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MIMO ISI Channel Estimation Using Uncorrelated
Golay Complementary Sets of Polyphase Sequences
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Abstract— In this paper, optimal training sequence design for
multiple input multiple output (MIMO) intersymbol interference
(ISI) channels is addressed and several novel low-complexity
channel estimators are proposed, using uncorrelated Golay com-
plementary sets ofpolyphase sequences1. The theoretical analysis
and simulation show that when the additive noise is Gaussian,
the proposed best linear unbiased estimator (BLUE) achieves the
minimum possible classical Craḿer-Rao lower bound (CRLB),
if the channel coefficients are regarded as unknown determin-
istics. On the other hand, the proposed linear minimum mean
square error (LMMSE) estimator attains the minimum possible
Bayesian CRLB, when the underlying channel coefficients are
Gaussian and independent of the additive Gaussian noise. The
proposed channel estimators not only achieve the best estimation
performance, but also can be implemented with low complexity,
via DSP or ASIC/FPGA. This has been possible due to the
special structures intrinsic to uncorrelated Golay complementary
sets ofpolyphase sequences, which makes the proposed channel
estimators ready to use in the practical MIMO systems.

Index Terms— MIMO, Intersymbol Interference, Golay Se-
quences, Complementary Sets of Sequences, Channel Estimation,
Training Sequences, and Frequency Selective.

I. I NTRODUCTION

T HE utilization of antenna arrays at the base station and
the mobile station in a wireless communication system

increases the capacity linearly withmin(NT , NR), whereNT

and NR are the numbers of transmit and receive antennas,
respectively, provided that the environment is sufficiently rich
in multi-path components [3][4]. The early analyses and simu-
lations of the multiple-input multiple-output (MIMO) systems
relied on the assumption of perfect channel state information
(CSI) [3][5]. However, in practice one needs to estimate CSI
for efficient implementation of MIMO systems.

In general, there are two classes of methods for CSI esti-
mation: blind identification (see, e.g., [6]) and training-based
estimation. For quasi-static or slowly-varying fading channels,
training-based channel estimation at the receiver is widely
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1A polyphase sequence is a sequence of complex numbers, each of unit

magnitude.

used in practice [7], as it has much less complexity and better
performance, compared to the blind approach. The insertion
of training symbols consumes some transmission bandwidth,
but this overhead is negligible if they are only a small fraction
of the transmitted frame. Moreover, the training-based scheme
can be optimal in the high signal-to-noise ratio (SNR) region
[8]–[10]. When the training-based approach is used, the goal
of channel estimator design is to make the estimation error
as small as possible, with low implementation complexity, for
fixed training sequence length and power.

Optimal training sequence design for MIMO systems has
been studied in the literature (see [9][11]–[18] and references
therein). Some information theoretical guidelines for sequence
design over MIMO flat fading channels and single-input
single-output (SISO) frequency-selective channels are given
in [9] and [10], respectively. The optimal sequence design
for MIMO flat fading channels in the presence of colored
interference is studied [15]. A lower bound on training-based
channel estimation error for MIMO intersymbol interference
(ISI)2 channels, based on a parameterized channel model,
is presented in [19]. An optimal training design for MIMO
ISI channels is given in [11], where training symbols are
superimposed on data in the system model. For both SISO
and MIMO ISI channels, optimal training sequences are delta
impulses [10, (13)] [11, Table I], which maximize the lower
bound of the ergodic channel capacity. For MIMO-OFDM
systems, optimal training sequence design is discussed in [16]–
[18] via minimizing the mean square error of the channel
estimator.

For MIMO flat fading channels, it is straightforward to
design training sequences to satisfy the semi-unitary condition
for the minimum mean square error (MMSE) of the estimator,
given in [9, (18)], [20, (9.4.16)], and [11, C1]. For example,
a Hadamard matrix or a part of it can be used. However,
for the MIMO ISI scenario, the training sequences, which
satisfy the semi-unitary condition, must have impulse-like
auto-correlations and zero cross-correlations within a given
correlation window, whose length depends on the delay spread
of the channel. One way to achieve zero cross-correlation
is to transmit training symbols only from one antenna at a
time [11], where each training sequence is a delta sequence.
However, this approach may result in high peak-to-average
power ratio (PAPR), and low energy efficiency, which are
important concerns in practice.

In the literature, there are some PAPR-friendly optimal
sequences, which satisfy the semi-unitary condition, and can

2In this paper, we use ISI and frequency-selective channels interchangeably.
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be used for training. Examples include a set of sequences with
a zero correlation zone (ZCZ) [12][13][21][22] and different
phases of a perfect3 polyphase sequence such as the Frank
sequence [23] or Chu sequence [24]. However, both ZCZ
and perfect polyphase sequences are developed based on the
periodic correlation properties. Therefore, they can not be ap-
plied to scenarios where aperiodic correlations are needed, for
example, when using a zero-padding guard period to separate
the transmitted data and training symbols, as discussed in
Sec. III-A. Moreover, the implementation complexity of the
corresponding channel estimators could be an issue, due to
the lack of proper structures.

Golay complementary sequences [25] have been widely
used in infrared spectrometry [26], radar [27], synchronization
[28], PAPR control [29], MC-CDMA [30], channel identi-
fication [31], and SISO ISI channel estimation [32]–[34],
due to their good structure and perfect correlation properties.
Recently, uncorrelatedaperiodic Golay complementary sets
of binary sequences are used for optimal training in a zero-
padding block transmission system [35], and uncorrelated
periodic Golay complementary sets ofbinary sequences in a
cyclic-prefix padding block transmission system [36]. In this
paper, we extend thebinary sequences in [35] and [36] to the
polyphase ones for optimal training. Obviously, the results in
this paper will include those in [35] and [36] as special cases.
After the system model and the criterion for optimal train-
ing are developed, several optimal low-complexity channel
estimation schemes using uncorrelated Golay complementary
sets of polyphase sequences are proposed. The theoretical
analysis and simulation show that when the additive noise is
Gaussian, the proposed best linear unbiased estimator (BLUE)
achieves the minimum possible classical Cramér-Rao lower
bound (CRLB), if the channel coefficients are regarded as
unknown deterministics. On the other hand, the proposed
linear minimum mean square error (LMMSE) estimator attains
the minimum possible Bayesian CRLB4, when the underlying
channel coefficients are Gaussian and independent of the
additive Gaussian noise. Last but not the least, the proposed
schemes can be implemented with low complexity, via DSP or
ASIC/FPGA5, due to the special structure intrinsic to Golay
complementarypolyphase sequences.

The rest of this paper is organized as follows. Definition
and construction of uncorrelated aperiodic and periodic Golay
complementary sets ofpolyphase sequences are given in
Sec. II, and MIMO system and channel models are presented
in Sec. III. Sec. IV and V deal with the optimal train-
ing criterion and construction of optimal training sequences
using uncorrelated Golay complementary sets ofpolyphase
sequences, respectively. The channel estimation algorithm and
its fast DSP and ASIC/FPGA implementations are studied in
Sec. VI and VII, respectively. Comparison with other existing
optimal sequences and the simulation results are presentedin

3Its periodic autocorrelation function is a delta impulse.
4The concept of CRLB for random parameter estimation was introduced

in [37], and named Bayesian CRLB later in [38] and [39].
5The abbreviations DSP, ASIC and FPGA stand for digital signal processor,

application-specific integrated circuit and field-programmable gate array,
respectively.

Sec. VIII and IX, respectively, and the concluding remarks are
summarized in Sec. X.

Notation: (·)⋆ is reserved for the complex conjugate,(·)′
for the matrix transpose,(·)† for the matrix Hermitian,(·)−1

for the matrix inverse, tr[·] for the trace of a matrix,∝
for proportional to, diag(σ1, σ2, · · · , σn) denotes a diagonal
matrix with σ1, σ2, · · · , σn on the main diagonal, dg(A) is a
diagonal matrix which contains the main diagonal elements of
matrix A, vec(·) stacks all the columns of its matrix argument
into one tall column vector,[A]m,n,m, n > 0, is the(m,n)th

element of the matrixA, E[·] is the mathematical expectation,
(·) is the sample average,0m×n is an m × n zero matrix,
1m×n is anm×n matrix whose entries are all 1,Im denotes
the m × m identity matrix, t ∈ [m,n] implies that t is an
integer such thatm 6 t 6 n, ⊗ represents the Kronecker
product,⊙ stands for the (elementwise) Hadamard product,⊕
represents the elementwise complex addition of two vectors,
⊠ and ⊞ represent the multiplication and addition of two
complex numbers, respectively,⌈x⌉ is the smallest integer
not less thanx, ⌊x⌋ is the largest integer not greater than
x, ‖ · ‖F denotes the Frobenius norm,(·)N is the modulus
N operator,Πm is the forward shift permutation matrix of
order m [40, p. 27], andAΠl

m shifts the matrixA, which
hasm columns, cyclically to the right byl columns. We also
have⊛N for circular convolution “modN ”, and ∗ for linear
convolution. All the lower-case bold letters represent rowand
column vectors, whereas upper-case bold letters are used for
matrices.

II. D EFINITION AND GENERATION OFUNCORRELATED

GOLAY COMPLEMENTARY SETS OFPOLYPHASE

SEQUENCES

For convenience and completeness, we give a brief descrip-
tion of uncorrelated aperiodic and periodic Golay comple-
mentary sets ofpolyphase sequences. More discussion can be
found in [41]–[44].

A. Aperiodic Case

Let ai = [ai,0, ai,1, · · · , ai,(N−1)] andbi = [bi,0, bi,1, · · · ,
bi,(N−1)] be sequences ofcomplex numbers with unit ampli-
tudes. The aperiodic cross-correlation function (ACCF) be-
tweenai andbi is defined by

ϕai,bi
(k) =

{∑N−1−k
j=0 ai,jb

⋆
i,(j+k) k∈ [0, N−1],

∑N−1
j=|k| ai,jb

⋆
i,(j+k) k∈ [−N+1,−1].

(1)

A set of p sequences, each withN elements,{ai}p−1
i=0 is

aperiodic complementary if and only if (iff )
∑p−1

i=0 ϕai,ai
(k) =

0, k 6= 0, and
∑p−1

i=0 ϕai,ai
(0) = pN , whereϕai,ai

(k), |k|6
N−1 is the aperiodic autocorrelation function (AACF) ofai.

If another set of sequences{bi}p−1
i=0 is aperiodic comple-

mentary and
∑p−1

i=0 ϕai,bi
(k) = 0, |k|6 N−1, then we call

{bi}p−1
i=0 a mate of{ai}p−1

i=0 , and vice versa.
A collection of aperiodic Golay complementary sets of

polyphase sequences{ai}p−1
i=0 , {bi}p−1

i=0 , · · · , {zi}p−1
i=0 are

mutually uncorrelated if every two aperiodic Golay comple-
mentary sets ofpolyphase sequences in the collection are
mates of each other [44].
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B. Periodic Case

The periodic cross-correlation function (PCCF) betweenai

andbi is defined as

ϕ̃ai,bi
(k) =

N−1∑

j=0

ai,jb
⋆
i,(j+k)N

, |k|6N−1. (2)

A set of sequences{ai}p−1
i=0 , each withN elements, is pe-

riodic complementaryiff
∑p−1

i=0 ϕ̃ai,ai
(k) = 0, k 6= 0, and∑p−1

i=0 ϕ̃ai,ai
(0) = pN , where ϕ̃ai,ai

(k), |k| 6 N −1 is the
periodic autocorrelation function (PACF) ofai.

If another set of sequences{bi}p−1
i=0 is periodic comple-

mentary and
∑p−1

i=0 ϕ̃ai,bi
(k) = 0, |k|6 N−1, then we call

{bi}p−1
i=0 a mate of{ai}p−1

i=0 , and vice versa.
A collection of periodic Golay complementary sets of

polyphase sequences{ai}p−1
i=0 , {bi}p−1

i=0 , · · · , {zi}p−1
i=0 are

mutually uncorrelated if every two periodic Golay comple-
mentary sets ofpolyphase sequences in the collection are
mates of each other [44].

C. Sequence Generation

Based on (1) and (2), it is easy to verify

ϕ̃ai,bi
(k)=

{
ϕai,bi

(k)+ϕai,bi
(k−N) k∈ [0, N−1],

ϕai,bi
(k)+ϕai,bi

(k+N) k∈ [−N+1,−1],
(3)

which shows that aperiodic Golay complementary sets of
polyphase sequences are also periodic Golay complementary
[43][45]. Therefore, we only explain how to construct aperi-
odic Golay complementary sets ofpolyphase sequences.

In this paper, we focus on the case ofp = 2, andp > 2 can
be easily addressed, based on the methods described in [41].
According to the complex extension of property 9) in [25], the
Golay complementary pair{a0,a1} with N = 2M elements,
M > 1, can be constructed by the following recursive equation
[27]

a
(m)
0,k = a

(m−1)
0,k + wma

(m−1)
1,(k−dm)

a
(m)
1,k = a

(m−1)
0,k − wma

(m−1)
1,(k−dm)

, m ∈ [1,M ], (4)

with a
(0)
0,k = a

(0)
1,k = δk, whereδ0 = 1, δk = 0, k 6= 0 andwk is

the complex number with unit amplitude, i.e.,|wm| = 1,∀m.
In (4), dm is the mth element of the delay vectord, defined
by

d = [d1, d2, · · · , dM ] , (5)

which is a permutation of
[
20, 21, · · · , 2M−1

]
. After M it-

erations, we get a pair of Golay complementarypolyphase
sequencesa(M)

0 and a
(M)
1 , each of lengthN . To simplify

notation, we writea(M)
0 asa0, anda

(M)
1 asa1, i.e.,a0 = a

(M)
0

anda1 = a
(M)
1 .

By the complex extension of property 3) in [25],a0 and
←−a ⋆

1 are complementary too, where
←−
b is the reverse of the

sequenceb, i.e.
←−
b i = bN−1−i, i ∈ [0, N − 1].

According to the complex version of Theorem 11 in [41],
if {a,b} are a Golay complementary set of twopolyphase
sequences with lengthN , then {←−b ⋆,−←−a ⋆} is its mate.
Therefore,{a1,−←−a ⋆

0} is the mate of{a0,
←−a ⋆

1}, vice versa.
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Fig. 1. The aperiodic and periodic auto and cross-correlation functions of
the two uncorrelated Golay complementary sets ofpolyphase sequences, with
N = 16.

For example, ifN = 16, wk = 1,∀k, andd = [1, 2, 4, 8],
i.e., dm = 2m−1, we obtain a Golay complementary binary
pair {a0,a1} from (4) asa0 = [+ + +−+ +−+ + + +−
− − +−] anda1 = [+ + + − + + − + − − − + + + −+],
where “+” denotes “+1” and “−” represents “−1”. Various
correlations of{a0,

←−a ⋆
1} and its mate{a1,−←−a ⋆

0} are shown
in Fig. 1. Clearly, the individual AACFs of the first set, i.e.,
ϕa0,a0

(k) and ϕ←−a ⋆
1 ,←−a ⋆

1
(k), are not impulse, but their sum

ϕa0,a0
(k) + ϕ←−a ⋆

1 ,←−a ⋆
1
(k) is an impulse. The same property

applies to the second set. The individual ACCFsϕa0,a1
(k) and

ϕ←−a ⋆
1 ,−←−a ⋆

0
(k) between the two sets are not zero for all lags,

but their sumϕa0,a1
(k) + ϕ←−a ⋆

1 ,−←−a ⋆
0
(k) is zero everywhere.

The same observations apply to the PACFs and PCCFs.
The family size of uncorrelated Golay complementary sets

with two polyphase sequences per set (p = 2), i.e., the
maximum number ofmutually uncorrelated Golay comple-
mentary sets, is a parameter that indicates how many transmit
antennas uncorrelated Golay sets can support, without any
modification to the original sequences. From the above de-
scription, the family size is at least two, and they are given
by {a0,

←−a ⋆
1} and {a1,−←−a ⋆

0}6. For binary sequences with
aperiodic correlations, the family size is two if each set only
has two sequences [41][46]. However, for both unit-amplitude
polyphase sequences with aperiodic or periodic correlations
and binary sequences with periodic correlations, the family
size is unknown, to the best of our knowledge. Studying the
family size of the mentioned cases is out of the scope of this
paper, and hence we assume it is equal to two in this paper,
as it is enough for us to consider two uncorrelated Golay
complementary sets.

III. SYSTEM AND CHANNEL MODELS

Similarly to [35] and [36], block transmission over block
fading channels is assumed here. In what follows, we consider

6Given a Golay complementary pair{a0,a1}, the uncorrelated sets are not
unique, for example,{a0,a1} and{←−a ⋆

1,−←−a ⋆
0} are another possibility.
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Fig. 2. A frame structure in a MIMO system.

an L + 1 tap channel impulse response (CIR) with the tap
index l∈ [0, L], the transmit antenna indexnt ∈ [1, NT ], the
receive antenna indexnr ∈ [1, NR], and the training symbol
index n∈ [0, Ns−1]. Note thatL can be interpreted as the
delay spread of the channel in units of symbol intervals, and
L = 0 corresponds to a frequency-flat or ISI-free channel.

Let H = [H0,H1, · · · ,HL] be the discrete-time equivalent
baseband CIR of the MIMO frequency-selective channel,
whereHl is the lth tap of the MIMO CIRs and defined by
the following matrix [35, Eq. (2)]

Hl =




h1,1(l) · · · h1,NT

(l)
...

. . .
...

hNR,1(l) · · · hNR,NT
(l)



 , (6)

wherehnr,nt
(l) is the lth tap of the CIR between thenth

r re-
ceive antenna and thenth

t transmit antenna, with the combined
effect of the transceiver filters and the multipath propagation
environment.

In order to decouple channel estimation from data detection,
time-division multiplexing (TDM) of training and data sym-
bols is the only approach in single-carrier systems [11, Lemma
1]. For the training-aided block transmission with decoupled
training from data, a typical TDM frame structure for a MIMO
system is shown in Fig. 2, where the frame structure is the
same for all the transmit antennas,dnt

and snt
are the data

and training symbols transmitted by thenth
t transmit antenna,

respectively, the “GP”, i.e., the guard period, between thedata
and training symbols, is used to separate the data and training
symbols, and its length is at leastL for perfect separation in
multipath. In this paper, we set the length of “GP” toL.

As stated in [11], the “GP” can be filled with eitherL 0’s
or L known symbols. In this paper, the cyclic-prefix (CP)
with length L of the training sequence is used asL known
symbols. In what follows, the former is called the zero-padding
(ZP) based guard period, and the latter is called the CP
based guard period. For both approaches, the system equation
corresponding to the training part has the same linear form
and is given by

Y =

√
ρs

NT
HS + E, (7)

whereρs is the average received SNR at each receive antenna
over the training phase,S is the training matrix,E is the
additive noise matrix, andY is the received signal matrix. The
only difference between the ZP- and CP-based guard periods
is the training matrixS. In what follows, the training matrix
is presented for both scenarios.

A. ZP-Based Guard Period

In this case, “GP” in Fig. 2 is filled withL 0’s. Using matrix
notation, the signals received byNR antennas, corresponding

to the training symbols transmitted fromNT antennas, can be
written asYZP =

√
ρs/NT HSZP + EZP, where the training

matrix SZP, whose dimension isNT (L + 1) × (Ns + L), is
given by

SZP=





s(0) s(1) · · · s(Ns−1)0NT×1 · · · 0NT×1

0NT×1
. . .

.. .
. . .

. ..
. ..

...
...

. . .
.. .

. . .
. ..

. .. 0NT×1

0NT×1 · · · 0NT×1 s(0) s(1) · · · s(Ns−1)




, (8)

in which we have the followingNT × 1 vector

s(n) = [s1(n), s2(n), · · · , sNT
(n)]′. (9)

Note thatYZP = [y(0),y(1), · · · ,y(Ns + L − 1)], where
y(n) = [y1(n), y2(n), · · · , yNR

(n)]′. The noise matrix is
defined asEZP = [e(0), e(1), · · · , e(Ns + L − 1)], in which
e(n) = [e1(n), e2(n), · · · , eNR

(n)]′.

B. CP-Based Guard Period

In this case, “GP” in Fig. 2 for thenth
t transmit an-

tenna is filled with the CP ofsnt
, i.e., CPnt

= [snt
(Ns −

L), · · · , snt
(Ns − 1)]. The received training signal onNR

receive antennas, after discarding those affected by the data
due to ISI, can be written asYCP =

√
ρs/NT HSCP + ECP,

where the training matrixSCP, whose dimension isNT (L +
1)×Ns, is given by

SCP =





s(0) s(1) · · · s(Ns − 1)

s(Ns − 1) s(0)
. . . s(Ns − 2)

...
.. .

. . .
...

s(Ns−L) s(Ns−L+1) · · · s(Ns−L−1)




, (10)

where s(n) is given in (9). Furthermore,YCP =
[y(0),y(1), · · · ,y(Ns−1)] andECP=[e(0), e(1), · · · , e(Ns−
1)].

Clearly, for both cases,snt
(n) is the training symbol

transmitted by thenth
t transmit antenna at timen, ynr

(n) is the
signal received by thenth

r receive antenna at timen, enr
(n)

is the additive noise component inynr
(n).

IV. T HE CRITERION FOROPTIMAL TRAINING

Both the ZP- and CP-based guard period choices provide the
same linear form of system equations given in (7). Therefore,
we do not distinguish between them, when developing the
criterion for optimal training, and the conclusions of this
section apply to both cases.

For channel estimation, we assume the elements of the
additive noise matrixE are independent with zero mean and
unit variance (not necessarily Gaussian). In addition, we treat
the channel matrixH in two different ways. In the first
approach,H is an unknown deterministic matrix. In the second
setup,H is random and independent of the additive noise
E, elements ofH are independent with zero mean, and each
subchannelhnr,nt

has unit power, i.e.,‖hnr,nt
‖2F =1, where

hnr,nt
= [hnr,nt

(0), hnr,nt
(1), · · · , hnr,nt

(L)]. (11)
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Moreover, thelth tap of the subchannelhnr,nt
has the power

σnr,nt,l, i.e., E
[
|hnr,nt

(l)|2
]

= σnr,nt,l, and the covariance
matrix of H is defined asCh = E

[
hh†

]
, whereh = vec(H).

Since elements ofH are independent with zero mean,Ch is
an NRNT (L + 1)×NRNT (L + 1) diagonal matrix, whoseκth

diagonal element is given by

[Ch]κ,κ = σnr,nt,l, κ ∈ [0, NRNT (L + 1)− 1] , (12)

whereκ and l are related according toκ = lNRNT + (nt −
1)NR + nr − 1, for a givennt andnr.

Following the terminology of [47], the best linear estimators
for deterministic and random channel representations are the
BLUE and the LMMSE estimator, respectively, which are
presented in the following proposition.

Proposition 1: For the linear system model in (7), the
BLUE (best linear unbiased estimator) and LMMSE (linear
minimum mean square error) estimator ofH are given by7

ĥ =

√
NT

ρs

[
(S⋆S′)⊗INR

+α
NT

ρs
C−1

h

]−1

(S⋆⊗INR
)y, (13)

with the following total mean square error (TMSE)

εα =
NT

ρs
tr

{[
(SS†)⊗INR

+α
NT

ρs
C−1

h

]−1
}

, (14)

where α = 0 and 1 correspond to the BLUE and LMMSE
estimator, respectively, andy = vec(Y). Furthermore, when
E is Gaussian in BLUE,ε0 is the classical CRLB, whenasE
andH are Gaussian and independent in the LMMSE estimator,
ε1 is the Bayesian CRLB.

Proof: See Appendix I.
From (14), we can conclude that the TMSE depends on the

training symbol matrixS, when the channel estimation ap-
proach, the number of transmit and receive antennas, SNR, and
the fading covariance matrixCh are fixed. Under the transmit
power constraint of training symbols, the minimization ofεα

throughS is presented in the following proposition.
Proposition 2: Suppose the transmit power is constrained

by 1
Ns(L+1) tr[SS†] 6NT , and the channel statistical informa-

tion Ch is known at the transmitter. For BLUE, the TMSEε0

is minimizediff the training sequences satisfy the semi-unitary
condition

SS† = NsINT (L+1). (15)

For LMMSE estimator, the minimum of the TMSEε1 is
achievediff the training sequences satisfy the following con-
dition

SS† = NsIL+1 ⊗Cs, (16)

= (IL+1 ⊗Cs)︸ ︷︷ ︸
Power allocation

[
NsINT (L+1)

]
︸ ︷︷ ︸
Condition in (15)

, (17)

whereCs = diag(P1, P2, · · · , PNT
), and Pnt

= 1
Ns
‖snt
‖2F ,

∀nt, is the optimal training power emitted from thenth
t

7To obtain a meaningful estimate ofH, we need at least as many
measurements as unknowns [9], which impliesNs + L > NT (L + 1) and
Ns > NT (L + 1) for the ZP- and CP-based guard periods, respectively.

transmit antenna, obtained by solving

NR∑

nr=1

L∑

l=0

Nsρs

NT

(σ−1
nr,nt,l

+ Nsρs

NT
Pnt

)2
= λ, ∀nt ∈ [1, NT ], (18)

under the training power constraint
∑NT

nt=1 Pnt
= NT , whereλ

is the Lagrangian multiplier. SincePnt
’s must be non-negative,

it may not always be possible to find a solution to satisfy all of
NT equations in (18), simultaneously. In this case, the Kuhn-
Tucker conditions [48] need to be used to solve (18) and obtain
the waterfilling-like solutions.

Proof: See Appendix II.
WhenH is deterministic andE is Gaussian, (15) substituted

in (14), along withα = 0, provide the minimum possible
classical CRLBε0. On the other hand, when bothH andE are
Gaussian and independent, the combination of (14) and (17),
together withα = 1, give the minimum possible Bayesian
CRLB ε1. Note that according to (17), each transmit antenna
has to send a different power level, under the total transmit
power constraint, to minimize TMSE if the LMMSE estimator
is used.

For the ZP-based guard period and from the structure of
SZP in (8), (15) and (17) imply that

• The aperiodic autocorrelation of the training sequence
from each transmit antenna is zero withinL tap shifts,
except for the zero shift, i.e.,ϕsnt

,snt
(k) = 0, 1 6 |k| 6

L,∀nt,
• The aperiodic crosscorrelation of any two training se-

quences from two different transmit antennas is zero
within L tap shifts, i.e.,ϕsnt

,sňt
(k) = 0, |k| 6 L,∀nt 6=

ňt.

The same observations apply to the CP-based guard pe-
riod case, except for replacing aperiodic auto- and cross-
correlations with periodic ones. Equations similar to (15)are
also derived in [9] and [11] for MIMO flat and MIMO ISI
channels, respectively, by maximizing the ergodic capacity
lower bound.

As shown at the end of Appendix II-A.1, ifσnr,nt,l is
independent ofnt, the optimal training power allocation is
given by Pnt

= 1,∀nt, and the orthogonal condition in (17)
reduces to the semi-unitary condition in (15). In what follows,
without loss of generality, we consider the special but widely
used case whereσnr,nt,l is independent ofnr and nt, i.e.,
σnr,nt,l = σl, ∀nr, nt, for simplicity. Hence, the covariance
matrix of the channel is given byCh = CΣ⊗INT NR

, where
CΣ = diag(σ0, σ1, · · · , σL) is the covariance matrix of each
subchannel.

V. CONSTRUCTION OFOPTIMAL TRAINING SEQUENCES

Since it is difficult to find training matrices, with the struc-
tures given in (8) and (10), to satisfy the semi-unitary condition
[20, p. 179]8, i.e., SS† = NsINT (L+1), we came up with the
idea of reformulatingS into two parts, i.e.,S = [S1,S2],

8As stated in the introduction, there are some sequences such as ZCZ,
Frank and Chu sequences, which satisfy the condition in the case of CP-
based guard period. But for the ZP-based guard period, thereis no report on
such sequences, except for the delta impulse sequences.
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whereS1 andS2 are two individual training matrices, which
have the same block-circulant structure as (8) and (10), for
the ZP- and CP-based cases, respectively. Certainly, it is still
hard to find individualS1 andS2 such thatS1S

†
1 ∝ INT (L+1)

andS2S
†
2 ∝ INT (L+1), due to the above argument. However,

by using uncorrelated Golay complementary sets ofpolyphase
sequences of Sec. II, it is possible to designS1 andS2 such
that

S1S
†
1 + S2S

†
2 = NsINT (L+1), (19)

which satisfies (15), hence achieves the minimum possible
estimation error according to Proposition 2.

Based on the discussion in Sec. II, we know the family
size of mutually uncorrelated Golay complementary sets is
two if p = 2, which implies that, without any other effort
such as zero insertion or cyclic phase shift, it can support two
transmit antennas only. ForNT > 2, more training sequences
need to be constructed. In the following two subsections, we
will design the training sequences for ZP- and CP-based guard
period transmission. Specifically, Subsection V-A insertszeros
to the basic Golay complementary pair{a0,a1} to generate
training sequences, and Subsection V-B shifts the phase of the
basic Golay complementary pair{a0,a1} to construct training
sequences.

A. ZP-Based Guard Period

Let {a0,a1} be a pair of Golay complementarypolyphase
sequences generated by (4), each of lengthN . Note that the
complementary property will not change if we append some
0’s to the beginning or end or both sides of each sequence.
We define four row vector of length̆N9 as

u =

√
N̆/N [a0,o] , v =

√
N̆/N [a1,o] , (20)

ŭ =

√
N̆/N

[←−a ⋆
0,o
]
, v̆ =

√
N̆/N

[←−a ⋆
1,o
]
, (21)

whereN̆ = N + ℓ is the sequence length after the insertion
of ℓ 0’s into the original one,ℓ = (ŇT /2− 1)(L + 1), ŇT =
2 ⌈NT /2⌉10 and o = 01×ℓ. Note that, in order to keep the
expected received SNRρs at each receive antenna unchanged

over the training phase, the factor
√

N̆/N is added to (20)
and (21), for the power compensation due to the insertion
of ℓ 0’s into the original Golay complementarypolyphase
sequences. Based on the properties discussed in Sec. II,{u, v̆}
and{v,−ŭ} are mutually uncorrelated.

B. CP-Based Guard Period

From Fig. 1, it is clear to see that the PACF̃ϕa0,a0
(k) +

ϕ̃←−a ⋆
1 ,←−a ⋆

1
(k) has an impulse-like shape within all shifts, and

the PCCFϕ̃a0,a1
(k)+ϕ̃←−a ⋆

1 ,−←−a ⋆
0
(k) is zero everywhere, which

verify (3). Therefore, we can use different phases of uncor-
related Golay complementary sets ofpolyphase sequences as
the training symbols for different transmit antennas. For this

9Since we use two training sequences for one frame of each transmit
antenna, the condition for a meaningful estimation ofH should be changed
to N̆ + L > ⌈NT /2⌉ (L + 1) for the ZP-based guard period, and̆N >

⌈NT /2⌉ (L + 1) for the CP-based guard period.
10For example, whenNT = 4, or 3, we haveŇT = 4.

TABLE I

ASSIGNMENT OFTRAINING SYMBOLS TO TRANSMIT ANTENNAS FOR

BOTH ZP- AND CP-BASED GUARD PERIODS

Tx snt,1 snt,2

1 u v̆

2 v −ŭ

3 uΠ
L+1

N̆
v̆Π

L+1

N̆

4 vΠ
L+1

N̆
−ŭΠ

L+1

N̆

...
...

...

ŇT − 1 uΠℓ

N̆
v̆Πℓ

N̆

ŇT vΠℓ

N̆
−ŭΠℓ

N̆

case, we do not need to insert 0’s into the original Golay
complementary pair, so,̆N = N , and

u = a0, v = a1, (22)

ŭ =←−a ⋆
0, v̆ =←−a ⋆

1. (23)

For concise notations, we use the same letters in Table I for
both ZP and CP cases, where the training symbol assignment
for all the transmit antennas are described. In the ZP case,
u, v, ŭ and v̆ are given by (20) and (21), and̆N = N + ℓ,
whereas in the CP case, (22) and (23) give the definitions
for u, v, ŭ and v̆, and N̆ = N . As a simple example, for
NT = 4, N = 4, andL = 1 (two taps in each subchannel),
Table I is reproduced in Tables II and III, for ZP and CP
cases, respectively, usinga0 = [+++−] anda1 = [++−+],
which can be obtained from (4) byd1 = 1, d2 = 2, and
w1 = w2 = 1. Based on the training symbols in Tables II
and III, SZP

ν andSCP
ν , ν ∈ [1, 2], can be generated according

to (8) and (10), respectively. ThereforeS = [S1,S2] for ZP
and CP cases are respectively given by

TABLE II

TRAINING EXAMPLE FOR THE ZP CASE, WHERENT = 4, N = 4, L = 1,

AND N̆ = N + ℓ = 6.

Tx snt,1 snt,2

1
√

1.5[+ + +− 0 0]
√

1.5[+−+ + 00]

2
√

1.5[+ +−+ 0 0]
√

1.5[+−−− 0 0]

3
√

1.5[0 0 + + +−]
√

1.5[0 0 +−+ +]

4
√

1.5[0 0 + +−+]
√

1.5[0 0 +−−−]

TABLE III

TRAINING EXAMPLE FOR THE CP CASE, WHERENT = 4, N = 4, L = 1,

AND N̆ = N = 4.

Tx snt,1 snt,2

1 [+ + +−] [+−++]
2 [+ +−+] [+−−−]
3 [+−++] [+ + +−]
4 [−+ ++] [−−+−]
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1 L0Tx
t
n ,1 ,1 ,1[ (0), , ( 1)]

t t t
n n n

s s Ns

Preamble

t
nd

Data Symbols

,2 ,2 ,2[ (0), , ( 1)]
t t t
n n n

s s Ns1 L0

Postamble

1 L0

Fig. 3. The frame structure for the ZP-based guard period.

,2 ,2 ,2[ (0), , ( 1)]
t t t
n n n

s s NsTx
t
n t

nd

Data Symbols Postamble

,2CP
t
n,1 ,1 ,1[ (0), , ( 1)]

t t t
n n n

s s Ns

Preamble

,1CP
t
n

Fig. 4. The frame structure for the CP-based guard period.

SZP =
√

1.5





+ + +− 0 0 0 +−+ + 00 0
+ +−+ 00 0 +−−− 0 0 0
0 0 + + +− 0 0 0 +−+ +0
0 0 + +−+0 0 0 +−−− 0
0 + + +− 0 0 0 +−+ +00
0 + +−+00 0 +−−− 0 0
0 0 0 + + +− 0 0 0 +−+ +
00 0 + +−+ 00 0 +−−−





,

︸ ︷︷ ︸
SZP

1

︸ ︷︷ ︸
SZP

2

(24)

and

SCP =





+ + +− +−++
+ +−+ +−−−
+−++ + + +−
−+ ++ −−+−
−+ ++ + +−+
+ + +− −+−−
+ +−+ −+ ++
+−++ −−−+





.

︸ ︷︷ ︸
SCP

1

︸ ︷︷ ︸
SCP

2

(25)

From (24) and (25), it is easy to check thatSZP
(
SZP
)′

=

2N̆INT (L+1) = 12I8 andSCP
(
SCP
)′

= 2N̆INT (L+1) = 8I8.
Based on the above discussion, we propose the frame

structures shown in Figs. 3 and 4 for the ZP- and
CP-based guard periods, respectively, wheresnt,1 and
snt,2, nt ∈ [1, NT ], are given in Table I, and

CPnt,1 =
[
snt,1(N̆ − L), · · · , snt,1(N̆ − 1)

]
and CPnt,2 =

[
snt,2(N̆ − L), · · · , snt,2(N̆ − 1)

]
are the cyclic prefixes of

snt,1 andsnt,2, respectively.
Note that for both ZP and CP cases and starting from a given

Golay complementary pair{a0,a1}, the training assignment
is not unique. We have only shown one possible assignment
in Table I, to save space. In addition, when the number of
transmit antennasNT is odd, the last row of Table I will not
be used.

VI. CHANNEL ESTIMATION ALGORITHM

It is easy to check that the training sequences given in Table
I satisfy (19) withNs = 2N̆ . Hence the condition in (15) with
S = [S1,S2] is satisfied, which demonstrates the optimality of
the training symbols given in Table I for the ZP- and CP-based
guard periods, respectively.

For the proposed scheme that each transmit antenna uses
two training sequences11, i.e., p = 2, per frame, as shown
in Fig. 3 and 4, the system model (7) can be rewritten as
[Y1,Y2] =

√
ρs/NT H[S1,S2]+[E1,E2]. By replacingy, S,

Ch andα with vec([Y1,Y2]), [S1,S2], CΣ ⊗ INT NR
and0,

respectively, into (13), witĥhBLUE = vec
(
ĤBLUE

)
, we obtain

ĤBLUE =

√
NT

2N̆
√

ρs

2∑

ν=1

YνS
†
ν , (26)

with ĥLMMSE = vec
(
ĤLMMSE

)
, one can also verify that

ĤLMMSE =

√
NT

ρs

(
2∑

ν=1

YνS
†
ν

)

×
(

2∑

ν=1

SνS
†
ν +

NT

ρs
C−1

Σ ⊗ INT

)−1

, (27)

=ĤBLUE

[(
IL+1 +

NT

2N̆ρs

C−1
Σ

)−1

⊗ INT

]
, (28)

where the last line comes from (19) withNs = 2N̆ . For thelth

tap of thenr-nt subchannel, the BLUE and LMMSE estimator
are given by

ĥnr,nt
(l) =

σl

√
ρsNT

2N̆ρsσl + αNT

[
2∑

ν=1

YνS
†
ν

]

nr−1,lNT +nt−1

,

(29)
wherenr ∈ [1, NR], nt ∈ [1, NT ], and l ∈ [0, L]. With (19)
and Ns = 2N̆ , the TMSE for both estimators can also be
shown to be

εα =
NRNT

ρs
tr




(

2∑

ν=1

SνS
†
ν+α

NT

ρs
C−1

Σ ⊗INT

)−1


 , (30)

=

L∑

l=0

NRN2
T σl

2N̆ρsσl + αNT

. (31)

VII. FAST SOFTWARE AND HARDWARE IMPLEMENTATION

OF THE CHANNEL ESTIMATOR

In this section, we develop low-complexity software and
hardware implementations for the channel estimator in (29),

11For p > 2, the channel estimation algorithm is discussed in Appendix
III.
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via DSP and ASIC/FPGA, respectively. Due to the different
structures of training matrices in (8) and (10), we treat the
ZP- and CP-based guard periods separately, in the following
subsections. For convenience, we define the new scaled SNR
γ as

γ =
N̆

N
ρs. (32)

Note that N̆ = N + ℓ for the ZP-based guard period, and
N̆ = N for the CP-based guard period.

A. Software (DSP) Implementation

Nowadays the DSP has enough power to implement com-
plex algorithms, and are widely used in both base stations and
mobile terminals. In this subsection, we derive the fast DSP
implementation of (29).

1) ZP-Based Guard Period: For demonstrating the idea
only, we assume the training sequences generated by (4) are
real and binary, i.e.,wm = ±1,∀m, and the number of
transmit antennasNT is even. In a similar way to [35], let
us define

t
nr
H =

[
hnr,2t−1(0) hnr,2t−1(1) · · · hnr,2t−1(L)
hnr,2t(0) hnr,2t(1) · · · hnr,2t(L)

]
, (33)

wheret =
⌈

nt

2

⌉
, and

nr
H =

[
1
nr
H 2

nr
H · · ·

NT
2

nr H

]
, (34)

whose dimension is2× NT

2 (L + 1). Based on (29), (33) and
(34), estimates for all the channel coefficients that correspond
to thenth

r receive antenna, can be compactly written as12

nr
Ĥ =

(
2∑

ν=1

XνYnr,ν

)(
INT

2

⊗Λ
)

, (35)

whereX1 = [ a0
a1

], X2 =
[ ←−a1

−←−a0

]
, Λ = diag(f), andf is a row

vector of lengthNT , defined by

f =

[
σ0

√
γNT

2γNσ0 + αNT
,

σ1

√
γNT

2γNσ1 + αNT
, · · · , σL

√
γNT

2γNσL + αNT

]
.

(36)
Furthermore,Ynr,ν is a N × NT

2 (L + 1) Hankel matrix with
the (i, j)th element,[Ynr,ν ]i,j , given byynr,ν(i + j), i.e.

Ynr,ν =





ynr,ν(0) ynr,ν(1) · · · ynr,ν(N̆+L−N)

ynr,ν(1)
. . .

. . . ynr,ν(N̆+L−N+1)
...

. . .
. . .

...
ynr,ν(N−1) ynr,ν(N) · · · ynr,ν(N̆+L−1)




,

(37)
where ν ∈ [1, 2], ynr,ν(n) is the signal received by thenth

r

receive antenna at timen, corresponding to theν th training
sequence. According to (35), clearly the structure of the
estimator is identical for all the receive antennas, so we focus
on thenth

r antenna in the sequel.
First, we consider how to computeX1Ynr,1 in an efficient

way. Without loss of the generality, we assumewm = 1 and

12Since we assumea0 anda1 are binary and real, the conjugate operation
on Xν , ν ∈ [1, 2], is not necessary.

dm = 2m−1,m ∈ [1,M ], in (4) of Sec. II, therefore we have
N = 2M according to (4). In addition, we splitYnr,1 into

two parts asYnr,1 =
[

P(M)

Q(M)

]
, whereP(M) contains the first

2M−1 rows of Ynr,1, andQ(M) contains the last2M−1 rows

of Ynr,1. We further splitP(M) andQ(M) asP(M) =

[
P

(M)
1

P
(M)
2

]

and Q(M) =

[
Q

(M)
1

Q
(M)
2

]
, respectively, whereP(M)

1 and P
(M)
2

contain the first and last2M−2 rows of P(M), respectively,
and Q

(M)
1 and Q

(M)
2 contain the first and last2M−2 rows

of Q(M), respectively. Sincea0 = a
(M)
0 and a1 = a

(M)
1 , as

defined right after (5), thenX1Ynr,1 in (35) can be written
as

X1Ynr,1 =

[
a

(M)
0

a
(M)
1

] [
P(M)

Q(M)

]
,

=

[
a

(M−1)
0 a

(M−1)
1

a
(M−1)
0 −a

(M−1)
1

] [
P(M)

Q(M)

]
,

=

[
a

(M−2)
0 a

(M−2)
1 a

(M−2)
0 −a

(M−2)
1

a
(M−2)
0 a

(M−2)
1 −a

(M−2)
0 a

(M−2)
1

]




P
(M)
1

P
(M)
2

Q
(M)
1

Q
(M)
2




,

=

[
a

(M−2)
0 P(M−1)+ + a

(M−2)
1 Q(M−1)−

a
(M−2)
0 P(M−1)− + a

(M−2)
1 Q(M−1)+

]
,

(38)

where a
(m)
0 =

[
a

(m−1)
0 ,a

(m−1)
1

]
and a

(m)
1 =

[
a

(m−1)
0 ,−a

(m−1)
1

]
, m = M − 1,M , derived from (4),

are used in the second and third lines of (38). Furthermore,
by definition we have

P(M−1)+ = P
(M)
1 + Q

(M)
1 ,

P(M−1)− = P
(M)
1 −Q

(M)
1 ,

Q(M−1)+ = P
(M)
2 + Q

(M)
2 ,

Q(M−1)− = P
(M)
2 −Q

(M)
2 .

(39)

To show the computational efficiency of the last term in
(38) for calculatingX1Ynr,1, first we focus on (39). The
number of additions (we take each substraction as an addition)
in (39) is 2(N̆ + L − 2M−1) = N + 2(Ľ − 1), where Ľ =
NT

2 (L + 1). Furthermore,a(M−2)
0 P(M−1)+ +a

(M−2)
1 Q(M−1)−

anda
(M−2)
0 P(M−1)−+a

(M−2)
1 Q(M−1)+ in the last line of (38)

can be calculated in a recursive way [34], with the number of
additions equal to2

[
2
∑M−3

m=0

(
2m + Ľ− 1

)
+ Ľ

]
.

Therefore, the total number of additions forX1Ynr,1 in
(38) is (4 log2 N−5)Ľ+2(N−2 log2 N +1). Note that since
the elements of vectorsa(M)

0 anda
(M)
1 are all±1’s, there is no

multiplication in (38).X2Ynr,2 will take the same number of
operations asX1Ynr,1, so the total number of additions for∑2

ν=1 XνYnr,ν in (35) is2(4 log2 N−5)Ľ+4(N−2 log2 N+
1) + 2Ľ = 8(log2 N − 1)Ľ + 4(N − 2 log2 N + 1). However,
if we calculate

∑2
ν=1 XνYnr,ν in (35) directly, the number

of additions is2Ľ(2N − 1), which could be much bigger. For
example, ifN = 128, L = 31, and NT = 4, then the total
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number of additions by the fast recursive method proposed in
(38) is 3532, but32640 for the direct computation of (35).

2) CP-Based Guard Period: HereNT can be even or odd,
and sequences can be real or complex. The basic idea is to
use the fact that a matrix-vector product can be efficiently
implemented by the fast Fourier transform (FFT), if the matrix
is circulant.

In a similar manner to [36], first we define two row vectors
hnr,o of length No = ⌈NT/2⌉ (L + 1), and hnr,e of length
Ne = ⌊NT/2⌋ (L + 1). These row vectors include the CIRs
of all the subchannels between the odd- and even-numbered
transmit antennas and thenth

r receive antenna, respectively, as
follows

hnr,o =
[
hnr,1 hnr,3 · · · hnr,2⌈NT/2⌉−1

]
,

hnr,e =
[
hnr,2 hnr,4 · · · hnr,2⌊NT/2⌋

]
,

(40)

where hnr,nt
is defined in (11). Moreover, we define four

circulant matrices

C0,1 = circ(a0, No), C1,1 = circ(a1, Ne),

C0,2 = circ(←−a ⋆
1, No), C1,2 = circ(−←−a ⋆

0, Ne),
(41)

with circ(c), c = [c0, c1, · · · , cn−1], as ann × n circulant
matrix, whose(j, k)th element13 is c(k−j)n

, and circ(c,m),
m 6 n, includes the firstm rows of circ(c). Based on Table
I, (29), (40) and (41), estimators for the channel coefficients
specified in (40) can be written as

ĥnr,o =

(
2∑

ν=1

ynr,νC
†
0,ν

)
(
I⌈NT/2⌉ ⊗Λ

)
,

ĥnr,e =

(
2∑

ν=1

ynr,νC
†
1,ν

)
(
I⌊NT/2⌋ ⊗Λ

)
,

(42)

whereynr,ν = [ynr,ν(0), ynr,ν(1), · · · , ynr,ν(N−1)], ν∈ [1, 2],
andΛ = diag(f), with f given in (36). For fast implementation
of the vector-matrix products in (42), we need the following
result.

Proposition 3: [40, Chap. 3] IfC is anN ×N circulant
matrix, then it can be diagonalized by the Fourier matrixF

of order N such that[F†]i,j = 1√
N

ω(i−1)(j−1) [40, (2.5.3)],

ω = exp
(

2π
N

)
, and =

√
−1. Therefore

C = F†∆cF, (43)

where∆c =
√

Ndiag(cF†) andc is the first row ofC such
that C = circ(c).

Note that ynr,1C
†
0,1 is the first No elements of

ynr,1[circ(a0)]
†. Therefore, it can be calculated very effi-

ciently, according to Proposition 3, as follows

ynr,1[circ(a0)]
† = ynr,1(F

†∆a0
F)†,

= [(ynr,1F
†)∆†a0

]F,

=
√

NFFT(FFT(a⋆
0)⊙IFFT(ynr,1)),

(44)

13Note that(·)n is the modulus operator, as defined in Sec. I. For example,
if k = 1, j = 3 andn = 8, thenc(k−j)n

= c6 denotes the7th element of
the vectorc.

,1rny

,2rny

0FFT( )a

1FFT( )a

IFFT
FFTo

FFTe M

U

X
rnh

Nq

1FFT( )a

0FFT(- )a

IFFT
FFTo

FFTe

Fig. 5. The FFT-based estimator on thenth
r receive antenna for the CP-based

guard period.

where FFT(x) = xF and IFFT(x) = xF†, with x as a1×N
vector. With the same reasoning we obtain

ynr,1[circ(a1)]
† =
√

NFFT(FFT(a⋆
1)⊙IFFT(ynr,1)), (45)

ynr,2[circ(←−a ⋆
1)]

† =
√

NFFT(FFT(←−a 1)⊙IFFT(ynr,2)), (46)

ynr,2[circ(−←−a ⋆
0)]

† =
√

NFFT(FFT(−←−a 0)⊙IFFT(ynr,2)). (47)

Based on (29), (42), and (44)-(47), we propose the structure
shown in Fig. 5, wherêhnr

=[ĥnr,1, ĥnr,2, · · · , ĥnr,NT
], the

number of points for each FFT and IFFT operation isN ,
“FFTo” only generates the firstNo values, “FFTe” generates
the first Ne values, “MUX” multiplexes inputs in groups of
L + 1 elements, with the first group coming from the upper
branch, and

√
Nq =

√
N11×NT

⊗ f is the scaling vector of
ĥnr

, whose elements reflect the scalar coefficient in (29).
Regarding the computational complexity per receive an-

tenna, there areN(3 log2 N + 4) complex multiplications,
6N log2 N + NT (L + 1) complex additions and2NT (L + 1)
real multiplications14, as there are 6 FFT/IFFT blocks, each
with N

2 log2 N multiplications andN log2 N additions [49],
4 “⊙” units, each withN multiplications, one “⊕” unit with
NT (L + 1) additions, and one scaling unit with2NT (L + 1)
real multiplications. On the other hand, for each receive
antenna, there are2NNT (L + 1) complex multiplications,
(2N − 1)NT (L + 1) complex additions and2NT (L + 1) real
multiplications, if (29) is directly implemented via matrix
multiplication. The proposed method offers significant com-
putational saving, specially when the number of unknowns
per receive antenna,NT (L + 1), is large. For example, with
NT = 8, L = 15 and N = 64, the complexity is reduced by
94%, upon the proposed method.

B. Hardware (ASIC/FPGA) Implementation

Although existing DSP’s can calculate the channel estimates
fast, using the proposed fast algorithms, the cost and power
consumption of such powerful DSP’s are not low. Compared
to DSP’s, ASIC/FPGA designs have several advantages over
DSP’s, as they provide intrinsic parallelism, high performance,
and low cost. In the following subsections, algorithms and
filter structures suitable for ASIC/FPGA implementations are
developed for the ZP- and CP-based guard periods, respec-
tively.

14The scaling vectorq, FFT(a⋆
0), FFT(a⋆

1), FFT(−←−a 0), and FFT(←−a 1)
are not considered as they can be calculated once and stored for all theNR

receive antennas.
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Fig. 6. The fast hardware channel estimator on thenth
r receive antenna for the ZP-based guard period: The EGC/FGC structure.

1) ZP-Based Guard Period: The goal is to develop fast
hardware designs, to calculate the first parenthesis in (35), the
main part of the channel estimator of thenth

r receive antenna.
Here we consider complexa0 anda1 which are generated such
that the delay vectord is any permutation of

[
1, 2, · · · , 2M−1

]
,

and the weights are complex with unit amplitude, i.e.,|wm| =
1,∀m. Note thatXν should replaced withX⋆

ν in (35) since it
is complex now.

According to [35, Sec. V] and by definingynr,ν =
[ynr,ν(0), ynr,ν(1), · · · , ynr,ν(N̆ + L− 1)], ν ∈ [1, 2], we can
feed the received vectorynr,1 into a finite impulse response
(FIR) filter bank (consisting of two parallel FIR filters), with
impulse responses←−a ⋆

0 and ←−a ⋆
1, to calculate the1st and

2nd rows of X⋆
1Ynr,1, respectively. Also the elements of

X⋆
2Ynr,2 can be computed by feedingynr,2 into an FIR filter

bank whose impulse responses area1 and −a0. However,
the conventional implementation of each filter needsN − 1
complex adders andN complex multipliers. In what follows,
we develop efficient filters by utilizing the special structure of
our proposed training sequences.

If we take theZ transform of (4) with respect tok, we
obtain [27]

A
(m)
0 (z) = A

(m−1)
0 (z) + wmA

(m−1)
1 (z)z−dm

A
(m)
1 (z) = A

(m−1)
0 (z)− wmA

(m−1)
1 (z)z−dm

, m ∈ [1,M ],

(48)

with A
(0)
0 (z) = A

(0)
1 (z) = 1. The filter structure correspond-

ing to (48) is the fast Golay correlator (FGC) [27, Fig. 1],
which is the matched filter for the sequences←−a ⋆

1 and←−a ⋆
0

[50]. As stated in [50], the matched filter for the sequencesa0

anda1 is the efficient Golay correlator (EGC) [50, Fig. 2].
In order to convolve the inputsynr,1 and ynr,2 with

{←−a ⋆
0,
←−a ⋆

1} and{a1,−a0}, to obtain the elements ofX⋆
1Ynr,1

and X⋆
2Ynr,2 in (35), respectively, we propose to utilize

EGC and FGC for the implementation of (35). The efficient
hardware is given in Fig. 6, where “z−D” is the delay unit
of length D, “Extractor 1” discards the firstN − 1 values,
takes the followingNo = ⌈NT /2⌉ (L+1) elements and drops
the remaining, “Extractor 2” throws the firstN − 1 values
away, keeps the nextNe = ⌊NT /2⌋ (L + 1) elements, and
discards the rest. Moreover, “MUX” has the same function as
that in Fig. 5. Note that Fig. 6 includes Fig. 2 of [35] as a
special case. This can be easily shown by settingα = 0 in

(36), dm = 2M−m,m ∈ [1,M ] in (4), andwk = 1,∀k, i.e.,
removing all the “⊠” units.

Other hardwares can be thought of, which use either EGC or
FGC, but not both. The FGC-only structure is shown in Fig. 7,
and similar structure can be derived with EGC only. The key
idea relies on the fact thata ∗ ←−b =

←−−−←−a ∗ b. For hardware
implementation, the reversing operation

←−
[·] is implemented

by the last-in-first-out (LIFO) unit. In this scheme, the three
switches are connected to the nodes labeled as1©, to calculate
X⋆

1Ynr,1. After finishing the computation ofX⋆
1Ynr,1, FGC

is reset and all the switches are connected to the nodes labeled
as 2©, to computeX⋆

2Ynr,2.
Regarding the hardware complexity, according to Fig. 6,

both EGC and FGC haveM stages, each stage has two “⊞”
units, one “⊠” unit, and a buffer of lengthdm for the mth

stage. In addition, there are two “⊞” units and one “⊙” unit
for post processing. Therefore, there are4M+2 = 4 log2N+2
“⊞” units and2M + 1 = 2 log2N + 1 “⊠” units15 on each
receive antenna. However, there are4(N−1)+2 “⊞” units and
4N +1 “⊠” units, if (29) is implemented by the conventional
method (four FIR filters mentioned at the beginning). For
not so smallN , the ratio is close tolog2N/N for the “⊞”
unit, and log2N/(2N) for the “⊠” unit, which demonstrate
the efficiency of Fig. 6. Similar order of magnitude hardware
efficiency holds for Fig. 7.

If binary sequences are used for training, there are only
4 log2N + 2 “⊞” units on each receive antenna, and one “⊠”
unit is required for scaling [35].

2) CP-Based Guard Period: Similarly to the ZP case,
we develop the fast hardware implementation of (42). The
derivation in [36, Sec. IV] can be easily extended to the
complex case by replacing the transpose with the conjugate
transpose. Therefore, by using EGC and FGC developed
above, the efficient filter structure for thenth

r receive antenna

15Note that “⊙” counts as one “⊠” unit.
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X
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q

Fig. 7. The fast hardware channel estimator on thenth
r receive antenna for

the ZP-based guard period: The FGC only structure.
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Fig. 8. The fast hardware channel estimator on thenth
r receive antenna for

the CP-based guard period: The EGC/FGC structure.

is given in Fig. 8, wherĕynr,ν = [ynr,ν(0), · · · , ynr,ν(N −
1), ynr,ν(0), · · · , ynr,ν(No−2)], i.e., y̆nr,ν(n) = ynr,ν((n)N ),
ν ∈ [1, 2], n ∈ [0, N + No − 2], “Repeater” generates̆ynr,ν

from ynr,ν , and other parts have the same functions as those
in Fig. 6. In addition, similarly to the ZP case, EGC-only and
FGC-only structures can be easily derived for the CP case as
well.

By comparing Figs. 6 and 8, one can see that the two
filter structures are very similar, except that Fig. 8 has two
extra “Repeater” units. Therefore, they have the same hardware
complexity in terms of the number of “⊞” and “⊠” units. In
addition, it is clear to see that Fig. 8 includes Fig. 3 of [36]
as a special case by settingα = 1 in (36) andwk = 1,∀k.

VIII. C OMPARISON WITH OTHER TRAINING SEQUENCES

A. Comparison with the ZCZ Sequences

ZCZ sequences are considered in [12][13]. They satisfy
the condition of (15) withS given in (10), therefore, can be
used for optimal training in the CP case. Compared to the
scenario where each transmit antenna uses one ZCZ sequence
per transmission frame, our proposed scheme contains an
extra guard period of lengthL (the second CP in Fig. 4)16.
However, this overhead is negligible ifL is much smaller
than frame length, which is the case in, for example, time
invariant indoor MIMO systems. The benefit of our scheme
is that the channel estimator can be implemented with low
software and hardware complexity, as described in Sec. VII,
using the special intrinsic structure of the sequences generated
by (4). For ZCZ sequences we are unaware of such a feature,
which is desirable in practice. Moreover, ZCZ sequences can
not be used in the ZP-based guard period case, where aperiodic
correlations are needed for optimal training design. To thebest
of our knowledge, there is no report on such ZCZ sequences.

B. Comparison with Perfect Polyphase Sequences

For the CP-based guard period case, as stated in the intro-
duction, we can use different phases of a perfect polyphase
sequence, e.g., Frank sequence [23] or Chu sequence [24], as
training symbols on different transmit antennas. It can save
L separation symbols compared to our proposed method, as
mentioned in the previous subsection. However, the resolution
of the phase, which is important in a practical implementation,

16Note that it is not the case if training sequences are binary.To satisfy
(15), the minimum length for binary ZCZ sequences (if they exist) is
Nmin

s,ZCZ = 2NT L according to (2) of [22]. However, our proposed scheme
hasNmin

s = NT (L + 1) + L, which is smaller thanNmin
s,ZCZ. This suggests

that the proposed scheme outperforms ZCZ sequences in terms of spectrum
efficiency and implementation complexity, if binary training sequences are
used.

is small when the sequence length is large [51]. Furthermore,
all the perfect polyphase sequences are complex17, whereas in
practice, binary training symbols are preferred since theyare
easier to generate and make the corresponding channel estima-
tor simpler to implement. And similar to ZCZ sequences, they
lack an efficient structure for fast hardware implementation.
Finally, both Frank and Chu sequences are based on periodic
correlations and can not be used in the ZP-based guard period
case.

C. Comparison with the Training Sequences of [11]

Delta impulse sequences are rarely used in practical com-
munication systems due to their high PAPR. To calculate the
PAPR of the training part, let us define the PAPR of a sequence
x = [x1, x2, · · · , xN ] as

PAPR(x) =
max16n6N |xn|2

1
N

∑N
n=1 |xn|2

. (49)

For the proposed ZP-based training, the PAPR is1 + ℓ/N
according to (20), (21) and (49), which is less than2 while
takingN > ℓ. For CP-based training, the PAPR is1 according
to (22), (23) and (49), which is the lowest one can achieve.
However, the PAPR of the impulse sequences given in [11,
Table I] isNT (L+1), since there is only one non-zero entry in
the sequence. This large PAPR results in low energy efficiency
and is undesirable in practical applications.

Overall, the scheme proposed in this paper is very flexi-
ble since it can generate both binary and complex training
sequences for both ZP- and CP-based guard periods. The
most important aspect of the proposed training scheme is
that the channel estimator can be implemented by DSP or
ASIC/FPGA, with low complexity, which is of high interest
in practice, at the negligible cost of a small overhead (extra L
separation symbols).

IX. SIMULATION RESULTS

A. Comparison Between the Optimal and Suboptimal Training
Power Allocations in the LMMSE Estimator

As mentioned in Sec. IV, in order to minimize the TMSE
of the LMMSE estimator in (14), withα = 1, one needs to
chooseS such that (17) is satisfied, where the optimal power
allocation matrixCs should be obtained according to (18).
Now it is important to know how much we may lose by simply
takingCs = INT

, when using (13) withα = 1. As an example,
a2×3 MIMO ISI channel withL = 3 is used, whereσnr,nt,l’s
are given in Table IV such that

∑L
l=0 σnr,nt,l = 1, ∀nr, nt.

The number of training symbolsNs is chosen to be16.
In Fig. 9, “Optimal” implies that the training power allo-

cation matrixCs over all the transmit antennas is computed
according to (18), combined with the Kuhn-Tucker conditions
for each SNR, whereas “Suboptimal” indicates that all the
transmit antennas have equal training power, i.e.,Cs = INT

.
From Fig. 9, we can see that, at low SNR, different training
powers are allocated to different transmit antennas, and at

17Only one perfect polyphase binary sequence exists, which is[+ + +−]
[52].
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TABLE IV

POWERS OF DIFFERENT SUBCHANNELS AND TAPS IN THE2× 3 MIMO

EXAMPLE

σnr,nt,l l = 0 l = 1 l = 2 l = 3

(nr, nt) = (1, 1) 0.6 0.1 0.1 0.2
(nr, nt) = (1, 2) 0.2 0.3 0.1 0.4
(nr, nt) = (1, 3) 0.05 0.55 0.2 0.2
(nr, nt) = (2, 1) 0.3 0.3 0.2 0.2
(nr, nt) = (2, 2) 0.2 0.2 0.35 0.25
(nr, nt) = (2, 3) 0.15 0.3 0.2 0.35

high SNR, the power allocation converges to the equal-power
scheme, i.e., each transmit antenna has the same training
power. In addition, over all practical SNR’s, there is almost
no difference between the optimal and suboptimal schemes
in terms of TMSE. It can be explained by the following
argument: at low SNR, channel estimation error introduced by
the additive noise is dominant and the benefit from the optimal
power allocation is negligible, compared to that large error. At
high SNR, on the other hand, all the CIR’s can be estimated
with very small error and the suboptimal scheme converges
to the optimal scheme. Therefore, in practice, the estimation
accuracy loss due to the equal-power scheme is negligible, in
terms of TMSE.

B. Comparison Between BLUE and LMMSE Estimator

In the simulation we takeL = 7, i.e., there are 8 taps in
each subchannelhnr,nt

, NT = 8, NR = 8, andN = 32, 64.
For the additive noise, we assume elements ofE are white
complex Gaussian with unit variance. For the underlying
fading channel, elements ofH are independent complex Gaus-
sian, and each subchannel has the same exponential power
delay profile such thatσl = (1−e−1)e−l

1−e−L−1 , l ∈ [0, L]. Note that∑L
l=0 σl = 1. Moreover,H and E are independent. Fig. 10

and 11 show the normalized theoretical minimum classical
CRLB and Bayesian CRLB for BLUE and LMMSE estimator,
given by NT (L+1)

2γN and
∑L

l=0
NT σl

2γNσl+NT
, respectively, derived

from (31) and normalized byNT NR. Note that, although the
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formula of TMSE for both ZP- and CP-based guard periods
is the same for a specific estimator, the value ofγ, defined
in (32), is different. The simulated normalized TMSE of
both estimators,‖Ĥ−H‖2F /‖H‖2F , are plotted as well, which
match the theoretical values perfectly.

From Fig. 10 and 11 it is obvious that each TMSE de-
creases, asN increases. The same conclusion holds for TMSE
versus SNR. Furthermore, the LMMSE estimator has a better
estimation performance than the BLUE because it utilizes the
statistical information of the channel, while BLUE does not.
At high SNRs, this difference becomes negligible, i.e., asymp-
totically, BLUE and LMMSE have the same performance in
the high-SNR regime.

C. BER Performance

Although the end-to-end bit-error-rate (BER) performance
is an important factor, it is generally true that the less the
channel estimation error, the better the BER performance
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for a fixed data detection scheme. Fig. 10 and 11 show
the proposed schemes achieve the minimum possible CRLB,
which is the best one can do for channel estimation. Therefore,
the proposed schemes guarantee the best BER performance of
a given detection method as well.

X. CONCLUSION

In this paper we have shown how to construct optimal
low-complexity training sequences using uncorrelated Go-
lay complementary sets ofpolyphase sequences for MIMO
frequency-selective block-fading channels, by extendingthe
results in [35][36] to the complex sequences. Both zero
padding- and cyclic prefix-based guard periods are considered.
The optimality of the proposed estimators is due to the fact
that they achieve the minimum possible Cramér-Rao lower
bound, also verified by Monte Carlo simulations. A variety
of fast DSP algorithms and hardware structures are presented
to implement the channel estimators. Complexity of each
algorithm or structure is analyzed as well.

The optimal training power allocation to the transmit anten-
nas is also studied in this paper, assuming that the statistical
information of the MIMO ISI channel is known at the transmit
side. The theoretical analysis and simulation results showthat
there is a small performance improvement (in terms of TMSE)
over the practical range of SNR’s, when comparing optimal
power allocation with the equal-power scheme.

Comparison with other existing training sequences is also
carried out in this paper. The result shows the proposed
schemes can be implemented with low complexity, by DSP
and AISC/FPGA, much needed in practice for low manufactur-
ing cost and long battery life. The low-complexity implemen-
tation combined with optimal estimation performance makes
the proposed training-based channel estimators suitable and
ready for real-world MIMO systems such as, but not limited
to, MIMO-CDMA, MIMO-OFDM and MIMO-UWB systems.
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APPENDIX I
PROOF OFPROPOSITION1

A. ZP-Based Guard Period

1) LMMSE Estimator (α = 1): Based on vec(AZB) =
(B′⊗A)vec(Z) [53, p. 61], we can rewrite (7) asy = Φh+e,
whereΦ =

√
ρs

NT
(S′ ⊗ INR

), S is SZP in (8), y = vec(Y),

h = vec(H), ande = vec(E).
According to the Bayesian Gauss-Markov Theorem [47, p.

391], with the covariance matrix of the additive noisee as
Ce = E

[
ee†
]

= I(Ns+L)NR
, and the covariance matrix of the

fading channelh as given in (12), the LMMSE estimator of
h is given by

ĥ =
(
Φ†Φ + C−1

h

)−1
Φ†y,

=

√
NT

ρs

[
(S⋆S′)⊗INR

+
NT

ρs
C−1

h

]−1

(S⋆⊗INR
)y,

(50)

which is equal to (13) whileα = 1.
For the error vectorǫ = h− ĥ, its covariance matrix,Cǫ =

E
[
ǫǫ
†], can be expressed as [47, p. 391]

Cǫ =
(
Φ†Φ + C−1

h

)−1
,

=
NT

ρs

[
(S⋆S′)⊗INR

+
NT

ρs
C−1

h

]−1

.
(51)

Therefore the TMSE, defined byε1 = tr[Cǫ], which is the
same as tr[C⋆

ǫ
] sinceCǫ is Hermitian, is equal to (14), with

α = 1.
If both H andE are Gaussian and independent, the posterior

probability density function (PDF)p(h|y) is also Gaussian
[47, p. 324], and LMMSE estimator has the same perfor-
mance as the MMSE estimator [47, p. 391]. On the other
hand, according to property #3 in [37, p. 84], the MMSE
estimator attains the Bayesian CRLB, when the posterior PDF
is Gaussian. Therefore, the TMSEε1 in (14) is the Bayesian
CRLB for Gaussian and independentH andE.

2) BLUE (α = 0): For BLUE, using the Gauss-Markov
Theorem [47, p. 141], we can follow the same procedure as
shown in Appendix I-A.1, to prove (13) and (14), whenα =
0, and also show thatε0 is the classical CRLB whenH is
deterministic andE is Gaussian. For this case, (13) and (14)
can be further simplified to

Ĥ =

√
NT

ρs

(
SS†

)−1
S†Y, (52)

and

ε0 =
NRNT

ρs
tr
[
(SS†)−1

]
. (53)

B. CP-Based Guard Period

The proposition can be proved using the same procedure as
in Appendix I-A, except thatS denotesSCP in (10) and the
covariance matrix of the additive noisee is given byCe =
E
[
ee†
]

= INsNR
.

APPENDIX II
PROOF OFPROPOSITION2

A. ZP-Based Guard Period

1) LMMSE Estimator (α = 1): For an Ns × Ns positive
definite matrixA, we have tr(A−1) > tr{[dg(A)]−1}, where
the equality holdsiff A is diagonal [54, Lemma 1]. This
implies thatε1 in (14) is minimizediff SS† is diagonal, since
C−1

h itself is diagonal. This particularly justifies (16). Now
we need to determine the diagonal elements ofSS† such
that ε1 is minimized further. According to the definition of
S in (8), we have dg(SS†) = NsIL+1⊗ Cs,18 whereCs =
diag(P1, P2, · · · , PNT

), Pnt
= 1

Ns
‖snt
‖2F , and

∑NT

nt=1 Pnt
6

NT due to the transmit power constraint 1
Ns(L+1) tr[SS†] 6NT .

Based on tr(A−1) > tr{[dg(A)]−1}, dg(A + B) = dg(A) +

18This completes the proof of (16) since dg(SS†) = SS† when SS† is
diagonal.
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dg(B), and dg(A ⊗ INR
) = dg(A) ⊗ INR

, ε1 in (14) can be
lower bounded by

ε1 >
NT

ρs
tr

[(
NsIL+1⊗Cs⊗INR

+
NT

ρs
C−1

h

)−1
]

,

=

NR∑

nr=1

NT∑

nt=1

L∑

l=0

1

σ−1
nr,nt,l

+ Nsρs

NT
Pnt

. (54)

To minimize the lower bound in (54), we use Lagrangian
multiplier λ, take the derivative of∑NR

nr=1

∑NT

nt=1

∑L
l=0

1

σ−1
nr,nt,l

+ Nsρs
NT

Pnt

+λ
(∑NT

nt=1Pnt
−NT

)

with respect toPnt
,∀nt, and set it to 0, which yields (18).

Since Pnt
’s must be non-negative, it may not always be

possible to find a solution to satisfy (18). In this case, the
Kuhn-Tucker conditions [48] need to be used to solve (18),
and the waterfilling-like power allocation is derived.

If σnr,nt,l is independent of nt, i.e., the set
{σnr,nt,l}

(L,NR)
(l=0,nr=1) has the same elements,∀nt, then

clearly Pnt
= 1,∀nt, satisfies (18) and the power constraint∑NT

nt=1Pnt
6 NT . Since the lower bound in (54) is strictly

convex with respect toPnt
,∀nt, its unique minimum is

attained atPnt
= 1,∀nt, which givesCs = INT

, and hence
simplify (17) to (15).

2) BLUE (α = 0): For α = 0, we can follow the same
procedure in Appendix II-A.1 to prove the minimum ofε0 is
achievediff SS† = NsINT (L+1). This result is also reported
in [20, pp. 178-179].

B. CP-Based Guard Period

The proposition can be proved using the same procedure as
in Appendix II-A.

APPENDIX III
THE CASE OFp > 2 TRAINING SEQUENCES PERFRAME

For the case ofp > 2, i.e., when each transmit antenna
uses p training sequences per frame, the received signal
corresponding theν th training sequence can be written as

Yν =

√
ρs

NT
HSν + Eν , (55)

whereEν is the additive noise component.
With Ch = CΣ⊗INT NR

, the BLUE and LMMSE estimators
of H are given by

Ĥ =

√
NT

ρs

(
p∑

ν=1

YνS
†
ν

)(
p∑

ν=1

SνS
†
ν +α

NT

ρs
C−1

Σ ⊗ INT

)−1

,

(56)
with TMSE

εα =
NRNT

ρs
tr




(

p∑

ν=1

SνS
†
ν+α

NT

ρs
C−1

Σ ⊗INT

)−1


 . (57)

For p = 2, (56) and (57) reduce to (26), (27) and (30),
respectively.

If uncorrelated Golay complementary sets, each withp
sequences, are used, i.e,

∑p
ν=1 SνS

†
ν = pN̆INT (L+1), which

is the extension of (19), then (56) reduces to

Ĥ=

(
p∑

ν=1

YνS
†
ν

)


(
pN̆

√
ρs

NT
IL+1+α

√
NT

ρs
C−1

Σ

)−1

⊗ INT



,

(58)
whose elements are

ĥnr,nt
(l) =

σl

√
ρsNT

pN̆ρsσl + αNT

[
p∑

ν=1

YνS
†
ν

]

nr−1,lNT +nt−1

,

(59)
and TMSE is given by

εα =

L∑

l=0

NRN2
T σl

pN̆ρsσl + αNT

. (60)

For p = 2, (58), (59) and (60) reduce to (28), (29) and (31),
respectively.
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