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Abstract— Because of its nonlinear discharge characteristics, predict the dynamic nonlinear battery discharge charsties
the residual electric energy of a battery remains to be an ope which may vary with the discharge rate, depth of discharge,
problem. As a result, the reliability of electric scooters o electric recharging times, temperature, aging etc.

vehicles is lacking. To alleviate this problem and enhancehe At t th K thods f timati
capabilities of present electric scooters or vehicles, wergpose a present, there are many known methods for estimating

state-of-charge learning system that can provide more accate the SOC, and they can be classified as open circuit voltage
information about the state-of-charge or residual capaciy when measurement [1], [2], loaded voltage measurement [3], [4],
a battery discharges under dynamic conditions. The proposk ampere hour accumulation or coulometric measurement [5],
system is implemented by Iearn?ng c_ontrollers, fuzzy neura 161, [7, [8], [9], [10], [11], [12], impedance measuremdg],
networks and cerebellar model articulation controller networks, . L
which can estimate and predict nonlinear characteristics bthe and battery learning model [14], [1_5]’ [16]. The open citcui
energy consumption of a battery. With this learning systempot Measurement can be used to estimate the SOC at no load
only could it give an estimate of how much residual battery condition; and the loaded voltage measurement is suitable f
power is available, but it also could provide users with more constant load current applications. For the electric saoot
use_ful information such as an estimated traveling distanceat EV, both methods cannot provide good estimations, because
a given speed, and the maximum allowable speed to guarantee . . o
safety arrival at the destination. the load current varies W!th the road condition, payload,
and speed. The coulometric measurement uses accumulated
discharge current to estimate the SOC based on a pre-recorde
data describing the relationship between battery diseharg
current and capacity. The pre-recorded data is not valid in
every discharge condition, so methods making use of models
|. INTRODUCTION of fixed parameters to estimate SOC will suffer from loss
of precision when the discharge conditions change over.time

N Taiwan, most of the commercially available electrid "€ impedance measurement needs to measure the frequency
I scooters are powered by four 12-volt lead-acid batteri&&SPonse of the battery to determine its SOC. Because isneed
which are connected in series. These scooters to date h&¥E@ electric circuits and function generators, it is natable
some drawbacks, including high cost, long battery reclmgrgito be implemented in apphcatl(_)ns I|ke.electr|c scopterE‘qis.
time, relatively short traveling distance for each re-geaand 10 Meet the need to provide online calculation of SOC
inadequate feedback information to the user with respect38d increase its estimation accuracy without using extra
the residual battery capacity. The lack of a more reliable giéasurement hardware circuit we propose an SOC learning
accurate electric energy prediction often results in tions SyStém based on a learning mechanism and the coulometric
that the riders unwittingly run out of battery power befdrey Mmeasurement for estimating the SOC of batteries under dy-
reach their destinations or a facility to re-charge theesgtt N@mic conditions. The learning mechanism consists of ayfuzz
This uncertainty as to when the battery power will run oufi€ural network (FNN) [17] and a cerebellar model articolati
could be rather troublesome and therefore hinder the salecgptroller (CMAC) [18], [19], and is used to estimate nonlin
electric scooters. ear discharge behavior of battery under different conalitio

Although lead-acid batteries have been used widely to stgt@d the information is further utilized to modify the result
and supply electric energy, a lot of research is still undsrw calculated by coulometric measurement. This c.ie5|gn is BhOW
searching for a good state-of-charge (SOC) estimation odetd© have an advantage that only a few experimental data is
for specific applications. For an electric scooter or electr"€eded to obtain a better estimate of SOC under all possible
vehicle (EV), the crux in getting a good estimate of the leagonditions.
acid battery SOC is mainly due to lack of effective means to

Index Terms— Battery, state of charge, learning controller,
electric scooter, electric vehicle, fuzzy neural networkcerebellar
model articulation controller.

Il. PROPOSEDSOC LEARNING CONCEPT
All authors are with Institute of Information Science, Aeada Sinica, . .
Taipei, Taiwan. A. Coulometric Algorithm

D.T. Lee is also with the Dept. of Computer Science and Intdiom We will first d ibe th led I .
Engineering, National Taiwan University, Taipei, Taiwatis research was e will first describe the so called coulometric measurement

supported in part by the National Science Council under tren@ NSC94- that was generally used for the SOC estimation.

2213-E-001-004, NSC-94-2422-H-001-0001, and NSC-92&®02-005-  |n this paper, the capacity of a battery means the available
PAE, and by the Taiwan Information Security Center (TWIS@)der the

Grants NSC 94-3114-P-001-001-Y, NSC94-3114-P-001-0088C94-3114- Capacity released from a battery at a certain dischargeorate
P-001-003-Y and NSC 94-3114-P-011-001. discharge current. And when the battery voltage drops below



a cutoff voltagelof, We say its capacity is practically zero. AOY Z ~ AOQP 3)
In the electric scooter application, we use the batteryagmat

at and below which a scooter cannot operate as the cutoff AOZW ~ AOPX )
voltage. Another important factor for estimating SOC is thAccording to Egs.(2), (3), and (4), we have

discharge efficiency, and it is defined as Om — On e

nr OQ B % ©

_ g 1) Cn
Co Thus, a released capaciy,, which is relative tol,, can be

wherel stands for a constant discharge curré@hfor total dis- calculated as
charge time, and’y for the available capacity corresponding C, — Ch,
to a specific reference discharge currént;. The discharge Qm = Qn+ QHT (6)
efficiency described by Eq.(1) represents the ratio of howhmu C,, "
capacity a battery can offer at a given discharge fateith = Q"C_ (7)
respect to a certain capaciy. g
Since the discharge rate varies drastically in the elestaoter ( Co )
or EV application, we need to formulate the relation between = @n (&) (®)
two capacities at their corresponding discharge currétis Co
can be derived from the constant current discharge datarshow _ (%) 0 @)
in Figure 1. In Figure 1(,, and C,, are the total released nr, "

Since values of capacities released from a battery vary with
discharge currents we need a reference discharge current to
transfer the SOC under different discharge currents, a@sketh

Discharged Capacity

Gn Ty values of SOC will be consistent. Thus, we use Eq.(9) to
approximate the instant released capacity as follows.
is N1k is
G Cfity = "= Cffiy) + I(R)AT (10)
N1(k—1)
Ciity = I()AT (11)
Q, AY whereAT is the sampling time intervad?}ig;_l) andC’f(i,j) are

released capacities corresponding to discharge rdfes- 1)

and (k) at the(k — 1)th andkth sampling time.

According to Eq.(10) and (11), we can calculate the SOC
corresponding td,ef at thekth sampling time as

(1) (S
SOC(k) =1 ( CO) (nl(k) (12)

9 w S Time B. State of Health

The state of health(SOH) indicating the degree of aging
Fig. 1. The constant current discharge curves : dischargpdaity versus of g battery is also an important factor which determines
time the accuracy of the estimated SOC. In general, the capacity
N . check is the most accurate method for determining SOH of a
capacities from a battery at discharge currehfs and I pattery, but it is very time consuming [20], [21]. So impedan
re_spe_ctlvely _andOQ and OP_ are the _correSpondlng imemeasurement [13] is a good choice for checking the SOH of
histories of discharged capacities. That is to say thatdtiely 5 pattery. But the impedance measurement needs additional
would releaseC’,(Ah) at I,(Amp) while it would release pargware circuits, which is a disadvantage for the electric
Cr(Ah) at I,,(Amp). The following is in general true thatscooter or EV application. Because the battery aging is an
the battery releases capacity,, > C, at discharge current qpyious phenomenon in the electric scooter application, we
Iy < I,. We can roughly estimate a released capadfy peed to introduce SOH as a variable when estimating SOC.

at discharge ratd,,, by using its value,, at discharge rate The SOH used in our proposed system is defined as
I, in a certain time interval in a linear fashion. By drawing

aline ZY parallel to PQ, we can have an intersection point SOH — Cligs (13)
Y on the lineOQ), and they-coordinate ofY" is Q,,. We can Co
use the following pairs of similar triangles to calculde..  where(;  is the total discharged capacity Ar.

re

AZYR ~ APQS (2) PresumablyC; . = Co, i.e., SOH= 100%, when the battery
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Fig. 2. The structure of the proposed SOC learning System

is brand new. In other words, SOH is an indicator of howarge [31], [32]. For solving this problem, a learning sture
much capacity can be released at the reference dischazgesisting of FNNs and CMAC networks was proposed in
rate after usage, with respect to the initial available capa [33]. It was designed to effectively generalize from theadat
when the battery is brand new. Basically, the coulometkie-I patterns learned to predict information about a nonlinear
algorithms use Egs.(10) and (11) to fix the value of dischdirgdynamic system, which could not be obtained in advance due
capacity and then calculate the SOC. But they use differdntits huge size of learning space.

methods to obtain the correction coefficie%f as described

by Eq.(7) [8]’ [9], [10], [11]. Some .Of these methods US€ 8 " combination of the Coulometric Measurement and Learn-
average discharge current determined by a whole dlschalr'qe Controllers

process as the reference, and others use the referencardisch d
current selected from characteristics of electric sceotar [N general, the dynamic behavior of a battery is nonlinear
vehicles. The former method cannot correct capacity errdfd complex. Therefore, it is by no means an easy task to
when discharge rate changes very drastically. The latter ¢@Ptain an adequate battery model and its parameters agelyurat
only deal with some specific cases, because characteritic® learning controller, however, is capable of tackling High
electric vehicles are almost determined by driving behavid complex dynamics without an explicit model dependence,
users. Moreover, as linear methods were used to fit correct@Nd therefore is an attractive alternative modeling nesiin
coefficients and aging of battery (SOH) problem was n&iynamics of a battery. Moreover, in the electric scootediapp

considered, SOC estimation is thus imprecise in the etectf@tion, it is necessary to downsize the hardware, softveare,
scooter or EV application [12]. physical memory of data storage requirement, so we shall use

the learning structure consisting of an FNN and a CMAC as
the core of our SOC learning system.
To be more specific we propose a combination of the coulo-
There are two well-known types of learning controlleranetric measurement described by Egs. (10), (11) and (12)
artificial neural networks and fuzzy systems. Both are bi@and learning controllers to estimate the SOC. The accuracy
logically inspired and intended to model human experiencé an estimated SOC depends on how accurate the discharge
[22], [23], [24]. The structure of artificial neural netwark efficiency can be estimated. Since the discharge efficiency
is modeled after the organization of the brain, although th& a nonlinear function of discharge rate, residual capacit
similarity between the two is actually slight [23], [25],dR temperature, aging of battery, etc., and it is impossible to
[27]. On the other hand, fuzzy systems are meant to encamt#ain all discharge efficiency data from experiments, weais
pieces of knowledge presented by experts [24], [26], [Z8)].[ learning structure which learns to fit the available experital
However, most of them need to repeat the learning procetasta of discharge efficiency at some specific conditions, and
each time a new pattern is encountered [30]. Otherwisetheen generalizes the discharge efficiency surface to céwer t
neural network will require a huge number of neurons orwahole dynamic state space of a battery. With this learned
fuzzy system will require numerous rules because the legrnidischarge efficiency surface, we can improve the degree of
space needed to handle arbitrary nonlinear dynamics ig quatcuracy of the coulometric measurement. In our electric

C. Learning Controllers



scooter application, the SOC strongly depends on the digeha

current, SOH, and residual capacity. Temperature is also

another important factor, but we only consider the conditio
in which electric scooters are used in an urban area with
negligible temperature effects on batteries.

The conceptual organization of our proposed SOC learning
system is shown in Figure 2. The proposed system includes
a learning mechanism composed of an FNN and a CMAC, a Rule sengn
single FNN, and a coulometric measurement module. Com-
ponents of an input vector to the learning mechanism are win operation
discharge current, residual capacity, and SOH. The comypne R

SOH, is used as the input to the one-dimensional CMAC =

in the learning mechanism, and this CMAC will send the

corresponding FNN weights to the two-dimensional FNN

in the same learning mechanism. According to the FNN

weights and the other two components, discharge current and

residual capacity, of the input vector, the FNN produces an

output, the estimated discharge efficiency, of this learnin

mechanism. This estimated discharge efficiency along wigy 4. The structure of the FNN.
discharge current will be sent to the coulometric measuntme

module to calculate the instant SOC and residual capacity.

According to the estimated residual capacity and the opgfiour learning mechanism, and only use learning contsller
circuit voltage (OCV) of the battery, a single FNN is use¢ estimate SOC [16]. In Figure 3, a battery discharge char-
to estimate the battery SOH. Since the OCV can be usedg@eristics is shown when the battery is discharged at the
predict residual capacity of a battery without the influenfe same discharge current and temperature but with different
its temperature and discharge history [1], [2], [34], itig@0d injtial capacities. We can see that the relationship betwee
indicator for estimating SOH. The only restriction is thaeét pattery voltage and residual capacity is a not a function in
battery must be stabilized for at least two hours in our eélect the inconsistent region as marked in circles in Figure 3, and
scooter application. The present residual capacity and,SQhis means a value of the battery voltage will be mapped to
combined with the sensed discharge current will be used @ger two different values of residual capacities. This kofd
input to the learning mechanism at the next sampling timgaining patterns will lead to diverging of learning proses

The above process will repeat, and thus we can get the va§teconverging to an average value of all desired outputs.
of the dynamic SOC at every sampling time.

In order to avoid having the learning process divergent, we

Defuzzification
(CoA)

(Output membershi
nodes)

Fuzzification

IIl. SOC LEARNING SYSTEM IMPLEMENTATION

Bmzvmwg A. Implementation of the FNN
! - : . ,
Tuiial Capaciy = 50 A An FNN shown in Figure 4 is designed to realize the
135 \ process of fuzzy reasoning by using the structure of a neural
;3 | network. The parameters of fuzzy reasoning are expressed by

Tnconsistent region . the connection weights or node functions of the neural n¢wo
125 /—"“‘\»’ul }, - [17], [35]. The representation of a fuzzy system using a aleur

network enables us to take advantage of the learning céyabil

12

v - of the neural network for automatic tuning of the parameters
115 . in the fuzzy system. In Figure 4, the inputs to the FNN are
( / /\ j the sensed discharge current and residual capacity ctddula

1l o /InitialCangityZSSAh by coulometric measurement module, and the output is the
105 W discharge efficiency. The structure of the FNN adopted here
‘ ‘ consists of five layers of nodes, which are of the same type

10 within the same layer. Each of the five layers performs one

0 10 0 ) 4 9 & stage of the fuzzy inference process, as described below.

Resodl Cgacy () Layer 1: This layer is the input layer, and the inputs are
transmitted to the next layer directly without any compiatat

Fig. 3. Two curves of battery voltage VS residual capacityhatsame dis- In this paper,z; is the discharge currert’’s and z is the
charge current(12.4Amp) and temperature, but differdtiairtapacities(50Ah - rasidual capacit res.

and 35AN) Layer 2: This layer is intended for the input membership

functions, and used to perform the fuzzification procesef t
do not use the loaded battery voltage as one of input vasabfazzy system. The Gaussian function is used as a membership



function. Therefore, we have Layer 4: Using Egs.(17) and (19), the amount of modification

@)\ 2 for m;" is derived as
0(2): exp{ — w (14) (5)
ij U(?) ’ Am(-4) = -8 oF —80
ij J o o0®) am(4)
J

wherem,;;” and a(f) are the mean and the variance, respec- DB
tively, of the Gaussian membership function of tfta term = B — 0(5)) (%) (20)
of the ith input variablex;. ZJ 0; Oj
Layer 3: This layer is intended for the implementation of th@here is the learning rate.

fuzzy rules. Thejth node in this layer represents the firingy|so, the amount of modification fo ) is derived as follows
strength of thejth fuzzy rule, which is defined as a fuzzypy using Egs.(17) and (19).

(2

conditional statement of the form .
, 5 Ac® — or 90
RI :IF x4 is Alj andl'g is Agj, then O(O) is Bj. 9 - ﬁ o0 905) ao_<4)
J
wherez; andz, are input variables)(®) represents the output = B — 0(5))(m(_4) _ 0(5))
variable.A,;, A,;, and B; represent linguistic terms, such as 3) !
small, medium, and large. In this layer, each node also ¢sitpu y 0; 21)
the firing strengtk()f) by performing the fuzzy AND. Zg §4)O§3)
0¥ =min(0), (15) Layer 2: In order to derive the updatessf’’ ando!>, the
Vi ) 60(3) 80(2) 80(2)
. . terms, 29 __ i 5y, and—y, must be first calculated.
whereO (2) is the jth term ofz; in Layer 2, connected to the "00(Y 60( 7 om ( ) o ( )
jth node in Layer 3. Accordmg to Eqs (14) (15) and (17) the results of caltiah
Layers 4 and 5: Layer 4 is intended for the output memberstfe Shown below:
functions, and the Gaussian function is also used as a node o0®) (m.§4) - 0(5))0— )

function for each node in this Layer. Layer 5 is the output (22)

! . 00 ¥ ool
layer, which has as many nodes as there are output variales. J
Figure 4, only one node is needed for the discharge efficiency 303(.3) 1
7. These two layers work together for performing the center W = { ’
of area defuzzification process. Thus, the output of the FNN ij

. (2) L
if Oij .IS the minimum node 23)
0, otherwise.

can be represented as aOZ(J?) 201(32) (zi — mg)) ”
n = 0% (16) m® ()
(4) _(4)y~H(3)
_ 2(my 0705 902 20 (z; — mP)?
(4) ~(3) (17) ) ] (25)
Zj 75 Oj do 1(72) (o (2))3
Wherem§4 and 03(4) are the mean and the variance, respegow, we can derive the amounts of modification fmr( )

tively, of the Gaussian membership function of tfile term of ando by using Egs.(19), (22), and (23)-(25). (11<2) is the
output variableO®) in layer 5. Because the number of rule§nlnlmum node in layer 2,

in Layer 3 and weights for the input and output layers (Layer 3 @
1 and 5) are fixed, the parameters to learn in this FNN ar;m(g) _ —ﬁ( OF ) <ao(5)> (an ) <60ij )
the modifiable weights present on the input links to Layers i d0®) 903 90?2 om?
and 4, which correspond to the input and output membership (i) ) ”(4) "
functions. When the FNN learns the parameters of the input — Blna— 0(5)) (mj -0 )Uj
and output membership functions for generating the digghar 1 5. ool
efficiencyn, an error is first specified in the last layer (Layer S

2 ©))
5). We define this error as y (201-3- (zi —myj )) (26)
(2)\2
1 opy
E = S(na—n)? (18) i)
I ) (90 (902
= —(ng— 0(5))2 (19) Ag®  — 3 OF 00 i i
2 g 200) ) \ 50®) | \ o0?® | \ 952
wheren, represents the desired discharge efficiency obtained i ”4 “
. . . . (m(_ ) _ 0(5))0(_ )
from experiments. This error is then backpropagated tosadju = Blys—0) J j
the parameters from layer to layer sequentially. With this Zj0§4)0§3)

updates of the parameters in Layers 2 and 4, and this will be
developed in the following.

error and some straightforward manipulations, we can deriv (20(2) (i — m(g))2> o
X



attached to the active association cells to produce theubutp

W P.
W \@ We will explain how to store the weightsF’s, of FNN
W S which represent a battery discharge surface, correspgrain
\ - £(S) a certain value of SOH into the CMAC. The input vectois
used for indexing the FNN weight, described as

‘ : s=p (30)

wherep stands for a value of battery SOH.

Via the mappings of the network, the input should cor-
respond to an output response consisting of a desired FNN
weight. Thus, we need to find appropriate CMAC weights to
attach to the active association cellsAirby utilizing the FNN
weight for a value of SOH as training patterns. However, when
the training patterns are stored into the network, the FNN
weight generated by the CMAC may be different from the
desired FNN weight because of memory overlapping in the
association cells in the first mapping from the input vector
Fig. 5. Basic CMAC mappings. to the association cells. Thus, a learning process is needed
to modify the CMAC weights through an updating function
using the difference between the desired FNN weight and that

B. Implementation of the CMAC generated by the CMAC. The updating function is as follows:
The CMAC is a trainable linear network pattern classifier Faq—F
that emulates the behavior of human beings in dealing with Wkl = Wi + 5 - (31)

stimuli and responses [18], [19], [36]. The CMAC computesh & denotes th b £ ing iterati .
control functions by referring to a table rather than by sajv where enotes the number ot ‘earning Ttera !orﬁ;, IS
analytic equations. Function values are stored in a digtib learning ratec is the number of weights contributing to the

fashion such that the value of a function at any point in inpQtPul:wk+1 andwy stand for the CMAC weights before and
space is derived by summing the contents over a num er thekth I_earnmg iteration, respec_nvely, arkly af‘df

of memory locations. A unique feature of the CMAC is tanq for desired a_nd actl_JaI FNN welghts,. respectively. The
mapping algorithm which converts the distance betweentin arning process will term!nate when the difference betwee
vectors into the degree of overlap between sets of data wh r‘éandf is within a certain tolerance..

the function values are stored. Thus, the CMAC serves our

purposes well, because mappings can be provided to genefatd-earning Process for Generating Discharge Efficiency Sur
proper discharge efficiency surfaces for the whole battefgces

dynamic state space based on the finite sets of experimental The process of learning for generating discharge effi-
data used as training patterns. The basis concept behind dkécy surfaces can be divided into two stages. In the first
CMAC can be represented by a pair of mappings shown éfage, the FNN in the proposed learning structure is used to

Figure 5 learn to generate the desired discharge efficiepcgbtained
f:S—A (28) from experiments and indexed by the corresponding diseharg

rate I%** and residual capacitg¢"**. The weight of the FNN,
g:A—P 29) r, provided by the CMAC starts to be updated according to

whereS represents the set of input vectofs represents the th_e error described in Eq.(19_). In the S_eCO“‘?' stage_, the CMAC
set of association cell vectors, aflrepresents the set ofWIII use the updated FNN weigt¥; obtained in the first stage

response output vectors. The first mapping maps the in&ﬁ a training pattern to update its own weights. We repeat

data onto a finite set of intermediate states called as&'mmiatsmgeS one and two until errors decrease under a threshold.

cells. The mapping is generally a fixed relation since it is '5h|s learning process is shown in Figure 6.

process of indexing the input data. The number of units of

A that become excited in response to both different ingits IV. EXPERIMENT

and S; decreases monotonically as the similarity betwégn  The experimental equipment is shown in Figure 7. In Figure
and S; decreases. This arrangement produces generalizatforbatteries under test were sealed lead-acid batterids avit
between nearby input vectors and no generalization betwaating of 12V open-circuit voltage and 50Ah capacity, man-
distant input vectors. The second mapping depends on tifactured by Long Battery Co., Taiwan. The battery testing
values of weights, assigned to every association cell, whisystem used to perform testing cycles was manufactured by
will be modified during the training stage. These weights cddlIGATRON Co., Germany, and the charge and discharge
be adjusted by the difference between the desired output anarents provided ranged between OA and 200A. It is pro-
the produced output. This mapping then sums up the weiglgtemmable by downloading charge or discharge patterns from
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Stage 2 Discharge pattern used to modify initial weights bé tproposed
9 b learning system.

SOH

/|F A. Dynamic Modification
1 E We used the discharge pattern shown in Figure 8 to modify
¢ the initial weights dynamically. This is exploited in ordier
FNN increase the precision of estimation of our system when it is

used under real discharge conditions. This dischargerpatte
used to modify initial weights is determined intuitivelyt i
seems to accelerate a scooter first, then maintain the speed
of the scooter at a certain constant and stop the scooter. Al-
though different modification discharge patterns shoutaliite

Fig. 6. Conceptual organization of discharge efficiencyfemas learning in different precisions of the SOC estimation, we think tifiat

process. modification discharge patterns cover the range of all pessi
discharge current values, the actual prediction errorsilsho
be small.
Notehook P re In each maodification process, the battery was charged when
ﬁ — its steady state voltage is 13.2V, and discharged accotding

the pattern repeatedly until the battery voltage droppédvbe
the cutoff voltage, 10.25V, and all relative data is recdrde
By using the recorded data and an iterative computation, we

can obtain the time history of desired discharge efficiency
Hatton Tests System for dynamic conditions. An iterative computation is used to
L minimize a cost function defined as

c, N ’
o(G)-r(Sa)] e

Thus, the iterative process can be expressed as

RS232

LONG
Battery

En(i) =

1
2

Fig. 7. Experimental equipment

. . O0ENn
di4+1) = nl6) —y——
M ( ) M (i) — e
a PC. A notebook PC with the EMS Windows application g [T I,
software was used to estimate the SOC of batteries, and the = k(@) +V2ENOT (n,ﬁ(i) (33)

EMS software is implemented by using Borland C++ Builde(N-
: ith

We used 98 data sets of constant current discharge to generat dimy

- . . . 6 (0) = m (34)
our training patterns. Every data set included a time hystor
of battery voltage, discharge current, and capacity. The caovhereC, is the discharged capacity when estimated SOC is
responding discharge efficiency and SOH can be calculategto, andC), is the discharged capacity when battery voltage
according to Egs.(1) and (13). All of these data were combings Voyof; 1¢ (i) stands for the desired discharge efficiency at
into training patterns for the initial weights of learninfaur the kth discrete time and théh iterative step;y is step size,
proposed system. Because the initial weights were obtairesnd 7" is sampling time.
from static(constant current) discharge process, we needThe obtained desired discharge efficiency will be used ia tra
modify the initial weights dynamically so as to increase theur EMS, and this modification process is performed when
precision of estimation of our system. values of SOH are0%, 70%, and100%.
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A restriction to perform the modification process is that w
need to collect relative data of a battery from the state wh
it is of full capacity to the state when it is empty, because w
can only make sure that when battery voltage is lower th&m. 12.

B. Testing for EMS

We use four urban drive cycles shown in Figure 11 to test
the proposed EMS, and these drive cycles are CNS-D3029
of Taiwan, EPA75 of the United States, ECE15 of the EEC
nations, and M10-15 of Japan. By using these drive cycles and
dynamic data of the electric scooter we used, we can transfer
these drive cycles into the corresponding power consumptio
cycles shown in Figure 12. It is convenient to do experiments
by using power consumption data in our laboratory. In each
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Fig. 11. Drive cycles (a) CNS-D3029 of Taiwan (b) EPA75 of theited
States (c) ECE15 of the EEC nations (d) M10-15 of Japan
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Power consumption cycles for testing EMS (a) CN®IB of

Veutoft, its SOC is zero. That is why the learning process ﬁiwan (b) EPAT5 of the United States (c) ECE15 of the EEConati(d)

our EMS is very difficult to implement as an on-line process,

10-15 of Japan

because users always recharge their batteries before uhey r
out of the capacities of their batteries.

Figure 9 and Figure 10 show the discharge efficiency surfades13.2V, and discharged according to these drive cycles
before and after the modifications dynamically.

test, the battery is also charged when its steady stategeolta

repeatedly until the battery voltage drops under the cutoff



voltage, 10.25V. The prediction erreris defined as

__ [100(Cy — Cu)
==

Figure 13 shows results of drive cycle testing of CNS-D3029.
In Figure 13(a), the SOC prediction error of EMS is 5.423
%, and the SOC trajectory is smoothly decreasing, so users
can easily determine the timing when the batteries should
be recharged. Figure 13(b) shows the discharge efficiency
generated by our proposed EMS. In Figure 13(c), we can set
the battery voltage varies fast in dynamic operations, so it
is not suitable to be used to estimate battery SOC. Figure
13(d) shows the discharged capacity recorded by using only
ampere hour accumulation, and that the prediction error car
reach 5%. In addition, to show a better performance can
be achieved by the proposed scheme, we test this system b
performing real-time experiment of four drive cycle patter
The test results of another three drive cycles (EPA75, ECE15
and M10-15) are shown in Figure 14, Figure 15, and Figure 16,
respectively. The SOC prediction errors of four drive cgcle
testing at different SOH values, 82.5%, 66%, and 43.2%, are
shown in Figure 17. From results of the experiment, we have
a good average prediction error un@ét in the whole battery

life cycle. In practice, it is recommended that a batteryuitio

be replaced when its SOH is beloWw%, so our proposed
learning system is quite enough to deal with the effect of
decreasing of SOH.

(%) (35)

V. CONCLUSION Fig.

We have proposed an SOC learning system for improvir(%

scooters. Only static data obtained from experiments isl use
as training patterns for the proposed system, and thismyiste
shown to be able to estimate the dynamic SOC accurately. TH3
aging effect is also considered in the proposed systemuiseca 7
the aging problem is very obvious in the electric scooter
or EV application. Moreover, making use of the dynamic
SOC learned by this system, we can obtain a correspondi
allowable traveling distance. A safe speed can be calallate
and provided to the rider, such that the rider can control the
speed of the scooter within a proper range to ensure that thd
scooter can arrive at the destination safely [37]. Expeni@e [10]
results have demonstrated the effectiveness of the prdpose
SOC learning system. (11
As future work, we will consider the effect of temperaturey
and introduce this factor into our learning system for devel

oping a more precise SOC estimating system. [13]
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