
1

State of Charge Estimation for Electric Scooters by
Using Learning Mechanisms

D. T. Lee,Fellow, IEEE,S.-J. Shiah, C.-M. Lee and Y.-C. Wang

Abstract— Because of its nonlinear discharge characteristics,
the residual electric energy of a battery remains to be an open
problem. As a result, the reliability of electric scooters or electric
vehicles is lacking. To alleviate this problem and enhance the
capabilities of present electric scooters or vehicles, we propose a
state-of-charge learning system that can provide more accurate
information about the state-of-charge or residual capacity when
a battery discharges under dynamic conditions. The proposed
system is implemented by learning controllers, fuzzy neural
networks and cerebellar model articulation controller networks,
which can estimate and predict nonlinear characteristics of the
energy consumption of a battery. With this learning system,not
only could it give an estimate of how much residual battery
power is available, but it also could provide users with more
useful information such as an estimated traveling distanceat
a given speed, and the maximum allowable speed to guarantee
safety arrival at the destination.

Index Terms— Battery, state of charge, learning controller,
electric scooter, electric vehicle, fuzzy neural network,cerebellar
model articulation controller.

I. I NTRODUCTION

I N Taiwan, most of the commercially available electric
scooters are powered by four 12-volt lead-acid batteries

which are connected in series. These scooters to date have
some drawbacks, including high cost, long battery recharging
time, relatively short traveling distance for each re-charge, and
inadequate feedback information to the user with respect to
the residual battery capacity. The lack of a more reliable or
accurate electric energy prediction often results in situations
that the riders unwittingly run out of battery power before they
reach their destinations or a facility to re-charge the battery.
This uncertainty as to when the battery power will run out,
could be rather troublesome and therefore hinder the sale of
electric scooters.

Although lead-acid batteries have been used widely to store
and supply electric energy, a lot of research is still underway,
searching for a good state-of-charge (SOC) estimation method
for specific applications. For an electric scooter or electric
vehicle (EV), the crux in getting a good estimate of the lead-
acid battery SOC is mainly due to lack of effective means to
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predict the dynamic nonlinear battery discharge characteristics
which may vary with the discharge rate, depth of discharge,
recharging times, temperature, aging etc.

At present, there are many known methods for estimating
the SOC, and they can be classified as open circuit voltage
measurement [1], [2], loaded voltage measurement [3], [4],
ampere hour accumulation or coulometric measurement [5],
[6], [7], [8], [9], [10], [11], [12], impedance measurement[13],
and battery learning model [14], [15], [16]. The open circuit
measurement can be used to estimate the SOC at no load
condition; and the loaded voltage measurement is suitable for
constant load current applications. For the electric scooter or
EV, both methods cannot provide good estimations, because
the load current varies with the road condition, payload,
and speed. The coulometric measurement uses accumulated
discharge current to estimate the SOC based on a pre-recorded
data describing the relationship between battery discharge
current and capacity. The pre-recorded data is not valid in
every discharge condition, so methods making use of models
of fixed parameters to estimate SOC will suffer from loss
of precision when the discharge conditions change over time.
The impedance measurement needs to measure the frequency
response of the battery to determine its SOC. Because it needs
extra electric circuits and function generators, it is not suitable
to be implemented in applications like electric scooters orEVs.

To meet the need to provide online calculation of SOC
and increase its estimation accuracy without using extra
measurement hardware circuit we propose an SOC learning
system based on a learning mechanism and the coulometric
measurement for estimating the SOC of batteries under dy-
namic conditions. The learning mechanism consists of a fuzzy
neural network (FNN) [17] and a cerebellar model articulation
controller (CMAC) [18], [19], and is used to estimate nonlin-
ear discharge behavior of battery under different conditions,
and the information is further utilized to modify the results
calculated by coulometric measurement. This design is shown
to have an advantage that only a few experimental data is
needed to obtain a better estimate of SOC under all possible
conditions.

II. PROPOSEDSOC LEARNING CONCEPT

A. Coulometric Algorithm

We will first describe the so called coulometric measurement
that was generally used for the SOC estimation.

In this paper, the capacity of a battery means the available
capacity released from a battery at a certain discharge rateor
discharge current. And when the battery voltage drops below
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a cutoff voltageVcutoff, we say its capacity is practically zero.
In the electric scooter application, we use the battery voltage
at and below which a scooter cannot operate as the cutoff
voltage. Another important factor for estimating SOC is the
discharge efficiency, and it is defined as

ηI =
I · T

C0

=
Cdis

I

C0
(1)

whereI stands for a constant discharge current,T for total dis-
charge time, andC0 for the available capacity corresponding
to a specific reference discharge currentIref . The discharge
efficiency described by Eq.(1) represents the ratio of how much
capacity a battery can offer at a given discharge rateI with
respect to a certain capacityC0.
Since the discharge rate varies drastically in the electricscooter
or EV application, we need to formulate the relation between
two capacities at their corresponding discharge currents.This
can be derived from the constant current discharge data shown
in Figure 1. In Figure 1,Cm and Cn are the total released
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Fig. 1. The constant current discharge curves : discharged capacity versus
time

capacities from a battery at discharge currentsIm and In

respectively andOQ and OP are the corresponding time
histories of discharged capacities. That is to say that the battery
would releaseCn(Ah) at In(Amp) while it would release
Cm(Ah) at Im(Amp). The following is in general true that
the battery releases capacityCm > Cn at discharge current
Im < In. We can roughly estimate a released capacityQm

at discharge rateIm by using its valueQn at discharge rate
In in a certain time interval in a linear fashion. By drawing
a line

−−→
ZY parallel toPQ, we can have an intersection point

Y on the lineOQ, and they-coordinate ofY is Qm. We can
use the following pairs of similar triangles to calculateQm.

∆ZY R ∼ ∆PQS (2)

∆OY Z ∼ ∆OQP (3)

∆OZW ∼ ∆OPX (4)

According to Eqs.(2), (3), and (4), we have

Qm − Qn

Cm − Cn

= ZY /PQ = OZ/OP = ZW/PX

=
Qn

Cn

(5)

Thus, a released capacityQm which is relative toIm can be
calculated as

Qm = Qn + Qn

Cm − Cn

Cn

(6)

= Qn

Cm

Cn

(7)

= Qn

(

Cm

C0

)

(

Cn

C0

) (8)

=

(

ηIm

ηIn

)

Qn (9)

Since values of capacities released from a battery vary with
discharge currents we need a reference discharge current to
transfer the SOC under different discharge currents, and these
values of SOC will be consistent. Thus, we use Eq.(9) to
approximate the instant released capacity as follows.

Cdis
I(k) =

ηI(k)

ηI(k−1)
Cdis

I(k−1) + I(k)∆T (10)

Cdis
I(1) = I(1)∆T (11)

where∆T is the sampling time interval;Cdis
I(k−1) andCdis

I(k) are
released capacities corresponding to discharge ratesI(k − 1)
andI(k) at the(k − 1)th andkth sampling time.
According to Eq.(10) and (11), we can calculate the SOC
corresponding toIref at thekth sampling time as

SOC(k) = 1 −

(

1

C0

)

(

Cdis
I(k)

ηI(k)

)

(12)

B. State of Health

The state of health(SOH) indicating the degree of aging
of a battery is also an important factor which determines
the accuracy of the estimated SOC. In general, the capacity
check is the most accurate method for determining SOH of a
battery, but it is very time consuming [20], [21]. So impedance
measurement [13] is a good choice for checking the SOH of
a battery. But the impedance measurement needs additional
hardware circuits, which is a disadvantage for the electric
scooter or EV application. Because the battery aging is an
obvious phenomenon in the electric scooter application, we
need to introduce SOH as a variable when estimating SOC.
The SOH used in our proposed system is defined as

SOH =
CIref

C0
(13)

whereCIref
is the total discharged capacity atIref.

PresumablyCIref
= C0, i.e., SOH= 100%, when the battery
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Fig. 2. The structure of the proposed SOC learning System

is brand new. In other words, SOH is an indicator of how
much capacity can be released at the reference discharge
rate after usage, with respect to the initial available capacity
when the battery is brand new. Basically, the coulometric-like
algorithms use Eqs.(10) and (11) to fix the value of discharged
capacity and then calculate the SOC. But they use different
methods to obtain the correction coefficientCm

Cn
as described

by Eq.(7) [8], [9], [10], [11]. Some of these methods use an
average discharge current determined by a whole discharge
process as the reference, and others use the reference discharge
current selected from characteristics of electric scooters or
vehicles. The former method cannot correct capacity error
when discharge rate changes very drastically. The latter can
only deal with some specific cases, because characteristicsof
electric vehicles are almost determined by driving behaviors of
users. Moreover, as linear methods were used to fit correction
coefficients and aging of battery (SOH) problem was not
considered, SOC estimation is thus imprecise in the electric
scooter or EV application [12].

C. Learning Controllers

There are two well-known types of learning controllers,
artificial neural networks and fuzzy systems. Both are bio-
logically inspired and intended to model human experience
[22], [23], [24]. The structure of artificial neural networks
is modeled after the organization of the brain, although the
similarity between the two is actually slight [23], [25], [26],
[27]. On the other hand, fuzzy systems are meant to encode
pieces of knowledge presented by experts [24], [26], [28], [29].
However, most of them need to repeat the learning process
each time a new pattern is encountered [30]. Otherwise, a
neural network will require a huge number of neurons or a
fuzzy system will require numerous rules because the learning
space needed to handle arbitrary nonlinear dynamics is quite

large [31], [32]. For solving this problem, a learning structure
consisting of FNNs and CMAC networks was proposed in
[33]. It was designed to effectively generalize from the data
patterns learned to predict information about a nonlinear
dynamic system, which could not be obtained in advance due
to its huge size of learning space.

D. Combination of the Coulometric Measurement and Learn-
ing Controllers

In general, the dynamic behavior of a battery is nonlinear
and complex. Therefore, it is by no means an easy task to
obtain an adequate battery model and its parameters accurately.
A learning controller, however, is capable of tackling highly
complex dynamics without an explicit model dependence,
and therefore is an attractive alternative modeling nonlinear
dynamics of a battery. Moreover, in the electric scooter appli-
cation, it is necessary to downsize the hardware, software,and
physical memory of data storage requirement, so we shall use
the learning structure consisting of an FNN and a CMAC as
the core of our SOC learning system.
To be more specific we propose a combination of the coulo-
metric measurement described by Eqs. (10), (11) and (12)
and learning controllers to estimate the SOC. The accuracy
of an estimated SOC depends on how accurate the discharge
efficiency can be estimated. Since the discharge efficiency
is a nonlinear function of discharge rate, residual capacity,
temperature, aging of battery, etc., and it is impossible to
obtain all discharge efficiency data from experiments, we use a
learning structure which learns to fit the available experimental
data of discharge efficiency at some specific conditions, and
then generalizes the discharge efficiency surface to cover the
whole dynamic state space of a battery. With this learned
discharge efficiency surface, we can improve the degree of
accuracy of the coulometric measurement. In our electric
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scooter application, the SOC strongly depends on the discharge
current, SOH, and residual capacity. Temperature is also
another important factor, but we only consider the condition
in which electric scooters are used in an urban area with
negligible temperature effects on batteries.
The conceptual organization of our proposed SOC learning
system is shown in Figure 2. The proposed system includes
a learning mechanism composed of an FNN and a CMAC, a
single FNN, and a coulometric measurement module. Com-
ponents of an input vector to the learning mechanism are
discharge current, residual capacity, and SOH. The component,
SOH, is used as the input to the one-dimensional CMAC
in the learning mechanism, and this CMAC will send the
corresponding FNN weights to the two-dimensional FNN
in the same learning mechanism. According to the FNN
weights and the other two components, discharge current and
residual capacity, of the input vector, the FNN produces an
output, the estimated discharge efficiency, of this learning
mechanism. This estimated discharge efficiency along with
discharge current will be sent to the coulometric measurement
module to calculate the instant SOC and residual capacity.
According to the estimated residual capacity and the open
circuit voltage (OCV) of the battery, a single FNN is used
to estimate the battery SOH. Since the OCV can be used to
predict residual capacity of a battery without the influenceof
its temperature and discharge history [1], [2], [34], it is agood
indicator for estimating SOH. The only restriction is that the
battery must be stabilized for at least two hours in our electric
scooter application. The present residual capacity and SOH,
combined with the sensed discharge current will be used as
input to the learning mechanism at the next sampling time.
The above process will repeat, and thus we can get the value
of the dynamic SOC at every sampling time.
In order to avoid having the learning process divergent, we

Fig. 3. Two curves of battery voltage VS residual capacity atthe same dis-
charge current(12.4Amp) and temperature, but different initial capacities(50Ah
and 35Ah).

do not use the loaded battery voltage as one of input variables
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Fig. 4. The structure of the FNN.

to our learning mechanism, and only use learning controllers
to estimate SOC [16]. In Figure 3, a battery discharge char-
acteristics is shown when the battery is discharged at the
same discharge current and temperature but with different
initial capacities. We can see that the relationship between
battery voltage and residual capacity is a not a function in
the inconsistent region as marked in circles in Figure 3, and
this means a value of the battery voltage will be mapped to
over two different values of residual capacities. This kindof
training patterns will lead to diverging of learning processes
or converging to an average value of all desired outputs.

III. SOC LEARNING SYSTEM IMPLEMENTATION

A. Implementation of the FNN

An FNN shown in Figure 4 is designed to realize the
process of fuzzy reasoning by using the structure of a neural
network. The parameters of fuzzy reasoning are expressed by
the connection weights or node functions of the neural network
[17], [35]. The representation of a fuzzy system using a neural
network enables us to take advantage of the learning capability
of the neural network for automatic tuning of the parameters
in the fuzzy system. In Figure 4, the inputs to the FNN are
the sensed discharge current and residual capacity calculated
by coulometric measurement module, and the output is the
discharge efficiency. The structure of the FNN adopted here
consists of five layers of nodes, which are of the same type
within the same layer. Each of the five layers performs one
stage of the fuzzy inference process, as described below.
Layer 1: This layer is the input layer, and the inputs are
transmitted to the next layer directly without any computation.
In this paper,x1 is the discharge currentIdis and x2 is the
residual capacityCres.
Layer 2: This layer is intended for the input membership
functions, and used to perform the fuzzification process of the
fuzzy system. The Gaussian function is used as a membership
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function. Therefore, we have

O
(2)
ij =exp







−

(

xi − m
(2)
ij

σ
(2)
ij

)2






, (14)

wherem
(2)
ij and σ

(2)
ij are the mean and the variance, respec-

tively, of the Gaussian membership function of thejth term
of the ith input variablexi.
Layer 3: This layer is intended for the implementation of the
fuzzy rules. Thejth node in this layer represents the firing
strength of thejth fuzzy rule, which is defined as a fuzzy
conditional statement of the form

Rj : IF x1 is A1j andx2 is A2j , thenO(5) is Bj.

wherex1 andx2 are input variables,O(5) represents the output
variable.A1j , A2j , andBj represent linguistic terms, such as
small, medium, and large. In this layer, each node also outputs
the firing strengthO(3)

j by performing the fuzzy AND.

O
(3)
j =min

∀i
(O

(2)
ij ), (15)

whereO
(2)
ij is thejth term ofxi in Layer 2, connected to the

jth node in Layer 3.
Layers 4 and 5: Layer 4 is intended for the output membership
functions, and the Gaussian function is also used as a node
function for each node in this Layer. Layer 5 is the output
layer, which has as many nodes as there are output variables.In
Figure 4, only one node is needed for the discharge efficiency
η. These two layers work together for performing the center
of area defuzzification process. Thus, the output of the FNN
can be represented as

η = O(5) (16)

=

∑

j(m
(4)
j σ

(4)
j )O

(3)
j

∑

j σ
(4)
j O

(3)
j

(17)

wherem
(4)
j and σ

(4)
j are the mean and the variance, respec-

tively, of the Gaussian membership function of thejth term of
output variableO(5) in layer 5. Because the number of rules
in Layer 3 and weights for the input and output layers (Layer
1 and 5) are fixed, the parameters to learn in this FNN are
the modifiable weights present on the input links to Layers 2
and 4, which correspond to the input and output membership
functions. When the FNN learns the parameters of the input
and output membership functions for generating the discharge
efficiencyη, an error is first specified in the last layer (Layer
5). We define this error as

E =
1

2
(ηd − η)2 (18)

=
1

2
(ηd − O(5))2 (19)

whereηd represents the desired discharge efficiency obtained
from experiments. This error is then backpropagated to adjust
the parameters from layer to layer sequentially. With this
error and some straightforward manipulations, we can derive
updates of the parameters in Layers 2 and 4, and this will be
developed in the following.

Layer 4: Using Eqs.(17) and (19), the amount of modification
for m

(4)
j is derived as

∆m
(4)
j = −β

(

∂E

∂O(5)

)

(

∂O(5)

∂m
(4)
j

)

= β(ηd − O(5))

(

σ
(4)
j O

(3)
j

∑

j σ
(4)
j O

(3)
j

)

(20)

whereβ is the learning rate.
Also, the amount of modification forσ(4)

j is derived as follows
by using Eqs.(17) and (19).

∆σ
(4)
j = −β

(

∂E

∂O(5)

)

(

∂O(5)

∂σ
(4)
j

)

= β(ηd − O(5))(m
(4)
j − O(5))

×

(

O
(3)
j

∑

j σ
(4)
j O

(3)
j

)

(21)

Layer 2: In order to derive the updates ofm
(2)
ij andσ

(2)
ij , the

terms,∂O(5)

∂O
(3)

j

,
∂O

(3)
j

∂O
(2)

ij

,
∂O

(2)
ij

∂m
(2)

ij

, and
∂O

(2)
ij

∂σ
(2)

ij

, must be first calculated.

According to Eqs.(14), (15), and (17), the results of calculation
are shown below:

∂O(5)

∂O
(3)
j

=
(m

(4)
j − O(5))σ

(4)
j

∑

j σ
(4)
j O

(3)
j

(22)

∂O
(3)
j

∂O
(2)
ij

=

{

1, if O
(2)
ij is the minimum node

0, otherwise.
(23)

∂O
(2)
ij

∂m
(2)
ij

=
2O

(2)
ij (xi − m

(2)
ij )

(σ
(2)
ij )2

(24)

∂O
(2)
ij

∂σ
(2)
ij

=
2O

(2)
ij (xi − m

(2)
ij )2

(σ
(2)
ij )3

(25)

Now, we can derive the amounts of modification form
(2)
ij

andσ
(2)
ij by using Eqs.(19), (22), and (23)-(25). IfO

(2)
ij is the

minimum node in layer 2,

∆m
(2)
ij = −β

(

∂E

∂O(5)

)

(

∂O(5)

∂O
(3)
j

)(

∂O
(3)
j

∂O
(2)
ij

)(

∂O
(2)
ij

∂m
(2)
ij

)

= β(ηd − O(5))

(

(m
(4)
j − O(5))σ

(4)
j

∑

j σ
(4)
j O

(3)
j

)

×

(

2O
(2)
ij (xi − m

(2)
ij )

(σ
(2)
ij )2

)

(26)

∆σ
(2)
ij = −β

(

∂E

∂O(5)

)

(

∂O(5)

∂O
(3)
j

)(

∂O
(3)
j

∂O
(2)
ij

)(

∂O
(2)
ij

∂σ
(2)
ij

)

= β(ηd − O(5))

(

(m
(4)
j − O(5))σ

(4)
j

∑

j σ
(4)
j O

(3)
j

)

×

(

2O
(2)
ij (xi − m

(2)
ij )2

(σ
(2)
ij )3

)

(27)
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Fig. 5. Basic CMAC mappings.

B. Implementation of the CMAC

The CMAC is a trainable linear network pattern classifier
that emulates the behavior of human beings in dealing with
stimuli and responses [18], [19], [36]. The CMAC computes
control functions by referring to a table rather than by solving
analytic equations. Function values are stored in a distributed
fashion such that the value of a function at any point in input
space is derived by summing the contents over a number
of memory locations. A unique feature of the CMAC is a
mapping algorithm which converts the distance between input
vectors into the degree of overlap between sets of data where
the function values are stored. Thus, the CMAC serves our
purposes well, because mappings can be provided to generate
proper discharge efficiency surfaces for the whole battery
dynamic state space based on the finite sets of experimental
data used as training patterns. The basis concept behind the
CMAC can be represented by a pair of mappings shown in
Figure 5

f : S → A (28)

g : A → P (29)

whereS represents the set of input vectors,A represents the
set of association cell vectors, andP represents the set of
response output vectors. The first mapping maps the input
data onto a finite set of intermediate states called association
cells. The mapping is generally a fixed relation since it is a
process of indexing the input data. The number of units of
A that become excited in response to both different inputsSi

andSj decreases monotonically as the similarity betweenSi

and Sj decreases. This arrangement produces generalization
between nearby input vectors and no generalization between
distant input vectors. The second mapping depends on the
values of weights, assigned to every association cell, which
will be modified during the training stage. These weights can
be adjusted by the difference between the desired output and
the produced output. This mapping then sums up the weights

attached to the active association cells to produce the output
P.
We will explain how to store the weights,F ’s, of FNN
which represent a battery discharge surface, corresponding to
a certain value of SOH into the CMAC. The input vectors is
used for indexing the FNN weight, described as

s = p (30)

wherep stands for a value of battery SOH.
Via the mappings of the network, the input should cor-

respond to an output response consisting of a desired FNN
weight. Thus, we need to find appropriate CMAC weights to
attach to the active association cells inA by utilizing the FNN
weight for a value of SOH as training patterns. However, when
the training patterns are stored into the network, the FNN
weight generated by the CMAC may be different from the
desired FNN weight because of memory overlapping in the
association cells in the first mapping from the input vector
to the association cells. Thus, a learning process is needed
to modify the CMAC weights through an updating function
using the difference between the desired FNN weight and that
generated by the CMAC. The updating function is as follows:

wk+1 = wk + β

(

Fd −F

c

)

(31)

where k denotes the number of learning iterations,β is
learning rate,c is the number of weights contributing to the
output,wk+1 andwk stand for the CMAC weights before and
after thekth learning iteration, respectively, andFd and F

stand for desired and actual FNN weights, respectively. The
learning process will terminate when the difference between
Fd andF is within a certain toleranceεc.

C. Learning Process for Generating Discharge Efficiency Sur-
faces

The process of learning for generating discharge effi-
ciency surfaces can be divided into two stages. In the first
stage, the FNN in the proposed learning structure is used to
learn to generate the desired discharge efficiencyηd obtained
from experiments and indexed by the corresponding discharge
rateIdis and residual capacityCres. The weight of the FNN,
F , provided by the CMAC starts to be updated according to
the error described in Eq.(19). In the second stage, the CMAC
will use the updated FNN weightFd obtained in the first stage
as a training pattern to update its own weights. We repeat
stages one and two until errors decrease under a threshold.
This learning process is shown in Figure 6.

IV. EXPERIMENT

The experimental equipment is shown in Figure 7. In Figure
7, batteries under test were sealed lead-acid batteries with a
rating of 12V open-circuit voltage and 50Ah capacity, man-
ufactured by Long Battery Co., Taiwan. The battery testing
system used to perform testing cycles was manufactured by
DIGATRON Co., Germany, and the charge and discharge
currents provided ranged between 0A and 200A. It is pro-
grammable by downloading charge or discharge patterns from
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a PC. A notebook PC with the EMS Windows application
software was used to estimate the SOC of batteries, and the
EMS software is implemented by using Borland C++ Builder.
We used 98 data sets of constant current discharge to generate
our training patterns. Every data set included a time history
of battery voltage, discharge current, and capacity. The cor-
responding discharge efficiency and SOH can be calculated
according to Eqs.(1) and (13). All of these data were combined
into training patterns for the initial weights of learning of our
proposed system. Because the initial weights were obtained
from static(constant current) discharge process, we need to
modify the initial weights dynamically so as to increase the
precision of estimation of our system.
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Fig. 8. Discharge pattern used to modify initial weights of the proposed
learning system.

A. Dynamic Modification

We used the discharge pattern shown in Figure 8 to modify
the initial weights dynamically. This is exploited in orderto
increase the precision of estimation of our system when it is
used under real discharge conditions. This discharge pattern
used to modify initial weights is determined intuitively: it
seems to accelerate a scooter first, then maintain the speed
of the scooter at a certain constant and stop the scooter. Al-
though different modification discharge patterns should result
in different precisions of the SOC estimation, we think thatif
modification discharge patterns cover the range of all possible
discharge current values, the actual prediction errors should
be small.
In each modification process, the battery was charged when
its steady state voltage is 13.2V, and discharged accordingto
the pattern repeatedly until the battery voltage dropped below
the cutoff voltage, 10.25V, and all relative data is recorded.
By using the recorded data and an iterative computation, we
can obtain the time history of desired discharge efficiency
for dynamic conditions. An iterative computation is used to
minimize a cost function defined as

EN (i) =
1

2

[

C0

(

Ca

Cb

)

− T

(

N
∑

k=1

Ik

ηk(i)

)]2

(32)

Thus, the iterative process can be expressed as

ηd
k(i + 1) = ηd

k(i) − γ
∂EN

∂ηk

= ηd
k(i) + γ

√

2EN(i)T

(

Ik

η2
k(i)

)

(33)

with
ηd

k(0) = ηk (34)

whereCa is the discharged capacity when estimated SOC is
zero, andCb is the discharged capacity when battery voltage
is Vcutoff; ηd

k(i) stands for the desired discharge efficiency at
the kth discrete time and theith iterative step,γ is step size,
andT is sampling time.
The obtained desired discharge efficiency will be used to train
our EMS, and this modification process is performed when
values of SOH are40%, 70%, and100%.
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Fig. 9. Discharge efficiency surfaces generated by EMS with initial weights at
(a) SOH = 100%. (b) SOH = 80%. (c) SOH = 60%. (d) SOH = 40%.
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Fig. 10. Discharge efficiency surfaces generated by modifiedEMS at (a)
SOH = 100%. (b) SOH = 80%. (c) SOH = 60%. (d) SOH = 40%.

A restriction to perform the modification process is that we
need to collect relative data of a battery from the state when
it is of full capacity to the state when it is empty, because we
can only make sure that when battery voltage is lower than
Vcutoff, its SOC is zero. That is why the learning process of
our EMS is very difficult to implement as an on-line process,
because users always recharge their batteries before they run
out of the capacities of their batteries.
Figure 9 and Figure 10 show the discharge efficiency surfaces
before and after the modifications dynamically.

B. Testing for EMS

We use four urban drive cycles shown in Figure 11 to test
the proposed EMS, and these drive cycles are CNS-D3029
of Taiwan, EPA75 of the United States, ECE15 of the EEC
nations, and M10-15 of Japan. By using these drive cycles and
dynamic data of the electric scooter we used, we can transfer
these drive cycles into the corresponding power consumption
cycles shown in Figure 12. It is convenient to do experiments
by using power consumption data in our laboratory. In each
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Fig. 11. Drive cycles (a) CNS-D3029 of Taiwan (b) EPA75 of theUnited
States (c) ECE15 of the EEC nations (d) M10-15 of Japan
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test, the battery is also charged when its steady state voltage
is 13.2V, and discharged according to these drive cycles
repeatedly until the battery voltage drops under the cutoff
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voltage, 10.25V. The prediction errorǫ is defined as

ǫ =

∣

∣

∣

∣

100(Cb − Ca)

Cb

∣

∣

∣

∣

(%) (35)

Figure 13 shows results of drive cycle testing of CNS-D3029.
In Figure 13(a), the SOC prediction error of EMS is 5.423
%, and the SOC trajectory is smoothly decreasing, so users
can easily determine the timing when the batteries should
be recharged. Figure 13(b) shows the discharge efficiency
generated by our proposed EMS. In Figure 13(c), we can see
the battery voltage varies fast in dynamic operations, so it
is not suitable to be used to estimate battery SOC. Figure
13(d) shows the discharged capacity recorded by using only
ampere hour accumulation, and that the prediction error can
reach 50%. In addition, to show a better performance can
be achieved by the proposed scheme, we test this system by
performing real-time experiment of four drive cycle patterns.
The test results of another three drive cycles (EPA75, ECE15,
and M10-15) are shown in Figure 14, Figure 15, and Figure 16,
respectively. The SOC prediction errors of four drive cycles
testing at different SOH values, 82.5%, 66%, and 43.2%, are
shown in Figure 17. From results of the experiment, we have
a good average prediction error under6% in the whole battery
life cycle. In practice, it is recommended that a battery should
be replaced when its SOH is below70%, so our proposed
learning system is quite enough to deal with the effect of
decreasing of SOH.

V. CONCLUSION

We have proposed an SOC learning system for improving
the performance of present SOC measurement used in electric
scooters. Only static data obtained from experiments is used
as training patterns for the proposed system, and this system is
shown to be able to estimate the dynamic SOC accurately. The
aging effect is also considered in the proposed system, because
the aging problem is very obvious in the electric scooter
or EV application. Moreover, making use of the dynamic
SOC learned by this system, we can obtain a corresponding
allowable traveling distance. A safe speed can be calculated
and provided to the rider, such that the rider can control the
speed of the scooter within a proper range to ensure that the
scooter can arrive at the destination safely [37]. Experimental
results have demonstrated the effectiveness of the proposed
SOC learning system.

As future work, we will consider the effect of temperature,
and introduce this factor into our learning system for devel-
oping a more precise SOC estimating system.
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