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Abstract—In this paper, the authors will investigate the per-
formance of a loosely synchronized (LS) code-based space-time
spreading (STS) scheme in comparison to that of classic Walsh
code and pseudonoise code-based STS when communicating over
dispersive Nakagami-m multipath channels. Closed-form formu-
las are derived for characterizing the bit-error-rate performance
as a function of the number of resolvable paths L and the number
of users K. Our numerical results suggest that the employment
of LS code-based STS scheme is beneficial in a low-user-load
and low-dispersion channel scenario, where a near-single-user
performance can be achieved without a multiuser detector.

Index Terms—Code-division multiple access (CDMA), Gaussian
approximation, interference-free window (IFW), large area
synchronized (LLAS) codes, loosely synchronized (LS) codes,
Nakagami-m fading.

I. INTRODUCTION

HE underlying philosophy of space—time spreading (STS)

is reminiscent of the operating principles of space—time
coding (STC) [1], where multiple replicas of the same symbol
are mapped to multiple transmit antennas for the sake of
achieving a transmit diversity gain. In the context of STS,
the information to be transmitted may be mapped to multiple
transmitter antennas with the aid of the STS codes proposed in
[2], which were graphically illustrated in [3]. In simple terms,
the STS codes are used for spatially spreading the information
to multiple transmit antennas, again, for the sake of achieving
spatial diversity.

When we consider an STS-assisted direct-sequence code-
division multiple-access (DS-CDMA) scheme communicating
over a nondispersive channel, the employment of orthogonal
spreading codes such as Walsh codes and orthogonal Gold
codes [3] is ideal for the nondispersive synchronous downlink
(DL) channel since the channel will not destroy the orthogo-
nality of the codes when we invoke a matched filter-based rake
receiver at the receiver side. However, classic orthogonal codes,
e.g., Walsh codes, will lose their orthogonality when communi-
cating over a dispersive multipath channel. More specifically,
when the rake receiver coherently combines the different paths’
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energy, it will inevitably combine both the multiple access
interference (MAI) and the multipath interference (MPI) in
case of communicating over a dispersive multipath channel. To
circumvent this problem, the family of loosely synchronized
(LS) codes [4], [5] has been proposed, which exhibits a so-
called interference-free window (IFW). More explicitly, these
codes are capable of suppressing both the MAI and MPI,
provided that these interfering components arrive within the
IFW. Hence, when the dispersive channel’s delay spread does
not exceed the width of the IFW, we can combine all the
paths’ energy without imposing any MAI and MPI interference,
and hence, interference-free CDMA communication becomes
possible without the employment of high-complexity multiuser
detection. Furthermore, we will demonstrate that even when the
channel’s delay spread does exceed the width of the IFW, the
proposed LS code-based STS scheme is capable of outperform-
ing the conventional STS scheme. However, the disadvantage
of the LS code-based STS scheme advocated is that the number
of available LS codes is limited when aiming for a specific
spreading gain G. More explicitly, the number of supported
users and the width of the IFW ¢ must satisfy K (: + 1) < G [4].
To expound a little further, we can achieve a high IFW width
and suppress the interference more effectively when the number
of users supported in the channel is relatively low because the
number of codes exhibiting a high IFW is low. By contrast,
as the number of users increases, the IFW width tends to zero
since all the codes having a wide IFW have been activated, and
hence, the LS code-based STS scheme becomes incapable of
suppressing the MAI and MPL.

Since at the time of writing no in-depth peer-reviewed IEEE
journal paper study exists on the topic of LS code-aided STS
CDMA/multicarrier (MC) CDMA, the novelty of this paper is
that we investigate the performance of an LS code-based STS
scheme in comparison to the benchmarker STS scheme of [2]
when communicating over dispersive Nakagami-m multipath
channels. Since LS codes were described in [4] and [5], whereas
the philosophy of STS was detailed in [2] and [3], here we
refrain from their detailed description.

This paper is organized follows: Section II describes the
system model used, whereas Section III illustrates the detection
of STS signals. Section IV characterizes the achievable bit-
error-rate (BER) performance, whereas Section V discusses our
numerical results. Finally, Section VI offers our conclusions.

A. LS Codes

LS codes [4] exploit the properties of the so-called orthog-
onal complementary sets [4], [6]. To expound further, let us
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Fig. 1. Generating the LS(V, P, Wp) code using the (P x P) = (4 x 4)
WH matrix components (1, 1, 1, 1) and (1, —1, 1, —1). (a) LS code structure.

(b) Generating four LS codes.

introduce the notation of LS(V, P, W) for denoting the family
of LS codes generated by applying a (P x P)-dimensional
Walsh-Hadamard (WH) matrix to an orthogonal complemen-
tary code set of length N, as it is exemplified in the context of
Fig. 1. More specifically, we generate a complementary code
pair by inserting Wy number of zeros both in the center and at
the beginning of the complementary pair, as shown in Fig. 1(a),
using the procedure described in [4]. As mentioned above, the
polarity of the codes ¢y and sy shown in Fig. 1(b) during the
constitution of the LS codes is determined by the polarity of
the components of a WH matrix, namely, by (1, 1, 1, 1) and
(1, —1, 1, —1). Then, the total length of the LS(N, P, Wy) code
is given by Lg = NP + 2W),, and later, we will demonstrate
that the total number of codes available is given by 4P. The
number of these codes having an IFW of Wj chips is P,
which limits the number of users that can be supported without
imposing multiuser interference. Hence, the number of codes
having as long an IFW as possible has to be maximized for a
given code length of Lg = NP + 2W),.

Since the construction method of binary LS codes was
described in [4], here, we refrain from providing an in-depth
discourse, and we will focus our attention on the employment
of orthogonal complementary sets [7], [8] for the generation of
LS codes.

For a given complementary code pair {cg,so} of length N,
one of the corresponding so-called mate pairs can be written as
{c1,s1}, where we have

C1 =8y (1)

s1 = — ¢ 2

where the superscript * represents conjugation. Sy denotes the
reverse-ordered sequence, whereas —sg is the negated version
of sg. Note that in (1) and (2), additional complex conjugation
of the polyphase complementary sequences {cg, So } is required
for deriving the corresponding mate pair {c1, s1 } in comparison
to binary complementary sequences [4]. Having obtained a
complementary pair and its corresponding mate pair, we may
employ the construction method of [4] for generating a whole
family of LS codes. The LS codes generated exhibit an IFW of
length W,. Hence, we may adopt the choice of Wy = N — 1
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Fig. 2. Correlation magnitudes of the LS(4, 4, 3) codes. (a) All four codes ex-
hibit the same autocorrelation magnitude. (b) Cross-correlation magnitudes of

go and go.

to minimize the total length of the LS codes generated while
providing as long an IFW as possible.

For example, the LS(N, P, Wy) = LS(4,4, 3) codes can be
generated based on the following complementary pair [7]:

co=+++- 3)

so = ++—+. “)

Upon substituting (1) and (2) into both (3) and (4), the corre-
sponding mate pair can be obtained as follows:

c1 =85 =+ —++ (5)

S| =& =+———. (6)

The first set of four LS codes can be generated using the
first two rows of a (P x P) = (4 x 4)-dimensional WH ma-
trix, namely, using wog = (+1,+1,+1,+1) and wy = (+1,
—1,41,—1), as shown in Fig. 1(b). Another set of four LS
codes can be obtained by exchanging the subscripts 0 and 1.
Finally, eight additional LS codes can be generated by ap-
plying the same principle but with the aid of the last two
rows of the (4 x 4)-dimensional WH matrix, namely, using
wo = (+1,41,—-1,—1) and wg = (+1,—1,—1,+1). Hence,
the total number of available codes in the family of
LS(N, P,Wy) is given by 4P. More explicitly, there are four
sets of P number of LS codes. Each set has four LS codes,
and the LS codes in the same set exhibit an IFW length of
[—t,+¢], where we have « = min{Wj, N — 1}. The aperiodic
autocorrelation and cross-correlation function pg(7), pjr(7T)
of the codes belonging to the same set will be zero, provided
that we have 7 < (T,. Furthermore, the LS codes belonging to
the four different sets are still orthogonal to each other at zero
timing offset, namely, in a perfectly synchronous environment.
However, the LS codes belonging to the four different sets
will lose their orthogonality when they have a nonzero code
offset. All four different codes in the same set of the LS(4, 4,
3) code family exhibited the same autocorrelation magnitudes,
namely that shown in Fig. 2(a). It can be observed in Fig. 2(a)
that the off-peak autocorrelation R, [7] becomes zero for |7| <
Wy = 3. The cross-correlation magnitudes |R; 1 (7)| depicted
in Fig. 2(b) are also zero for |7| < Wy = 3. Based on the
observations made with regard to the aperiodic correlations, we
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Fig. 3. Transmitter and receiver block diagram of the W-CDMA system using

STS. (a) Transmitter. (b) Receiver.

may conclude that the LS(4, 4, 3) codes exhibit an IFW of +3
chip durations.

II. STS USING INTERFERENCE REJECTION CODES
A. Transmitted Signal

As shown in Fig. 3, the system considered in this paper
consists of U antennas located at the transmitter side. The
binary input data stream having a bit duration of 75 is serial-
to-parallel (S/P) converted to U parallel substreams. The new
bit duration of each reduced-rate parallel substream, which we
refer to as the symbol duration, becomes 15 = UT;. After S/P
conversion, the U number of parallel bits that have a U-fold
higher bit duration are direct-sequence spread using the STS
schemes proposed in [2] with the aid of U number of orthogonal
spreading sequences, e.g., Walsh codes, having a period of UG,
where G = Ty, /T, represents the number of chips per bit, and
T, is the chip duration of the orthogonal spreading sequences.

As described above, based on the recommendations of [2],
we have assumed that the number of parallel data substreams,
the number of orthogonal spreading sequences used by the
STS block of Fig. 3, and the number of transmission antennas
are the same: namely U. This specific STS scheme constitutes
a subclass of the generic family of STS schemes, where the
number of parallel data substreams, the number of ortho-
gonal spreading sequences required by the STS block, and the
number of transmission antennas may take different values.
However, the study conducted in [2] has shown that the number
of orthogonal spreading sequences required by STS is usually
higher than the number of parallel substreams. The STS scheme
has an equal number of parallel substreams, orthogonal STS-
related spreading sequences, and transmission antennas, and
constitutes an attractive scheme since this STS scheme is capa-
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ble of providing maximal transmit diversity without requiring
extra STS codes [2]. Note that for the specific values of U =
2,4, and 8, the aforementioned attractive STS schemes have
been specified in [2]. In this section, we only investigate these
attractive STS schemes.

Based on the philosophy of STS as discussed in [2] and
referring to Fig. 3(a), the transmitted signal of the kth user can
be written as

Ec(t)BU(t) X cos(2m f.t) @)

sk(t) = g

where P represents each user’s transmitted power, which is
constant for all users, si(t) = [sg1(t) sg2(t) -+ sgu(t)] rep-
resents the transmitted signal vector of the U transmission
antennas, while c(¢) and f. represent the DS scrambling-based
spreading waveform and the carrier frequency, respectively.
In (7), the vector c(t) = [c1(t) ca(t) -+ cy(t)] is constituted
by the U number of spreading waveforms assigned for the STS
block, where ¢;(t) = Z;]:% ci;Pr.(t —jTc), i=1,2,...,U
denotes the individual components of the STS-based spread
signals, and {c;;} represents a spreading sequence of period
UG for each index 4, while Pr, (t) is the rectangular chip wave-
form spanning the chip interval [0,7]. In this paper, we will
consider two different STS schemes. The benchmarker arrange-
ment is the traditional STS scheme of [2], which is employed,
e.g., in wideband CDMA (W-CDMA). In this scheme, c;(t)
can be expressed as c¢;(t) = w;(t) @ PN(t) = Z?:Go(w” ®
pij) Pr,(t — jT.), where w;(t) = 3205 wi; Pr, (t — jT.) de-
notes the unique user-specific Walsh spreading sequence
used by the STS scheme of Fig. 3, whereas PN(t) =
Zgg) pi; Pr, (t — jT¢) is the random cell-specific pseduonoise
scrambling sequence. Hence, we have ¢;; = w;; ® p;j, and ¢;;
may also be modeled by a random spreading sequence. The
employment of the PN scrambling sequence in combination
with the Walsh code allows the system to reuse the user-specific
Walsh codes in adjacent cells and reduce the MAI. In contrast
to the benchmarker, in our proposed scheme, STS is carried
out using the family of interference rejection LS codes. In
this scheme, the spreading signature waveform ¢;(¢) can be
expressed as ¢; (t) = LS;(t) = Z;J:% LS;;Pr,(t — jT.), where
LS;(t) denotes the ith LS spreading signature waveform. More-
over, we do not impose PN code-based scrambling on the LS
STS codes because this would destroy their IFW. Hence, for
the sake of preserving the IFW of the spreading codes, the STS
scheme using LS codes refrains from invoking the conventional
scheme’s scrambling operation. It is worth noting that the
omission of the PN code-based spreading does not constitute
a problem in conjunction with LS codes since they exhibit an
IFW, and hence, they are more immune to both MAI and MPI
than the Walsh codes. It has to be noted, however, that owing to
the absence of the PN scrambling code, the amount of intercell
interference is expected to be higher especially because the
adjacent-cell interference is likely to arrive outside the IFW,
where the cross correlation of the LS codes is higher than that
of the cell-specific PN scrambling codes. Still considering (7),
By (t) represents the (U x U)-dimensional transmitted data
matrix created by mapping U input data bits to the U parallel
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substreams according to the specific design rules of [2], so
that the maximum possible transmit diversity is achieved while
using relatively low-complexity signal detection algorithms.

B. Channel Model

The U number of parallel signals sj(t) = [sk1(t) sk2(t)

- sy (t)] are transmitted by the U number of antennas
over frequency-selective fading channels, where each parallel
signal experiences independent frequency-selective Nakagami-
m fading. The complex lowpass equivalent representation of
the impulse response experienced by the uth parallel signal of
all users is given by [9]

L

RU(E) =Y hitd(t—7) exp (j¢}) ®)

=1

where hj', 7, and ;' represent the attenuation, delay, and
phase shift of the /th multipath component of the channel,
respectively. Without loss of generality, we assume that we
have 7, = (I — 1)T., while L is the total number of resolvable
multipath components, and §(t) is the Kronecker delta function.
We assume that the phases {t}'} in (8) are independent identi-
cally distributed (i.i.d.) random variables uniformly distributed
in the interval [0, 27), while the L multipath attenuations {h}'}
in (8) are independent Nakagami random variables having a
probability density function (pdf) of [10]-[12]

p (i) =M (hit,mf™, 0F)

2mm R2m71 6(7m/Q)R2

M(R,m,Q):W

€))

where I'(-) is the gamma function [9], and m,(;l‘) is the
Nakagami-m fading parameter, which characterizes the sever-
ity of the fading over the /th resolvable path [13] between the

uth transmission antenna and user k. Specifically, ml(“) =1

()

represents Rayleigh fading, m; ’ — oo corresponds to the con-

ventional Gaussian scenario, and ml(") = 1/2 describes the so-
called one-sided Gaussian fading, i.e., the worst-case fading
condition. The Rician and lognormal distributions can also be
closely approximated by the Nakagami distribution in con-
junction with values of ml(") > 1. The parameter Q}* in (9) is
the second moment of h¥, i.e., we have Q¥ = E[(a})?]. We
assume a negative exponentially decaying multipath intensity
profile (MIP) given by }' = Qe =1 5 >0, where QY is
the average signal strength corresponding to the first resolvable
path, and 7 is the rate of average power decay.

We support K synchronous CDMA users in the system
and assume perfect power control. Consequently, when the K
users’ signals obeying the form of (7) are transmitted over the
frequency-selective fading channels characterized by (8), the
received complex lowpass equivalent signal at a given mobile
station can be expressed as

K L

R(t) = Z\/gc(t—Tl)BU(t—Tz)hl + N(t) (10)

k=11=1
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where N (t) is the complex-valued lowpass-equivalent additive
white Gaussian noise (AWGN) having a double-sided spectral
density of Ny, while

hi exp (j4;)
h = hi exp (31[}12)

hY exp (ju))

represents the channel’s complex impulse response in the
context of the kth user and the [th resolvable path, where
Y = ¢ — 2w f.7;. Furthermore, in (10), we assumed that the
signals transmitted by the U number of transmission antennas
arrive at the receiver antenna after experiencing the same set
of delays. This assumption is justified by the fact that, in
the frequency band of cellular systems, the propagation delay
differences among the transmission antenna elements are on
the order of nanoseconds, while the multipath delays are on
the order of microseconds [2], provided that U is a relatively
low number.

1=1,2,....,L (1D

C. Receiver Model

Let the first user be the user-of-interest and consider a
receiver using space—time despreading as well as diversity com-
bining, as shown in Fig. 3(b), where the subscript of the refer-
ence user’s signal has been omitted for notational convenience.
The receiver of Fig. 3(b) carries out the inverse processing
of Fig. 3(a), in addition to multipath diversity combining. In
Fig. 3(b), the received signal is first downconverted using the
carrier frequency f., and we assumed that the receiver is ca-
pable of achieving near-perfect multipath-delay estimation for
the reference user. The descrambled signal associated with the
lth resolvable path is space—time despread using the approach
of [2], which will be further discussed in Section III, to obtain
U separate variables {Z1;, Za;, ..., Zy;} corresponding to the
U parallel data bits {b1, b, ..., by}, respectively. Following
space—time despreading, a decision variable is formed for each
parallel transmitted data bit of {by,bs,...,by} by equal-gain
(EG) diversity combining the corresponding variables associ-
ated with the L number of resolvable paths, which can be
written as

L
Zy=3 Zu, u=12..U (12)

1=1
Finally, the U number of transmitted data bits {by,bo,...,by}

can be decided based on the decision variables {Z, }7_; using
the conventional decision rule of a BPSK scheme.

Above, we have described the transmitter model, the channel
model, as well as the receiver model of W-CDMA using STS.
Let us now describe the detection procedure of the W-CDMA
scheme using STS.

III. DETECTION OF STS SIGNALS

Letd; = [dy doy -+ dyg)T, 1=1,2,..., L—where T de-
notes the vector transpose—represent the correlator’s output
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variable vector in the context of the Ith (I =1,2,...,L) re-
solvable path, where
UTy+1
dy = R(t)cy (t — m)dt. (13)

Ti

When substituting (10) into (13), it can be shown that

dut = V2PTy, [au1byih] exp (jU}) + aubushi exp (ji7)

+ .o+ awwbuohi exp (ju7)] + Ju(0),
(14)

Ju() = Jsu(D) + Iara(D) + Nu(),  w=1,2,...,U (15)

and Jg, (1) is due to the multipath-induced self-interference of
the signal-of-interest inflicted upon the [th path signal, where
Jgu (1) can be expressed as

- > \E

Jj=1,j#l
UTy+1;
x / c(t — 7;)By(t —

Ti

JSu

i) hjc,(t —7)dt.  (16)

Jaru (1) of (15) represents the multiuser interference inflicted by
the signals transmitted simultaneously by the other users, which
can be expressed as

JM“ ZZ \/ U2
k=2 j=1
UTy+1

x / c(t — 7;)By(t —

Ti

mihje,(t —m)dt (17)

and, finally, IV, (1) of (15) is due to the AWGN, formulated as

UTy+1

N (1) = N (t)eu(t — n)dt (18)

TI

which is a Gaussian distributed variable having a zero mean and
a variance of 2U NyTy.

Let J(1) = [J1(I) J2(I) --- Jy(1)]T. Then, the correlator’s
output variable vector d; can be written as

d, = V2PTyByh +J(I), 1=1,2,....,L (19

where By is the reference user’s (U x U)-dimensional trans-
mitted data matrix when we ignore the time dependence, while
h; is the channel’s complex impulse response between the base
station and the reference user, as shown in (11) in the context
of the reference user.
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Attractive STS schemes have the property [2] of Byh; =
Hy b, ie., (19) can be written as

d;, = vV2PT,Hyb + J(Z) (20)

where b = [by by --- by]” represents the U number of trans-

mitted data bits, while Hy is a (U x U)-dimensional matrix

with elements from h;. Each element of h; appears once and

only once in a given row and also in a given column of the
matrix Hy [2]. The matrix Hy can be expressed as

0411(5) 0412(5) alU(?
Hy (1) = 0421.( ) 0422.( ) azr{( ) e
avi(l) ava(l) ayu (1)

where «a;;(l) takes the form of d;;h]" exp(jy]"), and d;; €
{+1,—1} represents the sign of the (,;)th element of Hy,
while A" exp(j1)]") belongs to the mth element of hy;.

It can be shown furthermore with the aid of the analysis
provided in [2] that the matrix Hy () has the property of
Re{HIJ(l)HU(Z)} =hjh; - I, where T denotes the complex
conjugate transpose, and I represents a (U x U)-dimensional
unity matrix. Letting h,({) denote the uth column of Hy (1),
the variable Z,; in (12) can be formulated as [2]

Zuy =Re{h()d;}

U
= V2PTib, S Ih + Re {R,(1)I(1)}

u=1

u=1,2,...,U. (22)
Finally, according to (12), the decision variables associated
with the U parallel transmitted data bits {by, b, ..., by} of the
reference user can be expressed as

Zu = V2PTyb, ZZ\W +ZRe{hT 0},

=1 u=1

u=12,...,U (23)
which shows that the receiver is capable of achieving a diversity
order of UL, as indicated by the related sums of the first term.

Above, we have analyzed the detection procedure applicable
to W-CDMA signals generated using STS. Let us now derive
the corresponding BER expression.

IV. BER ANALYSIS

In this section, we derive the BER expression of the STS-
assisted W-CDMA system by first analyzing the statistics of
the variable Z,,, u = 1,2, ..., U, with the aid of the Gaussian
approximation [14].! According to (23), for a given set of

IBefore proceeding further, we would like to note that the validity of the
Gaussian approximation has been verified by our simulations, although these
results are not explicitly shown in this paper for reasons of space economy.
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complex channel transfer factor estimates {h}'}, Z, can be
approximated as a Gaussian variable having a mean given by
E[Z.] =

L U
V2PTyb, > > |h? (24

=1 u=1

Based on the assumption that the interferences imposed by the
different users, by the different paths, as well as by the AWGN
constitute independent random variables, the variance of Z,,
may be expressed as

2
Var[Z,] = (Z Re {hT })
L 2
= > B[(Re {ml0I0})]
= {
Substituting h,, (1), which is the uth column of H, () in (21),
and J(1) having elements given by (15) into the above equation,

it can be shown that for a given set of channel estimates {h}'},
(25) can be simplified as

Iw)*|- (25)

l\D\»—l

1 L U
var(Z,) = 23 S P E (.00
=1 u=1
L U
:% S b Var [7,(1)] (26)
=1 u=1

where J,, (1) is given by (15). In deriving (26), we exploited the
assumption of Var[.J;(1)] = Var[J2(l)] = - - - = Var[Jy (I)].

A. STS-Assisted CDMA Using LS Codes

Having characterized the various sources of interferecne, let
us now demonstrate that with the advent of having an IFW,
the LS codes are capable of suppressing both the MAI and
MPI. More specifically, only the paths that fall outside the [IFW
will impose MAI and MPI on the decision. We assume having
Tirw = (T, and the jth path will inflict interference upon the
lth finger of the rake receiver only if we have

|7’j—7'l|>LTC (27)

which corresponds to

lj—1| > (28)

Let us first consider the effect of MPI, Similarly to the bench-
mark of [2], it can be shown for the proposed LS code-based
system that Js,(I) defined in (16) is also constituted by U?
terms, and each term takes the form of

L 5p UTy+1
Jsu(l) = Z o2 / Cm (t = T5) Qmn b (T — T5)
uﬁ\lw i

x hj exp (jw;?) cu(t —m)dt.  (29)
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If we define the partial autocorrelation coefficient as

75—
Pmm (J, 1) = T, Cm (t)em (t— |75 — 7|) dt (30)
0
1 UTy
Qm,m(jal) :Tn Cm(t)cm (tf |Tj 7Tl|)dt (31)
|75 =1l

then the integral in (29) can be expressed as

UTy+7;

Em(t — Tj)cu(t — 1) by (t — 75)dt

I

= (pmm(jv l)b[fl] + Qmm(ja l)b[O]) UT,. (32)

Therefore, the corresponding MPI variance of Jg, (1), u =
1,2,...,U can be expressed as

L
Var [T (0] = > {20977 [2,,5,0) + 62, )] §

[G=11>
x 2E,T),
L
= > {2 2,30 + @] |
|j£?\l>t
x 201 B, Ty, (33)

For convenient formulation and comparison with the bench-
marker STS scheme of [2], we define Yg(l) = GU S5 -

151>
22 (j.1) + 02,,,(j,1)], which is the MPI reduction
factor for the Ith path, owing to the employment of LS codes.
Then, the MPI variance of Var[Jg,,({)], which includes a total
of U? number of Var[Jy, ()] terms, can be approximated as

Var [JSu(l)]H = Ts(l)leEbTbU/G (34)
Having characterized the MPI, let us now focus our attention
on the effects of MAI. Similarly to (30) and (31), we define the
partial cross-correlation coefficients as

75—l
pum(]v l) UTb cu(t)cm (t - |Tj - 7-l|) dt (35)
0
UT
0um(4,1) = T cult)em (t—|mj — m|) dt. (36)
75—
Hence, the integral in (17) may be expressed as
UTy+1
em(t — T5)eu(t — 1) b (t — 7)dt
Tl
= (Pum (3, Dbm[—1] + 0um (J, Dbm[0]) UT}.  (37)
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Similar to the benchmarker of [2], in the LS code-based STS
scheme, the MAI term, namely Jps,(l) defined in (17), also
consists of U? terms, and each term takes the form of

K L UTy+11

mu Cm(t - Tj)ammbmn (t - Tj)

[i—t> i
x hsexp (j9) cu(t — 7)dt  (38)
while the variance of the MAI J,,,,, (1) can be expressed as

40, E, Ty, Z Z

m=
m#u \; z|>,

—(3— 1)71 m + Qum] ) (39)

Similarly to the MPI reduction factor, we define the MAI
reduction factor as Y ()= (GU/(K — ))Zn 1 Z v

l7— H>
+ 02,,]. Then, the MAI variance Var[J Mu(l)]
of the proposed LS code-based STS scheme, which includes
a total of U? terms of the form Var[J,,, ()], can be approxi-
mated as

2e~=Dn[p2

Var [Jara (D = Tar (1) x 2(K — UL E,T,U/G.  (40)

B. Probability of Bit Error

Having characterized the MAI and MPI variance, let us
now quantify the achievable BER performance of the proposed
system. Based on analysis [2], [15], for the traditional Walsh-
code-based STS, the variance can be expressed as

UK BTy [q (L, e "= 1)]
o :

Var [J,,(1)] = 2NoUT;, +
(41)
By contrast, the corresponding variance of J,(I) of the LS

code-based STS scheme can be expressed with the aid of
(15) as

Ys(1)20, BT, U

€]
Yo (D)(K
oYUt

Var [J, (1)] = 2NoUT, +

—1)20, E,TyU

e (42)

Let us now assume that the rake receiver is capable of com-
bining a maximum of L p paths’ energy, owing to its complexity
limitation. Then, the variance of Z, can be expressed as

1 U

ZZ |h|? x Var [J

llul

Var[Z w(D)] 43)

for a given set of channel estimates {h;'} using (24). Hence,
the BER conditioned on h}' for u=1,2,...,U and [ =

1,2,..., Ly can be written as
E2[Z,] \
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where Q(z) represents the Gaussian () function, which can
also be represented in its less-conventional form as Q(x) =
(1/7) [T/? exp(—(22/2sin® 6))d6, where x>0 [13], [16].
Furthermore, 27, in (44) represents the output signal-to-
interference-plus-noise ratio (SINR) experienced at the [th fin-
ger of the rake receiver for the uth STS antenna.

In both the Walsh-code-aided [2] and in the LS code-based
STS scheme, ~;,, of (44) is given by

_ (EBlza)® ()
Yiu = Var [ (1)] =Y+ ér :

(45)

However, in the Walsh-code-based STS scheme of [2], 7, is
given by

1
’Yl07U

KloTm) —eV] | (QlEb>1 h (46)

G Ny

By contrast, in the LS code-based STS scheme, 7;. can be

eXpI‘eS Sed as
( >
Z\[O

where the MPI and MAI reduction factors Tg(I) and Y/ (1),
respectively, reflect how much interference is suppressed for the
[th path with the advent of the IFW, which is mainly determined
by the width of the IFW and by the number of resolvable paths,
ie.,bycand L.

The average BER, i.e., P,(F), can be obtained by averaging
the conditional BER expression of (44) over the joint pdf of
the instantaneous SNR values corresponding to the L mul-
tipath components and to the U transmit antennas {7, : | =
1,2,...,Lr; u=1,2,...,U}. Since the random variables
{Viw:1=1,2,...,Lg; u=1,2,...,U} are assumed to be
statistically independent, the average BER can be formulated
as [17]

1

_ Ts(l) | (K-1)Tn()
Yie = U

-1
a + G 47

Tr/ZLR U
/ T TI 250 (48)
I=1u=1
where we have
Vlu
Ilu ’YZua /eXp - )p"/lu (’Ylu)dfylu (49)

0

Since both v, =7, - ((h#)?/Q1) and h{ obey the
Nakagami-m distribution characterized by (9), it can be shown
that the pdf of ~;,, can be formulated as

Do () = (W)m 1" o <_mmu
" u) = | = p—
" leu F(ml) Wlu

= e "D forl =1,2,..., L.

)a %uZO

(50)
where 7,
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Upon substituting (50) into (49), it can be shown that [13]

mi sin? 0

my
—_— . 51
Fiw + m} sin? 9) D

L1 (V1us 0) = (

Finally, upon substituting (51) into (48), the average BER
of the STS-assisted W-CDMA system using U transmission
antennas can be written as

By /ﬁ ﬁ <m7811129>m7 & (52)
b N + mi sin? 0

l=1u=1

which shows that the diversity order achieved is LrU, namely
the product of the diversity due to STS and the diversity
contributed by the rake receiver. Furthermore, if we assume that
my is independent of w, i.e., that all of the parallel transmitted
signals experience an identical Nakagami fading, then (52) can
be expressed as

_ mysin®f sin® 0 m
/ H do.  (53)
V1w + My sin® 0

V. NUMERICAL RESULTS

Having characterized the analytical performance of the sys-
tem, let us now consider the achievable BER performance.
Staniczak et al. [4] concluded that when using LS codes, the
width ¢ of the IFW and the number of users K has to obey the
following:

t—1)K <QG. (54)
Furthermore, LS codes require W, number of zero-valued
chips, which are inserted in the beginning and center of the
code sequence for creating the IFW. In our scenario, the
LS(N, P,Wy) =LS(4,32,4) codes having a length of Lg =
NP + 2W, = 136 were invoked, and their effective spreading
gain was Lg = NP = 128 since the zero-valued chips do not
include the spreading gain. For the sake of maintaining the same
chip rate and same spectral efficiency for both STS schemes, we
set the spreading gain of the traditional STS-assisted CDMA
system to G’ = NP + 2W, = 136. Furthermore, for the sake
of simplicity, we assume that all paths have the same Nakagami
fading parameter, i.e., m; =mand!l =0,..., L, — 1.

We assume that the chip rate is 1.2288 M chip/s, the
channel’s delay spread is negatively exponentially distributed
having a uniformly distributed mean delay in the range of
[0.3,3] ps [18], and we assume that both the random and
large-area synchronized (LAS) code-based systems have a chip
rate of 1.2288 M chips. The number of resolvable paths is
L,=|7/T.] +1=4, where we have 7 =3 us. Both the
traditional STS and the LS code-based STS schemes supported
K = 32 users, and the width of the IFW of the LS codes was
t = 3. We can see from Fig. 4 that the LS code-based STS
scheme exhibits a significantly better performance than the
traditional Walsh-code-based system having the same diversity
order of LrU. The reason that the LS code-based STS scheme
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0 G=128, K—32 U=2, m=1,1n=0.2, 1=3 L=4

— Walsh codes
------ LS codes

BER

0 5 10 15 20 25 30
Average SNR per bit expressed in dB

Fig. 4. BER versus SNR per bit (E}/No) and performance comparison
between the Walsh-code-based and LS code-based STS transmit diversity
schemes having the same diversity order of L g - U when communicating over
a Nakagami-m (m = 1) fading multipath (L = 4) channel evaluated from
(53) by assuming that the average power decay rate was n = 0.2. The remain-
ing system parameters are listed at the top of the figure.

outperforms the traditional STS scheme is that the MAI and
MPI are reduced as a benefit of using LAS codes, which
was quantified by (53). Fig. 5 characterizes the achievable
performance of these two schemes communicating over differ-
ent fading channels associated with different Nakagami fading
parameters. More explicitly, when we have m = 1, we model
a Rayleigh fading channel, m = 2 represents a Rician fading
channel, while m — oo corresponds to an AWGN channel.
From this figure, we can observe that the LS code-based STS
scheme exhibited a better performance than the traditional
STS scheme regardless of the value of m. More specifically,
provided that we have L,, = 4, the LS code-based STS scheme
outperformed the traditional STS scheme when communicating
over different Nakagami multipath fading channels.

Fig. 6 shows the performance of these two systems
for transmission over different dispersive channels having
L =4,...,12 resolvable multipath components but assuming
that only L, = 3 of these components were combined by the
rake receiver owing to its limited affordable complexity. From
Fig. 6, we may conclude that the LS codes are effective when
the number of resolvable paths is relatively low, for example,
when we have L = 4. When L is increased to 8, the LS code-
based STS scheme only has a slight gain over the traditional
STS scheme, while when L is increased to 12, the LS code-
based STS scheme performs slightly worse than the traditional
STS scheme. The reason for this performance erosion is that
many of the paths will be located outside the IFW when L,, is
high, and both the autocorrelation and cross correlation of the
LS codes outside the IFW are higher than those of the random
codes. Hence, many of the multipath components arrive outside
the IFW when L is high, which inevitably will increase both
the MAI and MPI. However, the same LS codes may be reused
in the interfering cells since their autocorrelation is also zero
within the IFW. As far as the employment of the cell-specific
scrambling codes of the 3G systems is concerned, their role
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G=128, K=32, U=2,1=0.2,1=3, Lr=3’ L=4
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103}
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0 5 10 15 20 25 30
Average SNR per bit expressed in dB
Fig. 5. BER versus SNR per bit (E},/Np) and performance comparison

between the Walsh-code-based and LS code-based STS transmit diversity
schemes when communicating over various Nakagami-m fading multipath
(L = 4) channels, where L, =3 out of the L =3 available paths were
combined by the rake receiver. The remaining system parameters are listed at
the top of the figure.

G=128, K=32, U=2, m=1,1=0.2, =3, Lr=3

— Walsh codes
- LS codes

10 T T T T

BER

0 5 10 15 20 25 30
Average SNR per bit expressed in dB

N
oI
(8]

Fig. 6. BER versus SNR per bit (E},/No) and performance comparison
between the Walsh-code-based and LS code-based transmit diversity schemes
and the conventional rake receiver arrangement when communicating over
different dispersive Nakagami-m channels having L = 4, 8, and 12 resolvable
paths but only combining L g = 3 of them, owing to the maximum complexity
limitations.

is replaced by using cell-specific LA codes in the LAS 2000
CDMA system proposal [19], which allows the system to retain
an IFW.

To circumvent the performance limitation of the proposed
system in case of high delay spreads, we finally introduce the
concept of MC LAS DS-CDMA, which allows us to extend
the IFW duration by a factor corresponding to the number of
subcarriers. Fig. 7 demonstrates the achievable performance of
single-carrier (SC) LS code-assisted STS and MC LS code-
based STS for a 3.884 M chips/s system. From this figure,
we may conclude that the LS code-based STS-assisted MC
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G=128, K=32, U=2, m=1,1=0.2, 1=3, Lr <3
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Fig. 7. BER versus SNR per bit (E},/Np) and performance comparison

between the Walsh-code-based and LS code-based transmit diversity schemes
and the conventional rake receiver arrangement when invoking MC CDMA,
where the number of subcarriers Us is 1, 2, 4, and 8, respectively. Furthermore,
only Lrp = 3 path have been combined, owing to the maximum complexity
limitations imposed.

0 G=128, K=32, U=2, m=1,11=0.2, =3, L =3, L=4
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Fig. 8. BER versus SNR per bit (Fp/No) and performance comparison

between the Walsh-code-based and LS code-based STS transmit diversity
schemes as a function of the number of users K. The remaining system
parameters are listed at the top of the figure.

DS-CDMA scheme is capable of achieving the best perfor-
mance tradeoff by selecting the optimum number of subcarriers
U, according to the channel’s delay dispersion 7¢},. For exam-
ple, we may conclude from Fig. 7 that the MC LAS DS-CDMA
system using U; = 4 subcarriers exhibited the best tradeoffs in
a scenario having a delay spread of 7., = 3 us.

From Fig. 8, we can observe that if the system’s user load
is high, the LS code-based STS scheme will have no advan-
tage over the traditional Walsh-code-based STS scheme of [2],
which is caused by two factors. First, the number of LS codes
having an IFW of : = 3 is limited. For example, when we
consider G = 128, only 32 LS codes have an IFW of + = 3,
and when the number of users K exceeds 32, the width of
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the IFW will be reduced to zero since even the codes having
¢ =0 will be required for supporting K > 32 users. In this
scenario, the LS code-based STS scheme becomes incapable
of effectively suppressing the MAI and MPI. Second, it may be
shown that the cross correlation of LS codes outside the [FW
is higher than that of the random codes; hence, LS codes may
impose slightly increased interferences when the number of
users K is increased. Therefore, the LS code-based STS scheme
is more effective in low-user-load scenarios, i.e., when we have
K <G/J/s.

VI. CONCLUSION

The proposed LS code-based STS scheme exhibited a signif-
icantly better performance than that of the traditional Walsh-
code-based STS scheme [2] when the number of users sup-
ported does not exceed G/3. As the number of resolvable paths
L of the channel increases, the LS code-based STS scheme
only has a slight gain over the traditional STS scheme [2],
owing to the fact that many of the paths arrive outside the
IFW and because the autocorrelation and cross correlation of
LS codes outside the IFW are higher than those of the random
codes. Furthermore, when communicating in a high-user-load
scenario, for example, when we have K = G, the LS code-
based STS scheme may exhibit a worse performance than the
traditional STS scheme of [2].
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