are currently in
use, compared to systems with a fixed number of channels. Predicting the load is even
harder, since that involves estimating the future receivedinterference power.

Load measures in the literature can be divided into those consideringhard resources
and those based onsoft resources. These two types of resources will be explained and
compared in Section 4.1.

Another way of dividing the load measures is related to wherethey reside. Resource
management algorithms can reside in a base station. An advantage with this is of course
that a minimum of signaling is required if the decisions can be made on this intermedi-
ate level. Relative load estimates designed to reside in base stations are referred to as
decentralized estimates. Theory related to such estimates is presented in Section 4.2.

A base station has no information about the situation in cells supported by other base
stations. Thus, a decentralized estimate can not predict how resource management deci-
sions will affect cells supported by other base stations. However, nodes at a higher level
in the system’s architecture have access to information gathered in several cells. This
more complete information about the system as a whole can be used by load estimates at
this level. Section 4.3 discusses centralized load measures, related to the entire system as
opposed to the different base stations.

The theoretical total capacity, thepole capacity, is interesting to study for comparative

39
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purposes, even though it is not achievable in practice. Along the way, pole capacity will
be discussed from the different angles presented here.

Section 4.4 concludes the chapter by discussing different aspects of the presented
approaches to estimating the uplink load.

4.1 System Load and Capacity

A basic requirement for providing service to users is that there is sufficient power available
to maintain an acceptable QoS. In the uplink this, among other things, means that the total
received interference power in the base station must not be too high. The total received
uplink interference power is

Itot = N +

M∑

i=1

Ci, (4.1)

whereN represents the part of the interference power which is not power controlled by
our system. All contributions to the total interference power which originate from ter-
restrial non-power controlled sources, such as cellular systems operating at neighbouring
frequencies and electronic equipment in for example cars, are thus embedded intoN .
Added to the background noise is the sum of the users’ carrierpowers,Ci for useri. The
sum is taken over allM users in the entire network. In the literature, interference power
is often related to background noise power through theuplink noise rise.

Definition 4.1 (Uplink Noise Rise). Uplink noise rise, Λ, is defined as the total uplink
received interference power,Itot, divided by the background noise power,N , i.e.,

Λ
△

=
Itot

N
.

Since the uplink noise rise is the constraining resource, and increasing the number of
active users or the active users’ quality results in a noise rise increase, there is a natural
trade off between the number of users and quality. Furthermore, as the users have limited
transmission power, a higher noise rise means reduced coverage. An always present trade
off is therefore one between the number of users, quality andcoverage. Perhaps not useful
in practice, but still an educational model is

Quality + Number of users + Coverage = Utilized resources.

The amount of available soft resources is unknown and time varying. An alternative is
therefore to estimate theuplink relative loador uplink fractional load, L, i.e., the amount
of currently utilized resources relative to the total amount of resources

Quality + Number of users + Coverage =L · total resources.

Since performance of the system is related to the currently received interference power, a
more formal definition of load should incorporate this property of the system. One way
is to relate the useful received interference power to the total received interference power.
Mathematically this can be expressed as

L =

∑M
i=1 Ci

N +
∑M

i=1 Ci

=
Itot − N

Itot
= 1 − 1

Λ
.
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Below is a formal definition of load which is inspired what hasbeen said above.

Definition 4.2 (Noise Rise Relative Load).The noise rise relative loadof a CDMA
cellular system is defined as

Lnr △

= 1 − 1

Λ
. (4.2)

A rearrangement of the expression in the above definition yields thepole equation
(Holma and Toskala, 2000)

Λ =
Itot

N
=

1

1 − Lnr
. (4.3)

The equation clearly shows thatLnr = 0 impliesItot = N , i.e., an empty system with
only background noise. As the noise rise relative load approaches one the system is
operated close to the system’s theoretical capacity, thepole capacity, and the interference
power goes to infinity, see Figure 4.1.

Example 4.1: Noise Rise Relative Load, Single Cell

The total received interference power in a single cell scenario can be expressed as in (4.1).
The QoS of each user is related to the carrier-to-total-interference ratio,

βi =
Ci

Itot
. (4.4)

Solving forCi in (4.4) and inserting it into (4.1) yield

Itot = N +

M∑

i=1

βiI
tot ⇔ Λ =

Itot

N
=

1

1 −∑M
i=1 βi

. (4.5)

The equation has the same form as (4.3) and therefore according to Definition 4.2,

Lnr =

M∑

i=1

βi. (4.6)

The noise rise relative load is clearly a function of the received interference power. In
the multi cell case, the noise rise relative load is therefore not purely a function of how
many users there are in the system, but also for example wherethe users are located in the
radio environment. This means that the pole capacity in terms of e.g., number of users is
in general both unknown and time varying. From the inherent requirement of a positive
noise rise and (4.3) we can conclude that a feasible total resource allocation is associated
with a noise rise relative load between zero and one. Example4.1 shows that the capacity
of a CDMA system with conventional receivers (i.e., not utilizing multiuser detection)
is in fact interference limitedbecause the interference from other connections limits the
capacity. The opposite is anoise limitedsystem .
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Example 4.2: Noise Limited System
Consider a system with one user in an isolated cell. The carrier-to-total-interference ratio
is

β =
C

Itot
=

C

N + C
< 1,

eliminatingC in this expression gives

Itot =
1

1 − β
N < ∞.

The total interference power,Itot is finite for all possibleβ sinceβ < 1. In a noise limited
system, quality (data rate) is therefore limited by the amount of available transmission
power.

According to (4.5), the number of users in an interference limited system is, even with
unlimited transmission power, limited by the mutual interference power between the con-
nections. Furthermore, the amount of additional interference power caused by admitting
a new user depends on the current interference power in the system. Figure 4.1 illustrates
the higher interference power contribution of an admitted user at high load, compared to
that at low load. In Figure 4.1,∆Lnr is associated with the amount of noise rise relative
load a user contributes with. For example in a scenario with an isolated cell and perfect
power control,∆Lnr = βtgt for the admitted user according to (4.6). The constantβtgt

is the CTIR that the power control aims at.
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Figure 4.1: The nonlinear relation between noise rise relative load,Lnr, and noise
rise,Λ. ∆Lnr could be the increase caused by admitting another user. Thisgives
different noise rise contribution,∆Λ, at different load levels.

A traditional definition of relative load, which is suitablefor FDMA and TDMA sys-
tems, is the number of currently used channels over total number of channels, i.e.,

Ltrad △

=
M

Mmax
.

A capacity defined as a fixed maximum number of channels is an example of ahard ca-
pacity. The hard capacity of a system is fixed and known, unlike thesoft capacity. The
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soft capacity can only be achieved when a soft resource is studied in the resource man-
agement algorithms. Uplink noise rise is an example of asoft resourcesince it depends
on time varying variables such as the power gains the users experience. As the uplink of
a CDMA cellular system is limited by this spatial resource, the uplink’s capacity depends
on the situation in several cells. If the load is low in surrounding cells, little interference
power is received from these cells. This results in an increased capacity in the own cell
compared to when the surrounding cells are more loaded. A centralized resource manage-
ment algorithm based on a soft resource can, unlike a decentralized algorithm studying
a hard resource, utilize this additional capacity. Example4.4 at the end of the chapter
studies this difference.

In the cases where the soft capacity equals the hard capacity, the traditional definition
of relative load coincides with Definition 4.2. Consider a single cell situation in which
the only service available is characterized by a target carrier-to-total-interference ratio of
β0. By using (4.6), the pole capacity can then be calculated as (Lnr = 1 and assuming
perfect power control,βi = β0, give the maximum number of users)

1 =
Mpole

∑

i=1

β0 = Mpoleβ0 ⇔ Mmax = Mpole =
1

β0
.

According to (4.6), the noise rise relative load in this scenario is merely the number of
users timesβtgt. The noise rise relative load can thus be expressed as

Lnr = Mβ0 =
M

1/β0
=

M

Mmax
= Ltrad. (4.7)

Huang and Yates (1996) study a single service scenario with several cells. The total
interference is therein divided into three parts; background noise,intracell interference,
Iown, which is interference from users within the cell, andintercell interference, Iother,
which is interference from users in other cells,

Itot = N + Iown + Iother. (4.8)

Since a single service scenario is studied,Iother can be converted into a corresponding
number of users connected to other base stations,Mother = Iother/C, whereC is the
received power required to maintainβ0. This once again enables an expression corre-
sponding to (4.7), only withM substituted forMown + Mother, whereMown is the
number of users connected to the own base station.

4.2 Decentralized Load

Some resource management algorithms act in a decentralizednode, in which only local
information is available. For example, the part of the interference power caused by users
connected to another base station,Iother, depends on variables not known in the own base
station. Therefore a decentralized estimate has to either measure it or somehow estimate
it using local variables only.
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4.2.1 Intercell-to-Intracell-Interference Factor

One way of eliminating the intercell interference from (4.8) is to simply state that it is a
nominal fraction,f , of the intracell interference, i.e.,

Iother = f Iown.

This is a natural assumption since an increase in interference power in one cell leaks to
surrounding cells. Higher intercell interference power insurrounding cells causes users in
these cells to use higher transmission power, yielding higher intercell interference power
in the own cell. This effect would not be captured ifIother is assumed constant.

Combining the above expression with (4.8) results in an expression forItot that con-
tains only local variables

Itot = N + (1 + f)Iown.

According to (4.4), the received power of useri is Ci = βiI
tot. The interference power

from users in the own cell,Iown, is simply the sum of these user individual carrier powers.
An expression for the total interference power is therefore

Itot = N + (1 + f)

Mown

∑

i=1

Ci = N + (1 + f)

Mown

∑

i=1

βiI
tot.

Solving forItot yields

Itot =
N

1 − (1 + f)
∑Mown

i=1 βi

.

Once again comparing with (4.3), we see that an approximation of the noise rise relative
load in a multi cell scenario is

Lnr ≈ (1 + f)

Mown

∑

i=1

βi. (4.9)

A comparison with (4.6) shows that one should not consider cells as isolated, since this
gives an underestimation of the noise rise relative load. This is perhaps obvious since
considering cells as isolated corresponds to completely ignoring the intercell interference,
Iother in (4.8). Using this technique, the requirement for pole capacity that the noise rise
relative load should equal one corresponds to

Mown

∑

i=1

βi =
1

1 + f
.

Hence, an estimate of the pole capacity is put in terms of combined carrier-to-total-
interference ratio. In case of a single service scenario, anestimate of the maximum
number of users would be

Mmax =

⌊
1

(1 + f)β0

⌋

,

where the brackets implies that the ratio should be rounded to the nearest lower integer.
The intercell-to-intracell factor,f , is widely used throughout the literature. Boyer et al.
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(2001); Hiltunen and Binucci (2002); Holma and Laakso (1999); Ying et al. (2002); Zhang
and Yue (2001) and Sanchez et al. (2002) use it in noise rise relative load expressions. A
range in whichf is usually chosen is between 0.4 and 0.6 if uniformly distributed traffic
is expected.

4.2.2 Interference Power Measurements

Another way of considering the entire interference power using only local information
is to simply assume that it is measurable. As concluded in Section 4.1, the increase in
interference power due to an admitted user depends on the interference level. Holma and
Laakso (1999) use measurements of the total received interference power,Itot, and ap-
proximates the additional interference power a new user would cause through derivatives
of (4.3)

∂Itot

∂Lnr
=

N

(1 − Lnr)2
= Itot 1

1 − Lnr
.

An approximative expression for the interference power increase due to an additional load
of ∆Lnr is then

∆Itot =
∂Itot

∂Lnr
∆Lnr = Itot ∆Lnr

1 − Lnr
0

,

whereLnr
0 is the noise rise relative load before admitting the new user. An alternative

expression for the interference power increase is derived as the integrated difference in
Itot,

∆Itot =

Lnr
0 +∆Lnr

∫

Lnr
0

∂Itot

∂Lnr
dLnr =

Itot

1 − Lnr
0 − ∆Lnr

∆Lnr = Itot(Lnr
0 + ∆Lnr) − Itot(Lnr

0 ),

whereItot(Lnr) is the total interference power whenLnr is used in (4.3). The last equal-
ity is put there simply as a reminder that integrating a derivate is the same as taking the
difference between the function values at the end points of the integration interval.

Motivated by the calculations leading to (4.6),∆Lnr can be estimated as the new
user’s target CTIR. Using measurements of the total interference power inherently catches
the variations in intercell interference power. However, it relies heavily on somewhat
accurate measurements of the current uplink interference power.

4.3 Centralized Load

The estimates in Section 4.2 can not predict the effects a decision made in one cell will
have on other cells. Users located close to the cell border are especially important. These
users can occasionally introduce considerable interference power in other cells as the
following example shows.
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Example 4.3: Intercell Interference

Study a prospective user in cellk. Power control will force him to use a transmission
powerpi satisfying

Ci,k = pigi,k = βtgt
i Itot

k ⇔ pi = βtgt
i Itot

k

1

gi,k
. (4.10)

Useri’s signal will be received in cellj with a power of

Cij = pigi,j = βtgt
i Itot

k

gi,j

gi,k
.

The received carrier powerCij will in cell j be a part of the intercell interference. The
magnitude ofCij depends on where the user is located. If useri is close to the cell border,
gi,j andgi,k will be of the same order andCij will thus to a greater extent contribute to
the noise rise relative load in cellj, compared to the case where useri is close to base
stationk.

From a resource management point of view it is quite interesting to have an idea of how
much load a user will actually induce in the own and surrounding cells. This, however,
requires information which is gathered in several cells andan estimate of the noise rise
relative load using this information would therefore have to reside in a more centralized
site than a base station serving just one cell.

4.3.1 Feasibility Relative Load

Thus far, relative load has been related to received interference power. It can equally
well be related to the users’ transmission powers. All work in this section is done under
an assumption that a user is power controlled in exactly one cell, i.e., soft handover is
not utilized here. Zander (1993) studies solvability of thepower control equation in the
downlink. The basis for the work is the power control equation, which is derived below.
Let useri be power controlled solely from base stationji. Thei:th position of the vector
j thus contains the number of the base station useri is connected to. Useri’s downlink
carrier-to-interference ratio can be expressed as

γi =
Ci

Itot
i − Ci

=
pigi,ji

Ni +
∑

ℓ 6=i plgi,jℓ

=
pi

Ni

gi,ji

+
∑

ℓ 6=i pℓ
gi,jℓ

gi,ji

.

Since this is the downlink,pi is the transmission power which information to useri is sent
with. Ni is the background noise useri experiences. Introduce the following matrix and
vectors

P (t)
△

= [pi(t)], η = [ηi]
△

= [
Ni

gi,ji

], Z̄ = [z̄iℓ]
△

= [
gi,jℓ

gi,ji

] ∈ R
M×M .

In a single service system, i.e., allγi = γ0, the above equation for all users can be put in
matrix form

P =
γ0

1 + γ0
(η + Z̄P ). (4.11)



4.3 Centralized Load 47

Clearly, it is interesting to study for whichγ0 this equation is solvable (with allpi > 0).
Zander (1993) shows that, given knowledge of all power gainsin the system, it is possible
to determine the maximum achievableγ0 in the noise free case,γ∗

0 .
For convenience, introduce the notation

λ̄(A) = max | eig(A)|,
for the spectral radius of a matrixA.

Theorem 4.1 (Zander, 1993)
Whenever the receiver noise is negligible, there exists, with probability one, a unique
maximum achievable CIR-level

γ∗
0 = sup{γ0|∃P ≥ 0 : γi ≥ γ0∀i}.

The maximum is given by

γ∗
0 =

1

λ̄(Z̄) − 1
,

The power vectorP ∗ achieving this maximum CIR-level is the eigenvector corresponding
to λ̄(Z̄).

According to Theorem 4.1, simply choosing all users’γtgt
i less than or equal toγ∗

0

guarantees existence of a positive solution to (4.11) in thesingle service case and in
absence of noise, i.e.,Ni = 0. However, Zander (1993) also states that even in the noisy
case, whereNi > 0, the influence of background noise can be made arbitrarily small by
scaling all users’ transmission powers with a factor which is large enough.

The above theorem can be used to determine whether or not there is a base station
transmission power vectorP such that all user achieves the maximum possible C/I-
requirement. In a cellular system, it can sometimes be interesting to use a smallerγ0

thanγ∗
0 . By formulating and solving a linear programming problem Zander (1993) shows

the following theorem

Theorem 4.2 (Zander, 1993)
Wheneverγ0 < γ∗

0 , the power vectorP of least total (sum) power achieving the C/I-level
γ0 will be the solution to the following system of linear equations:

(
1 + γ0

γ0
E − Z̄

)

P = Ñ .

whereE denotes the identity matrix.

Thus, by combining Theorem 4.1 and Theorem 4.2, we can conclude that all positive
γ0 < γ∗

0 are possible to achieve. As pointed out by Gunnarsson (2000), requiring all
users’γtgt

i < γ∗
0 is a sufficient but not necessary condition in a multi servicescenario.

Thus a load measure based on e.g., the ratio between the maximum currentγtgt
i andγ∗

0

would be quite conservative. To handle multiple service, introduce the matrixΓtgt which
is a diagonal matrix with the users’ target CIR in the diagonal,

Γtgt △

= diag(γtgt
1 , γtgt

2 , . . . , γtgt
M ).

Gunnarsson (2000) uses the above ideas to define feasibilityrelative load for multi service
systems.
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Definition 4.3 (Gunnarsson, 2000). Thedownlink feasibility relative loadis defined as

Lr = inf{µ ∈ R :
1

µ
Γtgt is feasible}.

A set of target CIR:s are said to be feasible if there is a solution to the resulting
power control problem. Gunnarsson (2000) also presents thefollowing theorem to find
the downlink feasibility relative load in a system without soft handover.

Theorem 4.3 (Gunnarsson, 2000)
The feasibility relative load,Lr, of a system is

Lr = λ̄(Γtgt(Z̄ − E)). (4.12)

In case of a feasible system, i.e.,Lr < 1, the transmission powers are

P = (E − Γtgt(Z̄ − E))−1Γtgtη, (4.13)

whereη is aM -dimensional vector with thei:th element equal toNi/gi,i.
By using the above theorem it is possible to show that the downlink feasibility relative

load of a single service scenario is the ratio between the target CIR of the only service
provided andγ∗

0 in a single service scenario,

Lr = λ̄(Γtgt(Z̄ − E)) = λ̄(γ0E(Z̄ − E)) = γ0(λ
∗ − 1) =

γ0

γ∗
0

. (4.14)

This justifies Definition 4.3, given Theorem 4.1.

4.3.2 Convergence of Power Control Algorithms

Inspired by the presentation done by Hanly and Tse (1999), the uplink interference power
in a multi-cell system is studied. Therein, useri is power controlled solely from one cell,
here denoted cellji. Consider a power control algorithm that at each time instant t sets
useri’s transmission power according to

pi(t) = γtgt
i




Nji

gi,ji

+
∑

ℓ 6=i

pℓ(t − 1)
gℓ,ji

gi,ji



 ,

whereNji
is the background noise power useri experiences (which is assumed constant)

and pi(t) is useri’s transmission power at timet. The sum in the above expression
considers all users in the entire network. A matrix expression for all users update at time
t is therefore

P (t) = Γtgt(Ñ + (Z̃T − E)P (t − 1)), (4.15)

where

P (t)
△

= [pi(t)], Ñ = [Ñi]
△

= [
Nji

gi,ji

], Z̃ = [z̃ℓk]
△

= [
gℓ,jk

gk,jk

].

The matrixZ̃ will, just as Γtgt, be in R
M×M . It is well known from theory of linear

systems (see e.g., Kailath (1980)) that the recursion in (4.15) will converge if and only



4.3 Centralized Load 49

if all eigenvalues ofΓtgt(Z̃T − E) are within the unit circle. Thus, a measure of the
convergence rate is

Lc = λ̄(Γtgt(Z̃T − E)). (4.16)

Note thatZ̃ andZ̄ will have the same eigenvalues if the system is reciprocal, i.e., that the
power gain is equal in uplink and downlink. In this case,

Lc = λ̄(Γtgt(Z̃T − E)) = λ̄(Γtgt(Z̄T − E)) = Lr.

Example 4.4: Multi Cell Load Estimation
Study a system consisting of three users and two cells in which power control is imple-
mented according to (4.15). The power gain matrix is

G =





0.53 0.15
0.4 0.1
0.14 0.8



 .

Denote the cell represented in the first column I and the second column II. Users1 and2
are connected to cell I, see Figure 4.2, and the third user applies for a connection to cell
II yielding a j-vector ofj = [1 1 2]. The correspondinḡZ andZ̃ matrices are thus

Z̄ =





1 1 0.28
1 1 0.25

0.18 0.18 1



 andZ̃ =





1 1.33 0.19
0.75 1 0.13
0.26 0.35 1



 .

The matrixZ̄ has been given here simply to exemplify the calculation of it, it will not be
used in the rest of the example. Note that the upper left two-by-two submatrix ofZ̄ is an
all one matrix. This part of̄Z corresponds to a single cell system. At first, considerβtgt

i

values according to
βtgt

1 = 0.5, βtgt
2 = 0.3 andβtgt

3 = 0,

which corresponds to aΓ matrix according to

Γtgt = diag
(
1 0.43 0

)
.

This yieldsLc ≈ 0.65 according to (4.16). Figure 4.3a shows how the users’ transmission
powers converge. After 100 iterations, user three is connected to cell II withβtgt

3 = 0.35.
Naturally this affects the transmission powers for all users in the network, as indicated
in Figure 4.3a. Figure 4.3b shows what the different estimates provide in this specific
example. When the new user is admittedLc increases up to approximately0.70. Thus,
the fact that admitting a user in one cell requires additional transmission powers for users
connected to other cells is reflected in an increasedLc. The estimate defined by (4.9)
is in the first half, of course, in compliance with the load according to Definition 4.2.
However, as the estimate is stationary completely insensitive to the situation in other cells,
it eventually settles to the same noise rise relative load asbefore User 3 was admitted.
The intercell-to-intracell factor was chosen to zero. In this scenario the true intercell-to-
intracell factor when the power control has settled is

f =
Iother

Iown
=

g3,1p3

g1,1p1 + g2,1p2
≈ 0.04.
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1

2

3

?

I II

Figure 4.2: Admission of a new user. User 3 applies for a channel in cell II. Users
connected to other cells will then experience increased intercell interference power.

As can be seen in the table below,Lr equalsLc. This and other comparisons between dif-
ferent load definitions will be discussed in Chapter 6. Table4.1 shows how a decentralized
estimate, such as (4.9), is completely insensitive to what happens in other cells as well as
to fluctuations in soft capacity. The example also indicatesthe trade off between cov-

Table 4.1: Four approximations of the uplink load before and after admission of
user 3.

Users 1,2 Users 1,2,3
Lnr = 1 − 1

Λ Eq. (4.2) 0.8 0.84
(1 + f)

∑

i βi Eq. (4.9) 0.8 0.8
λ̄(Γtgt(Z̄ − E)) Eq. (4.12) 0.65 0.70
λ̄(Γtgt(Z̃T − E)) Eq. (4.16) 0.65 0.70

erage and throughput. When a new user is admitted in cellII, the throughput increases
but the higher transmission power of the users contributes to a decreased coverage due to
limited transmission powers.

4.3.3 Link Based Estimates

An estimate which considers the number of links each user hascan to some extent capture
the soft handover gain. Assuming that maximum ratio combining is used in the combining
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Figure 4.3: Intercell effects. a) Ratio between users’ transmission power and the
background noise power. b) Noise rise relative load in cell Iaccording to Defini-
tion 4.2 and two different estimates of it. A new user is admitted in cell II at iteration
number 100. The intercell-to-intracell-interference factor, f , is chosen to zero in
(4.9).

of the locally received information, a simple way of utilizing the information regarding
number of links is to assume that each user’s contribution tothe noise rise relative load is
inversely proportional to the number of soft handover links. The noise rise relative load
approximation would then be

Lnr
j ≈ (1 + f)

Mj∑

i

βi

ni
,

whereMj is the number of users power controlled in cellj andni is useri’s number of
soft handover links. There has been some studies where link based admission control has
been compared with interference power based admission control algorithms. For example
Ishikawa and Umeda (1997) and Gunnarsson et al. (2002) show that using a link based
resource compared to using an interference power based resource in the call admission
control yields approximately the same performance, but thelink based algorithm is far
more sensitive to changes in the radio environment. Since these types of estimates indi-
rectly consider variations in the radio environment the users experience, estimated pole
capacity will change over time.
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4.4 Discussion

Theory regarding uplink load in cellular CDMA systems is presented in this chapter. It
has been shown that, despite unlimited transmission power,the capacity of the uplink of
a CDMA cellular radio system is in fact bounded by a finite timevarying capacity, the
pole capacity. The uplink is thus interference limited. Since the maximum capacity of
the system is generally both unknown and time varying a quantity called noise rise rela-
tive load was introduced. The noise rise relative load relates the current amount of used
uplink capacity to the current maximum uplink capacity, even though both are unknown.
Properties of the noise rise relative load has been exploredthrough a survey of different
approaches to approximating it.

Decentralized Load This type of approximations uses information locally available in
each cell. An advantage with these is of course that they can directly be used in local re-
source management algorithms. However, these approximations have no real knowledge
of the effects that resource management decisions have on the surrounding cells. Further-
more, a decentralized approximation which makes the assumption that the other cells are
equally loaded as the own cell can not fully utilize the soft capacity of a CDMA cellular
system. In fact, it can be argued that some of these approximations are purely related
to a hard capacity of the system. Measuring the current totalinterference power is one
way of locally approximate how loaded the surrounding cellsare. This, however, requires
accurate interference power measurements – something which should not be taken for
granted.

Centralized Load If a centralized approximation is used, information from several
cells can be considered. The type of information may be simply the number of soft
handover links each user has or, more advanced, it may be the power gains each user
experiences. Some simplifying assumptions still have to bemade also in the centralized
cases. In the approximation where the number of links is usedfor example, the assump-
tion is that the signals received in different base station are combined using maximum
ratio combining, which is not true in general.

A more theoretical approach has also been handled in the chapter. A definition of
downlink relative load and feasibility of the downlink power control problem was ex-
plored. By using techniques from system theory, solvability of the power control problem
has been associated with a load level below one. As the power control problem is con-
cerned with the entire network, this type of load applies to the entire network as opposed
to just one base station.
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Approximating Uplink Load

This chapter contains the derivation of a number of uplink load approximations. Sec-
tion 5.1 contains a derivation of a set of nonlinear equations for the uplink interference
power. Different ways of approximately solving the equations lead to two fundamentally
different types of approximations. These are derived in Section 5.2. Because of details
in the current WCDMA standard, information required by the load approximations may
not be available. Approximations explicitly handling thisproblem are also derived. A
small comparison of the expressions is made in Section 5.3 before Section 5.4 addresses
the sources of estimation errors. Finally, results of a thorough simulation study of the
performance of the approximations is reported on in Section5.7.

It is assumed that the self interference, caused by the base station not being able
to utilize all of the signal received from a user, is assumed negligible in this chapter.
Derivation and evaluation of the approximations can also befound in (Geijer Lundin
et al., 2003c) and (Geijer Lundin et al., 2003a).

5.1 Uplink Interference Power Expressions

As the name suggests, noise rise relative load is closely related to the uplink noise rise.
Therefore, just as the uplink noise rise, the noise rise relative load is a truly spatial quan-
tity. A noise rise relative load expression using information gathered in several cells can
be made sensitive to changes in the load caused by changed circumstances in other cells.
Below, a number of approximative expressions of the noise rise relative load are derived.
These expressions assume power gain values and target carrier-to-total-interference ratios
to be readily available in a central node.

As a starting point for our derivation of the approximations, consider (4.1) only spe-

53
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cialized to base stationj,

Itot
j = Nj +

M∑

i=1

Ci,j , (5.1)

whereM is the number of users in the entire network andCi,j is the power of the signal
from useri received in cellj. The signal power from useri in cell j is

Ci,j = pigi,j . (5.2)

wheregi,j is the power gain between useri and base stationj andpi is the transmis-
sion power of useri. Combining (5.1) and (5.2) yields an expression ofItot

j in users’
transmission powers. Fast power control between base stations and users is employed
to counteract the influences of fast changes in the radio environment which is partially
caused by the multipath fading. Due to a fast update rate and errors in the transmission
power commands, the momentarily transmission powers are unknown to a central node.
However, if the central node is provided with path gain measurement reports it is still
possible to get an approximative expression of a low pass filtered version the users’ trans-
mission powers. The picture is somewhat complicated by the fact that a user’s transmitted
signal is received in several base stations. The information from these base stations can
be combined in three different manners as discussed in Section 3.4. Aside from using
the correct combination of the signals, it turns out that it will be useful to have approxi-
mations of it as well. The following three manners of combining the information will be
used in the final noise rise relative load approximations.

Maximum Ratio Combining By approximating the combination of selection combin-
ing and maximum ratio combining with just maximum ratio combining, the total com-
bined carrier-to-total-interference ratio is approximately the sum of the individually re-
ceived carrier-to-total-interference ratios in the separate base stations

βi(t) ≈
∑

k∈Ki

gi,k(t)pi(t)

Itot
k (t)

, (5.3)

whereKi is the set of cells useri is connected to. The approximation in the above equa-
tion is due to a nonlinear relation between CIR and CTIR, see Section 5.4.1. Solving for
the transmission power above yields an approximation of user i’s transmission power at
time t,

pi(t) ≈
βi(t)

∑

k∈Ki

gi,k(t)
Ik(t)

. (5.4)

Inserting this expression into (5.1) yields

Itot
j (t) = Nj(t) +

M∑

i=1

pi(t)gi,j(t) ≈ Nj(t) +
M∑

i=1

βi(t)
gi,j(t)

∑

k∈Ki

gi,k(t)
Itot

k
(t)

.
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Selection Combining. The above expression for the interference power in cellj was
derived with an assumption that softer handover is used everywhere. If soft handover is
assumed instead, the signals from the different cells are combined using selection com-
bining, i.e., the signal with the highest reliability tag ischosen. Consequently, the total
combined carrier-to-total-interference ratio is

βi(t) = max
k∈Ki

gi,k(t)pi(t)

Itot
k (t)

. (5.5)

Maximum Ratio and Selection Combining. Another, more accurate, assumption is
to use the correct combination of soft and softer handover. Let useri’s configuration of
soft and softer handover be defined byKi. The functionc(Ki, G(t), I(t)) corresponds to
the denominator of (5.4) and is a combination of maximum and sums.

Divide the set of base stations useri is connected to, i.e.,Ki, into subsets,Ki,r where
each subset contains base stations which are all located at one specific physical site. The
subsetsKi,r are disjunct andKi =

⋃

r Ki,r. The functionc may then by defined as

c(Ki, G, I) ≈ max
r

∑

k∈Ki,r

gi,k

Ik
.

Thus, maximum ratio combining is used on the signals received in each separate setKi,r

and selection combining is then applied on the results from the maximum ratio combining.
Finally, if the system is maintained at reasonable load levels, it is customary to assume
that the fast power control manages to provideβi ≈ βtgt

i .
The three different ways of approximating the transmissionpowers yield three differ-

ent approximative expressions for the uplink interferencepower in cellj.

Itot
j (t) ≈ Nj(t) +

M∑

i=1

βtgt
i (t)

gi,j(t)
∑

k∈Ki

gi,k(t)
Itot

k
(t)

(5.6a)

Itot
j (t) ≈ Nj(t) +

M∑

i=1

βtgt
i (t)

gi,j(t)

maxk∈Ki

gi,k(t)
Itot

k
(t)

(5.6b)

Itot
j (t) ≈ Nj(t) +

M∑

i=1

βtgt
i (t)

gi,j(t)

c(Ki, G(t), Itot(t))
(5.6c)

Applying one of these three equations on all cells in a radio network, i.e., forj =
1, 2 . . . B, defines a system of nonlinear equations in the total received interference power.

5.2 Uplink Load Expressions

Three different expressions for the uplink interference power are derived in the previous
section. This section is devoted to solving for the uplink noise rise using these expres-
sions. Due to Definition 4.2 of noise rise relative load, there is a one-to-one relation
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between uplink noise rise and noise rise relative load. Thus, any of the expressions for
uplink noise rise derived here can be converted to an expression for noise rise relative
load.

First are some general methods for solving nonlinear equations given and then two
fundamentally different ways of solving the system of nonlinear equations defined by
(5.6) will be presented. In order to solve a problem of distributing required information,
another set of expressions is given in a separate subsection. Finally, a discussion on how
required information can be made available is included in this section.

5.2.1 Methods for Solving Nonlinear Equations

Each one of the equations in (5.6) defines a system of nonlinear equations. If an approx-
imative solution to these equations can be found, it can be used to approximate the true
load.

There are numerous ways of numerically solving such systemsin the literature. Den-
nis Jr. and Schnabel (1983) give some examples. Generally the methods look for a solu-
tion to the equationf(x, c) = 0, wherex is a vector of variables andc are parameters of
a general functionf(x, c).

One way of solving the equation is to linearize it or, throughsome other approxima-
tion, make the nonlinear equations algebraically solvable. Another way to go is through
numerical algorithms. The perhaps most famous algorithm istheNewton-Raphson-method,
where the approximative solution is, in each step, updated according to

x(i+1) = x(i) −
(

df

dx

∣
∣
∣
∣
x=x(i)

)−1

f(x(i)).

A problem with this is of course that the derivative off(x) has to be available in algebraic
form. If this is not the case, an approximation of the derivative can be used instead. This
leads to a group of methods commonly referred to asSecant-methods.

If the nonlinear equations can be written on the formx = f(x, c), fix point iterations
can be applied, i.e.,

xi+1 = f(xi, c). (5.7)

Note that convergence of this iteration procedure is not guaranteed in general.
Equations (5.6) are on the form given by (5.7), wherex would represent the total

interference power,Itot. In this work, (5.6) have been solved using linear approximations
as well as fix point iterations of the nonlinear equations.

5.2.2 Approximation I: Equal Interference Power In All Cells

For a moment, assume that the interference powers in all cells are the same as in the
cell we want to express the interference power in, i.e.,Itot

k = Itot
j . Equation (5.6a) then

becomes

Itot
j (t) ≈ Nj(t) + Itot

j (t)

M∑

i=1

βtgt
i (t)

gi,j(t)
∑

k∈Ki
gi,k(t)

. (5.8)
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The system of coupled nonlinear equations defined by (5.6a) is then simplified into a
number of linear decoupled equations. Solving forItot

j (t) yields an explicit expression of
the interference power

Itot
j (t) =

Nj

1 −∑M
i=1 βtgt

i (t)
gi,j(t)P

k∈Ki
gi,k(t)

. (5.9)

When comparing the above expression with (4.3), it is naturalto associate the uplink
relative load with

LIMRC
j (t)

△

=

M∑

i=1

βtgt
i (t)

gi,j(t)
∑

k∈Ki
gi,k(t)

, (5.10)

where indexIMRC has been added to indicate that maximum ratio combining has been
used and that the interference powers in all cells were temporarily assumed equal during
the derivation. This is a practically tractable expressionof the uplink relative load in cell
j based on readily available information. The correspondingexpression for uplink noise
rise is easily found by dividing (5.9) withNj ,

ΛIMRC
j (t)

△

=
1

1 −∑M
i=1 βtgt

i (t)
gi,j(t)P

k∈Ki
gi,k(t)

.

Starting from (5.6b) instead yields a different approximative expression forLj(t), namely

LISEL
j (t)

△

=

M∑

i=1

βtgt
i (t)

gi,j(t)

maxk∈Ki
gi,k(t)

, (5.11)

where the indexISEL indicates the assumption of soft handover and equal interference
power in all cells. The corresponding expression of the uplink noise rise is

ΛISEL
j (t)

△

=
1

1 −∑M
i=1 βtgt

i (t)
gi,j(t)

maxk∈Ki
gi,k(t)

.

Finally the most accurate way of combining the information used in (5.6c) results in yet
another approximative expression for the uplink load

LIBOTH
j (t)

△

=
M∑

i=1

βtgt
i (t)

gi,j(t)

b(K,G(t))
(5.12)

and for the uplink noise rise

ΛNBOTH
j (t)

△

=
1

1 −∑M
i=1 βtgt

i (t)
gi,j(t)

b(Ki,G(t))

,

whereb(Ki, G) is a function combining elements of theG-matrix according to the con-
figuration implied byKi.

To summarize, the following three approximative expressions for the uplink noise rise
have been derived.
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ΛIMRC
j (t)

△

=
1

1 −∑M
i=1 βtgt

i (t)
gi,j(t)P

k∈Ki
gi,k(t)

(5.13a)

ΛISEL
j (t)

△

=
1

1 −∑M
i=1 βtgt

i (t)
gi,j(t)

maxk∈Ki
gi,k(t)

(5.13b)

ΛIBOTH
j (t)

△

=
1

1 −∑M
i=1 βtgt

i (t)
gi,j(t)

b(Ki,G(t))

(5.13c)

By using Definition 4.2, the above expressions can be rearranged into expressing the noise
rise relative load instead of noise rise. The converted expressions would then equal (4.6)
in a single cell system. Note that, when not utilizing soft handover, all expressions in
(5.13) will be equal.

5.2.3 Approximation II: Equal Background Noise Power

The other approach to solving the equations defined by (5.6) is to assume equal back-
ground noise power in all cells, i.e.,Nj = N . Dividing (5.6a) byN yields

Itot
j (t)

N
≈ 1 +

M∑

i=1

βtgt
i (t)

gi,j(t)
∑

k∈Ki

gi,k(t)
Itot
k

(t)

N

.

By using Definition 4.1, the ratio between total received interference power and back-
ground noise power can be substituted by the noise rise,Λj ,

Λj(t) ≈ 1 +
M∑

i=1

βtgt
i (t)

gi,j(t)
∑

k∈Ki

gi,k(t)
Λk(t)

.

This yields a new nonlinear system of equations where the variables are the uplink noise
rise in the different base stations. The path gain values arethen known parameters of the
equations. This system can be solved through any of the numerical methods previously
discussed in Section 5.2.1. Most simple of these is to use theprevious estimate of the
noise rise in base stationk in the right hand side of the above equation

ΛNMRC
j (t)

△

= 1 +

M∑

i=1

βtgt
i (t)

gi,j(t)
∑

k∈Ki

gi,k(t)

ΛNMRC
k

(t−1)

, (5.14)

whereNMRC indicates that maximum ratio combining and equal background noise in
all cells were assumed during the derivation. If the users target CTIR and power gain val-
ues are constant or slowly varying, this is a fix point iteration as in (5.7). This expression
of the uplink noise rise can be converted into an expression of the uplink relative load
according to

LNMRC
j (t)

△

= 1 − 1

ΛNMRC
j (t)

. (5.15)
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Once again, assuming soft handover instead of softer handover provides yet another ex-
pression of the uplink noise rise,

ΛNSEL
j (t)

△

= 1 +

M∑

i=1

βtgt
i (t)

gi,j(t)
∑

k∈Ki

gi,k(t)

ΛNSEL
k

(t−1)

.

Also in this case, the correct combination of soft and softerhandover can be used

ΛNBOTH
j (t)

△

= 1 +
M∑

i=1

βtgt
i (t)

gi,j(t)

c(Ki, g(t),ΛNBOTH(t − 1))
,

wherec(K, g,Λ) is a function combining the noise rise vector with theG-matrix accord-
ing to the configuration implied by the combination of soft and softer handover (here
represented byK).

The following three approximations have been derived in this section.

ΛNMRC
j (t)

△

= 1 +

M∑

i=1

βtgt
i (t)

gi,j(t)
∑

k∈Ki

gi,k(t)
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k

(t−1)

(5.16a)

ΛNSEL
j (t)

△

= 1 +

M∑

i=1

βtgt
i (t)

gi,j(t)

maxk∈Ki

gi,k(t)

ΛNSEL
k

(t−1)

(5.16b)

ΛNBOTH
j (t)

△

= 1 +

M∑

i=1

βtgt
i (t)

gi,j(t)

c(Ki, g(t),ΛNBOTH(t − 1))
(5.16c)

Just as with (5.13), all of these expressions are equal when soft handover is not utilized.
The expressions can be rearranged into expressing the noiserise relative load instead.
In a single cell system, the corresponding expression for noise rise relative load once
again coincides with (4.6). In (5.16), one iteration at eachtime update is used. This
can be generalized into using several iterations before each update as in Algorithm 5.1.
The assumption of slowly varying target CTIR and power gain values can then be relaxed.
Denote byβtgt a vector containing the users’ target carrier-to-total-interference ratios and
by the integerN iter the number of fix point iterations performed before each update. By

Algorithm 5.1
Let Λ(t, 0) = Λ(t − 1)
Assign one of the right hand sides of (5.16) tof(Λ, βtgt, G)
Forn = 1 to N iter

For j = 1 to B
Let Λj(t, n) = f(Λ(t, n − 1), βtgt, G)

Λ(t) = Λ(t,N iter)

using fix point iterations like these, the expressions catchfrequent updates in path gain
measurements better. Convergence of this algorithm when using (5.16a) is analyzed in
Chapter 6.
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5.2.4 Approximation III: Distributed Information

A complication concerning the distribution of required information is that the base sta-
tions may deliver the path gain measurement reports to different central nodes. For ex-
ample according to the 3GPP standard, a user initiating its session in an area covered by
a central, call itRNC2, and during the session moves to an area supported by another
RNC, RNC1, will not report path gain measurements toRNC1 but toRNC2. A user
located insideRNC1’s service area may thus introduce considerable interference power
to the base stations without delivering any path gain reports toRNC1. All the above ex-
pressions for uplink noise rise can only consider users reporting path gain measurements
to the central the estimate resides in. Besides the obvious solution to neglect users not
reporting their path gain, a set of noise rise approximations which are a combination of
the techniques used in the two previous sections is proposed. Below is a derivation of
the alternative expression which approximates the noise rise in base stations belonging to
RNC1.

Split the sum over users in the (5.6) into two sums, one being over the users reporting
their path gain measurements toRNC1 and the other over users reporting to other central
nodes (here represented byRNC2). Exemplifying with (5.6a)

Itot
j (t) = Nj +

∑

i∈RNC1

βtgt
i (t)

gi,j(t)
∑

k∈Ki

gi,k(t)
Itot

k
(t)

+
∑

i∈RNC2

βtgt
i (t)

gi,j(t)
∑

k∈Ki

gi,k(t)
Itot

k
(t)

. (5.17)

Here cellj belongs toRNC1. Consider just the sum over users inRNC2 and approx-
imateItot

k (t) in (5.17) with the total received interference power in basestationj. This
allows us to approximate the sum as

∑

i∈RNC2

βtgt
i (t)

gi,j(t)
∑

k∈Ki

gi,k(t)
Itot

k
(t)

≈ Itot
j (t)

∑

i∈RNC2

βtgt
i (t)

gi,j(t)
∑

k∈Ki
gi,k(t)

.

Substituting the second sum in (5.17) by the above expression and solve forItot
j (t) yield

Itot
j (t) =

Nj +
∑

i∈RNC1
βtgt

i (t)
gi,j(t)P

k∈Ki

gi,k(t)

Itot
k

(t)

1 −∑i∈RNC2
βtgt

i (t)
gi,j(t)P

k∈Ki
gi,k(t)

.

Assume thatNj = Nk = N and thatΛk(t) = Λk(t− 1). Dividing the above equation by
N then results in an expression of the uplink noise rise which is a combination of (5.13a)
and (5.16a)

ΛRNCMRC
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k∈Ki
gi,k(t)

.
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Note that the sum in the denominator represents the noise rise relative load that users
reporting toRNC2 introduce to cellj. Neglecting these users results in a larger denomi-
nator, which yields a smaller approximation.

This approximation is interesting sinceRNC2 can now send a message toRNC1

containing the additional noise rise relative load that users belonging toRNC2 intro-
duce in each cell controlled byRNC1. This message would then be far smaller than one
containing the complete path gain information regarding these users. Obviously soft han-
dover can be assumed to be used everywhere here as well, or theactual combination of
soft and softer handover can be assumed. This gives three types of expressions using the
technique with sending relative load information between different RNCs.

ΛRNCMRC
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(5.18a)
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ΛRNCBOTH
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(5.18c)

5.2.5 Required Information

All the above derived expressions for the uplink load rely onknowledge of users’ tar-
get carrier-to-total-interference-ratio,βtgt, which are assumed known by the system.
They also need path gain measurements, which can be made available in two different
ways: (3GPP, 2000a, 1999)

M1: The mobile stations are requested to periodically
(but not necessarily synchronously) report pilot
power measurements. As an example, pilot power
from the six strongest base stations can be reported
at a rate of 0.5 Hz.

M2: For handover purposes, the mobile typically re-
ports similar measurements in an event-driven
fashion. It measures the pilot powers from the
neighboring cells and reports up to the six strongest
path gains at handover events.

In both cases, the channel is assumed reciprocal, i.e., the uplink path gain is assumed
approximately equal to the corresponding downlink path gain with respect to distance
dependent path loss and shadow fading. Multi path fading is assumed filtered out in the
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lower layer filtering. Furthermore, these different strategies only provide data from a lim-
ited set of mobile-to-base path gains. The remaining path gains, however, are considered
small and set equal to zero. According to the 3GPP standard the individual measure-
ment errors in relative path gain should not be greater than 1.5 dB with a probability of
90% (3GPP, 2000a).

5.3 Comparison of the Uplink Load Expressions

In the previous section two fundamentally different ways ofsolving the nonlinear system
of equations implied by (5.6a) are presented. The approximate expressions derived in
Section 5.2.2 which assume the interference power to be equal in all cells, may at first
seem redundant since other expressions which are derived under far more reasonable as-
sumptions are available, the ones assuming equal background noise. The approximations
ΛIMRC , ΛISEL andΛIBOTH have, however, one major advantage compared to the iter-
ations. When trying to approximate the uplink noise rise in base stationj, the interference
power in base stationk was approximated with that in base stationj, i.e.,Itot

k = Itot
j . In

the case base stationj is the base station with the highest interference power in the area,
this implies, starting with (5.6a),

Itot
j ≈ Nj +

M∑

i=1

βtgt
i

gi,j
∑

k∈Ki

gi,k

Itot
k
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gi,j
∑
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gi,k

Itot
j

= Nj + Itot
j

M∑

i=1

βtgt
i

gi,j
∑

k∈Ki
gi,k

= LIMRC
j .

This property of the estimate can be useful when using the estimate in RRM algorithms.
Since the approximation is likely to be higher then the true load, the RRM algorithms will
receive an earlier warning of a potential future congestion.

The main strength of the above expressions for uplink load isthat they, like the true
interference power, depend on the actual situation in several cells and do not rely on an
intercell-to-intracell-interference factor,f . Furthermore, since the expressions involve
the users’ carrier-to-total-interference target, users who require high transmission power
will inherently be given less coverage if an expression likethis is used in the resource
management algorithms. To exemplify, study (5.10)

LIMRC
j (t) =

M∑

i=1

βtgt
i (t)

gi,j(t)
∑

k∈Ki
gi,k(t)

.

Each users’ contribution is a product of the target carrier-to-total-interference ratio and a
ratio between path gains. A user far from the own base stationbut close to another, will
have a small gain to its own base station (gi,k) and a relatively large gain to the other
base station (gi,j). Therefore, the ratio of the path gains will be relatively large which can
be compensated for with a small target carrier-to-total-interference ratio. This one of the
ideas used for designing radio resource allocation algorithms in Chapter 7.
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5.4 Sources of Estimation Errors

A number of different effects and approximations degrade the performance of the load
approximations. These include:

• The nonlinear relation between CIR and CTIR (see Section 5.4.1)

• TX increase (see Section 5.4.2)

• The soft(er) handover assumption

• Imperfect power control

• The assumption regarding relation between the uplink interference power, alterna-
tively the background noise power, in different base stations

• The assumption that unknown path gains are equal to zero

• Path gain measurement errors according to 3GPP (2000a) and sparsely sampled
path gain measurement reports

These error sources’ affect on the approximation accuracy is investigated through simu-
lations in Section 5.7.

5.4.1 Nonlinear Relation Between CIR and CTIR

When deriving (5.3) it is assumed that the sum over the received CTIR in different base
stationsk, βi,k, equals theβi which is required by the user’s service, i.e.,

βi =
∑

k∈Ki

βi,k.

This is not true in general where there may be more than one term in the sum, even if
∑

k∈Ki
γi,k = γi. A simple proof is

∑

k∈Ki

βi,k =
3∑

k=1

γi,k

1 + γi,k
≥

3∑

k=1

γi,k

1 + γi
=

γi

1 + γi
= βi,

where equality holds if and only if two of theγi,k:s are zero (which corresponds to no soft
handover). Thus, the sum over the separately received CTIR is larger than the experienced
CTIR. Therefore, this contributes to under estimating the users’ transmission powers.

How big the difference is depends on the relation between theseparately received CIR
values; if a user is almost solely connected to one base station, the difference is small. The
combined CIR also influences how big the difference is. The bigger the combined CIR is,
the bigger the difference may be.
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5.4.2 TX Increase

For simplicity, assume that all users in the system is power controlled form exactly one
base station. TX increase is a result of fast power control adjusting each user’s transmis-
sion power to compensate for multi path fading dips in the power gain between mobile and
connected base station. The mobile uses a high power during deep fades. This may yield
a considerable interference increase to neighboring cellssince a dip in the power gain to
the connected base station does not always imply an, as deep,dip to the neighboring base
stations.

To exemplify, consider a scenario where mobile one is connected to base station two.
We are interested in its interference power contribution tobase station three. Due to
power control, each user’s transmission power is approximately inversely proportional to
the momentary power gain between the user and the controlling base station, i.e.,

p1 ∝ 1

g1,2
.

Base station three will receive the signalp1g1,3 which is proportional to the ratio between
the momentarily power gains, i.e.,

C1,3 ∝ g1,3

g1,2
.

The path gain reports provided by the users do not include multi path fading (the actual
reported value is low pass filtered;F{gi,j}). Since the uplink load approximations, unlike
fast power control, use users’ path gain reports there will be a part of the uplink interfer-
ence power that will not be counted for in the approximations. Essentially, it is possible to
observeF{g1,3}

F{g1,2}
but notg1,3

g1,2
, which is related to the actual interference power contribution

in base station three. In Figure 5.1a, the ratio of low-pass filtered versions of the path gain
measurements (solid) is plotted. Of course this will not detect the high peaks in the ratio
of the momentarily power gains (dashed). Perhaps momentarily sharp peaks are tolerable
by base station three. A better model could therefore be to consider the low-pass filtered
load contribution which is essentially proportional to a low pass filtered version of the ra-
tio between the power gain to base station three and base station one,F{ g1,3

g1,2
}. However,

as indicated by Figure 5.1b, the load contribution is still underestimated. Essentially, this
exemplifies Jensen’s inequality (Billingsley, 1995)

f(E(x)) ≤ E(f(x)),

wheref(x) is a convex function andE(x) denotes the expected mean with respect tox.
The solid line in the Figure 5.1b thus represents the quantity used in our expressions of the
average noise rise while the dashed line represents the quantity that corresponds to user
i’s actual contribution to the average uplink noise rise in base stationj. This additional
contribution in inter-cell-interference is referred to asTX increase, defined as follows.

Definition 5.1 (TX increase). TheTX increase, τ , of a connection is the ratio between
expected transmission power with multipath fading and the expected transmission power
without multipath fading.
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Figure 5.1: a) Ratio between filtered power gain measurementsF{gi,j}
F{gi,k}

(solid) and

momentary measurementsg1,3

g1,2
(dashed). The momentary high peaks in the ratio

between the momentary measurements are not present in the ratio between the fil-
tered versions. b) Ratio between filtered measurements (solid) and filtered ratio,
F{ g1,3

g1,2
} (dashed). The average of the filtered ratio between momentary measure-

ments (dashed) is higher than the ratio between the filtered measurements (solid).

Since the uplink load expressions, unlike fast power control, use power gain reports
from users, the approximations do not include the part of theuplink load caused by TX in-
crease.

Aside from the approximations, there are ideas of how to schedule transmission in
such a way that transmission during deep fades are avoided. This will make the variance
of the momentary power gain values less and hence decrease the TX increase effect. An
example of such a work is Törnqvist et al. (2004). TX increasehas been studied by e.g.,
Ariyavisitakul and Chang (1993); Hashem and Sousa (1999) and Sipilä et al. (1999).

5.5 TX Increase Compensation

Boujemaa et al. (2002); Sipilä et al. (1999) provide expressions for the average trans-
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mission power increase when utilizing the diversity gain ofa rake receiver. Sipilä et al.
(1999) also concludes that the expressions, which are derived under an assumption of
perfect power control, are reasonable even with imperfect power control. The amount of
additional average intercell interference power induced by TX increase is a function of
how many multi path fading rays the receiver considers and the relative strength these
have. A first result is that in case there areN equally strong rays the interference power
is increased a factorN/(N − 1). We study a more general and practically interesting
case, where the rays have different strength. If the strength of each received multi path
ray, Xk, k = 1, 2 . . . , N can be assumed exponentially distributed, the weighted sum,
∑

akXk, will have a probability density function which can be approximated by

N∑

k=1

πk

ak
e
− x

ak , x ≥ 0

whereπk is

πk =

N∏

i=1,i 6=k

ak

ak − ai
. (5.19)

This is an approximative expression because perfect utilization of each received multi
path ray was assumed during the derivation. Let the coefficients ak be normalized so
that their sum equals 1. The expected average transmission power increase can now be
expressed as

τ =

N∑

k=1

aN−2
k log(ak)

∏N
i=1,i 6=k ak − ai

,

N∑

k=1

ak = 1, (5.20)

whereτ is the ratio between expected transmission power with multipath fading and
the transmission power without. Note, that the above expression requires all the relative
strengths,ak, to be unique. In a practical scenario, however, this is always the case.

Given the characteristics of the radio channel, and assuming that these characteristics
are the same in all surrounding cells, it is thus possible to calculate a factorτi,j which
approximates the additional received carrier power from user i in base stationj. The fac-
tors can then be used by the noise rise approximations in (5.13) and (5.16). Accordingly,
Algorithm 5.1 can be adjusted to incorporate this TX increase compensation. This idea
is used in Algorithm 5.2 which is applicable to a system not using soft handover. The
algorithm is only exemplified withΛNMRC , of course any other of the recursions derived
earlier can be applied. This assumes allak to be unique. The corresponding algorithm

Algorithm 5.2

Let Λiter,TX(t, 0) = Λiter,TX(t − 1)
Forn = 1 to Niter

For each base stationj
Let Λiter,TX

j (t, n) = 1 +
∑M

ℓ=1 βtgt
ℓ (t)

gℓ,j(t)P
k∈Kℓ

gℓ,k(t)

Λ
iter,T X
k

(t,n−1)

τℓ,j(t)

Λiter,TX(t) = Λiter,TX(t,Niter)



5.6 Summary of Proposed Approximations and Compensation Methods 67

applicable to a system using soft handover requires more detailed consideration of each
mobile’s setKℓ. TX increase compensation can also be applied toLlin,

Llin,TX
j (t)

△

=

M∑

ℓ=1

βtgt
ℓ (t)

gℓ,j(t)
∑

k∈Kℓ
gℓ,k(t)

τℓ,j(t). (5.21)

5.6 Summary of Proposed Approximations and Com-
pensation Methods

In the previous sections a number of uplink load approximations have been proposed.
This section will try to bring some clarity into how these approximations relate and when
to use which. Basically there are two dimensions, one being what kind of signal combin-
ing is assumed in the receiver and the other dimension being how a system of nonlinear
equations is solved.

Three different ways of combining the signals in the base station and radio network
controller are studied. These are maximum ratio combing or selection combining and,
perhaps the most obvious, using the correct combination of maximum ratio combining
and selection combining. All of these three choices on type of combining leads to different
system of nonlinear equations that needs to be solved, see (5.6). The second dimension
is about how these equations are solved. The three alternatives that were proposed are
relaxing the interconnections between the equations, using fixed point iterations or using a
combination of the two. These are found in Section 5.2.2, Section 5.2.3 and Section 5.2.4,
respectively. The last method is designed to solve a problemwith distributing path gain
information between different central nodes, or radio network controller in the case of
WCDMA, of a system. This is especially useful in networks where base stations in a
geographically limited area do not necessarily belong to the same central node.

Table 5.1 summarizes the nine approximations given by the two dimensions. TX in-

Table 5.1: Summary of load approximations.

Ik = Ij Nk = Nj = N Ik = Ij andNk = Nj = N

MRC ΛIMRC ΛNMRC ΛRNCMRC

SEL ΛISEL ΛNSEL ΛRNCSEL

MRC and SEL ΛIBOTH ΛNBOTH ΛRNCBOTH

crease is a term for the additional intercell interference that power control in combination
with multi path fading causes. This contribution to the total received interference power
can not be detected using path gain measurements only. Section 5.5 introduces a method
for approximating this increase in received interference power. The technique is applica-
ble to all of the approximations in Table 5.1.
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5.7 Simulations

Performance of the load approximations derived in this chapter is in this section evaluated
using simulations. The simulator models many of the characteristics of a true system. See
Appendix A.1 for more details of the simulator. The performance of the approximations
in terms of mean and standard deviation of single errors willbe evaluated for different
load levels. Reasons for the approximation errors will alsobe discussed along the way.

5.7.1 Simulation Setup

The simulator used when evaluating the performance of the approximations is discussed
in Appendix A.1. The simulation area is a system of 21 base stations located at 7 different
sites. In order to avoid border effects in the outermost cells, a wrapping technique has
been used. The wrapping applies to both interference and user movement.

For the purpose of evaluating the performance of the expressions for noise rise derived
in Section 5.2, momentary true uplink noise rise and all the approximative expressions for
it is sampled every frame, i.e., 100 times a second. The true noise rise is calculated using
Definition 4.1, in which the interference power is found using (4.1).

Measurements of path gains are subject to errors according to (3GPP, 2000a), i.e. a
90% confidence interval of 1.5 dB. The users’ inability to report path gain to all base
stations is modeled through limiting each report to the six strongest base stations. This is
also the maximum number of cells that is reported in a WCDMA system.

The total power gain is calculated using two factors;gs and gmp. Antenna gain,
distance attenuation and shadow fading are all representedby gs while gmp represents the
variations caused by the multi path fading. The true noise rise is thus calculated according
to

Λj(t) =
N +

∑M
i gs

i,j(t)g
mp
i,j (t)pi(t)

N
,

whereN is a constant representing the thermal noise only.
Each approximative expression in Section 5.2 is then compared to the true noise rise,

time instant by time instant. In the following sections of this chapter, statistics of the
resulting differences in noise rise are reported for different true noise rise levels.

Two different bit rates are used in the simulations, 64 kbps and 192 kbps. The users
have no upper transmission power limit in order to isolate the sources of estimation errors
considered here.

5.7.2 Measurement Report Frequency

The approximative expressions in Section 5.2 rely on measurements of the path gains
between user and base station. In reality, complete knowledge of the entire path gain
matrix is not available since path gain reports are sparselyspread in time and they do
not cover all base stations. Therefore this section is devoted to studying the expressions’
sensitivity to limited path gain knowledge. As a comparison, Figure 5.2 shows average
error ofΛNBOTH andΛIBOTH (which both can be found in (5.16)) when knowing the
whole uplink path gain matrix and actual receivedβi. Already under these relatively
idealistic circumstances, an effect of approximating the interference power in all cells
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with the interference power in the own cell is apparent; the average error when using
ΛIBOTH deviates from the trend for high loads. The samples representing this part of the
curve have probably been sampled in the cells which experience the highest load. Thus,
assuming all other cells to have the same high noise rise contributes to an over estimation,
which makes the average error smaller since it is an underestimation. The path gain
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Figure 5.2: Mean error in noise rise when knowing the entire path gain matrix. ’*’
representsΛNBOTH and ’-’ representsΛIBOTH

.

measurements which all the expressions evaluated herein depend on can be made available
in many different ways. Two different ways, which are both inthe current 3GPP standard,
are described in Section 5.2.5. Basically the one referred to as M1 schedules the path gain
reports in a periodic manner with a periodicity of 0.5 Hz, while when using M2 users
report only in conjunction with soft hand over requests, i.e., in an event driven manner.
In this section, the expressions sensitivity to how the measurements are scheduled will
be investigated. Not surprisingly, as can be seen in Figure 5.3, using event driven path
gain reports (i.e., M2) results in far less reports per user and hence less signaling overhead
for the system. More interesting is the fact that using M2 does not necessarily imply a
worse approximation, see Figure 5.4 and 5.5 which show the average estimation error
of ΛNMRC , ΛNSEL andΛNBOTH when using users traveling at an average speed of
10, 20 and 70 km/h, respectively. A comparison between expressions assumingIk = Ij

as opposed toNk = Nj shows that there is no statistical difference in average error.
However, using M1 results in considerably larger standard deviation when assumingIk =
Ij , i.e.,ΛIMRC , ΛISEL or ΛIBOTH (all from (5.13)), see Figure 5.6 and 5.7.

Only when traveling at a rather high speed, 70 km/h, using M1 or M2 results in dif-
ferent error statistics forΛNMRC , ΛNSEL andΛNBOTH . At this speed, M1 provides
a better average error but as can be seen in Figure 5.6, the standard deviation is much
higher compared with using M2. The average error may be canceled by an error correc-
tion method, but we can do almost nothing to combat a high standard deviation. Average
error cancellation also requires a low standard deviation,which is why M2 can be consid-
ered providing an even better approximation than M1. The significant increase in standard
deviation for low load levels when using M1 is explained by the approximation being far
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from accurate in a few instants. The statistics is thus somewhat misleading in this case.
It is the users that are close to the cell border that are the most important ones to have

somewhat accurate path gain knowledge of since these are theusers that cause most of
the inter-cell-interference. Since these users are more likely to change their soft handover
setup compared to users within the cell, using M2 thus mean that it is also more likely that
these users provide reports. Simulations shown in this section implies that scheduling the
users’ path gain reports in a event driven manner, such as M2,provides an at least equally
good approximation of the uplink noise rise while requiringless signaling overhead.
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Figure 5.3: Cumulative sum over number of reports per user for M1 (solid)and M2
(dashed)
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5.7.3 One Radio Network Controller

In the previous section it is shown that the expressions are practically independent of
the type of path gain reporting, periodic or event-based, and therefore only event-based
reports are considered in this section.
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Uniform Traffic With Single Service

Figure 5.8 shows the performance of four different expressions when using 64 kbps
streaming users. As each user has no more than one link, assuming soft or softer han-
dover makes no difference in this scenario. The major gap between the lines is due to
TX increase (see Section 5.4.2), since multi path fading is not simulated in the runs cor-
responding to the dashed lines. The conclusion from this figure is that TX increase does
give a considerable contribution to the total error. Also, all four expressions produce an
underestimate of the uplink noise rise, mainly due to that measurements of all path gains
are not available. A part of the error due to TX increase can beeliminated by using the
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Figure 5.8: Error in noise rise with 64 kbps users. One link per user. Dashed: No
multi path fading. ’o’:ΛIMRC , ’x’: ΛNMRC , ’+’: ΛISEL, ’*’: ΛNSEL. TX increase
clearly has an impact on the approximations.

expressions for the additional transmission power in Section 5.5. If the factors by which
the separate received multi path rays are weighted with, i.e., ak in (5.19), are known it
is possible to apply Algorithm 5.2. Figure 5.9 shows that it is then possible to eliminate
most of the error in average. In Figure 5.10 a more realistic scenario is shown where
each user is allowed up to three handover links at a time. First of all, assuming softer
handover (ΛIMRC andΛNMRC) gives larger average error compared to assuming soft
handover (i.e.,ΛISEL andΛNSEL) or both soft and softer handover (i.e.,ΛIBOTH and
ΛNBOTH ). This is natural since assuming softer handover everywhere means overesti-
mating the system’s ability to correctly receive signals, which in turn means underesti-
mating the required transmission powers. Under these circumstances, i.e., almost equal
load in all cells, the errors from all six expressions are small in average and has fairly
low standard deviation. Using any of the approximations in (5.16) provides equal average
error as those in (5.13), but with lower standard deviation.This is explained by the fact
that assuming equal background noise power makes the performance of the expression
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independent of different load in different cells. The approximationsΛNMRC , ΛNSEL

andΛNBOTH all use the previous approximation to approximate each user’s contribution
to the noise rise. By looking at (5.16a), which is repeated below, it is apparent that un-
derestimating the noise rise at timet− 1 results in underestimating every term in the sum
that constitutes the noise rise at timet

ΛNMRC
j (t) = 1 +

M∑

i=1

βtgt
i

gi,j
∑

k∈Ki

gi,k

ΛNMRC
k

(t−1)

.

As can be expected, the performance ofΛNBOTH andΛIBOTH can be described as an
average of the two other assumptions regarding soft or softer handover. The two middle
lines in the Figure 5.10a representΛIBOTH andΛNBOTH . The figure shows that they
approximate the noise rise with an average error less than 0.5 dB while maintaining a
low standard deviation even for high true noise rise levels,see Figure 5.10b. The slight
increase in error as the noise rise increases, may be explained by looking in the load do-
main. As mentioned in the introduction, even a small difference in load gives a substantial
increase in noise rise at high load levels. This also means that a small load error results
in a large noise rise error when operating at high load levels. In Figure 5.11 statistics for
load expressions are plotted versus true load computed according to (4.2),

L = 1 − 1

Λ
,

whereΛ is given by the simulator. There is no dramatic increase in error as the load
of the system increases in this domain. All the lines in the figure are quite straight but
do not have the correct incline. This can best be explained bystudying (5.10). Ideally,
the expression is a sum over all users in the network. The factthat for example the line
representingLIMRC in Figure 5.11 does not have the correct incline is thus an effect of
each user’s contribution being underestimated and that notall users are considered due
to limited path gain reports. All the expressions have a sum over, ideally, all the users,
shown in (5.16a), and hence the same reasoning applies. To summarize, there are two
reasons why the lines in Figure 5.10 deviates from a straightline for high load levels:

• even a minor error at high loads produces a non-negligible error in the noise rise

• the sum representing the load approximation has a larger error due to many users,
all with a minor underestimated contribution.

Hot Spot

When derivingΛIMRC , ΛISEL andΛIBOTH in Section 5.2.2 the interference power was
assumed to be approximately equal in all cells. This is an assumption that is unsuitable for
scenarios with hot spots, i.e., when one or several base stations have considerably higher
load than the others. As can be seen in Figure 5.12a) all expressions still provide a pretty
good average noise rise approximation for moderate noise rise levels. However, under
these circumstancesΛISEL is useless due to its errors have a high standard deviation at
heavily loaded cells. In order to explain the severe over estimation done byΛISEL at high
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loads, study a scenario where user1 is connected, by soft handover, to base stationsj and
ℓ. Since both base stations are in the active set, the path gains from the user to the base
stations, i.e.,g1,j andg1,ℓ, cannot differ too much. IfItot

j is much greater thanItot
ℓ , than

the contribution from user1 is according to (5.6b)

g1,j
βtgt

1

max{ g1,j

Itot
j

,
g1,ℓ

Itot
ℓ

} = g1,j
βtgt

1

g1,ℓ
Itot
ℓ (5.22)

while it is reflected inΛISEL by

g1,j
βtgt

1
1

Itot
j

max{g1,j , g1,ℓ}
= g1,j

βtgt
1

max{g1,j , g1,ℓ}
Itot
j . (5.23)

If Itot
j ≫ Itot

ℓ , the load contribution (5.22) is likely highly overestimated using (5.23).
This explainsΛISEL’s overestimation of the load in highly loaded cells, as illustrated in
Figure 5.12. The high standard deviation is a result of the expressions alternating between
being an over estimation in the case of different interference levels in neighboring base
stations and under estimation in the case of almost equal interference levels.ΛNBOTH

provides approximations with both low average error and lowstandard deviation.

5.7.4 Several Radio Network Controllers

The knowledge on users’ path gains can be even further limited by considering reports
from only a subset of the users. As argued in Section 5.2.4, some users will not report their
path gain to the RNC they are currently controlled by if they started their session when
located in an area served by another RNC. In this section we have used path gain reports
according to the scheduling technique referred to as M2 and compared the performance
of the expressions defined by (5.18) for different fractionsof external users (i.e., users
not reporting their path gain to the RNC referred to asRNC1 in Section 5.2.4). As a
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comparison, statistics for the expression that completelyignores the external users are
also studied. Figure 5.13-5.15 show the average estimationerror when 10, 20 and 30%
of the users report to another RNC than the one they are closest to, respectively. Clearly,
just ignoring that some users are not considered in the expression can be quite drastic.
However, when using an expression that incorporates an estimate of the load contribution
from the external users (i.e.,ΛRNCMRC , ΛRNCSEL or ΛRNCBOTH ), the performance
is almost equal to the case where measurement reports from all users are available. A
comparison between Figure 5.10b and Figure 5.16 shows that the expressions studied in
this section have approximately the same standard deviation as the ones assuming equal
background noise power in all cells.

The expressions in (5.13) are not shown here. The problem of not receiving path gain
reports from some users can be solved in the same way, i.e., with small messages between
different RNCs, without any additional changes to the expressions.
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Figure 5.13: Mean errors in noise rise when using two RNCs. Solid: All reports,
dashed: Reports in one RNC, dashdotted:ΛRNC . 10 % of the users report to another
RNC.

5.8 Summary

This chapter focused on establishing the noise rise relative load in a practical system.
Combining expressions for the total received interferencepower in different base stations,
resulted in a system of nonlinear equations. Two conceptually different methods for ap-
proximately solving this system were proposed. The choice of method for solving the
system of equations together with different methods for combining information received
in different base stations gave a large number of different approximations. By using in-
formation gathered in several cells, they all explicitly consider the intercell interference
power. This means that they are in fact sensitive to the system’s soft capacity. Since the
channels’ path gain values are considered by the approximations, the approximations are
completely robust to any changes in the radio environment, such as different propagation
exponents.
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As the path gain measurements which the approximations relyon do not include
the multi path fading, a technique for approximating the additional intercell interference
power that the multi path fading together with fast power control causes. This intercell
interference approximation is build on knowledge of the channels impulse responses.

A rather thorough simulation study gave that it is possible to approximate the uplink
noise rise with an average error less than 1 dB and low standard deviation for a noise rise
levels even above 8 dB.
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6
Analyzing Uplink Load

This chapter studies uplink load from a theoretical perspective. Alternative definitions
of uplink load related to the entire system as opposed to justone cell are introduced.
Definitions explicitly relating uplink load to existence ofa solution to the power control
problem of finding appropriate transmission powers for all users are also introduced. A
matrix conveniently representing the interconnections between different base stations is
introduced. The matrix is then used as a basis for deriving much of the results in this
chapter as well as in the following ones. In this chapter the matrix is used to provide
links between the uplink load approximations in Chapter 5 and the rather theoretical def-
initions of uplink load introduced in this chapter. Towardsthe end, much of the results
are condensed into a method for approximating the uplink load in practice. Section 6.2
introduces alternative definitions of uplink load and discusses how the load of a system
according to these definitions can be determined. In Section6.4 relations between differ-
ent definitions of uplink relative load as well as some of the expressions in the previous
chapter are established. All expressions for the uplink load in the previous chapter are de-
rived through approximations of a system of nonlinear equations. Some of the expressions
use iterations. Sufficient conditions for convergence of one of the iterations are developed
in Section 6.5. Divergence of the iterations will also be related to a lower bound of the
uplink load.

Since this is a theoretical study, it is assumed that the system has complete knowledge
of all power gains. Furthermore, the users’ experienced CTIR will be assumed to equal
the target CTIR set by the resource management algorithms. This corresponds to studying
the steady state of a perfect power control algorithm.

81
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6.1 System Properties

In this section, a number of properties of a system will be stated in order to simplify the
presentation of quantities and results given in the remaining part of the chapter.

6.1.1 Terminology

The connections between users and base stations can be conveniently gathered in a matrix.

Definition 6.1 (Link Matrix). The element on rowℓ and columnj of the link matrix,
K ∈ R

M×B , is defined as

Kℓ,j
△

=

{

1, if userℓ is power controlled by base stationj

0, otherwise.

The setsKℓ can thus be depicted as

Kℓ = {j : Kℓ,j = 1}.

Correspondingly,cj , the set of users power controlled by base stationj, can be defined as

cj
△

= {ℓ : Kℓ,j = 1}.

Let N ∈ R
B×1 be a vector with the base station individual background noise powers. A

system with link matrixK and power gain matrix defined according to Definition 3.1 in
which the background noise powers in the different cells aregiven by the vectorN and
the users have target carrier-to-total interference ratios according to the diagonal matrix
Btgt is denoted(Btgt, G,K,N).

Definition 6.2 (System Feasibility). A system(Btgt, G,K,N) is feasibleif there exist
mobile individual finite positive transmission powers suchthat

βℓ ≥ βtgt
ℓ ∀ℓ.

Otherwise, the system isinfeasible.

Adopt a terminology stating that a user with links to a numberof base stations is said
to beconnectedto those base stations. To quantify the number of base stations mobiles in
a network are connected to and power controlled by, strict connectivity and connectivity
are introduced.

Definition 6.3 (Strict Connectivity). A system is said to havestrict connectivityk if at
least one mobile is connected tok base stations.

Definition 6.4 (Connectivity). A system is said to haveconnectivityk if at least one
mobile is power controlled byk base stations.

To exemplify the last two definitions, consider a system withjust one user who is
in soft handover between two cells, but the power gain to one of the base stations is
much higher than that to the other one. The user is thus connected to both base stations
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but power controlled by just one of them. The system then has strict connectivity two but
connectivity one. On the other hand, when in softer handover, the user is power controlled
by both base stations and the connectivity is then also two.

As concluded in Example 4.3, the interference power a user causes in base station
j is proportional to the ratio betweengi,j andgi,Ki

in a system with connectivity one.
In connection with the example, these ratios were gathered in a matrix. Here, a similar
matrix, therelative power gain matrix, is defined.

Definition 6.5 (Relative Power Gain Matrix). The element on rowi and columnj of
therelative power gain matrix, Z ∈ R

M×B , is at timet

zi,j(t)
△

=
gi,j(t)

∑

k∈Ki
gi,k(t)

.

6.1.2 Interference Power Expression

A system with connectivity one is more simple to analyze theoretically. All mobiles essen-
tially communicate with one base station in a system with connectivity one. For example,
it is possible to establish a matrix expression for the received interference powers.

Combining (5.1) and (5.2) yields (suppressing the time index, t)

Itot
j = Nj +

M∑

i=1

pigi,j .

If useri is solely connected to base stationKi,

βi =
Ci,Ki

Itot
Ki

= pi
gi,Ki

Itot
Ki

,

where the first equality is the definition ofβi (see (3.4)). Solving forpi and inserting it
into the above expression forItot

j yield

Itot
j = Nj +

M∑

i=1

βi
gi,j

gi,Ki

Itot
Ki

= Nj +

M∑

i=1

βizi,jI
tot
Ki

.

The above sum over users can be split into two sums,

Itot
j = Nj +

B∑

k=1

∑

i∈ck

βizi,jI
tot
Ki

= Nj +
B∑

k=1

∑

i∈ck

βizi,jI
tot
k . (6.1)

The core of the framework developed here is the system matrix.

Definition 6.6 (System Matrix). The element on rowk and columnj of the system
matrix, L ∈ R

B×B , is
Lk,j(t)

△

=
∑

i∈ck

βtgt
i (t)zi,j(t).
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Given the link matricesK, relative power gain matrixZ and the users’ target CTIR
values in a diagonal matrixBtgt,

L = KT BtgtZ. (6.2)

With the purpose of expressing the total interference powers in (6.1) in vector form, as-
sume perfect power control. This justifies substitutingβi by βtgt

i which makes it possible
to write (6.1) as

Itot
j =

B∑

k=1

Lk,jI
tot
k .

The vector expression corresponding to (6.1) is then

Itot = LT Itot + N ⇔ Itot = (E − LT )−1N. (6.3)

6.2 System Load

6.2.1 System Noise Rise Relative Load

Even though a relative load per cell is interesting from a practical point of view since it
is used with advantage in the resource management, a load related to the entire system is
equally interesting from a theoretical point of view. One ofthe conclusions in Chapter 4 is
that the uplink noise rise is a natural load measure in the uplink. Therefore, the following
definition of system load is a natural one to make.

Definition 6.7 (System Noise Rise Relative Load).Thesystem noise rise relative load
is defined as

Ls
△

= max
j

Lnr
j ,

whereLnr
j is the uplink noise rise relative load in cellj according to Definition 4.2.

The expressions for uplink noise rise relative load in Chapter 5 can thus be used to
approximate the system noise rise relative load, e.g.,

LIMRC
s

△

= max
j

LIMRC
j

LISEL
s

△

= max
j

LISEL
j .

6.2.2 Feasibility Relative Load

Yet another definition of load is one based on the system as a whole, i.e., not as consisting
of a number of small systems (cells). The load of a system can then be explicitly related
to existence of a solution to the system’s power control problem of finding appropriate
transmission powers to satisfy all users’ requirements on carrier-to-interference ratios.

The distance to infeasibility according to Defintion 6.2 wasexpressed by Herdtner and
Chong (2000) as afeasibility margin. Later, feasibility margin was related tofeasibility
relative loadby Gunnarsson (2000). In these references the quantities were expressed in
terms of CIR. Below, these quantities are redefined in terms of CTIR instead.
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Definition 6.8 (Feasibility Margin). The feasibility margin, Γm, of a cellular system,
(Btgt, G,K,N), is defined as

Γm
△

= sup{x ∈ R :
(
xBtgt, G,K,N

)
is feasible}.

Clearly,Γm > 1 corresponds to a feasible system. The interpretation ofΓm is that it
is the largest factor by which all users’ target CTIR values can be scaled without losing
feasibility. The relation to the, within automatic controlwell known quantity, gain margin
is obvious.

The alternative load measure can now be defined in terms of thefeasibility margin.

Definition 6.9 (Feasibility Relative Load). Thefeasibility relative load, Lf , of a system
(Btgt, G,K,N) is defined as

Lf
△

=
1

Γm
= inf{µ ∈ R :

(
1

µ
Btgt, G,K,N

)

is feasible}.

System feasibility is a necessary condition for stability of distributed power con-
trol (Gunnarsson, 2000; Herdtner and Chong, 2000; Yates, 1995; Zander, 1993). Note
that system infeasibility together with unlimited uplink transmission powers imply an in-
finite received interference power in some cell. This, in turn, implies that the uplink noise
rise relative load equals one in at least one cell. Conversely, the system is feasible if the
system noise rise relative load in Definition 6.7 is less thanone.

The following theorem is used here merely to give some intuition for Definition 6.8
and Definition 6.9. The result is the same and the proof similar to those given by Zander
(1993), only this is applicable to the uplink as opposed to the original theorem which is
derived for the downlink.

Theorem 6.1
A noise-less single-service system with connectivity one,(β0E,G,K,0B), has a maxi-
mum achievable carrier-to-total-interference ratio of

β∗
0 = max{β0|Itot

j > 0∀j ∈ [1, B], βi ≥ β0∀i ∈ [1, M ]}.
Furthermore, the maximum is given by

β∗
0 =

1

λ̄(ZT K)
,

whereZ is the system’s relative power gain matrix.

Proof: According to 6.2, the system matrix in a single service scenario is

L = β0K
T EZ,

whereβ0 is the target CTIR of the only service provided andE is the identity matrix in
R

M×M . Applying (6.3) to a noise-less scenario yields

ZT KItot =
1

β∗
0

Itot = λItot.

The smallest realλ which gives a positive real solutionItot is the greatest eigenvalue of
KZT , λ̄(ZT K), according to theory for positive matrices, see Appendix A.2. Since a
largerβ∗

0 corresponds to smaller eigenvalues ofKZT , 1
β∗

0
= λ̄(ZT K).
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The same result applies also for a system with noise as Theorem 6.2 will show. Given
the above result that a maximumβ0 does exist, the intuitive choice of feasibility margin
and feasibility relative load in a single service system,

Γm =
β∗

0

β0
andLf =

β0

β∗
0

,

are true if the system has connectivity one.
The definition of feasibility relative load above is similarto Definition 4.3. They

are, however, not equal since Definition 6.9 uses target carrier-to-total-interference (βtgt)
ratios instead of target carrier-to-interference ratios (γtgt) but most of all, Definition 4.3
is concerned with the downlink. Note thatLf has the desirable properties thatLf ≥ 0
and that a system is feasible if and only ifLf < 1.

6.3 Estabilishing the Feasibility Relative Load

This section is devoted to finding an expression for the feasibility load. Connectivity one
and higher connectivity will be handled in separate subsections.

6.3.1 Connectivity One

The system propertyLf can be found in systems with connectivity one by using Theo-
rem 6.2 below. For convenience introduce

λ̄(L)
△

= max eig (L),

for the maximum eigenvalue of the matrixL.

Theorem 6.2 (Feasibility Relative Load)
In a system(Btgt, G,K,N) with connectivity one, the feasibility uplink relative load is

Lf = λ̄(L).

Proof: According to Definition 6.9, the feasibility relative load is the infimumµ such that
( 1

µB,G,K,N) is feasible. The system is feasible if there are finite positive transmission

powers such thatβtgt
i ≤ βi. Sinceβi > 0 andgi,Ki

> 0,

pi =
βi

gi,Ki

Itot
Ki

> 0 ⇒ IKi
> 0.

The feasibility relative load is thus the smallest realµ yielding a positive solutionItot ≻ 0
to

Itot � 1

µ
LT Itot + N. (6.4)

Let us first consider a noise-free scenario, i.e.,N = 0,

Itot � 1

µ
LT Itot ⇔ LT Itot � µItot,
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where the inequalities should be interpreted element wise.According to Perron-Frobenius
theory for positive matrices, the smallest realµ such that there is anItot = Itot

0 > 0
that satisfies the inequality is the maximum eigenvalue toLT , see Appendix A.2. Now,
consider a scenario with target CTIR values1µ+ǫβ

tgt
i , ǫ > 0. The inequality is then

strictly satisfied,

Itot
0 ≻ 1

µ + ǫ
LT Itot

0 ⇔ Itot
0 =

1

ǫ + µ
Itot
0 + ∆,

where∆ ≻ 0. Therefore, it is always possible to choose ak > 0 such that

k∆ � N.

To conclude, the smallestµ + ǫ such that there is a positive solutionItot to (6.4) is
λ̄(LT ).

The feasibility relative load is obviously related to the users’ target CTIR and the
intercell interference they cause, even though often not assimple as in the case with the
noise rise relative load. Example 6.1 studies a simple single service scenario with just two
cells.

Example 6.1: Feasibility Relative Load, Single Service
Consider a system consisting of two cells in which the only service provided requires a
target CTIR ofβ0. If soft handover is not utilized, the system matrix is

L =

(
M1β0 β0

∑

i∈c1
zi,2

β0

∑

i∈c2
zi,1 M2β0

)

,

whereM1 andM2 are the number of users connected to base station one and two,respec-
tively. Assume an average relative power gain per cell of0.4, i.e.,

1

M1

∑

i∈c1

zi,2 =
1

M2

∑

i∈c2

zi,1 = 0.4.

According to Theorem 6.2, the feasibility relative load is the maximum eigenvalue of the
system matrix. Given a target maximum feasibility relativeload,Lmax

f , an upper bound
onM2 is

M2 ≤
Lmax

f − M1β0

β0(Lmax
f − (1 − 0.42)M1β0)

Lmax
f .

This gives the relation between the system capacity and the capacity of cell one according
to Figure 6.1 whenβ0 equals0.1 or 0.3. Choosing a smallerβ0 yields smaller maximal
total capacity. On the other hand, a smallerβ0 enables admitting more users. This result
concurs with the statement that higher throughput comes with less fairness, i.e., by giving
more resources to a few users the throughput is increased, but more users will experience
poor or no service at least momentarily.

Another observation is that the maximum capacity is reachedwhen the resources are
shared between the base stations. This is a result of less interference when fewer users
are connected to the same base station.
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Figure 6.1: Maximum combined capacity in cell one and two, as a function of the
capacity in cell one in Example 6.1.Lmax

f = 0.8.

Example 6.2: Feasibility Relative Load, Multi Service

Consider a system with two users and two base stations in which user one is controlled
by base station one and user two by base station two. The link matrix and the power gain
matrix are

K =

(
1 0
0 1

)

andG =

(
0.8 0.32
g2,1 0.7

)

,

respectively. According to Theorem 6.2, the feasibility relative load is the maximum
eigenvalue ofBtgtZ.

The upper bound onβtgt
2 is therefore

βtgt
2 ≤ βtgt

1 − Lf

βtgt
1 (1 − z1,2z2,1) − Lf

Lf .

Figure 6.2 shows the relation betweenβtgt
1 andβtgt

2 such that the feasibility relative
load is 0.8 for two different values ofg2,1. The figure shows that we can allow a higher
values forβtgt

2 for a givenβtgt
1 wheng2,1 is smaller. Ag2,1 = 0 would give a straight

horizontal line atβtgt
2 = Lf .

Remark6.1. Since soft handover can only decrease the uplink load, aLf found using
Theorem 6.2 in a system with connectivity one will be an upperbound of the load in the
corresponding system with soft handover.

An application of Theorem 6.2 is to show thatLf equals the natural definition of
feasibility relative load in a single service scenario

Lf = λ̄(KT BtgtZ) = λ̄(βtgt
0 KT Z) = βtgt

0 λ̄(KT Z) = β0λ
∗ =

βtgt
0

β∗
0

.
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Figure 6.2: Relation betweenβtgt
1 andβtgt

2 such thatLf = 0.8 in Example 6.2.

6.3.2 Higher Connectivity

A special case of connectivity higher than one is that all users are power controlled by all
base stations. Hanly (1996) shows that, in this special case, the system is feasible if

M∑

i=1

βtgt
i ≤ B.

Using Defintion 6.9 of feasibility relative load yields

Lf =

∑M
i=1 βtgt

i

B
.

In the general case of higher connectivity, where the users are power controlled by arbi-
trarily many base stations, a matrix expression can no longer be obtained for the received
interference powers. There are also numerous combinationsof methods for combining
signals received in different base stations. If all signalsare combined using maximum
ratio combining the received interference powers are the solution to (5.6a), i.e.,

Itot
j = Nj +

M∑

i=1

βtgt
i

gi,j
∑

k∈Ki

gi,k

Itot
k

, j = 1, 2, . . . , B.

Introduce the functions

fj(B
tgt, G,K,N, I)

△

= Nj(t) +

M∑

i=1

βtgt
i (t)

gi,j(t)
∑

k∈Ki

gi,k(t)
Itot

k
(t)

, j = 1, 2, . . . , B.

The idea is to approximate these functions with linear functions about a point,Itot
0 ∈ R

B ,
and then use the theory for positive matrices that was previously used in the proof of
Theorem 6.2. Let̂L(Itot

0 ) be the jacobian matrix off . Each element̂Lℓ,j(I
tot
0 ) of L̂(Itot

0 )
is defined by

L̂ℓ,j(I
tot
0 )

△

=
∂fj(B

tgt, G,K,N, Itot)

∂Itot
ℓ

=
∑

i∈cℓ

βtgt
i

gi,j

(
∑

k∈Ki

gi,k

Itot
k

)
2

gi,ℓ

Itot
ℓ

2 , j, ℓ = 1, 2, . . . , B.
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Based on this linear approximation, the feasibility relative load with arbitrarily connec-
tivity can be approximated as

Lf ≈ λ̄
(
L̂(Itot

0 )
)
.

6.4 Relative Load Comparisons

In a single cell system the relative load according to Definition 4.2, Definition 6.7 and
Definition 6.9 are the same according to the following theorem.

6.4.1 Connectivity One

Theorem 6.3
In a single cell system with multiple services, the relativeload according to Definition 4.2,
Definition 6.7 and Definition 6.9 equals

Lf =

M∑

i=1

βtgt
i = Lnr = Ls.

Proof: It is shown in Example 4.1 that the uplink noise rise relativeload in a single cell
system is the sum of the users’ target CTIR. Since it is a single cell system, this must
trivially be the system noise rise relative load as well.

When it comes to the feasibility relative load, first note thatall relative power gains
are one in a single cell system. The system matrix is then simply the sum of users’ target
CTIR,

L =
M∑

i=1

βtgt
i .

Thus, the feasibility relative load equals the noise rise relative load in single cell system.

In a multi cell system, the feasibility relative load is smaller than the noise rise relative
load.

Theorem 6.4
In a feasible noise-flat system with connectivity one,

Lf ≤ Ls.

Proof: Let us first make the following transformation

Lf ≤ Ls ⇔ 1

1 − Lf
≤ 1

1 − Ls
= max

j
Λj .

Therefore, it is sufficient to prove that11−Lf
≤ maxj Λj . Similar to the maximum eigen-

value, introduce
λ(A)

△

= min | eig A|,
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for the eigenvalue ofA with the smallest magnitude. In a noise-flat system the maximum
noise rise is

max
j

Λj = max
j

(E − LT )−1
1 = ||(E − LT )−1||∞ ≥ λ̄((E − LT )−1),

where the second equality is true since the system is feasible, see Appendix A.2. The
above inequality is true since, according to Skogestad and Postlethwaite (1996),

λ̄(A) ≤ ||A||.

It remains to prove that̄λ((E − LT )−1) equals1/(1 − Lf ),

λ̄((E − LT )−1) =
1

λ((E − LT ))
=

1

1 − λ̄(LT )
=

1

1 − Lf
.

Other results, which are perhaps more useful in practice, are the following two theo-
rems. Introduce

Llocal
j

△

=
∑

ℓ∈cj

βtgt
ℓ ,

for the load users connected to cellj cause in the own cell.

Theorem 6.5 (Bound on Feasibility Relative Load)
Consider a noise-flat system with connectivity one. The feasibility relative load,Lf , is
bounded below and above by

max
j

Llocal
j ≤ Lf ≤ max

j
LIMRC

j .

Proof: See Appendix A.4.

Corollary 6.1 (Sufficient Condition for Stability)
A noise-flat system with connectivity one is feasible if

max
j

LIMRC
j < 1.

Proof: Follows from Theorem 6.5 and the fact that a system is feasible if Lf < 1.

Corollary 6.2 (Necessary Condition for Stability)
A necessary condition for feasibility in a noise-flat systemwith connectivity one is

Llocal
j < 1 ∀ j

Proof: Follows from the fact that a system is feasible only ifLf < 1 and Theorem 6.5.

Remark6.2. This result shows that, in case of connectivity one, aLIMRC
s < 1 is as-

sociated with a feasible uplink power control problem. Allowing soft handover (corre-
sponding to connectivity higher than one) can only yield lower uplink load and therefore
a LIMRC

s < 1 found without soft handover also proves stability of a system with soft
handover.
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Remark6.3. In the above calculations we used expressions derived underan assumption
of maximum ratio combining, any of the other two assumptions, soft handover or correct
combination, might just as well have been made since these three are exactly the same
when each user is allowed no more than one link.

6.4.2 Higher Connectivity

The maximum noise rise relative load can in fact be bounded bysimilar limits when soft
handover is utilized. The following bounds on the uplink noise rise relative load in a noise-
flat system with any connectivity should be compared to thosegiven by Theorem 6.5.

Theorem 6.6
In a noise-flat system with perfect power control, the uplinknoise rise relative load is
bounded by

max
j

Llocal
j ≤ max

j
Lnr

j ≤ max
j

LISEL
j .

Proof: The lower bound is obvious since it corresponds to neglecting the inter-cell-
interference. Regarding the upper bound assume, without loss of generality, that base
station one is the base station with highest interference power. This is also the base sta-
tion with highest noise rise relative load since the background noise power is equal in all
base stations. Consider the derivation ofLISEL

1 ,

Itot
1 ≤ N1 +

M∑

ℓ=1

βtgt
ℓ

gℓ,1

maxk
Kℓ,kgℓ,k

Itot
k

≤ N1 +

M∑

ℓ=1

βtgt
ℓ

gℓ,1

maxk
Kℓ,kgℓ,k

Itot
1

.

Using only selection combining justifies the first inequality above since this yields a pos-
sible under estimation of the system’s ability to utilize the received signals. Because
of the second inequality, solving forLISEL

1 (t) results in an over estimation of the true
Lnr

1 (t). Assuming perfect power control justifies usingβtgt
ℓ (t) instead of the actual re-

ceived CTIR,βℓ(t).

In the special case of a system with connectivity one,LISEL
j = LIMRC

j ∀j. Therefore
LIMRC can also be used to bound the true uplink noise rise relative load in a system with
connectivity one.

6.5 Convergence of Fix Point Iterations

The stationary points of the iterations in Section 5.2.3, ifthey exist, are approximations
of the uplink noise rise. This section provides sufficient conditions for convergence of
iterations applied to (5.16a) as well as a criteria for making system infeasibility probable.
The iterations may be fix point iterations or single updates using (5.16a) with the assump-
tion of constant power gain values and target carrier-to-total-interference ratios during the
time it takes the iterations to converge. Fix point iterations may be implemented as the
algorithm below.
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Algorithm 6.1
Let Λ(t, 0) = Λ(t − 1)
Forn = 1 to N iter

For j = 1 to B

Let Λj(t, n) = 1 +
∑M

i=1 βtgt
i (t)

gi,j(t)P
k∈Ki

gi,k(t)

Λk(t,n−1)

Λ(t) = Λ(t,N iter)

6.5.1 Connectivity One

Consider a system without soft handover, i.e., a system withstrict connectivity one.

Theorem 6.7 (Convergence of Fix Point Iterations)
Algorithm 6.1 will converge to the true noise rise if appliedto a feasible noise-flat system
with connectivity one.

Proof: See Appendix A.5.

Algorithm 6.1 therefore converges to true noise rise when applied in a feasible system
with connectivity one and perfect power control, regardless of the initialization point.

6.5.2 Higher Connectivity

Theorem 6.8 (Convergence of Fix Point Iterations)
When Algorithm 6.1 is initialized with aΛ(t, 0) ≤ Λ and applied to a noise-flat feasible
system, it converges to a fixed point bounded by the true noiserise.

Proof: See Appendix A.6

Remark6.4. The definitions of load given in this chapter have been concerned with the
entire system. The expressions in Chapter 5, however, provide one relative load measure
per cell. From a theoretical point of view, a measure of the load related to the entire system
is equally interesting since nowhere is the load allowed to exceed one if the system is to
be stable.

6.6 Approximating Uplink Load in Practice

The results of the theorems in the previous section are summarized in Algorithm 6.2 which
is a recipe for approximating the noise rise relative load ina noise-flat system. Note that
in the case of connectivity one,LISEL

j equalsLIMRC
j .

6.7 A Simulation Example

Figure 6.3 exemplifies the bounds provided in Theorem 6.5 andTheorem 6.6. ClearlyLf

is always within the bounds given in Theorem 6.5. Considering the upper bounds given
in Theorem 6.6, on the other hand, they are occasionally violated by the maximum noise
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Algorithm 6.2 Approximating Uplink Load

• System with connectivity one

– Check ifmaxj LIMRC
j in (5.10) is less than one.

– If so, approximate the noise rise using Algorithm 6.1 which is guaranteed to
converge to the true noise rise levels.

– Transform noise rise to noise rise relative load.

• System with connectivity greater than one

– Check ifmaxj LISEL
j in (5.11) is less than one.

– If so, approximate the noise rise using Algorithm 6.1 which is guaranteed to
converge to a fix point bounded above by the true noise rise.

– Transform noise rise to noise rise relative load.

rise relative load. This is so, even though the TX increase compensation introduced in
Section 5.5 is applied. The reason being simply that power control errors are introduced in
the simulations that the figure is based on. Note that the system simulated has connectivity
one, which implies that the upper bound in both theorems are equal.
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Figure 6.3: An example of the load expressions and bounds discussed in Theo-
rem 6.5 and Theorem 6.6.Llocal is the lower bound in Theorem 6.6. Correction for
TX increase has been used when calculatingLISEL

s .

6.8 Summary

In this chapter a number of alternative definitions of uplinkload has been given. One of
them, feasibility relative load, directly relates uplink load to existence of a solution to the
power control problem. It has been shown that, in a single cell system, this definition
coincides with the more traditional definition of load related to noise rise, uplink noise
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rise relative load. However, in a general system they are different. Despite this, it has
been shown that expressions for uplink load derived in Chapter 5 can under somewhat
idealistic circumstances be used to provide bounds on the rather theoretically oriented
feasibility relative load.

All expressions for uplink noise rise in Chapter 5 originatefrom a system of nonlinear
equations. One way of solving these equations is to use iterations. The iterations are obvi-
ously useful only if they converge to a stationary point. A number of sufficient conditions
for existence of such a point was established in this chapter, and the point has been shown
to be unique in case if the system has connectivity one. The analysis also showed that the
convergence point is the true noise rise level in case of a feasible system with connectivity
one.
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7
Controlling Uplink Load

Resource controlis about assigning resources to the users. As such, it is a part of the
system’s resource management. It is a delicate task, since not only must system feasibility
be maintained while maximizing the resource utilization, there is also a trade off between
fairness and capacity. Moreover, assigning resources to a user does not necessarily mean
that they will be used. For example, the user may not have enough transmission power to
support the service or may not have any data to send.

These considerations imply that there are advantages with both centralized and decen-
tralized resource control schemes, just as with load approximations. The reasons for this
are also pretty much the same. A central node has informationabout the situation in a
wider area and can therefore move resources from one area to another, while a local node
has more accurate, detailed and up to date information on thelocal situation.

Partially as a motivation for the work in this chapter, the load approximations derived
in Chapter 5 are used for admission control. The performanceof the admission control us-
ing the proposed load approximations is compared with usingan approximation based on
the intercell-to-intracell-interference factor. It is argued that the proposed load approxi-
mations are easier to parameterize. For example, there is noneed to adapt any parameters
to variations in the radio environment characteristics which is the case when using the
intercell-to-intracell-interference factor. On the other hand, the centralized load approx-
imations cannot adapt to fast changes in the radio environment, such as the multi path
fading. There is thus no way of mitigating any rapid load increase due to for example user
movement. A step towards solving this problem is obviously to use decentralized resource
management. Following this introductory discussion, Section 7.2 gives a brief survey over
different ideas for solving the resource control problem presented in the literature.

The bulk of this chapter is in Section 7.3 and Section 7.4, where a number of re-
source control algorithms are introduced and compared witheach other. Starting with
complete knowledge of the radio environment and user requests in the entire network, a
centralized resource control algorithm is introduced. This algorithm is not realistic since

97
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it requires far too much signaling, and is thus only meant forcomparison purposes. Re-
alistic resource control algorithms making decisions in local nodes, using less and less
information about the surrounding radio environment, are then introduced.

One of the introduced reference algorithms is referred to asnoise rise controlling
algorithm. This is an example of a type of algorithms that is commonly found in the
literature. The algorithm uses no explicit information on the radio environment, such as
users’ relative power gain, but instead simply studies the uplink noise rise. It is shown in
Section 7.5 that this type of algorithm easily suffers from unintentional shift in resources
from one base station to another, or even decreased coverage, when using inaccurate
knowledge of the background noise power. The chapter is finalized with a short summary
in Section 7.6.

The algorithms introduced in Section 7.3 were first presented and evaluated in (Gei-
jer Lundin et al., 2005a). The basic idea which the algorithms are built on is filed in
(Geijer Lundin and Gunnarsson).

7.1 Practical Centralized Resource Allocation

A number of uplink load approximations are derived and evaluated in Chapter 5. To close
the loop in Figure 1.1, these approximations will in this section be used as input to a
centralized admission control algorithm, Algorithm 7.1.

Algorithm 7.1 Admission Control

Consider the next user in line for admission
Admit the user if approximated load is still belowδAC in all base stations
after having admitted the user.

The load approximation to be used has to be able to predict theload after having
admitted a user. If the predicted load in any base station is above a parameterδAC , the
user is not admitted.

Seven different methods for approximating the uplink load will be used. The first
six of these are derived in Chapter 5, the ones referred to asLIMRC , LISEL, LIBOTH ,
LNMRC , LNSEL andLNBOTH . The seventh approximation is motivated by the discus-
sion in Section 4.2.1 and is in cellj

Lref
j =

∑

i∈cj

(1 + f)βtgt
i

|Ki|
,

where|Ki| is the number of cells that useri is connected to andf is the intercell-to-
intracell interference factor.

For increased realism, an admission control decision does not take effect until one
second after the decision is made. This is to model the latency in the connection setup
between user and the central node in which the load approximations as well as the ad-
mission decisions are made. A single service scenario with connectivity three offering a
384 kbps service with target CIR ofβ0 = 0.14 is studied. The simulation area is covered
by 21 base stations at 7 different positions. The intercell-to-intrcell-interference factor in
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the reference approximationLref is chosen tof = 0.5 and the load limit for admission
in Algorithm 7.1 is set toδAC = 0.8. Further characteristics of the simulator is discussed
in Appendix A.1.

Table 7.1 shows that using any of the load approximations proposed in Section 5.2.2
or Section 5.2.3 results in higher capacity per noise rise, compared to using the reference
approximation. Another draw back with the reference approximation, Lref , is that the
intercell-to-intracell-interference factor,f , needs to be adjusted to variations in the radio
environment. The approximations proposed in Chapter 5, however, inherently considers
the radio environment via the path gain measurements. Thereis thus no need for re-tuning
the proposed approximations for different radio environments. Table 7.1 also shows that

Table 7.1: Result of admission control simulations. Target load,δAC = 0.8. The
capacity,C, is according to Definition 3.2. Average over 20 simulations. f = 0.5.

Lref LIMRC LISEL LIBOTH LNMRC LNSEL LNBOTH

C 18.85 17.72 14.71 15.17 18.23 15.28 15.85

Ls 0.93 0.91 0.85 0.86 0.92 0.86 0.87

C/Λ̄ 1.42 1.65 2.22 2.14 1.51 2.10 2.03

using any of the proposed approximations results in a slightly lower average system noise
rise relative load,Ls, as defined in Section 6.2.1. The reason for this is simply that the
proposed approximations consider where in the cell users are, since the users’ relative
power gain values are studied. The reference approximation, on the other hand, simply
looks at to which cell the user is applying for a connection to, and thus do not take the
resulting intercell load contribution in neighboring cells into consideration when making
the admission decision. Figure 7.1 shows how the noise rise relative load progresses
when using three different load approximations. The approximations studying the users’
relative power gain values provide a relative load significantly closer to the load limit,
δAC = 0.8, compared to the reference approximation.

Figure 7.2 shows an example of how noise rise evolves over time. The noise rise
makes short deviations from a slow trend. The centralized approximations are rather
good at approximating the slow trend, as concluded in Chapter 5, but can not catch the
fast variations. Therefore, neither can a centralized resource allocation algorithm using
the centralized approximations utilize the short periods of low noise rise levels. However,
using decentralized resource control enables better resource utilization since it is then
possible to make rapid resource allocation, perhaps through channel switching. The fast
variations are primarily due to intercell interference. Gunnarsson et al. (2003); Törnqvist
et al. (2004) propose a method to decrease the intercell interference by using completely
decentralized resource allocation. In there, the users transmit only when the power gain to
the own base station is favorable compared to a time averagedpower gain. Figure 7.2 also
shows that the slow trend can in fact increase almost2 dB in a matter of a second. This
puts a hard demand on the resource control bandwidth. If these sudden noise rise raises
can be avoided, the average load can be chosen higher, i.e., using decentralized control
enables smaller margin to a maximum load level due to a smaller inter-sample time.

To conclude this section, centralized resource managementis good when resource
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Figure 7.1: Noise rise relative load as a function of time when there is a one sec-
ond delay between admission decision and transmission initialization (channel setup
delay).δAC = 0.8.

mobility between base stations is important. However, the load margins can be chosen
smaller when using decentralized resource management due to the superior control band-
width.

7.2 Resource Control Approaches

Resource control is about granting users access to resources in such a manner that both
the operator, who owns and operates the system, and the customers, who are users of
the system, are satisfied with the performance. Typically, an operator wants as high a
throughput as possible, and a user wants good coverage and high bit rates. To some
extent, high bit rates are consistent with high throughput,but usually the throughput can
be increased by assigning resources to only one or a few usersin each cell. Even worse,
increased coverage usually comes with decreased throughput. This trade off is the topic
of Chapter 8.

Different views and proposed algorithms for regularly (re-)assigning resources to the
users will be discussed in this section.

Optimization Approaches Cellular radio systems of today support several services.
This has made the resource control problem more complex. Oneway of solving this
complex problem is to mathematically express the quality ofservice (QoS) demands as a
utility function and fundamental requirements such as system feasibility as constraints in
an optimization problem. The QoS demands can benetwork-centric, for example maxi-
mizing the throughput as is done by Knopp and Humblet (1995) and Ulukus and Green-
stein (2000), oruser-centricas in summarizing the users’ satisfaction. An example of
a user-centric strategy is given by Nagi et al. (2000) where they minimize users’ outage
probability. Further examples of where optimization has been used to solve the resource
control problem are Rodriguez et al. (2004) and Sampath et al. (1995), who study a single
cell system.
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Figure 7.2: Example of noise rise. The grey plot is a time average of the the mo-
mentarily noise rise (black). The momentarily noise rise has fast variations that can
both be avoided and taken advantage of by using decentralized resource control. The
sudden raises in average noise rise puts hard demands on the control bandwidth of
the resource control.

Power and Rate Control Power control has been recognized as a powerful tool for
increasing system capacity. In fact, in CDMA cellular systems power control is crucial
in order to overcome the near-far problem. However, while power control can compen-
sate for deep fades in the channel between a user and the base station it is connected to,
power control can also cause considerable intercell interference power peaks in neighbor-
ing cells. One way of getting around this problem is to consider power and rate control
jointly. Instead of increasing the transmission power, thetransmission rate can be de-
creased. Duan et al. (2002); Hashem and Sousa (1998); Kim andLee (2000); Oh and
Wasserman (2003) and Kim and Honig (2000) use this idea.

Load Control Approaches In the border line between optimization and control, Jäntti
and Kim (2001) use optimal control to solve a minimum time problem. The control
signals are transmission powers that each user should send within each frame. The re-
sults are derived under the assumption that the data rate is proportional to the carrier-to-
interference ratio. The solution maximizes the throughputat each time instant.

Javidi (2003) solves an optimization problem using Lagrange multipliers. This leads
to a control problem aiming at a certain noise rise relative load. This is a truly decentral-
ized solution in which each base station controls a cost for the users to connect to the base
station, higher cost means a smaller cell and less users.

Despite the absence of a central node, feasibility is guaranteed by Javidi (2003) through
the use of a mutual agreement between the base stations. Thisidea is also used by Rezai-
ifar and Holtzman (1999) and Feng et al. (2004). A drawback with the methods given
in the above references is that the local nodes require knowledge of the current received
interference power, which is generally considered hard to measure accurately.
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Opportunistic scheduling The idea here is to assign resources to the user with mo-
mentarily best channel (Liu et al., 2001). This gives an unfair assignment on a short time
scale. However, Berggren and Jäntti (2002) apply opportunistic scheduling in the down-
link and show that it asymptotically provides the same fairness as a round robin scheduler,
but with better utilization.

7.3 Resource Control Algorithms

As discussed in the introduction to this chapter, both centralized and decentralized re-
source control schemes have its advantages. For example, using local resource control
algorithms enables rapid assignment of resources based on local detailed knowledge con-
cerning for example the radio channel or users’ momentarilytransmission requests. When
using a centralized resource control algorithm, on the other hand, it is much easier to
achieve the soft capacity of the system since resources can easily be moved from one base
station to another. Obviously, knowledge of the situation in several base stations can be
explored in many other ways as well.

A number of resource control schemes that guarantee system feasibility are presented
in this section. When studying decentralized algorithms notusing a central node but yet
guaranteeing system feasibility, it will be shown that system capacity can be increased
by studying information about the users’ relative power gain, compared to studying the
corresponding power gain values. Furthermore, a resource control algorithm using both
a central node and local nodes will be introduced. The idea isto take advantage of both
centralized and decentralized schemes. The algorithms arepresented in such an order
that they have less and less information on the surrounding radio environment. Starting
with a centralized algorithm and ending with the noise rise controlling algorithms using
as coarse information as which base station users are connected to.

Algorithms not studying relative power gain values but instead maintain feasibility
by looking at measurements of uplink noise rise will also be studied. Characteristics of
this kind of algorithms is studied in Section 7.5 through a theoretical study in a simpli-
fied scenario as well as a more practical approach using simulations. As relatively high
target CTIR values will be studied here, the degradation in performance due to self inter-
ference can no longer be neglected. Recalling the relation between CTIR, CIR and self
interference in (3.7),

γ =
C

Itot − (1 − α)C
=

β

1 − (1 − α)β
.

Furthermore, the resource control algorithms will be posedas optimization problems. The
utility function in these optimization problems will oftenbe the system capacity according
to Definition 3.2. For notational ease, introduce

κ(βtgt, α) =

M∑

i=1

log2

1 + αβtgt
i

1 − (1 − α)βtgt
i

for the system capacity when users have target CTIR values according to the vectorβ ∈
R

M and the self interference factor isα.
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A final remark before introducing the resource control algorithms is that the eigen-
value corresponding to the spectral radius of a positive matrix, i.e., a matrix with only
positive elements in it, is positive and real. See Appendix A.2.

7.3.1 Centralized Robust Algorithm

In this section a completely centralized algorithm will be introduced. The algorithm will
be used as an upper bound on the capacity. As such it is provided with power gain infor-
mation from the entire system.

Ideally, the users would be given target CTIR values according to the solution to

maximize
βtgt

i

κ(βtgt, α)

s.t.L 4 LtgtE,
(7.1)

where the utility function is the system capacity and the constraint simply states that
the maximum eigenvalue ofL must be less than the scalar parameterLtgt, i.e., λ̄(L) ≤
Ltgt < 1. This corresponds to the feasibility relative load also being less thanLtgt.

The tools used for solving the optimization problems (Löfberg, 2004; Toh et al., 2001)
can only solvelinear matrix inequalities(LMI) involving symmetric matrices. Therefore,
the constraint in (7.1) can not be considered explicitly. However, using the Schur com-
plement, see Appendix A.3, the LMI in (7.1) can be substituted by

(
E L

LT Ltgt2E

)

� 0.

This constraint corresponds to requiring the maximum singular value ofL to be less than
or equal toLtgt squared. As the spectral radius of a matrix is always less than the square
root of the maximum singular value, the constraint is harderthan that in (7.1).

Substituting the constraint in (7.1) with the above LMI yields Algorithm 7.2.

Algorithm 7.2 Centralized RRA Algorithm

Assign target CTIR values according to the solution to

maximize
βtgt

i

κ(βtgt, α)

s.t.

(
E L

LT Ltgt2E

)

� 0.
(7.2)

7.3.2 Semi-Centralized Robust Algorithm

Ways of providing more resources to some base stations and less to others include using
a central node or communication between the base stations. Aresource controlling algo-
rithm using a central node as well as local nodes is proposed in this section. The central
node will hand out resource pools to the local nodes hosted inthe base stations. The
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algorithms in the base stations can then use these pools while respecting a mutual agree-
ment between the base stations and the central node. The mutual agreement is crucial to
guarantee system feasibility.

Resources are distributed among the base stations through the use of information feed
back from the base stations to the central node. The information fed back will be about
how many and where the users are located. However, due to limited bandwidth between
base stations and the central node, it is not tractable to send too much information.

Figure 7.3 shows a schematic view of the information flow in the algorithm proposed
here. The main idea is to limit the intercell interference byconsidering the relative power

Central node

Local nodes

s1

s2

sB

γtgt
i , i ∈ c1

γtgt
i , i ∈ c2

γtgt
i , i ∈ cB

Y (limited information)

Figure 7.3: Information flow in a decentralized RRM algorithm. The central node
hands out resource pools,sk, to the local nodes. The local nodes distribute resources
to the users in form of target CIR values and also provide feedback to the central
node.

gains,zi,j . The element on rowk and columnj in the system matrixL is at timet

Lk,j(t) =
∑

i∈ck

βtgt
i (t)zi,j(t).

This number can be interpreted as the noise rise relative load caused by cellk in cell j
or, more accurately put,Lk,jI

tot
k is the intercell interference power users in base station

k introduce in base stationj. Thus, limiting the off diagonal elements of the system
matrix corresponds to limiting the intercell interference. By assigning users with higher
relative power gain to neighboring base stations smaller target CTIR values, each term in
the elements of the system matrix can be made small without decreasing system capacity.

The resource controlling algorithm is an implementation ofthe lemmas that follow
next. System feasibility is guaranteed by meeting the requirements in these lemmas. The
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information fed back to the central node by base stationk is at timet

Yk,j(t)
△

=
1

∑

i∈ck
βtgt

i (t − 1)

∑

i∈ck

βtgt
i (t−1)zi,j(t−1) =

1
∑

i∈ck
βtgt

i (t − 1)
Lk,j(t−1).

(7.3)
The normalizing gives a nice interpretation of the variables sent from the central node to
the local nodes as resource pools.

Introduce the matrix̄L = [L̄k,j ] as

L̄k,j
△

= sk(t)Yk,j(t),

wheresk is a scalar. Eachsk will later be interpreted as a resource pool given by the
central node to base stationk, see Figure 7.3.

Lemma 7.1
If

Lk,j(t) ≤ L̄k,j ∀k, j ∈ {1, B}, (7.4)

andλ̄(L̄) ≤ Ltgt
f thenλ̄(L) ≤ Ltgt

f .

Proof: Follows from the fact that increasing an element of a positive matrix can not
decrease its maximum eigenvalue.

The inequality in Lemma 7.1 will be used as a mutual agreementbetween the central
node and local nodes.

Lemma 7.2
If

(

E L̄

L̄T Ltgt
f

2
E

)

� 0, (7.5)

whereE is the identity matrix of appropriate dimension, thenλ̄(L̄) ≤ Ltgt
f .

Proof: See Appendix A.7.

Combining Lemma 7.1 and Lemma 7.2 yields the following theorem.

Theorem 7.1
A system using a resource control algorithm that meets the inequalities in(7.4)and (7.5)
is feasible ifLtgt

f is less than one.

Proof: As the requirement in (7.5) is met,̄λ(L̄) ≤ Ltgt. According to Lemma 7.1,
λ̄(L) is then also less thanLtgt if the inequality in (7.4) is met. Finally, according to
Theorem 6.2, this yields feasibility ifLtgt is chosen less than one.

With the assumption that eachLk,j(t) is smaller than or equal toLk,j , the central node
assigns resource poolssk(t) according to the solution to optimization problem (7.6).
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maximize
s(t)

U(s(t))

s.t.







(

E L̄

L̄T Ltgt
f

2
E

)

� 0,

L̄k,j = skYk,j , k, j = 1, 2, . . . , B.

sk(t) =
∑

i∈ck
βtgt

i (t)

βmin ≤ βtgt
i (t) ≤ βmax, i = 1, 2, . . . ,M.

(7.6)

As utility function, U(s), one should choose a concave function as this makes (7.6) a
convex problem according to Boyd and Vandenberghe (2004). Apossible choice is a
greedy version

Ug(s(t))
△

=

B∑

k=1

sk(t), (7.7)

which simply maximizes the combined resource pool or, in order to promote fairness for
users in crowded cells, one can choose

Uf (s(t))
△

=

B∑

k=1

Mksk(t), (7.8)

whereMk is the number of users connected to base stationk. Obviously other choices of
utility function can be made. The simulations reported on inSection 7.4 useUf .

Now, consider the local nodes. Their task is to assign targetCTIR values such that
the constraint in (7.4) is indeed met. By combining the resource poolsk(t) and the value
they fed back to the central node,Yk,j(t), they can calculate the upper bound in (7.4) on
their own. Local nodek will choose the target CTIR values at timet according to the
optimization problem in (7.9).

maximize
βtgt

i
(t)

κ(βtgt(t), α)

s.t.

{∑

i∈ck
βtgt

i (t)zi,j(t) ≤ Yk,j(t)sk(t)∀j

βmin ≤ βtgt
i (t) ≤ βmax,∀i ∈ ck.

(7.9)

Note that the requirement that the combined target CTIR values must be less than or
equal tosk in base stationk, is handled by the first constraint whenj = k. If the first
constraint is respected in all base stations, each element of L is indeed upper bounded by
the corresponding element in̄L, i.e., the inequality in (7.4) is met. The utility function
is in this case the base station capacity. Again, of course one can think of other utility
functions, for example promoting fairness over capacity.

The resource control scheme introduced in this section is summarized in Algorithm 7.3.
Using the iterative procedure yields that users who are not assigned any resources will not
affect the values send back to the central node. Furthermore, the iterations improve the
algorithm’s ability to adapt to resource demands moving from one base station to another.
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Algorithm 7.3 Semi-Centralized RRA Algorithm

1. Given an initial matrixY (t)

2. The central node assigns each base station a resource pool, sk(t), k = 1, 2, . . . , B,
according to the solution to problem (7.6).

3. Each base stationk chooses target CTIR values,βtgt
i (t) ∈ ck, according to the

solution to problem (7.9).

4. Each base stationk calculates new valuesYk,j(t + 1), j = 1, 2, . . . , B to be send
to the central node.

5. Increase the time indext, t = t + 1.

6. Continue from point 2 above.

Remark7.1. An interpretation ofsk(t) as a resource pool is given by studying (7.4) when
Algorithm 7.3 has reached a steady state. For the special case whenk = j, i.e., on the
diagonal ofL (note thatzi,Ki

= 1∀i),

Lk,k =
∑

i∈ck

βtgt
i zi,k =

∑

i∈ck

βtgt
i ≤ L̄k,k = sk.

The scalarssk(t) is thus an upper bound on the sum of the target CTIR values of users
connected to base stationk.

7.3.3 Decentralized Robust Algorithms

A result applicable to all matricesL is

λ̄(L) ≤ ||L||∞,

whereλ̄(L) is the maximum eigenvalue ofL (Skogestad and Postlethwaite, 1996, page
520). In the special case of positive matrices, the right hand side of the above inequality
is simply the maximum row sum. Using this fact, we can prove the following theorem.

Theorem 7.2 (Local Robustness)
If users in a system with connectivity one are assigned resources in such a manner that

B∑

j=1

Lk,j ≤ Ltgt
f , ∀ k

then the feasibility relative load is less than or equal toLtgt
f .

Proof: For positive matricesL ∈ R
B×B ,

λ̄(L) ≤ ||L||∞ = max
k

B∑

j=1

Lk,j .
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Furthermore, according to Theorem 6.2, the feasibility relative load in a system with
connectivity one is̄λ(L). Hence, if all row sums ofL are less than or equal toLf , so
must the feasibility relative load be.

A result given by (Gantmacher, 1974, page 63) is applicable to positive matrices and
states that the maximum eigenvalue is bounded from below by the minimum row sum.
Hence, the upper bound in Theorem 7.2 may not be very conservative. It is even equality
if all row sums equalLtgt

f .

Remark7.2. Theorem 7.2 is similar to Corollary 6.1. The only differenceis that The-
orem 7.2 uses row sums of the system matrixL and Corollary 6.1 uses column sums.
This corresponds to taking sums over the load a base stationscauses and the load a base
stations experiences, respectively. A result is thus that the system is feasible if either sum
is less than or equal to unity.

Theorem 7.2 can be used to design a local resource control algorithm in which each
base station assigns resources to the users connected to it.Since one base station controls
a whole row in the system matrix, it can assign resources suchthat the corresponding row
sum is always less thanLtgt

f .
The sum over elements on rowk in the system matrix is

B∑

j=1

Lk,j =

B∑

j=1

∑

i∈ck

βtgt
i zi,j =

∑

i∈ck

βtgt
i

B∑

j=1

zi,j . (7.10)

An interesting observation from a practical point of view, is that if the relative power gains,
zi,j , are not already available in the local nodes all that the central node needs to provide
is the relative power gain sum over base stations in (7.10). This means a considerable
reduction in signaling between central and local nodes, compared to sending each users’
relative power gain to the base stations.

Two different scenarios are considered in different paragraphs below. In them, bounds
on the sum of users’ target CTIR values are derived with and without information about
the users’ relative power gain values.

Not Using Relative Power Gain Information If information on the users’ relative
power gain to other base stations is not used, robustness canstill be achieved by assuming
that these relative power gains are less than somezmax

1,i.e.,

zi,j < zmax, j 6= Ki.

Now, the constraint in Theorem 7.2 yields an upper bound on the sum of the users’ target
CTIR in each cell,

B∑

j=1

Lk,j =
∑

i∈ck

βtgt
i

B∑

j=1

zi,j ≤
∑

i∈ck

βtgt
i (1 +

∑

j 6=k

zmax) ≤ Ltgt
f ⇒

sk =
∑

i∈ck

βtgt
i ≤

Ltgt
f

1 + (B − 1)zmax
,

1That the relative power gains to other base stations are in fact less thenzmax has to be guaranteed by some
other means in this case.
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wheresk can be thought as aresource poolthat base stationk may split arbitrarily among
the users connected to it. Algorithm 7.4 explains a resourcecontrol algorithm using this
idea.

Algorithm 7.4 Power Gain Based Local RRA Algorithm

Each base stationk assigns target CTIR values to the users inck according to the solution
to the following optimization problem.

maximize
βtgt

i

κ(βtgt, α)

s.t.

{
∑

i∈ck
βtgt

i ≤ Ltgt

f

1+(B−1)zmax

βmin ≤ βtgt
i ≤ βmax,∀i ∈ ck.

(7.11)

Note that the sum of users’ target CTIR in the whole system is upper bounded by

B∑

j=1

sj ≤ B
Ltgt

f

1 + (B − 1)zmax
.

As the number of base stations,B, tends to infinity this upper bound tends toLtgt
f /zmax.

Using Relative Power Gain Information By looking at the expression in (7.10), we
can conclude that users with high relative power gain to other base stations should be
given smaller target CTIR values. Algorithm 7.5 uses this idea. The only difference be-

Algorithm 7.5 Relative Power Gain Based Local RRA Algorithm

Each base stationk assigns target CTIR values to the users inck according to the solution
to the following optimization problem.

maximize
βtgt

i

κ(βtgt, α)

s.t.

{∑

i∈ck
βtgt

i

∑B
j=1 zi,j ≤ Ltgt

f

βmin ≤ βtgt
i ≤ βmax,∀i ∈ ck.

(7.12)

tween Algorithm 7.4 and Algorithm 7.5 is in the constraints.The feasible region of the
optimization problem considered in Algorithm 7.5 is largerthan that in Algorithm 7.4
sincezi,j ≤ zmax. The former will therefore provide a capacity at least as high as Al-
gorithm 7.4 will. Another way of looking at it is that Algorithm 7.4 assumes that all
users stand in the worst position possible, and must therefore be more conservative than
Algorithm 7.5.

By looking at the constraints in (7.12), the cost for assigning resources to a user is
proportional to the user’s sum over relative power gain values. Therefore, as a user’s con-
tribution to the total capacity only depends on its target CTIR, the user with lowest relative
power gain sum will be assigned the highest target CTIR when using Algorithm 7.5.
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7.3.4 Blind Algorithms

For comparison reasons, two more algorithms will be introduced. These algorithms are
blind in the sense that they will not consider the users’ power gain values, but merely to
what base station the users are connected to.

Noise Rise Controlling Algorithm A straightforward way of implementing decen-
tralized resource management by controlling the uplink noise rise. To exemplify, Algo-
rithm 7.6 is an implementation of this idea. It is common to use a noise rise controlling

Algorithm 7.6 Noise Rise Controlling Algorithm

For each base stationk and each time step

1. Establish the uplink noise rise.

2. Assign target CTIR values,βtgt
i ∈ [βmin, βmax]∀i ∈ ck while aiming at a noise

rise ofΛtgt.

algorithm for local resource management, see for example the work done by Damnjanovic
et al. (2002); Neubauer and Bonek (2001) or Javidi (2003). A basic requirement for using
such an algorithm is obviously that the uplink noise rise canbe made available through
measurements of the uplink interference power or in some other way, e.g., using the ap-
proximations in Chapter 5.

While this simple idea guarantees system feasibility, it suffers from other weaknesses.
One of these is that resources can be unintentionally shifted between base stations. This
problem is studied in Section 7.5.

Cell Based Algorithm Algorithm 7.7 is inspired by with what is done in an addition
to the uplink in WCDMA called Enhanced UplinkParkvall et al. (2005). The algorithm
uses fixed resource pools,sk = s0. The constants0 is a design parameter which should
be chosen with consideration taken to the amount of intercell interference and the trade
off between system capacity and probability of assign resources corresponding to an in
feasible system. Since the algorithm does not consider the radio environment more than
to which base station users are connected to, it can not guarantee system feasibility. When
setting the resource pool, the intercell-to-intracell-interference factor can be considered.
A higher expected intercell-to-intracell-interference factor can be handled with choos-
ing a smaller resource pool,s0. In a sense, this algorithm is the opposite of the com-
pletely centralized algorithm, Algorithm 7.2. The algorithm is user-centric as opposed
to network-centric since it assign equal resources to all users connected to the same base
station. Most important, though, is that Algorithm 7.7 doesin no way guarantee system
feasibility.
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Algorithm 7.7
Assume a target intra-cell load ofs0 in each cell.

1. Abort without solution if any

s0

|ck|
< βmin, k = 1, 2, . . . , B.

Here,|ck| is the number of users connected to base stationk.

2. Assign each useri connected to base stationk a target CTIR of

βtgt
i = min

(
s0

|ck|
, βmax

)

.

7.4 Resource Control Evaluations

Three of the algorithms introduced in Section 7.3 will here be evaluated and compared
with a rather simple resource controlling algorithm. The algorithms from the previous
sections that will be evaluated are

• Algorithm 7.2, which is a completely centralized algorithm

• Algorithm 7.3, which uses both a central node and local nodes

• Algorithm 7.5, which is a decentralized algorithm using independent local nodes

• Algorithm 7.6, which uses knowledge of the uplink noise rise

• Algorithm 7.7, which is a decentralized algorithm

The first three algorithms have in common that they all guarantee a feasible resource con-
trol if they are provided with accurate power gain measurements. Algorithm 7.6 studies
the noise rise and thereby guarantee system feasibility, but all users in a cell will be as-
signed equal target CTIR. No attempts to minimize the intercell interference will thus be
made by the algorithm. Algorithm 7.7 does not take any consideration to the intercell
interference nor the noise rise level, so system feasibility is therefore not guaranteed.

Two different scenarios will be simulated. The users are spread over the simulation
area using a uniform distribution in the first scenario. In the second scenario, a big part
of users are concentrated to small area. This will produce high load in some base stations
and less load in the surrounding ones.

The simulation area consists of 9 base stations grouped intothree different positions.
The cell diameter is 750 meters and the attenuation exponentis α = −3.52. After one of
the resource control algorithms has assigned target CTIR values to the users, the values
are adjusted to compensate for limited transmission power.The users’ maximum trans-
mission power ispmax = 21 dBm. In this simple study, only static simulations have been
used, i.e., no user movement or power control has been simulated. This corresponds to
assuming perfect power control and as fast a resource control that the changes in radio
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environment due to user movement can be neglected. The users’ power gain values are
taken from the simulator explained in Appendix A.1. Furthermore, Löfberg (2004) and
Toh et al. (2001) were used to solve the optimization problems in the algorithms.

The impact of self interference can be neglected if the target CTIR can be assumed
small, as Figure 3.4 suggests. As opposed to earlier work in for example Chapter 5, large
target CTIR will be studied here, which is why self interference will be considered in the
simulations. The self interference factor is chosen toα = 0.1.

For increased statistic accuracy, 50 Monte Carlo simulations are used for each load
level. The minimum and maximum target CTIR values are chosento βmin = −15 dB
andβmax = 0.5, respectively.

The result of the semi-centralized algorithm, Algorithm 7.3, depends on the initial
matrixY . For the purpose of calculating the initial information to feed back to the central
node, introduce

ij
△

= arg min
i∈cj

∑

k

zi,k.

The initial Y is calculated using (7.3) with all users target CTIR equal toβmin except
userij in each cellj who is instead given a target CTIR ofβmax. This choice of initial
target CTIR values is influenced by the way resources are chosen by Algorithm 7.5.

Uniformly distributed users Figure 7.4a and Figure 7.4b show the system capacity
and the variance of the users’ target CTIR values as a function of the maximum noise rise,
where

maximum noise rise= max
j

Λj .

It is clear from the plots that the algorithms studying the users’ relative power gain per-
form better from a network centric perspective. However, the usual trade off between
capacity and fairness, or between network and user centric objectives, is apparent when
looking at the middle plot. The users’ target CTIR variance is considerably smaller when
using either of the reference algorithms, Algorithm 7.6 or Algorithm 7.7, indicating that
these algorithms promote fairness more than the algorithmsoptimizing the system capac-
ity.

All three algorithms studying the users’ relative power gain provide approximately
equal performance in terms of capacity and fairness. This means that Algorithm 7.5,
which does not use a central node at all, provides the same capacity as the completely
centralized algorithm. However, as Figure 7.4c shows, Algorithm 7.5, is not as good
as the other two robust algorithms to find a feasible solution. The plot indicates that
Algorithm 7.3 in fact manages to move resources around to finda feasible solution even
for small values of the maximum allowed feasibility relative load. It is therefore likely
that Algorithm 7.3 is better at finding a feasible solution for a fixed maximum allowed
feasibility relative load as the offered load grows, compared to Algorithm 7.5.

Non-Uniformly distributed users In this scenario, the users are located at positions
{x, y} which are both distributed according to a bimodal distribution consisting of a Gaus-
sian and a uniform distribution. In meters, the distribution is

0.3N (0, 300) + 0.7U [−2000, 2000].
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Figure 7.4: Simulation results when users are uniformly distributed.βmin =
−15 dB, βmax = 0.5, α = 0.1

This gives an area with considerably higher user density. This scenario is one where
there is performance to gain from moving resources from the low user density area to
the high density area. This can be done by i.e., Algorithm 7.2and Algorithm 7.3 but
by the decentralized robust algorithm, Algorithm 7.5. The former two have a central
node that can distribute resources between different base stations. Figure 7.5 indicates
that these algorithms are indeed capable of moving resources to the highly loaded cell
since, compared to the local robust algorithm, they more often find a feasible solution as
shown in Figure 7.5c. Note that the Algorithms proposed in Section 7.3 and studied here,
will either produce a feasible resource assignment or no result at all. This means that it
is possible to in advance detect an overload situation and take necessary actions before
trying to make an infeasible resource assignment leading toperformance losses.

7.5 Inaccurate Background Noise Power Knowledge

The current section is devoted to evaluating how inaccurateinformation on the uplink
noise rise affects the system capacity when Algorithm 7.6 isused in the base stations. In
the specific scenario studied, the uplink noise rise is established by measuring the uplink
interference power and dividing by the background noise power. A problem with this
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Figure 7.5: Simulation results when 30 % of the users are concentrated toa small
area.βmin = −15 dB, βmax = 0.5, α = 0.1

technique is that it is hard to measure the background noise power. Inaccurate knowledge
of the background noise power leads to inaccurate information about the noise rise.

Let thebackground noise power ratio, θj , be the ratio between true and a nominal
background noise power in cellj, i.e.,

θj
△

=
Nj

N0
⇒ Nj = θjN0, (7.13)

whereN0 is a nominal background noise power common to all cells. Using an estimate
of the background noise power ratio,θ̂j , and accurate measurements of the uplink inter-
ference power, the uplink noise rise in cellj can be estimated as

Λ̂j =
Itot
j

θ̂jN0

=
θj

θ̂j

Λj .

The ratio between true and estimated noise rise is thus

ρj
△

=
Λj

Λ̂j

=
θ̂j

θj
.
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The aim of this section is to study how the base station capacities change as theρ values
in the different base stations deviate from one.

A ρj < 1 corresponds toΛj < Λ̂j , i.e., the true noise rise is lower than what the
resource assigning algorithm thinks. This causes a decrease in resource utilization in cell
j. Exactly how much the capacity is decreased will be studied in two examples below.

Example 7.1
Consider a system consisting of just two base stations, or likewise, assume that two base
stations can be isolated from the remaining system. For presentational ease, it is assumed
that only one user at a time in each cell is transmitting, userone in cell one and user two
in cell two. Consider a noise flat system with connectivity one. Solving for the uplink
interference power in (6.1) and dividing by the common background noise power result
in a matrix expression according to

(
Λ1

Λ2

)

=

(
1
1

)

+

(
Λ1 Λ2z2,1

Λ1z1,2 Λ2

)(
β1

β2

)

.

Now, if the local noise rise controlling algorithm in base station j aims at an estimated
noise rise ofΛmax, the true noise rise will beΛj = Λmaxθ̂j/θj = ρjΛ

max. The above
matrix expression can under these assumptions be written as

Λmax

(
ρ1

ρ2

)

=

(
1
1

)

+ Λmax

(
ρ1 ρ2z2,1

ρ1z1,2 ρ2

)(
β1

β2

)

. (7.14)

Figure 7.6 shows the capacity of the two base stations as wellas the sum of the capacities
as function ofρ1 whenρ2 = 1. When solving (7.14) above, the natural constraints that
0 ≤ βi ≤ 1 has been taken into account. If the solution to (7.14) implies aβi < 0, a
single cell scenario is studied instead, i.e., the cell withβi < 0 will be omitted.

Naturally, the capacity in cell one increases withρ1, which is also apparent in Fig-
ure 7.6. This gain in capacity in cell one comes with decreased capacity in the neighboring
cell. A too lowθ1 will lead to loss in coverage since cell one is effectively not providing
any service at all. For example whenρ1 < 0.55, γ1 = 0 because the base station thinks
that the intercell interference causes aΛ1 > Λmax. Conversely, a too highρ1 leads to
absence of service in cell two.
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Behavior of the base station capacities in Example 7.1 with specific choices of relative
power gain values and only one user in each cell can be generalized. Clearly, underes-
timating the background noise power, i.e.,ρ < 1, corresponds to a capacity loss in the
own cell, but other cells experience lower intercell interference. The total system capacity
may thus not decrease in the general case, but resources willdefinitely be transferred be-
tween cells. Conversely, overestimating the background noise power, i.e.,ρ > 1, leads to
increased capacity in the own cell also since it correspondsto underestimating the noise
rise yielding a true noise higher thanΛmax. A significant error, such asρ < 0.5 corre-
sponding to under estimating the background noise power with 3 dB, will certainly cause
an unintentional shift of resources between the base stations. Example 7.2 shows an ex-
ample of how the resources are shifted when considering several users in each cell.

Example 7.2

Consider a noise flat system with two base stations. The same calculations as were done
in Example 7.1 can be used to consider several users in each base station. As opposed to
Example 7.1, simulations are this time used. In each of the 50performed Monte Carlo
simulations, 40 users are spread over an area between the twobase stations. The path gain
model in the simulator described in Appendix A.1 is used. To simplify the calculations,
all users in the same base station will be assigned the same target CTIR,sj , j = 1, 2.

Figure 7.7 shows how resources are transferred from base station two to base station
one asρ1 increases. As long asρ1 is small, increasedρ1 also yields higher total capacity.
However, too high values ofρ1 implies that the capacity loss in base station two is bigger
than the capacity increase in base station one yielding a loss in total capacity.

The example indicates that it is important to have accurate knowledge of the back-
ground noise power, otherwise capacity is unintentionallytransferred between base sta-
tions and the total capacity is decreased in general.
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7.6 Summary

Simulations indicate that using knowledge about the users’relative power gain values en-
ables better resource control. Both when using centralizedand decentralized algorithms.
In the case of centralized control, the load approximationsstudied in Chapter 5 were
used for admission control. By choosing users with a more favorable radio environment,
higher capacity can achieved with the same noise rise compared to when using a load
approximation not considering the users’ radio environment.

However, due to the slow update rate and the latency in performing the resource man-
agement decisions, a completely centralized solution is not appealing in practice. Instead,
a degree of decentralization should be introduced in order to better adapt and take advan-
tage of a changing radio environment. Two algorithms that make local resource manage-
ment decisions were proposed, one that uses a central node todistribute resources over
different base stations and one algorithm that does not havea central node at all. A sim-
ulation study of the performance of the algorithms implied that considering the relative
power gain in the resource allocation gives better performance compared to only studying
which base station the users are connected to. More importantly, the algorithms using
relative power gain either produce a feasible resource assignment or no assignment at all.
This means that it is possible to, in advance, decide if the resource demands are too high.

A conceptual study of a group of decentralized resource control algorithms, here re-
ferred to as noise rise controlling algorithms, was introduced. These algorithm can, in a
way, be seen as the opposite to the practical centralized algorithms since they only study
the uplink noise rise in the own cell. The evaluation showed that neither these algorithms
are well suited for practical usage due to a possible unintentional shift of resources. This
shift may lead to increased capacity in a few base stations but will definitely imply de-
creased coverage or even lack of service in other.



118 7 Controlling Uplink Load



8
Feasibility versus Coverage

Load has always been related to system feasibility in the previous chapters. It has always
been a question on whether or not the system is feasible. Thischapter focuses on the load
level’s impact on the relation between performance measures such as coverage, capacity
and users’ individual service quality. This trade off is touched upon in Section 4.1, when
motivating the definition of noise rise relative load. The analysis in this chapter leads to
a discussion on how to set the target values of the resource control algorithm in different
system deployments.

Section 8.1 studies a scenario where the users have unlimited transmission power.
It is concluded that there is a trade off between signal quality and cell size in a multi
cell system where the users interfere with each other, even with unlimited transmission
powers. The type of limitations is also put in a system deployment perspective.

A user transmission power limitation has been applied in Section 8.2. This implies a
different dependence on the users power gain distribution.A stochastic approach to link
budgets is adopted. This leads to guide lines for choosing the maximum uplink noise
rise relative load as a function of the background noise power in systems with large cells.
Results of the link budgets are also used as input to a discussion about what quantities
are important in different system deployments, when the users’ transmission powers are
limited.

The two different scenarios, with and without transmissionpower limitations, are
combined in a discussion on how to choose the target load level for resource management
algorithms in Section 8.3.

Results presented in this chapter are partially given in (Geijer Lundin et al., 2005b).

119
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8.1 Unlimited Transmission Powers

8.1.1 Two Users

Consider a single service system with two users, which are solely power controlled by
base station one and two, respectively. The system matrix, as defined in Definition 6.6, is
in this case simply

L = β0

(
1 z1,2

z2,1 1

)

,

whereβ0 is the target CTIR of the only service provided. According toTheorem 6.2 the
feasibility relative load of this system is

Lf = β0(1 +
√

z1,2z2,1).

We can thus conclude that a requirement for maintaining the feasibility relative load below
Lf is

√
z1,2z2,1 + 1 <

Lf

β0
. (8.1)

A higherβ0 puts higher demands on the productz1,2z2,1. As user one moves closer to
base station one,z1,2 increases. This results in tighter demands onz2,1, i.e., user two
eventually also has to move closer to base station two. Conversely, a lowerz1,2 admits a
higher relative power gain between user two and base stationone.

Equation (8.1) thus shows that in order to allow for a higher target CTIR, the coverage
may have to be decreased since the upper bound on the users’ relative power gain is then
decreased.

Remark8.1. The relation between maximum target CTIR and the users’ relative power
gains is explicitly studied in the resource allocation schemes proposed in Chapter 7.
Studying the relation gives two main advantages. One being that the capacity can be
increased by assigning higher target CTIR values,βtgt

i , to users who experiences favor-
able radio condition in terms of relative power gain. The second advantage is that system
feasibility can guaranteed by the algorithms, provided that the information on the users’
relative power gain values is accurate.

8.1.2 Several Users

In a system with several users in each cell, the system matrixis

L = β0

(
M
2

∑

i∈c1
zi,2

∑

i∈c2
zi,1

M
2

)

,

whereM is the total number of users in the system. The assumption of equally many
users in both cells is made for presentational ease. The inequality corresponding to Equa-
tion (8.1) is

√
∑

i∈c1

zi,1

∑

i∈c2

zi,2 +
M

2
<

Lf

β0
.
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The above inequality must be respected if the feasibility relative load is to be maintained
below Lf . However, the constraint can be met in many different ways. For example,
providing service to more users can be compensated for by decreasing the target CTIR,
increasing the possible feasibility relative load or assigning service only to users with
small relative power gain.

In for example systems with small cells, where the users’ power gain values are rel-
atively large, it is likely that the above inequality is in fact what limits the performance
also with limited user transmission powers. The above expression not only confirms the
well known fact that a dense deployment yields a capacity limited system, as opposed to
coverage limited, but the expression also provides a requirement on properties directly
related to coverage, capacity and quality of users’ service.

8.2 Limited Transmission Powers

In the presence of limited user transmission power, coverage depends on the amount of
received interference power at the base station antenna. This section is devoted to finding
an approximative relation between the maximum received interference power and the
system’s grade of service when the users’ transmission powers are limited.

8.2.1 Link Budget

Traditionally, link budgets is used to e.g., calculate a minimum power gain given con-
straints on received signal quality and maximum transmission power. The uplink noise
rise is then represented by a constant,interference margin, which is usually chosen to
approximately 3 to 4 dB (or, equivalently, a target load of 50to 60 %) (Black and Wu,
2002; Laiho et al., 2002; Stevens, 1998). Herein, the link budget is used to relate GoS to
average uplink noise rise given a propagation model and an approximative uplink noise
rise distribution.

The total power gain between user and base station can be modeled as consisting of
propagation loss,̄gp, shadow fading,̄gsh, multi path fading,̄gmp, and antenna gain and
cable loss,̄gacl. In logarithmic scale,

ḡ = ḡp + ḡsh + ḡmp + ḡacl. (8.2)

The overhead bar indicates that the quantity is in dB. The provided service corresponds
to acarrier-to-total-interference ratio(CTIR), β̄, which may be expressed in logarithmic
scale as

β̄ = p̄ + ḡ − Ītot, (8.3)

wherep̄ is the mobile’s uplink transmission power andĪtot is the total received power. In
logarithmic scale, the uplink total received power is

Ītot = N̄ + Λ̄, (8.4)

whereN̄ is the thermal noise power plus receiver noise figure common to all users and̄Λ
is the uplink noise rise.
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When the users’ transmission powers are limited, it is the uplink total interference
power that puts a constraint on the achievable coverage. This is realized by studying
Equation (4.10), which gives that a user’s transmission power is proportional to the ratio
of the total interference power in the connected base station and the power gain value to
the base station. Thus, higher received interference poweryields higher demands on the
user’s transmission power. However a fixed background noisepower is introduced here.
This, together with Equation (8.4), enables us to discuss what the performance relations
look like for different uplink noise rise levels.

Combining equations (8.2), (8.3) and (8.4) yields

β̄ = p̄ + ḡ − N̄ − Λ̄ = (8.5)

p̄ + ḡp + ḡsh + ḡmp + ḡacl − N̄ − Λ̄. (8.6)

Consider a user with a target CTIR equal toβ̄0. Equation (8.5) gives that the maximum
achievable CTIR,̄βmax, is obtained using maximum transmission power,p̄max. The GoS
is the probability that̄βmax is greater than or equal tōβ0. By using Equation (8.6) the
GoS can be expressed as

P (β̄max ≥ β̄0) = P (ḡp + ḡsh − Λ̄ ≥ β̄0 − p̄max − ḡmp − ḡacl + N̄). (8.7)

8.2.2 Density Functions and Constants

Simulations show that it is reasonable to assume thatΛ̄ ∈ N (m,σ) (Schwartz and Yeh,
1982). On the other hand, Padovani et al. (1994) provides theoretical results showing that
the interference power is no longer Gaussian in a single cellsystem. Instead the uplink
noise rise relative load can be assumed Gaussian. Thus, as a multi cell scenario is studied
here, the uplink noise rise is assumed Gaussian. The difference in noise rise characteristics
also means that the results found here do not apply to a singlecell scenario. The shadow
fading,ḡsh, can be modeled asN (0, σsh) (Hata, 1980; Okumura et al., 1968). As bothΛ̄
andḡsh are Gaussian distributed in a multi cell scenario, so is the difference between the
two. This difference will therefore be modeled as a Gaussianstochastic variable

X̄ = ḡsh − Λ̄ ∼ N(−m,
√

σ2 + σ2
sh). (8.8)

The standard deviation of the shadow fading is chosen toσsh = 7 dB in accordance with
guidelines found in Laiho et al. (2002).

The propagation loss,̄gp, will be considered as a random variable. Under an as-
sumption of uniformly distributed users, the probability density function for the distance
between user and base station,r, is

fr(r) =

{
2πr
A if rmin ≤ r ≤ R,

0 otherwise,

whereA = π(R2 − r2
min) is the area of a circular cell with a minimum distance to

the base station ofrmin and a maximum distance ofR. According to the Okumura-
Hata propagation model (Hata (1980); Okumura et al. (1968))the propagation loss in
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Table 8.1: Constants used in the link budgets.

rmin 30m
R 1100m

σsh 7 dB
ḡsh N(0, σsh)
ḡmp -4 dB
ḡacl 16 dB

Λ̄ N(m,σ)
N̄ -103 dBm

p̄max 26 dBm
C̄ -31.4 dB
α 3.57

logarithmic scale can be expressed as a function of the distancer between mobile and
base station,

ḡp = C̄p − 10α log10(r), (8.9)

whereC̄p andα are parameters of the Okumura-Hata propagation model. The probability
density function for the propagation loss is the derivativeof the cumulative distribution
function,

d

dḡ0
P (ḡp < ḡ0) =

d

dḡ0
P (C̄p − 10α log10(r) < ḡ0) =

d

dḡ0

R∫

10
C̄p−ḡ0

10α

2r

R2 − r2
min

dr.

This gives the probability density function forḡp according to

fḡp(ḡ0) = C 10−
ḡ0
5α , C =

10
C̄p
5α

5α(R2 − r2
min)

log(10). (8.10)

In the link budget, the multipath fading,gmp, is typically represented by a multipath
fading margin. The margin is chosen to give the uplink power control enough room to
maintain an acceptable CTIR despite time varying channel and uplink noise rise. The
multipath fading margin is herein set to -4 dB. The antenna gain and cable loss combi-
nation is chosen tōgacl = 18 − 2 dB. The user’s maximum transmission power,p̄max,
is considered fixed equal to 26 dBm (including 2 dB in mobile antenna gain). Table 8.1
summarizes the parameter values used in the link budgets (Laiho et al., 2002).

8.2.3 Simulations

The probability density function given in (8.10) together with the Gaussian probability
density function forX in (8.8) yields the Grade of Service in Equation (8.7) for different
m andσ according to

GoS= P (β̄max ≥ β̄0) =

1 − C

σ
√

2π

ḡmax∫

ḡmin

10−
ḡ
5α

y−ḡ∫

−∞

e
−

(x−mx)2

2σ2
x dx dḡ, (8.11)
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Figure 8.1: Relation between average noise rise,m, and standard deviation,σ, for
different levels of grade of service. Also included is a plotshowing the relation
between average noise rise and standard deviation in simulations (dashed line). a)
β̄0 = −9.5 dB (384 Kbps), b)̄β0 = −13 dB (144 kbps)

wherey = β̄0 − p̄max + N̄ − ḡmp − ḡacl. The integration interval for̄g, [ḡmin, ḡmax], is
given by Equation (8.9) and the choice ofR andrmin, respectively.

Grade of Service versus Maximum Noise Rise

Figure 8.1 shows the relation betweenm andσ according to Equation (8.11) for two dif-
ferent user types and three different levels of GoS. What is important to note, even though
a relation between noise rise and GoS is made here, the relation is actually one between
the total received interference power and GoS. The relationbetween uplink noise rise and
total received interference power is a one to one relation only because the background
noise is chosen to a constant according to Table 8.1. As a higher background noise power
yields a higher received total interference power for the same resource assignment, the
background noise power indirectly affects the coverage when users have limited trans-
mission power.

The data represented by the dashed lines is taken from a simulation of 9 cells where
the only services provided were 384 kbps or 144 kbps serviceswith full channel utiliza-
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tion. Even though data is from two single service scenarios,the noise rise behavior is
approximately the same in a multi service scenario. The simulation results are thus ap-
plicable to a multi service scenario. The variations in noise rise are a result of imperfect
power control due to, among other things, measurement errors, transmission power con-
trol errors, inter-cell interference variations and user movement. Since the lines in both
plots in Figure 8.1 are rather steep, the standard deviationdoes not have a considerable
impact on the capacity and coverage. A major reason for the independence between GoS
and noise rise variance is that the shadow fading variance isconsiderably larger than the
noise rise variance, thus

√

σ2
s + σ2 ≈ σs. As can also be seen in Figure 8.1, the standard

deviation during simulations is quite small and also seems to be fairly service indepen-
dent. From Figure 8.1 one can conclude that in order to achieve a 95 percent probability of
providing service to a user assigned a 384-kbps-service with β̄0 = −9.5 dB, the average
noise rise should not be much more than 3 dB. For a 144-kbps-service with β̄0 = −13 dB,
the corresponding noise rise figure is almost 7 dB.

The link budgets clearly indicate a trade off between GoS andacceptable noise rise
levels for a fixed background noise power. If the background noise power is increased,
the maximum noise rise must decrease to the same extent. Nevertheless, the analysis
shows that it is important to have accurate knowledge of the current noise rise level, or
equivalently the load level, in order to guarantee a minimumgrade of service. What is not
as obvious from the link budgets, which considers one user ata time, is how the current
noise rise level, which depends on the situation in the entire system, is established.

Load versus Coverage

The same link budget as previously used to determine a maximum noise rise level given
a fixed cell radius, can also be used to determine the maximum radius as a function of
the target noise rise relative load. It is simply a matter of looking at the cell radius as a
variable instead of a parameter, and conversely with the average noise rise.

Figure 8.2 shows the result of such calculations when the target GoS is 95 %. A model
stating that the average noise rise in dB is a linear functionof the cell radius has been fitted
to data. The figure shows that a large cell radius requires a low choice of maximum load
level. Especially for large cell radiuses, the maximum noise rise relative load decreases
fast.

The shaded areas correspond to systems that can be expected to be capacity limited,
as opposed to coverage limited. These areas correspond to system deployments with cell
radiuses so small that the feasibility relative load is likely to be the limiting load. Put
another way, the performance for all cell radiuses is limited by the minimum requirement
on noise rise relative load and feasibility relative load. In the shaded areas, it is the
feasibility relative load that defines the performance limitation.

8.3 Maximum Load

Two different scenarios are studied in the two previous sections, with and without user
transmission power limitations. Relations between capacity, coverage and users’ service
quality is established in a few special cases. Combining thetwo studies yields that the
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Figure 8.2: Relation between average noise rise relative load and cell radius. A
simple model has also been fitted to data. GoS=95 %. The shadedarea represents
situations where the system is capacity limited, as opposedto coverage limited. A
β̄0 of -9.5 dB approximately corresponds to a 384 kbps service and β̄0 = −13 to a
144 kbps service.

trade off is apparent regardless of the transmission power limitation, but different in dif-
ferent scenarios.

Essentially, the system is interference limited as long as no users reach their transmis-
sion power limit. This is likely to be the case in for example adense system, with small
cells with overlap. In these system, it is the feasibility relative load that sets the reference
value for the resource management algorithms in Figure 1.1.

A system with large cells is likely to instead be limited by the amount of received
interference power due to the low power gain for users far from a base station. Users with
low power gain to the power controlling base station become sensitive to high received
interference power. Therefore, the maximum load will in this case be in terms of noise
rise relative load.

Combining the results yields that the maximum uplink load depends on the specific
deployment. As such, it is also possible to improve the sceneby for example changing
the size of some cells or applying titled antennas with lowerantenna gain in suitable
directions.

8.4 Summary

This chapter focused on how load is related to coverage and capacity in terms of users’
signal qualities. The relation was studied both in presenceand absence of user transmis-
sion power constraints.

Two examples were used to show that a multi cell system is in fact coverage limited,
even if the users have unlimited transmission powers. The limitation is in terms of the
sum of users’ relative power gain values. This means that a load controlling algorithm
can increase the coverage for some users at the expense of other users.

In the case when users have limited transmission power, linkbudgets were used to
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establish an approximative relation between grade of service, i.e., the probability of a
user having service, and maximum uplink noise rise in the presence of a certain chosen
background noise power. It was shown that if the maximum noise rise is chosen too high
the grade of service is considerably decreased. The same link budget approach was also
used to establish an approximative relation between noise rise relative load and cell radius
for a certain grade of service. The cell radius also decreases rapidly with increasing load
when the system is operated at high load levels.

The chapter has thus studied the well known trade off betweenperformance measures
such as system capacity, coverage and service to individualusers. The overall result
concerns what this trade off looks like in different deployments, and that it is very much
applicable also when users do not have shortage of transmission powers.
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9
Filtering and Estimating Uplink Load

This chapter contains two signal processing application. In the first application, advanced
filtering is applied to a readily available load measurementgiven by any of the expressions
in Chapter 5. A biased auto-regressive signal model has beendeveloped and used. Using
the model together with a change detection technique results in a stable estimate which
quickly adapts to new load levels. The work presented in thisfirst part of the chapter was
first published in (Geijer Lundin et al., 2003b).

The second application is estimation of the background noise power. Things get com-
plicated due to a bias in the measurements. This makes the relation between measure-
ments of the total received interference power on the one hand and the bias and back-
ground noise power on the other, nonlinear. It is therefore useful to apply nonlinear
estimation.

9.1 Adaptive Filtering Theory

The filtering and estimation techniques used in later sections of this chapter are here
explained. Kalman filtering is explained in Section 9.1.1. Kalman filtering was first
developed for linear filtering. One way of extending it to nonlinear applications is to
linearize the nonlinear model around a working point. A straight forward way is to choose
a fixed working point. This idea is presented in Section 9.1.2. Another idea is to linearize
about the best estimate of the current state values. This idea is used in the Extended
Kalman Filter (EKF) which is explained in Section 9.1.3. Theperhaps most sound idea
is to not linearize at all, but instead simulate the system model as is done by the particle
filters. When using particle filters, several possible state vector values are considered at
the same time. In a sense, the most probable ones, based on measurements of the system
model output, are kept and the rest are discarded. Section 9.1.4 discusses the particle filter
method.

129
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A complication with applying any type of filtering or estimation is the trade off be-
tween tracking and noise suppression. This can be somewhat relaxed by studying the
residuals of the estimation process. This idea and an implementation of it, the CUSUM
algorithm, are explained in Section 9.1.5. A good basis for using Adaptive filtering in
practice is given by Gustafsson (2000).

Introduce the notation̂x(t|τ) for the estimate ofx(t) given measurements until timeτ .
The notation is justified by the fact that at each time instantthere is a measurement update,
where the new measurement is considered, and a time update, where the predictions are
updated.

9.1.1 Kalman Filtering

A basis for applying Kalman Filtering is a linear system model,

x(t + 1) = Ax(t) + Bvw(t) (9.1a)

y(t) = C(t)x(t) + e(t), (9.1b)

where

x(t) =







x1(t)
x2(t)
· · ·

xn(t)







is the state vector containing the internal states of the model. Equation (9.1a) describes the
internal dynamics of the model while (9.1b) explains how thestate vector and measure-
ment errors relate to the measurements,y(t). Theprocess noise, w(t), and themeasure-
ment noise, e(t), are assumed to be white Gaussian noise with zero mean. As such, they
are completely characterized by their covariancesQ = Ew(t)w(t)T andR = Ee(t)e(t)T ,
respectively.

The aim is to estimate the state vectorx(t) in the above state space model such that
the covariance of the state error,E(x̂(t) − x(t))(x̂(t) − x(t))T , is minimized given mea-
surementsy(t). A natural way of updating the state estimate with a new measurement
is

x̂(t|t) = x̂(t|t − 1) + K(t)ǫ(t),

whereǫ(t) = y(t) − C(t)x̂(t|t − 1) is called theresidualat timet. Out of all possible
ways of choosingK(t), the Kalman filter (Kalman, 1960) choosesK(t) such that the
two-norm ofx̂− x is minimized. This optimality holds if the noise vectorsw(t) ande(t)
are Gaussian distributed, otherwise the Kalman filter is thebest possible linear filter. The
Kalman gain,K(t), is chosen based on knowledge of the measurement covariance, R, the
process noise covariance,Q, and an estimate of the covariance of the current estimation
error,P (t|τ) = E(x − x̂(t|τ))(x − x̂(t|τ))T . SinceP (t|t) is time-varying it, too, has to
be updated. When using the Kalman filter, the update ofP (t), K(t) andx̂(t|t) is done
according to Algorithm 9.1. The covariance matricesQ andR are design parameters of
the filter. Filteringy(t), as opposed to predictingy(t+1), corresponds to studyinĝx(t|t),
as opposed tôx(t + 1|t).
To summarize, the Kalman filter delivers an estimate of the state vectorx(t), an estimated
covariance matrix for this estimate (indicating the accuracy of the estimate),P (t|t), and
a residualǫ(t) at each time instantt.
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Algorithm 9.1 Kalman filter

Initialization:
x̂(0| − 1), P (0| − 1) = P0

Measurement update:

x̂(t|t) = x̂(t|t − 1) + K(t)
(
y(t) − C(t)x(t)

)

P (t|t) = P (t|t − 1) − K(t)C(t)P (t|t − 1)

where
K(t) = P (t|t − 1)C(t)T

(
C(t)P (t|t − 1)C(t)T + R

)−1

Time update:

x̂(t + 1|t) = Ax̂(t|t)
P (t + 1|t) = AP (t|t)AT + BvQBT

v

9.1.2 Linearized Kalman Filtering

The Kalman filter assumes that the system model is linear, both in the dynamics and in the
relation between state vector and measured quantity. If this is not the case, the nonlinear
model can be approximated by a linear model. To linearize themodel, a working point
about which the model will be linearized must be chosen. Denote the chosen working
point byx0.

Consider a system with linear dynamics, i.e., the time update of the model is linear.
The nonlinearity of the model is in the measurement equation. Thus, the studied model is
of the type

x(t + 1) = Ax(t) + Bvw(t)

y(t) = h(x(t), t) + e(t).
(9.2)

In general, the dynamics of the model can be also be time-varying, i.e., the matricesA and
Bv can depend on the time indext. However, (9.2) suffices for our needs. Once again,
the process noisew(t) is independent white noise with zero mean and covariance matrix
Q, and each measurement noiseej(t), j = 1, 2, . . . , B is zero mean Gaussian distributed
with covarianceR.

Using a Taylor expansion about an assumed trajectoryx0(t), h(x(t), t) may be ap-
proximated as

h(x(t), t) ≈ h(x0(t), t) + H(t) (x(t) − x0(t)) ,

where
H(t)

△

= ∇xh(x(t), t)|x=x0(t).

When using thelinearized Kalman filter(LKF), Algorithm 9.1 is used to estimate

x̃(t)
△

= x(t) − x0(t).
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9.1.3 Extended Kalman Filtering

Theextended Kalman filter(EKF) is another algorithm for estimating the internal states
of the nonlinear model (9.2). EKF was first derived by Smith etal. (1962) and later by
Schmidt (1966). A nice presentation of the filter based on thetraditional Kalman filter
is given by Kailath (1980). A system with dynamics and additive noise is studied in the
above references, but the presentation here is limited to nonlinearities in the measurement
equation only. The basic idea used in the EKF, is to always usea model linearized about
the last estimate of the state variables. This simply means thatx0(t) in the presentation
of the linearized Kalman filter will be chosen as

x0(t) = x̂(t|t − 1),

at timet.
The Kalman filter requires a linear relation between the statesx(t) and the measure-

ments. Approximatingh(x(t), t) in (9.2) with a first order Taylor expansion around the
time-varyingx0(t) yields

h(x(t), t) ≈ h(x̂(t|t − 1), t) + H(t) (x(t) − x̂(t|t − 1)) ,

where
H(t) = ∇xh(x(t), t)|x=x̂(t|t−1).

Consider a new system that has

ỹ(t)
△

= y(t) − h(x̂(t|t − 1), t) + H(t)x̂(t|t − 1) = H(t)x(t) + e(t)

as measurement equation. This new system has a linear relation between the measurement
ỹ(t) and the state vectorx(t). Applying the Kalman filter to this new system yields the
EKF applied to the original system in (9.2).

The measurement update of the EKF when applied to the model in(9.2) is

x̂(t|t)
=x̂(t|t − 1) + K(t) (ỹ(t) − H(t)x̂(t|t − 1))

=x̂(t|t − 1) + K(t)
(
y(t) − h(x̂(t|t − 1), t) +

0
︷ ︸︸ ︷

H(t)x̂(t|t − 1) − H(t)x̂(t|t − 1)
)

=x̂(t|t − 1) + K(t)
(
y(t) − h(x̂(t|t − 1), t)

)
.

This and the remaining steps taken by the extended Kalman filter at each time instant are
described by Algorithm 9.2.

9.1.4 Particle Filtering

Estimation can be seen as using noisy measurements togetherwith prior knowledge to
calculate the most probable value of the state vector. Therefore, a Bayesian approach is
natural. In the Bayesian estimation formulation the time update and the measurement
update are expressed asprobability density functions(pdf). The idea in particle filters is
to use numerical integration to express how the density functions for the values in the state
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Algorithm 9.2 Extended Kalman Filter

Initialization:
P (0) = P0 andx̂(0| − 1)

Measurement update:

x̂(t|t) = x̂(t|t − 1) + K(t)ǫ(t)

P (t|t) = P (t|t − 1) − K(t)H(t)P (t|t − 1)

where

K(t) = P (t|t − 1)HT (t)
(
H(t)P (t|t − 1)H(t)T + R

)−1

H(t) = ∇xh(x(t), t)|x=x̂(t|t−1)

ǫ(t) = y(t) − h
(
x̂(t|t − 1)

)

Time update:

x̂(t + 1|t) = Ax̂(t|t)
P (t + 1|t) = AP (t|t)AT + BvQBT

v

vector change as time evolves and new measurements are made.These density functions
are then used to make an estimate of the values in the state vector. Because Monte Carlo
integration is used, particle filters are rather computationally intensive.

The presentation here will only be on the implementation of the particle filter. Ristic
et al. (2004) gives a comprehensive presentation of Monte Carlo integration and how it is
used in particle filters.

It is called particle filters because several realizations,particles, of the state vector
are simulated simultaneously. It is these particles that are meant to characterize the pdf
of the elements in the state vector. Algorithm 9.3 specifies the particle filter. Almost
arbitrarily density functions can be used to describe the measurement and process noise,
not just Gaussian. However, the measurement noise must be additive. Another strength
of particle filter is that there is no need to linearize the measurement equation nor any
nonlinear dynamics.

9.1.5 Change Detection

An always present problem with traditional estimation is the trade off between tracking
and noise suppression. A way of getting around this problem is to study the residuals,ǫ(t),
of a process estimating the state vector of a system model. Inthe model used here, the
residuals are expected to be zero mean Gaussian with variance R, i.e., ǫ(t) ∈ N (0, R).
If the estimates ofe(t), ǫ(t), are not zero-mean Gaussian or have a variance which is
considerably greater thanR, there is reason to believe there has been an abrupt change in
one or several of the parameters.

In order to detect a bias in the residuals, the squared normalized residuals (normalized
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Algorithm 9.3 Particle Filter

Initialization:

Initialize the particles,̂xi(0| − 1), such that they cover the true state vector.

Measurement update:

• Calculate residuals for each particlei:

ǫi(t) = y(t) − h(x̂i(t|t − 1), t), i = 1, 2, . . . , N.

• Calculate the probability for each residual,pi = Pe(ǫi) using the pdf of the mea-
surement noise.

• Normalize the probabilities:̄pi = piP
N
i=1 pi

.

Resampling:

Sample particles with replacement according to the discrete probability dis-
tribution given byp̃i, i = 1, 2, . . . , N .

Time update:
x̂i(t + 1|t) = Ax̂i(t|t) + wi(t), i = 1, 2, . . . , N

wherewi(t) is drawn from the process noise’s pdf.

with their estimated standard deviation),ǭ2, are fed to a distance measurement algorithm.
At every time instant this algorithm adds the normalized residual minus a drift termν
to the previous accumulated distance. Hence, several consecutive residuals with consid-
erable large magnitude will result in a growing distanceg(t), and eventually a change
detection onceg(t) has exceeded a fix threshold,h. Thecumulative sum (CUSUM)algo-
rithm (Gustafsson, 2000) is defined by Algorithm 9.4 which isrun through at each update
of the state vector estimate. Once a change is detected, the filter characteristics is some-

Algorithm 9.4 CUSUM

g(t) = g(t − 1) + ǭ(t)2 − ν
if g(t) < 0

g(t) = 0
end
if g(t) > h

g(t) = 0
flag for detected change

end

how temporarily changed in order to quickly adapt to the new situation. Figure 9.1 shows
the different parts of the adaptive filter applied in this chapter and how the behaviour of
the algorithms are decided by a number of design parameters.
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Figure 9.1: The different parts and parameters of an adaptive filter withchange
detection.

9.2 Load Filtering

The approximations given in Chapter 5 produce results whichwill fluctuate over time. As
discussed in Section 9.2.1, the goal with the work in this section is primarily to provide a
more stable approximation. In order to suppress the fluctuations, a signal model describ-
ing the fluctuations as well as the load level which the approximations fluctuate about is
developed in Section 9.2.2. The filtering involves using Kalman filter and a CUSUM de-
tector. The choice of parameter values for these algorithmsare discussed in Section 9.2.3.
Finally, adaptive filtering is applied to the model in Section 9.2.4.

Outcomes of the uplink noise rise relative load approximations in Chapter 5 will in this
chapter be considered as measurements fed to the filtering process. They will therefore
be referred to as measurements of the uplink load. They should not be mistaken for load
approximations based on measurements of the uplink interference power.

9.2.1 Motivation

As can be seen in Figure 9.2, the raw measurement of the noise rise relative load has,
just as the true load, a trend and low frequency oscillationson top of this trend. The
oscillations are due to the user movement; as the users move around in the environment
their number of soft handover links regularly changes. Figure 9.3 shows that oscillations
in a cell’s uplink noise rise are strongly correlated with oscillations in the number of soft
handover links. These oscillations can easily be canceled by low pass filtering the signal.
However, applying a simple low pass filter could be risky since it is important to be alert
on sudden changes in the load. Therefore, a signal model together with Kalman filtering
and change detection is applied to the noise rise relative load estimate in order to reduce
noise and oscillations while keeping track of sudden changes in the signal. A more stable
signal enables operation at a higher load level since the resource management algorithms
would not need as large margin to secure stability of the system. The time-varying model
also provides an indication of towards where the load is currently heading, something
which enables more aggressive resource management algorithms, e.g., PID-control.
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Figure 9.2: Low frequency oscillations in relative load. Solid: Low pass filtered true
noise rise relative load. Dashed: Approximative noise riserelative load according to
(5.13c).

0 10 20 30 40 50 60 70 80 90 100
16

17

18

19

20

21

22

23

Time, [s]

Figure 9.3: Oscillations in uplink noise rise are strongly correlated with the number
of soft handover links. Thick: scaled and low pass filtered noise rise, thin: number
of soft handover links
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9.2.2 Signal Model

When dealing with signals whose behaviour is expected to change, continuously or
abruptly, a fixed model is obviously not attractive. Using a parameterized signal model
and estimating not only the actual signal value but also the parameters of the model en-
ables a more accurate signal estimate as well as an earlier detection of an abrupt change,
in the parameters and/or the signal level. A signaly(t), originating from an unbiasedn:th
order Auto Regressive (AR)-model, may be described as (Ljung, 1999)

y(t) + a1y(t − 1) + a2y(t − 2) + ... + any(t − n) = e(t), (9.3)

wheree is white Gaussian noise with zero mean anda1, a2, ..., an are the parameters of
the model. The signaly(t) in (9.3) will haveEy(t) = 0, but the signals we study have
Ey(t) = L̄(t), whereL̄(t) is a time-varying bias. Therefore, a slightly more complex
model is used, in which the time-varying bias is subtracted from eachy(t) givingE(y(t)−
L̄(t)) = 0. Replacingy(t) by y(t) − L̄(t) in (9.3) yields

(y(t) − L̄(t)) +

n∑

i=1

ai(y(t − i) − L̄(t − i)) = e(t). (9.4)

This equation defines what can be described as a biased AR model, the oscillations are no
longer restricted to be around zero. There are other alternatives when modeling a signal
with oscillations around a non zero mean. Alasti and Farvardin (2000) use non-zero-mean
Gaussian noise to derive an expression for a biased AR model which is used to model the
amount of requested bandwidth in a wireless network. A fourth order biased AR model
is used to describey, i.e., n = 4 in (9.4). It is natural to assume different time scales
of the bias variation and the dynamics, otherwise the AR-model is ambiguous. That is,
the AR-model takes care of short term oscillations andL(t) models the long term drifts.
Equation (9.4) may, under these assumptions, be approximated with

y(t) = L̄(t)

(

1 +
4∑

i=1

ai

)

−
4∑

i=1

aiy(t − i) + e(t). (9.5)

A state space representation of (9.5) in discrete time is

x(t) =
(

L̄(t) ˙̄L(t) a1 a2 a3 a4

)T

x(t + 1) =





1 T 0
0 1 0
0 0 E4



x(t) +





T 2

2 0
T 0
0 T E4



w(t)

y(t) =
(
1 +

∑
ai 0 −y(t − 1) · · · − y(t − 4)

)
x + e(t),

wherew(t) is a 5-dimensional vector containing the process noise andE4 is the4×4 iden-
tity matrix. Note that the measurementy(t) has a non-linear relation to the parameters.
This makes the parameter estimation more difficult. By introducing two new variables,

L̃ = (1 +
∑

ai)L̄ and ˙̃L, the nonlinear state space model is converted into a linear state
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space model according to

x̃(t) =
(

L̃(t) ˙̃L(t) a1 a2 a3 a4

)T

x̃(t + 1) =





1 T 0
0 1 0
0 0 E4



 x̃(t) +





T 2

2 0
T 0
0 T E4



w(t) (9.6)

y(t) =
(
1 0 −y(t − 1) · · · − y(t − 4)

)
x̃(t) + e(t).

Even though ˙̃L(t) includes time derivatives ofai, the variation in the bias can perhaps
be assumed far larger in magnitude than the variations in theAR-parameters and thus
˙̃L(t) ≈ (1+

∑
ai)

˙̄L. Assume the parameters to be independent of each other. Thisresults
in a diagonal covariance matrix for the process noise,Q, with elementsq1, q2 · · · q5 in the
diagonal. The valuesq2 to q5 are all the same and much less thanq1. Hence we encourage

changes iñL and ˙̃L rather than in the AR-parameters. The innovations,e(t) are assumed
to be zero mean Gaussian with constant varianceR.

The conversion from̃L back toL̄ is

ˆ̄L(t) =
ˆ̃L(t)

1 +
∑4

i=1
ˆ̃ai(t)

=
ˆ̃x1(t)

1 +
∑6

k=3
ˆ̃xk(t)

. (9.7)

Var ˆ̄L(t) ≈ L′
ˆ̄x(t)

T
Cov ˆ̃x(t)L′

ˆ̄x(t).

The expression for the variance is motivated by studying a first order Taylor expansion of
ˆ̄L(t).

9.2.3 Design Choices

Figure 9.4 shows an example of a raw signal produced by the load estimation (i.e., (5.16c)
and (4.3)). The period of the slowest oscillations is about 20 seconds. The sampling time
of this signal isTframe = 0.01 seconds. Thus the slowest oscillations have a period of
about 2000 samples. To describe the correlation in a signal having oscillations with such a
long period would require thousands of parameters. A rule ofthumb is that the fundamen-
tal period of the oscillations to be modeled should be approximately 10 samples (Ljung,
1999). Therefore every two hundredth sample is used when constructing the regression
vector,C(t). This is a kind of down sampling which requires an anti alias filter to be
applied. The chosen low pass filter is a second order filter with both its poles on the real
axis,

y(t) =
4 · 10−4

1 − 1.96q−1 + 0.9604q−2
L(t).

This results in a filter which does not introduce any additional oscillations but on the other
hand does not have a linear phase shift. Since it is the low frequencies of the signal that are
studied here, a linear phase shift is not a requirement here.The choice of filter bandwidth
is a trade off between low alias effects and small time delay between input and output of
the anti-alias filter.
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Figure 9.4: Example of noise rise relative load as function of time.

The state space representation in (9.6) has to be slightly modified to adapt to the
resampling. Thus the final state space model used in the simulations is

x̃(t) =
(

L̃(t) ˙̃L(t) a1 a2 a3 a4

)T

x̃(t + 1) =





1 T 0
0 1 0
0 0 E4



 x̃(t) +





T 2

2 0
T 0
0 T E4



w (9.8)

y(t) =
(
1 0 −y(t − 200) · · · −y(t − 800)

)
x̃(t) + e(t).

Note thaty(t) is the output from the anti-alias filter, andT is the update rate of the filter
times the length of a frame,Tframe = 0.01 s. The Kalman filter is parameterized by
the constants in the matrixQ and the scalarR, which thus can be seen as filter design
variables. A larger value in one ofQ’s components means that the corresponding state
variable(s) are more willing to change during the time between two time instants, whereas
a largerR corresponds to less measurement accuracy. Hence, largerQ results in larger
K and largerR results in a filter which puts less trust in the measurements and K is
therefore chosen smaller yielding a ”slow” filter. The choice ofQ versusR is thus a trade
off between tracking and noise suppression. The design parameterR should be chosen
such that it approximately equals the variance of the residuals.

Another design choice concerns the update rate of the filter.A reason for not choosing
a faster update rate, which of course provides a possibilityfor earlier detection of large
changes in the relative load, is the increased computational burden a higher update rate
induces. So perhaps updating every sample is not an obvious choice. We have studied
filter that has an update rate of every tenth or every hundredth estimate sample. Simula-
tions show that the performance in steady state when filtering is the same regardless of
the update rate.

The behaviour of the CUSUM detector is primarily decided by the parametersh and
ν. These have been chosen in such a way that we detect sudden changes of considerable
amplitude within a reasonable time without having too many false alarms. In an attempt to
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make the detection time independent of the update rate of thefilter, h is chosen inversely
proportional to the time between updates, i.e.,

h =
Tframe

T
h0,

whereh0 is the threshold used when updating every frame. In case of a change detection,
the values ofP corresponding tõx1 andx̃2 are increased a factor five, which results in
making filtered value of these states more sensitive to the current input to the filter,y(t).
The motivation for increasing only these two states is that the change is believed to be in
the load level and not in the AR parameters.

9.2.4 Simulations

Input data for this estimation application is taken from simulations produced by the simu-
lator explained in Appendix A.1. A Kalman filter is used to extract the load level̄L from
the signaly in (9.5). By using the change detection technique describedin Section 9.1 the
filter is able to follow any sudden jumps in the load estimate.

Figure 9.5a shows the approximation ofL in (4.3) whereΛ is approximated using
(5.16c). Also shown in Figure 9.5a is the Kalman filter estimate. The filter estimate is up-
dated every frame, soT = Tframe = 0.01 s. The filtered estimate is free of oscillations
and follows an underlying trend in the original estimate. Note how the filtered estimate
jumps when there is a distinct jump in the raw estimate. Figure 9.5b shows a close up
version of the top plot together with a rough low pass filteredversion of the original esti-
mate. Both filters suppress noise equally well, but the low pass filtered signal adapts to the
new load level much slower. In case of a sudden jump upwards, the slow acclimatization
of the low pass filtered signal can be risky. In case of a jump downwards, the resource
utilization can be improved compared to using the low pass filtered version.

As a comparison, Figure 9.5c shows the performance of the filter when using three
different update rates; once every frame as above, once every tenth frame and once every
hundred frame. In steady state, the three versions of the filtering provide almost identical
outputs. But, due to its superior update rate, the version which is updated every frame
detects the jump earlier. However, all three update rates adapt to the new load level far
faster than the simple low pass filtered signal, also shown Figure 9.5c. Thus, a faster
update rate is perhaps not crucial, especially when comparing with the low pass filtered
version. The estimation process also provides an estimate of the derivative of the trend in
the relative load which enables a more aggressive resource management.

Due to the anti alias filter applied before the Kalman filter, the measurement noise
e(t) is no longer white. Therefore, the residuals from the estimation process are not white
either. This indeed indicates the need for a more complex model, for example an ARMA
model. However, as the simulations show, the proposed filterstill manages to provide a
good estimate of the underlying trend in the relative load estimate.

9.3 Background Noise Power Estimation

Section 7.5 establishes that using inaccurate informationabout the background noise
power leads to unwanted transfer of resources between base stations. This section is de-
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Figure 9.5: Performance of the Kalman filtering and change detection when applied
to a signal with a rather big jump in it. The different plots are magnified versions
of the same simulation. Solid: original estimate. Solid, thick: updated each frame.
Solid, ring: updated every tenth frame. Solid, plus: updated every hundredth frame.
Dashed: low pass filtered.
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voted to estimating the background noise power ratio,θ, as defined in (7.13). An accurate
estimate of the background noise power can, for example, be used by the load approx-
imations based on iterations in Chapter 5. If the backgroundnoise powers are known,
there is no need to assume equal background noise power during the derivation of the
approximations.

Definition 6.6 introduces the system matrix. Properties of this matrix was repeatedly
explored in Chapter 6. Here, the same framework is used to estimate the background noise
power using measurements of the uplink interference power.Assuming that interference
power measurements are available does in no way interfere with the motivation for study-
ing uplink load approximations not using these measurements, as is done in Chapter 5. On
the contrary, knowledge of the background noise power can beused instead of assuming
a noise-flat system when deriving some of the approximationsin Chapter 5. Furthermore,
another reason for not using measurements of the uplink interference power for load ap-
proximations is that individual measurements may be associated with considerable errors,
something which the background noise power application is not as sensitive to.

Unfortunately, measurements of the total uplink interference power is often corrupted
by a bias in logarithmic scale, which also needs to be estimated. The state vector is thus

x(t) =

(
θ(t)
δ(t)

)

, (9.9)

whereδ(t) ∈ R
B is the vector with base station individual biases.

The biases and the background noise power are related to measurements of the total
interference power in Section 9.3.1, where the relation is expressed as the measurement
equation in a state space model. The state space model is derived under an assumption
of connectivity one but this requirement is relaxed via an approximation in Section 9.3.2.
A basic requirement for possibility of estimating the values in the state vector, is that the
connection between them and measurements of the uplink interference power is strong
enough, that they areobservable. Even though the individual states are not observable,
products of bias and background noise power ratio in the different base stations are ob-
servable, as is shown in Section 9.3.3. Fortunately, these are the products that will be used
in practice anyway. Section 9.3.3 also contains a discussion on how the base stations can
use these products together with measurements of the uplinkinterference power to esti-
mate the current uplink noise rise. Finally, methods for nonlinear estimation are applied
in Section 9.3.4.

The basis for this estimation is the system of nonlinear equations in (5.6). These equa-
tions lay the ground for the uplink load approximations in Chapter 5. Instead of solving
for the uplink noise rise, as in Chapter 5, the equations are combined with measurements
of the uplink interference power in order to estimate the background noise power.

9.3.1 Connectivity One

The nonlinearities in (5.6) are due to soft handover. In caseof connectivity one, the
system of nonlinear equations breaks down into a system of linear equations. It is shown
in Section 6.1.2 that the system of equations then can be expressed in matrix form as

Itot(t) = C(t)N(t), C(t)
△

= (E − L(t)T )−1 (9.10)
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whereL(t) is the system matrix according to Definition 6.6. As opposed to the situation
in Chapter 6, the time span studied here is too long for considering the users’ target
CTIR values and the relative power gain values as constant. In fact, it is crucial for this
application that there are variations over time, as will be discussed in Section 9.3.3.

Elementj of the functionh(x, t) describing the relation between the states and the
interference power measurement in base stationj is

hj(x(t), t)
△

= 10 log10

(

N0δj(t)

B∑

k=1

Cj,k(t)θk(t)

)

= 10

(

log10(N
0) + log10(δj) + log10

B∑

k=1

Cj,k(t)θk(t)

)

.

(9.11)

As the base station error factor,δj , j = 1, 2 . . . B, and the background noise ratio,
θj , j = 1, 2 . . . B are modeled as integrated white noise, the system model becomes

(
θ(t + 1)
δ(t + 1)

)

=

(
θ(t)
δ(t)

)

+

(
wθ(t)
wδ(t)

)

y(t) = h(x(t), t) + e(t),

(9.12)

with x(t) given by (9.9).
The expression for the element on rowj and columnk of H(t) used in the EKF

depends on whether it relates to an element inθ or δ.

Hj,k(t) =







∂hj(δ,θ)
∂θk

|x=x̂(t|t−1) = 10
log 10

Cj,k(t)P
B
k=1 Cj,k(t)θ̂k(t|t−1)

if k ≤ B

∂hj(δ,θ)
∂δk−B

|x=x̂(t|t−1) =

{
10

log 10
1

δ̂j(t|t−1)
, k = j + B

0, k 6= j + B
if k > B.

9.3.2 Higher Connectivity

In case of higher connectivity at least one mobile is power controlled by more than one
base station. In this case it is not as easy to express the relation between measured in-
terference power and the model statesNj andδj . This is due to the lack of an explicit
solution to (5.6). As in Chapter 5, approximations can be applied to solve the system
of nonlinear equations. Both the linearized and EKFs require an explicit expression for
h(x(t), t) in order to calculateH(t). Therefore, fix point iterations to solve the system of
nonlinear equations is not an option in this case.

A second way to solve the system of nonlinear equations is theone used in Sec-
tion 5.2.2. This leads to an explicit, but approximative solution to the system of nonlinear
equations. Basically, the denominator in the relative pathgain, zi,j , is substituted by a
sum of path gain values taken over the set of cells that the user is connected to. This
means that the element on rowk and columnj in the system matrix,L(t), in (9.10) is
substituted by

L̃k,j(t)
△

=
∑

i∈ck

βtgt
i (t)

gi,j(t)
∑

ℓ∈Ki
gi,ℓ(t)

.
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Using the matrixL̃ = [L̃k,j ], the interference power can be approximated by an expres-
sion similar to (9.11)

hj(x(t), t)
△

= 10 log10

(

N0δj(t)

B∑

k=1

C̃j,k(t)θk(t

)

,

whereC̃(t)
△

= (E − L̃(t))−1.
The particle filter can be applied with either of the methods discussed above, i.e., both

fix point iterations or using the sum of path gain values in thedenominator of relative
power gain values. However, no adapts of estimating the background noise power when
using fix point iterations have been made in the simulations.

9.3.3 Estimation Limitations

A necessary condition for estimation isobservability. Loosely speaking, a system is ob-
servable if the connection between outputs and internal states is strong enough to uniquely
determine the value of the internal states given the outputs. In our model, (9.12), the in-
ternal states are the2B variables found in the vectorsδ andN .

Definition 9.1 (Observability). An internal state (function of states) isobservableif,
given measurements at time instants up untilt0, it is possible to establish what the state
(function of states) is at timet0.

Merely by looking at the model, one can conclude that it is impossible to determine
the states uniquely since the biases,δj , always appear multiplied by a background noise
power ratioθk, e.g.,δ1θ1, δ1θ2 etc.

However, below it is shown that the products of biases and background noise power
ratio are observable, i.e., that it is possible to estimate them based on measurementsyj(t).
Specifically, it is products of typeδjθj that are of interest. If these products are known,
it is possible to calculate the noise rise based on measurements of the uplink interference
power,

Λj(t) =
Ij(t)

N(t)
=

yj(t)/δj(t)

θj(t)N0
=

yj(t)

δj(t)θj(t)N0
.

The products are observable if, given a number of measurements y(t), t = 1, 2, . . . , it is
possible to establish the value of the products uniquely. Itis much easier to show that the
products are observable if the relation between them and a function of the measurements
is linear. The function obviously has to be one-to-one. Be choosing the function to

ylin = 10y/10,

the relation betweenylin and the products is linear. Applying the conversion to the mea-
surements of the model (9.12) in a noise less scenario yields, at timet,

ylin
j (t) =

B∑

k=1

Cj,k(t)δj(t)θk(t)N0, j = 1, 2 . . . , B.
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Under the assumption thatδj andθj are approximately constant over a period of time
t = t0, t0 + 1, . . . , t1, consider the following system of equations.

ylin
j (t0) = N0

B∑

k=1

Cj,k(t0)δj(t0)θk(t0), j = 1, 2 . . . , B

ylin
j (t0 + 1) = N0

B∑

k=1

Cj,k(t0 + 1)δj(t0)Nk(t0), j = 1, 2 . . . , B

...

ylin
j (t1) = N0

B∑

k=1

Cj,k(t1)δj(t0)Nk(t0), j = 1, 2 . . . , B.

Skipping the time indices forδj andθj , these equations can be put in matrix form as

1

N0





















ylin
1 (t0)

ylin
2 (t0)

...
ylin

B−1(t0)
ylin

B (t0)
ylin
1 (t0 + 1)

ylin
2 (t0 + 1)

...
ylin

B−1(t1)
ylin

B (t1)





















= O

















δ1N1

δ1N2

...
δ1NB

δ2N1

δ2N2

...
δBNB

















(9.13)

where

O △

=
























C1(t0) 0 · · · · · · 0
0 C2(t0) 0 · · · 0
...

. . .
.. .

. ..
...

...
. . .

.. . CB−1(t0) 0
0 · · · · · · 0 CB(t0)

C1(t0 + 1) 0 · · · · · · 0

0
. . .

.. . · · · 0
...

. . .
.. .

. ..
...

...
. . .

.. . CB−1(t1) 0
0 · · · · · · 0 CB(t1)
























.

With Cj(t) being thej:th row ofC(t). Below are two different cases where the matrixO
has full rank.

• As the cross products in the right hand side of (9.13) are not of interest, it is sat-
isfactory to be able to solve for products of typeδjθj . If, at time instantt′, C(t′)
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is diagonal with all diagonal elements being nonzero, it is possible to estimate all
δjθj from that time instant alone.

ylin
j (t′) = Cj,j(t

′)δjθjN
0, j = 1, 2, . . . , B.

• If C(t) is not diagonal, it is necessary to solve for products of typeδjθk as well.
Equation (9.13) has a unique solution ifO has full rank. As there areB2 different
products in the vector in the right hand side, we need measurements from at leastB
different time instants. Furthermore, theC-matrix has to change over time in order
to generate different measurement equations (different rows) at different times,t =
t0, t0 + 1, . . . , t2.

There are of course other cases where we can solve for the interesting products. The
second case above is however the case interesting in practice, since we in practice can be
expected to always have some active users in each cell. The main conclusion from the
discussion in this section is summarized in the Theoreom 9.1

Theorem 9.1 (Observability)
If O achieves full rank within a time frame in whichδj(t) and Nj(t) may be assumed
constant for allj, it is possible to estimate all productsδjθj ∀j = 1, 2, . . . , B.

Proof: If O has full rank, it is possible to solve for all products in the vector in the right
hand side of (9.13). Specifically, it is possible to determine δjθj , ∀j = 1, 2, . . . , B.

The requirement thatO must achieve full rank is met ifC(t) varies in a random fash-
ion over time. This is the case if traffic is rapidly changing,e.g., due to fast scheduling.

9.3.4 Simulations

Once again, the simulator discussed in Appendix A.1 is used for producing simulation
data. This time realistic interference power measurementsare gathered together with
information about the users’ target CTIR values and their path gain values to base stations.
All values are averaged over a time frame of 100 millisecondsin the base stations before
being delivered to the central node where the actual estimation process takes place.

As the measurements are averaged over a relatively long timeperiod, compared to
both the fast variations in radio channel between users and base stations and the rapid
variations in users’ transmission rates, the measurementsdo not capture momentarily in-
terference power peaks. Simulations indicate that it is still possible to accurately estimate
the products of the base station’s individual biases,δj , and their background noise power
ratios,θj .

Table 9.1 and Table 9.2 show the statistics of 15 Monte Carlo simulations with 20000
samples in each simulation. Theroot mean square error(RMSE) as defined by Gustafsson
(2000) has been calculated as

RMSE =




1

MC

MC∑

ℓ=1

1

B

B∑

j=1

1

T

T∑

t=1

||θ̂(ℓ)
j (t) − θℓ

j(t)||22





1/2

,
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whereθℓ
j(t) is the true background noise power ratio in base stationj at timet in Monte

Carlo simulationℓ and[1, T ] is the interval over which statistics is studied. When calcu-
lating the statistics in the table, the first 20 seconds of each simulation has been removed.

The two particle filters, PF1 and PF2, have 5000 and 10000 particles, respectively.
The two filters provide roughly the same statistics, meaningthat there is either not much
to gain from adding even more particles, or the number of particles is far too small. The
extended Kalman filter actually provides slightly better performance in the case of con-
nectivity one, which is the case that the model is designed for. The particles filters, how-
ever, seems slightly more robust against the model error that connectivity three brings.
Out of the proposed filters, all save for the linearized Kalman filter provides good estima-
tion error statistics. Using an ordinary Kalman filter applied to a linearized model does
not seem to work at all in this application. The true product of δj andθj is probably too
far from the chosen working point. The relatively poor performance of the particle filter,
compared to the extended Kalman filter, may be explained by a property of particle filters
yielding that they perform worse when estimating parameters of a model with small pro-
cess noise and many states (Gustafsson et al., 2002). The model contains 18 states and
the process noise is practically zero since bothθ andδ are assumed to be approximately
constant. Gustafsson et al. (2002) claims that it can be worth trying even more particles
in this case.

As the users’ path gain values are both averaged over quite a few time instants and
do not include the multi path fading, the model does not consider the TX increase. Fur-
thermore, the TX increase is larger when using connectivityone compared to using con-
nectivity three. This may explain some of estimation improvement when going from
connectivity one to connectivity three. Another reason maybe the decreased intensity of
high interference power peaks when using connectivity three.

Table 9.1: Estimation errors when estimating the product of background noise ratio
and the base station individual biases. PF1 and PF2 are particle filters with 5000 and
10000 particles, respectively. Connectivity one. 15 MonteCarlo simulations.

Mean Var. RMSE
EKF 0.05 0.04 0.21
PF1 0.07 0.08 0.29
PF2 0.07 0.09 0.30

Table 9.2: Estimation errors when estimating the product of background noise ratio
and the base station individual biases. PF1 and PF2 are particle filters with 5000 and
10000 particles, respectively. Connectivity three. 15 Monte Carlo simulations.

Mean Var. RMSE
EKF −0.09 0.02 0.18
PF1 −0.06 0.02 0.14
PF2 −0.06 0.01 0.13

The statistics in Table 9.1 and Table 9.2 are calculated in linear domain. Correspond-
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ing results for the case of connectivity three in logarithmic scale are given in Table 9.3.
The table shows that the particle filters provide a smaller RMSE corresponding to a more
reliable estimate. Furthermore, discussing the absolute numbers, an average error of
0.4 dB and an error variance of0.6 means that the estimate is less than one dB wrong
in approximately two thirds of the considered time instants. This is rather small consider-
ing that the background noise takes values in a range of aboutthree dB and that there is
a measurement bias on top of that. Figure 9.6 shows how the different estimates evolve

Table 9.3: Estimation statistics in logarithmic scale (dB) for connectivity three.

Mean Var. RMSE
EKF −0.80 4.26 2.21
PF1 -0.38 0.58 0.85
PF2 -0.45 1.01 1.10

over time. Att = 20 s, the true background noise power jumps up with three dB and
at t = 40 s it jumps back down again. The linearized Kalman filter is notshown in the
picture. The jump up corresponds to the true background noise ratio making a jump from
one to two. This jump corresponds to halveρ defined in Section 7.5. It is certainly not
possible to relate the jump in Figure 9.6 to a certain decrease in the estimated background
noise ratio in for example Figure 7.6. Even so, it is still clear that if such a jump is not
adapted to by a base station using a noise rise controlling algorithm, the base station’s
capacity will decrease considerably. Figure 9.6 shows thatthe extended Kalman filter and
the two particle filters manage to adapt to the new backgroundnoise power level, despite
the sudden and substantial jump. Thus, if using the proposedtechnique for estimating the
background noise power, it possible for a noise rise controlling algorithms to eventually
operate normally despite the sudden jump in the background noise level.
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Figure 9.6: Estimation ofθδ. The true background noise power makes jumps at
t = 20 s andt = 40 s. The particle filters have 5000 (PF1) and 10000 (PF2) particles.
The filters are initialized with a product equal to one. A system with connectivity
three has been simulated.
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9.3.5 Implementation Aspects

When calculatingC(t), the system matrix,L(t), as in Definition 6.6 is used. The system
matrix consists of ratios between users’ power gains. In practice, the central node is
unlikely to receive information on the users’ instantaneous multi path fading. One way of
still considering this fast changing part of the power gain is to compile the system matrix
in the base stations.

Loosely speaking, the element on rowk and columnj of the system matrix represents
the load cellk causes in cellj. Since the base station receives frequent reports on the
power gains between users and several base stations, each base stationk can, on its own,
calculate values representing an average of these load contributions,

L̃k,j =
1

T

T∑

τ=1

∑

i∈ck

gi,j(τ)

gi,k(τ)
βtgt

i (τ).

Here,T is the number of time instants between each report from the base stations to the
central node. Based on these reports, the central node wouldthen compile the system
matrix and then use it to calculateC(t).

9.4 Summary

Due to user movement, the noise rise relative load is subjectto slow oscillations. Earlier
work has provided an approximation of the noise rise relative load which to a great extent
captures these oscillations. In this chapter, a signal model which describes the noise rise
relative load as a signal consisting of a bias with a trend together with a fourth order auto
regressive model has been developed. A Kalman filter together with a change detection
algorithm has been applied to the model. The result is a stable signal representing a
time average of the uplink load. Unlike what an ordinary low pass filter would provide,
the filter is still alert on sudden changes in the load level due to the change detection
algorithm used. Furthermore, the filter provides an indication towards where the load is
heading. This information enables more aggressive resource management, which in the
end enables better resource utilization.

A straight forward way of controlling the uplink noise rise level is to measure the
uplink interference power and divide it by a number representing the background noise
power. Two problems with this are that the interference power measurements are often
corrupted by a bias in logarithmic scale and that the background noise power is unknown.
The second application of this chapter is a way of centrally estimate the product of mea-
surement bias and background noise power in the different base stations. This is done by
using advanced signal processing together with measurements of the interference power
and path gain between users and base stations. Simulations indicate that it is possible to
satisfactory estimate the product, despite the fact that both multi path fading and soft han-
dover is considered in the simulations but not in the model used in the estimation process.
Using this method, the base stations can calculate the uplink noise rise by measuring the
uplink interference power and divide it by the estimated product. This gives, not only
sensitivity to variations in the background noise power, but also robustness to the interfer-
ence power measurement bias. Better knowledge of the background noise power enables
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better resource utilization as argued in Chapter 8. Furthermore, if the measurement bias
can be eliminated, the need for it to be small is not as crucialfor good performance.



10
Conclusions

Due to the nature ofcode division multiple access(CDMA), the uplink load of CDMA
cellular radio system should be related to either received or transmitted interference power.
In this thesis, load definitions based on both of these approaches are proposed and rela-
tions between them explored. Intercell interference, i.e., interference received in or caused
by users connected to another cell, is studied in all parts ofthe thesis.

A number of load approximations that explicitly consider the received intercell in-
terference contribution to the uplink load are proposed. The approximations are inde-
pendent of interference power measurements through the useof a model for the received
interference power together with users’ path gain reports.A time averaged load can be
approximated with negligible errors. However, the approximations use sparsely sampled
information and can therefore not relate to momentarily load levels. A resource control
algorithm based on the approximations can thus utilize the system’s soft capacity, but can
not adapt to fast variations in the radio environment.

A system matrix, describing the relation between users’ radio environment, back-
ground noise power and the received interference power is developed and properties of it
are repeatedly used. A first application is to establish a number of relations between the
different uplink load definitions. These include a load definition related to system feasibil-
ity, i.e., whether there exists transmission power levels to support the resource demands.
Relations between the load definitions and the load approximations are also derived. This
analysis yields that iterations involved in the load approximations converge to the true
uplink load under certain requirements on the true system.

It is generally acknowledged that the high control bandwidth required to adapt to
fast variations in users’ radio environment can be achievedthrough decentralized control.
Properties of the system matrix are used to design a number ofdecentralized resource
allocation algorithms. As these algorithms control the amount of transmittedintercell
interference, they are robust in the sense that system feasibility is guaranteed. Simula-
tions indicate that the proposed algorithms provide equal performance as a completely
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centralized algorithm with complete knowledge of all users’ radio environment.
A straightforward way of controlling the uplink load is to measure the amount of

received interference power and divide by the background noise power. Yet another ap-
plication of the system matrix is to estimate the backgroundnoise power based on mea-
sured interference power. The resulting estimation errorsare negligible compared to the
interference power measurement errors.



A
Appendix

A.1 Cellular Radio System Simulator

Properties of the simulator will be described in this section. First, algorithms and pa-
rameters of the radio environment as well as user creation, movement and transmission
patterns will be described. Later, properties of the systemsuch as base station and cell
configuration are given together with resource management algorithms and parameters.

A wide range of algorithms and characteristics of a CDMA system is simulated, from
algorithms operating at a short time scale such as power control and multi path fading to
mechanisms/algorithms naturally operating on a far longertime scale such as user creation
and link configuration. The simulator is an improved versionof the simulator included in
Zander et al. (2001).

A.1.1 Models

Attenuation. The simulator models the total power gain as a product of fourparts;
antenna gain, distance attenuation, shadow fading and multi path fading. The three first
parts are considered fixed for a certain position in the simulator area throughout the entire
simulations. In the factor representing the antenna gain, adirection-dependent attenuation
is modeled. The distance attenuation, or path loss, is parameterized through the path loss
coefficient,α = 3.5 and the shadow fading throughd0 = 100 m andσ = 6 dB in the
models given in Section 3.1. Multi path fading is updated with a function of traveled
distance every simulation step. This is used to model the stochastics in the multi path
fading even for a given point in space. On top of this an extra component is used to
model the performance of the link estimation algorithms of areal system. This factor is
a function of the user’s speed. Characteristics of the multipath fading model is given
in (3GPP, 2000c) under the name of "3GPP Typical Urban". A rake receiver with three
fingers is incorporated in the model.
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User Movement and Transmission Behavior. The mobility model states that the
users move with a constant absolute velocity but with angular variations. There are two
types of transmission behaviors. Both of them use full buffers, i.e., users always have data
to send.

In the first one, admitted users are continuously transmitting between the time of ad-
mission until their they have send all their data. The amountof data to send is randomly
chosen from an exponential distribution. This is an exampleof slow radio resource man-
agement(RRM).

Fast RRM is modeled in the second model, meaning that the users send only when
explicitly told to do so. No specific amount of data is modeledin this case.

A.1.2 Other Features

Power Control The simulator updates the transmission power of all users atevery slot,
i.e., at a rate of 1500 Hz. Feedback delay is implemented and power control errors are
modeled. The update rate is in agreement with what is done in WCDMA (3GPP, 2000b).

Radio Resource Management Session admission is performed every frame. Two
different frame lengths have been used in the simulations. Slow RRM corresponds to a
frame length of 10 ms, and fast RRM corresponds to 2 ms. The shorter frame length is
used in an enhanced version of the WCDMA uplink (Parkvall et al., 2005).

A.1.3 Simulator Utilization

Various parts of the simulator are used for different purposes. Table A.1 summarizes what
parts of the simulator that is used for different simulationpurposes.

Table A.1: Summary of where the different parts of the simulator are used.

Power
Control

Power
Gain
Modeling

Mobility Slow
RRM

Fast
RRM

Section 5.7 x x x x
Section 7.1 x x x x
Section 7.4 x
Section 8.2.3 x
Section 9.2.4 x x x x
Section 9.3.4 x x x x

A.2 Positive Matrices Theory

The characterizing property of positive matrices is that they have only positive elements.
The following theorem can be found in (Gantmacher, 1974, page 66). All inequalities in
this appendix should be interpreted component wise.
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Theorem A.1
A non-negative matrixA always has a non-negative eigenvaluer such that the moduli of
all the eigenvalues ofA do no exceedr. To this ’maximal’ eigenvaluer there corresponds
a non-negative eigenvector

Ay = ry, (y ≥ 0, y 6= 0).

The adjoint matrixB(λ) = (λE − A)−1∆(λ) satisfies the inequalities

B(λ) ≥ 0,
d

dλ
B(λ) ≥ 0 for λ ≥ r.

Another word for moduli is absolute value and∆(λ) is the characteristic polynomial
of A, ∆(λ) = |λE − A|.

Proof: See (Gantmacher, 1974).

Interesting consequences of the theorem related to this work are

• The maximum eigenvalue, i.e., the eigenvalue with largest absolute value, is real
and positive

λ̄(A) = max eig(A) = max | eig(A)| ≥ 0

• The smallest real eigenvalue such that the inequality

Ay ≤ ry

has positive real solutionsy is the maximum eigenvalue.

• Choosingλ = 1 in the theorem yields that

(E − A)−1 =
B(1)

∆(1)
> 0

if the largest eigenvalue,r, is less than one andA is an irreducible matrix.

A strictly positive matrix is always irreducible.

A.3 Schur Complement

TheSchur Complementof a matrix is a useful tool for establishing whether a matrixis
positive definite or not Zhou et al. (1995). Consider the matrix

X =

(
A B

BT C

)

, (A.1)

whereA is a symmetric matrix. Assume that det(A) 6= 0 and define theSchur comple-
mentof X as the matrix

S = C − BT A−1B.

By the construction ofS, it follows that1 X � 0 ⇒ S � 0 if A ≻ 0.
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A.4 Proof of Theorem 6.5

Theorem 6.5 is repeated here for convenience.
Theorem 6.5 (Bound on Uplink Feasibility Relative Load)Consider a noise-flat sys-

tem with connectivity one. The feasibility relative load,Lf is bounded below and above
by

max
j

∑

ℓ∈cj

βtgt
ℓ ≤ Lf ≤ max

j
LIMRC

j .

The two different inequalities will be proven in separate lemmas.

Lemma A.1
In a system with connectivity one,

Lf ≤ max
j

LIMRC
j ,

with equality in a single cell scenario.

Proof: In a system with connectivity one,LIMRC
j can be expressed in vector form as

LIMRC
j =

M∑

i=1

βtgt
i zi,j =

B∑

k1

∑

i∈ck

βi
tgtzi,j =

B∑

k=1

Lk,j .

The greatest approximation can then be expressed as

max
j

LIMRC
j = ||L||1.

Theorem A.4 in Skogestad and Postlethwaite (1996) states that for any matrix norm

max | eig(L)| ≤ ||L||.
According to Theorem 6.2,Lf = maxj | eig(L)| in case of connectivity one.
In case of a single cell scenario, the matrixL =

∑

i βtgt
i , hence so thusLf which proves

that equality holds in a single cell scenario.

Lemma A.2
In a system with connectivity one,

max
j

∑

ℓ∈cj

βtgt
ℓ ≤ Lf ,

with equality in and only in a single cell scenario.

Proof: The cases of single cell and multi cell are studied separately. The equality require-
ment in case of a single cell system has already been handled the proof of Lemma A.1.
Strict inequality is required in the multi cell case. The left hand side of the expression in
the lemma can be reformulated asmaxj Lj,j . As Lj,j is a principal minor ofL in case
of multi cell system,Lj,j is strictly less than the maximum eigenvalue ofL (Gantmacher,
1974). This proves the strict inequality in the multi cell case and claim in the lemma is
proved.

1The notationA ≺ B, whereA andB are matrices, means that the maximum eigenvalue ofA − B is less
than 0.
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Proof: (Theorem 6.5)
The theorem follows from Lemma A.1 and Lemma A.2.

A.5 Proof of Theorem 6.7

Consider the update function in Algorithm 6.1 in the case of connectivity one,

Λj(t, n) = 1 +
M∑

i=1

βtgt
i (t) +

gi,j(t)
∑

k∈Ki

gi,k(t)
Λk(t,n−1)

=

1 +

M∑

i=1

βtgt
i (t)

gi,j(t)

gi,Ki

ΛKi
= 1 +

M∑

i=1

βtgt
i (t)zi,jΛKi

.

As fixed point iterations are considered, the time index is dropped,t, for the target CTIR
values,βtgt

i . Furthermore, the above expression for base stationj can be written for all
base stations in matrix form as

Λ(t, n) = 1 + ZT BKΛ(t, n − 1) = 1 + LT Λ(t, n − 1).

This linear recursion will converge, regardless of initialization point, if the eigenvalues of
L are all inside the unit circle. Finally, the system as the system is assumed feasible,

Lf < 1 ⇒ max eig(L) < 1.

The convergence point is found by inserting a constantΛ, independent of the indexn,
into the above update formula.

Λ = 1 + LT Λ. (A.2)

This equation is the same as (6.3) in case of perfect power control and a noise-flat system.
The convergence point of Algorithm 6.1 thus equals the true noise rise in a noise-flat
system with perfect power control.

A.6 Proof of Theorem 6.8

A.6.1 Preliminaries

Introducef(x) as the update function of Algorithm 6.1,

fj(x)
△

= 1 +

M∑

ℓ=1

βtgt
ℓ

gℓ,j
∑B

k=1
Kℓ,kgℓ,k

xk

, j = 1, 2 . . . , B. (A.3)

Lemma A.3

When Algorithm 6.1 is initialized with aΛ(t, 0) ≤ Λ and applied to a noise-flat feasible
system, the iterations are bounded above by the finite true noise rise vector,Λ.
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Proof: (Lemma A.3)
The theorem states that

f(Λ(t, 0)) ≤ Λ if Λ(t, 0) ≤ Λ.

Note that eachfj(x), j = 1, 2 . . . , B is a non-decreasing function inx. It is thus suffi-
cient to show thatf(Λ) ≤ Λ. Introduce

p̂ℓ(x)
△

=
βtgt

ℓ
∑B

k=1
Kℓ,kgℓ,k

xk

.

Next it is shown that̂pℓ(x) is less than or equal to the true transmission power,pℓ.
The actual power control algorithms are based on measurements of the the user’s

carrier-to-interference ratio(CIR), γℓ, instead of its CTIR. In case of maximum ratio
combining, the sum of the locally received CIR-values is studied. Because of the non-
linear relation between CTIR and CIR,βtgt

ℓ = γtgt
ℓ /(1 + γtgt

ℓ ), a combined CIR equal
to the target CIR does not imply that the combined CTIR equalsthe target CTIR, despite
perfect power control. The implication is true only in systems with connectivity one (i.e.,
when the total received CTIR consist of just one received signal). In general the combined
CTIR is greater than or equal to the target CTIR,

∑

k∈Kℓ

βℓ,k =
∑

k∈Kℓ

pℓgℓ,k

Ik
=
∑

k∈Kℓ

γℓ,k

1 + γℓ,k

≥
∑

k∈Kℓ

γℓ,k

1 + γℓ
=

γℓ

1 + γℓ
= βℓ = βtgt

ℓ ,

whereβl,k andγl,k are the locally received CTIR and CIR, respectively. Solving for pℓ

above yields

pℓ ≥
βtgt

ℓ
∑B

k=1
Kℓ,kgℓ,k

Ik

= p̂ℓ(I) = p̂ℓ(Λ)N.

Dividing the inequality by the common background noiseN and inserting it into (A.3)
yield

fj(Λ) = 1 +

M∑

ℓ=1

p̂ℓ(Λ)gℓ,j ≤ 1 +

M∑

ℓ=1

pℓ

N
gℓ,j = Λj .

Finally, all elements ofΛ are obviously finite since the system is feasible.

Lemma A.4
The update function of Algorithm 6.1,f(x), is astandard interference functionas defined
in Yates (1995).

See Section A.6.3 for an introduction to standard interference functions.

Proof: The statement follows by simply checking thatf(x) complies with the require-
ments of a standard interference function,

• Positivity This property is obvious considering thatf(x) represents a noise rise
level.
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• Monotonicity Assumex′ ≥ x and study the denominator of an arbitrary userℓ’s
contribution to the sum in (A.3),

B∑

k=1

Kℓ,kgℓ,k

x′
k

≤
B∑

k=1

Kℓ,kgℓ,k

xk
.

Since the denominator of term in (A.3) is either unchanged ordecreased, user each
userℓ’s contribution is either unchanged or increased. Thus,

fj(x
′) = 1 +

M∑

ℓ=1

βtgt
ℓ

gℓ,j
∑B

k=1
Kℓ,kgℓ,k

x′

k

≥ 1 +

M∑

ℓ=1

βtgt
ℓ

gℓ,j
∑B

k=1
Kℓ,kgℓ,k

xk

= fj(x), j = 1, 2 . . . B.

• Scalability It suffices to consider one arbitrary component,fj(x), at a time. For
componentfj(x),

fj(µx) = 1 +
∑

i

βtgt
i

gi,j
∑B

k=1
Kℓ,kgi,k

µxk

= 1 + µ
∑

i

βtgt
i

gi,j
∑B

k=1
Kℓ,kgi,k

xk

< µ

(

1 +
∑

i

βtgt
i

gi,j
∑B

k=1
Kℓ,kgi,k

xk

)

= µfj(x).

The inequality is true sinceµ is greater than one.

A.6.2 Proof of Theorem 6.8

Proof: (Theorem 6.8)
The theorem claims that there is a solution,x, to the equationx = f(x) if the system
is feasible. According to Lemma A.3 the iterations in Algorithm 6.1 are bounded by the
compact, convex setC = {x ∈ R

B : 1 ≤ xj ≤ Λj}, if initialized with xj(0) = 1∀j and
applied to a noise-flat feasible system. Furthermore,f(x) is a continuous function onC.
Therefore, according to Brouwer’s fixed point theorem (Ortega and Rheinboldt, 1970),
there exists a vector,x0, such thatx0 = f(x0).

According to Lemma A.4, the existence of a solution to the equations and Theorem 2
in Yates (1995) which is stated in Section A.6.3 below, the iterations in Algorithm 6.1
will converge tox0.

A.6.3 Standard Interference Functions

Yates (1995) shows that, given the three conditions in the theorem below, the equilibrium
point x∗ is unique in the entireRn. Furthermore, the convergence is independent of the
initialization point.
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Theorem A.2 (Global Convergence)
Assume that there exist ax∗ such thatf(x∗) = x∗ andf(x) satisfies the following prop-
erties

• Positivity: f(x) > 0

• Monotonicity: Ifx ≥ x′ thenf(x) ≥ f(x′)

• Scalability: For allµ > 1, µf(x) > f(µx).

Then the iterationx(t + 1) = f(x(t)) converges tox∗ for all x(0) ∈ R
n.

The above inequalities should be interpreted component wise.

Proof: See Yates (1995).

A.7 Proof of Lemma 7.2

The schur complement discussed in Appendix A.3 will be used to prove the lemma. Com-
paringX in (A.1) with the extended matrix in Lemma (7.5) yields

A = E, C = Ltgt2E andB = L̄.

Now, sinceA = E ≻ 0, the requirement in the lemma implies

Ltgt2E − L̄T L̄ � 0 ⇔ L̄T L̄ � Ltgt2E.

This means that
λk(L̄T L̄) ≤ Ltgt2, k = 1, 2, . . . B.

As the maximum eigenvalue of a matrix is less than or equal to its maximum singular
value (Golub and van Loan, 1996, page 318) this gives

λ̄(L̄)
△

= max
k

λk(L̄) ≤
√

λ̄(L̄T L̄) ≤ Ltgt.
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