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Abstract— In this paper, we consider the design of distrib-
uted space-time codes for wireless networks. Distributed space-
time coding (DSTC) can be achieved through node cooperation
to emulate multiple transmit antennas. We derive the distrib-
uted space-time codes design criteria for different scenarios
based on the pairwise error probability (PEP) analysis. First,
we consider the decode-and-forward (DAF) protocol and prove
that space-time codes, designed to achieve full diversity and
maximum coding gain in the MIMO channels, will achieve
full diversity but not necessarily maximizing the coding gain
if used with the DAF protocol. Next, we consider the amplify-
and-forward (AAF) protocol and prove that a space-time code
designed to achieve full diversity and maximum coding gain
in MIMO channels will achieve the same if used with the AAF
protocol.

I. I NTRODUCTION

Designing protocols that allow several single-antenna
terminals to cooperate via forwarding each others’ data
can increase the system reliability through achieving spatial
diversity. In [1] and [2], various cooperative protocols
were proposed and outage probability analysis for these
protocols was provided. The concepts of DAF and AAF
have been introduced in these works. The problem with
these protocols is the loss in the data rate as the number of
relays increases and this leads to the use of what is known as
distributed space-time coding. The term distributed comes
from the fact that the virtual multi-antenna transmitter is
distributed between randomly placed relay nodes. It was
proposed in [1] to use relay nodes to form a virtual multi-
antenna transmitter to achieve diversity and outage analysis
was presented for the system. Previous work [3]-[5] have
considered the use of the existing space-time codes used for
the MIMO channels to be deployed in a distributed manner.
These works did not take into consideration the code design
criteria for the space-time codes when they are employed in
a distributed fashion. In this paper, we consider the design
of the distributed space-time codes, with the DAF (or AFF)
protocol, by deriving the code design criteria to achieve full
diversity and to maximize the coding gain. We compare the
derived code design criteria with those for the space-time
codes used over MIMO channels. We try to answer the

question whether the space-time code which achieves full
diversity and maximum coding gain in the MIMO channels
can also achieve full diversity and maximum coding gain if
it is used in a distributed fashion.

II. DSTC WITH THE DAF PROTOCOL

The system has two phases, in phase1, if n relays are
assigned for cooperation, the source transmits data to these
relays with powerP1 and the signal received at thei-th
relay can be modeled as

ys,ri =
√

P1hs,ris + vs,ri , i = 1, 2, · · · , n, (1)

where s is an Ln × 1 (Ln ≥ n) transmitted data vector
with average energyE[|| s ||2] ≤ Ln, and hs,ri denotes
the channel gain between the source and thei-th relay
and it follows a circularly symmetric complex Gaussian
random variable with zero mean and varianceδ2

s,r which we
denote byCN (0, δ2

s,r). The channel gains from the source
to the relays are assumed i.i.d. All channels are fixed during
the transmission of one data packet and can vary from
one packet to another. In (1),vs,ri ∼ CN (0, No) denotes
additive white Gaussian noise (AWGN). Then relays try
to decode the received signals. We assume that the relay
will be able to decide whether it decoded correctly or not.
If a relay decodes correctly it will forward the data in
the second phase of the cooperation protocol, otherwise it
remains idle. The relays are assumed to be synchronized
either by a centralized or a distributed algorithm.

In phase2, the relays that decodes correctly re-encodes
the data vectors with a pre-assigned code structure. The
ST code is distributed among the relays such that each
relay will emulate a single antenna in a multiple antenna
transmitter. Letxri denote theKn × 1 code generated by
the i-th relay withKn ≥ Ln. Hence the signal received at
the destination from all relays can be modeled as

yd =
√

P2 [I1xr1 , I2xr2 , · · · , Inxrn ]hd + vd, (2)

where hd = [hr1,dhr2,d · · ·hrn,d]
T is an n × 1 vector

channel gains from then relays to the destination and
hri,d ∼ CN (0, δ2

r,d) and P2 is the relay power. Then



channels are assumed to be statistically independent as the
relays are spatially separated, andvd denotes AWGN at
the destination and has i.i.d. entries with zero mean and
varianceNo. The state of thek-th relay, i.e., whether it
decoded correctly or not, is denoted by the random variable
Ik (1 ≤ k ≤ n) which takes values1 or 0 if the relay
decodes correctly or erroneously, respectively. The random
variablesIk ’s (1 ≤ k ≤ n) are statistically independent
as the state of each relay depends only on its channel
conditions to the source which are independent from other
relays. There is an energy constraint on the generated ST
code such asE[|| Xr ||2] ≤ Kn, whereXr is anKn×n ST
code matrix with thek-th column being the ST code vector
xrk

transmitted by thek-th relay if it decoded correctly.
The received signal model at the destination in (2) can

be rewritten as follows

yd =
√

P2Xrhd,I + vd. (3)

The new channel definitionhd,I includes the information
about both the channel realization from then relays to
the destination along with the relay state informationI =
[I1, I2, · · · , In] and is defined as follows

hd,I = [I1hr1,d, I2hr2,d, · · · , Inhrn,d]
T

. (4)

Hence, if thek-th relay decoded in error then its equivalent
channelIkhrk,d equals0.

The random variableIk is a Bernoulli random variable
with a distribution given by

Ik =

{
0 with probability' LnSER
1 with probability' 1− LnSER,

(5)

where the probability of decoding a packet of lengthLn in
error is approximated using the union-bound byLnSER,
where SER is the symbol error rate and is modulation
dependent. ForM -ary quadrature amplitude modulation
(M -QAM, M = 2k with k even), we can show that the
exact expression can be upper bounded by

SER ≤ Nog(2)
bP1δ2

s,r

, (6)

where b = 3/(M − 1) and g(2) = 4K
π

∫ π/2

0
sin2 θdθ −

4K2

π

∫ π/4

0
sin2 θdθ in which K = 1 − 1√

M
. The proof is

omitted due to space limitations.
The destination has full channel state informationhd,I

and applies a maximum likelihood (ML) receiver. We can
show that the conditional PEP given the equivalent channel
realizationhd,I and the number of relaysn can be upper
bounded as follows

P (X → X̂ |hd,I) ≤ exp

(
−P2 || Φ(X, X̂)hd,I ||2

4No

)
,

(7)

where Φ(X, X̂) =
(
X− X̂

)
is the difference matrix

between the two codewordsX and X̂ and || . ||2 is the
Frobenius norm of a matrix. The Frobenius norm in (7) can
be further decomposed as

|| Φ(X, X̂)hd,I ||2= hHd DIΦ(X, X̂)
H
Φ(X, X̂)DIhd,

(8)
whereDI is ann×n diagonal matrix with thek-th diagonal
entry equal toIk. Let rI denote the rank of the matrix
Φ(X, X̂)DI, which is the difference code matrix after
inserting zeros in the columns corresponding to the relays
that decoded in error. This rank is generally less than or
equal to the number of relays that decode correctly, which

we denote bycI. The matrixDIΦ(X, X̂)
H
Φ(X, X̂)DI is

hermitian and can thus be decomposed into

DIΦ(X, X̂)
H
Φ(X, X̂)DI = UΛUH, (9)

where U is a unitary matrix with thei-th column ui

denoting thei-th eigenvector andΛ is a diagonal matrix
with the i-th entry λi denoting thei-th eigenvalue which
are arranged in a non-increasing order. We can write (8)
using the decomposition in (9) as follows

hHd UΛUHhd = h̃Hd Λh̃d, (10)

where h̃d = UHhd. Since hri,d’s are independent and
identically distributed Gaussian random variables, and the
matrix U is unitary, then the elements of the vectorh̃d are
also Gaussian and independent. The random vectorsh̃d and
I are mutually independent as they arise from independent
processes. First, we average over the transformed channel
realizations h̃d. The channel gain| h̃d(i) |2, has an
exponential distribution with parameter1/δ2

r,d. Averaging
the conditional PEP in (7) over all channel realizations, we
get

P (X → X̂ | I) ≤
rI∏

i=1

1

1 +
P2δ2

r,d

4No
λIi

, (11)

where{λIi}rI
i=1 is a subset of the eigenvalues of the matrix

DIΦ(X, X̂)
H
Φ(X, X̂)DI that depends on the realization

of I.
Second, we average over different realizations of the

relays statesI. The dependence of the expression in (11)
on I appears in the upper limit of the summationrI and the
set of non-zero eigenvalues{λIi}rI

i=1. To take into account
the dependence of the set of non-zero eigenvalues{λIi}rI

i=1

on the realization of the relays statesI, i.e., which relays
decoded correctly, we upper bound the PEP in (11) as
follows

P (X → X̂ | I, cI = k) ≤ max
Ik:cI=k

rI∏

i=1

1

1 +
P2δ2

r,d

4No
λIi

, (12)



where Ik denotes the set of realizationsI which have
the same number of relays that decoded correctlyk.
If we consider the high SNR performance, the set of
eigenvalues that maximizes the PEP bound in (12) will
clearly correspond to the set of eigenvalues of the matrix

DIΦ(X, X̂)
H
Φ(X, X̂)DI with the smallest rank. We de-

note these eigenvalues by{λi,k}rk

i=1 and generallyrk ≤ k.
Since theIk ’s are i.i.d. Bernoulli r.v.’s as in (5), the

number of relays that decoded correctlycI has a binomial
distribution given by

PcI(k) =
(

n

k

)
(1− LnSER)k (LnSER)n−k

. (13)

Define the SNR asSNR = P/No, whereP = P1 + P2 is
the total power used in transmission from the source and
the relays. Let the ratios of the total power assigned to the
source and the relays be denoted bya1 anda2, respectively,
where P1 = a1P and P2 = a2P where α1 + α2 = 1.
Averaging over all realizations of the states of the relays
and considering high SNR we get

P (X → X̂ ) ≤
n∑

k=0

(
n

k

)
SNR−n+(k−rk)

(
Lng(2)
ba1δ2

s,r

)n−k

·
rk∏

i=1

(
a2δ

2
r,d

4
λi,k

)−1

,

(14)

The diversity gain achieved is defined asd = lim
SNR→∞

−
log(PEP (SNR))

log(SNR) . Applying this definition to the conditional
PEP in (14), when the number of cooperating nodes isn,
we get

dDF = lim
SNR→∞

− log(PEP )
log(SNR)

= min
k∈{1,··· ,n}

n− (k− rk).

(15)
From (15) it is clear that the maximum achievable di-
versity is n and is achieved whenrk = k ∀k. This
maximum diversity can only be achieved if the matrix

Φ(X, X̂)
H
Φ(X, X̂) has a full rank of order n. Then the

matrix DIΦ(X, X̂)
H
Φ(X, X̂)DI has always a rank of

cI, which is the number of relays that decode correctly,
independent of the specific realization ofI with the same
cI. If the full diversity is achieved, the coding gain is

CDF =

(
n∑

k=0

(
n

k

)(
Lng(2)
ba1δ2

s,r

)n−k k∏

i=1

(
4

a2δ2
r,dλi,k

))− 1
n

,

(16)
which is a term that does not depend on the SNR. To min-
imize PEP bound we need to maximize the coding gain of
the distributed space-time code. So to achieve full diversity

of ordern the code matrixΦ(X, X̂)
H
Φ(X, X̂) must be of

full column rank over all pairs of distinct codewordsX and

X̂. This is the same code design criterion as for the space-
time codes designed for the MIMO channels to achieve full
diversity [6].

To maximize the coding gain of the distributed space-
time code we need for eachk ∈ {1, · · · , n} to maximize

minℵ:ℵ⊂{1,··· ,n},|ℵ|=k

(∏k
i=1 λi,ℵ

)
, where|ℵ| indicates the

cardinality of the subsetℵ and λi,ℵ is the i-th eigenvalue
of the code matrix corresponding to the subsetℵ of relays
that have decoded correctly. The maximization is over all
distinct pairs of codewordsX andX̂. This is different from
the determinant criterion in the case of MIMO channels
[6]. Intuitively, the difference is due to the fact that in the
case of distributed space-time codes, not all the relays will
always transmit their corresponding code matrix columns.
The design criterion used in the case of distributed space-
time codes makes sure that the coding gain is significant
over all sets of possible relays that have decoded correctly
in the first phase.

III. DSTC WITH THE AAF PROTOCOL

The system has two phases, in phase1, if n relays are
assigned for cooperation, the source transmits data to these
relays with powerP1 and the signal received at thei-th
relay can be modeled as

ys,ri =
√

P1hs,ris + vs,ri , i = 1, 2, · · · , n, (17)

where s is a n × 1 transmitted data vector with average
energy E[|| s ||2] ≤ n. the channel and the noise are
modeled as in (1). In the AAF protocol, the relays do not
decode the received signal. Instead, the relays can only
amplify the received signal and perform simple operations
such as permutations of the received symbols or other
forms of linear transformations. We constraint the linear
transformations to have rows of unit norm which means that
the average power transmitted by a single relay is the same
for any time slot. LetX̃ denote theKn×n code generated
by then relays if the system was noise free withKn ≥ n.
Each relay will multiply the received signal by the factor√

P2/Kn

P1δ2
s,r+N0

. It can be easily shown that this normalization
will give a transmitted power per symbolP = P1 +P2 [5].
Hence, the signal received at the destination from all relays
can be modeled as

yd =

√
P2/Kn

P1δ2
s,r + N0

X̃hd + vd, (18)

where hd = [hr1,d, hr2,d, · · · , hrn,d]
T is an n × 1

vector channel gains from then relays to the desti-
nation and hri,d ∼ CN (0, δ2

r,d). vd denotes additive
white Gaussian noise AWGN. Each element ofvd is
CN

(
0, N0

(
1 + P2/Kn

P1δ2
s,r+No

∑n
i=1 |hri,d|2

))
, and vd ac-

counts for both the noise propagated from the relay nodes as



well as the noise generated at the destination. The received
vector in (18) can be written as

yd =

√
P2P1/Kn

P1δ2
s,r + N0

XH + vd, (19)

whereH = [ hs,r1hr1,d, hs,r2hr2,d, · · · , hs,rnhrn,d]
T . Now

X plays the role of the space-time codeword.
With the ML decoder, the PEP of mistakingX by X̂ can

be upper bounded by the following Chernoff bound

P (X → X̂) ≤

EHe
− P1P2/Kn

4N0(P1δ2
s,r+No+

P2
Kn

Pn
i=1 |hri,d|2)

HH(X−X̂)H(X−X̂)H

.
(20)

By averaging over the source to relay channels we get [5]

P (X → X̂) ≤ Ehr1,d,··· ,hrn,d
det−1

[

In +
δ2
s,rP1P2/Kn

4N0

(
P1δ2

s,r + No + P2
Kn

∑n
i=1 |hri,d|2

)

(X− X̂)H(X− X̂)diag (|hr1,d|2, |hr2,d|2, · · · , |hrn,d|2)
]
,

(21)

whereIn is then× n identity matrix.
Define the matrix

M =
δ2
s,rP1P2/Kn

4N0

(
P1δ2

s,r + No + P2
Kn

∑n
i=1 |hri,d|2

)

Ψ(X, X̂)diag (|hr1,d|2, |hr2,d|2, · · · , |hrn,d|2),
(22)

whereΨ(X, X̂) = (X− X̂)H(X− X̂). The bound in (21)
can be written in terms of the eigenvalues ofM as

P (X → X̂) ≤ Ehr1,d,··· ,hrn,d

1∏n
i=1(1 + λMi)

, (23)

whereλMi is the i-th eigenvalue of the matrixM. If we
let P1 = αP andP2 = (1−α)P whereP is the power per
symbol for someα ∈ (0, 1) and defineSNR = P/N0, we
can easily see that the eigenvalues ofM increase with the
increase of the SNR. We will now assume that the matrix
M has full rank of ordern. At high SNR we can have the
following approximations

nY

i=1

(1 + λMi
) ' 1 +

nY

i=1

λMi

= 1 +

0
@ δ2

s,rP1P2/Kn

4N0

�
P1δ2

s,r + No + P2
Kn

Pn
i=1 |hri,d|2

�
1
A

n
nY

i=1

λi|hri,d|2

'
nY

i=1

0
@1 +

δ2
s,rP1P2/Kn

4N0

�
P1δ2

s,r + No + P2
Kn

Pn
i=1 |hri,d|2

�λi|hri,d|2
1
A ,

(24)

whereλi are the eigenvalues of theΨ(X, X̂) matrix. We
have used the fact that the determinant of a matrix equals the
product of the matrix eigenvalues and that the determinant
of the multiplication of two matrices equals the product of
the individual matrices’ determinants.

The PEP in (23) can now be approximated at high SNR
as

P (X → X̂) ≤ Ehr1,d,··· ,hrn,d

[

1
∏n

i=1(1 + δ2
s,rP1P2/Kn

4N0(P1δ2
s,r+No+

P2
Kn

Pn
i=1 |hri,d|2)

λi|hri,d|2)

]
.

(25)

Consider now the termh =
∑n

i=1 |hri,d|2 in (25) which
can be reasonably approximated as

∑n
i=1 |hri,d|2 ≈ nδ2

r,d,
especially for largen [5] (by the strong law of large num-
bers). Averaging the expression in (25) over the exponential
distribution of |hri,d|2 we get

P (X → X̂) ≤
n∏

i=1


 (δ2

s,rP1P2/Kn)λi

4N0

(
P1δ2

s,r + No + P2
Kn

δ2
r,dn

)


−1

·
n∏

i=1

[
− exp


−

4N0

(
P1δ

2
s,r + No + P2

Kn
δ2
r,dn

)

(δ2
s,rP1P2/Kn)λi




· Ei


−

4N0

(
P1δ

2
s,r + No + P2

Kn
δ2
r,dn

)

(δ2
s,rP1P2/Kn)λi




]
,

(26)

whereEi(.) is the exponential integral function defined as
[9]

Ei(µ) =
∫ µ

−∞

exp(t)
t

dt, µ < 0. (27)

The exponential integral function can be approximated asµ

tends to0 as−Ei(µ) ≈ ln
(
− 1

µ

)
, µ < 0 [9]. At high SNR

(high P ) we can get the bound in (26) as

P (X → X̂) ≤
n∏

i=1


 (δ2

s,rP1P2/Kn)λi

4N0

(
P1δ2

s,r + P2
Kn

δ2
r,dn

)


−1

·
n∏

i=1

ln


 (δ2

s,rP1P2/Kn)λi

4N0

(
P1δ2

s,r + P2
Kn

δ2
r,dn

)

 .

(28)

Let P1 = αP and P2 = (1−α)P , where P is the power
per symbol, for someα ∈ (0, 1). With the definition of the
SNR asSNR = P/N0, the bound in (28) can be given as

P (X → X̂) ≤ aAF
1∏n

i=1 λi
SNR−n (ln(SNR))n

, (29)



where aAF is a constant that depends on the power al-
location parameterα and the channels’ variances. The
diversity order of the system can now be calculated as
dAF = lim

SNR→∞
− log(PEP )

log(SNR) = n. The system will achieve

a full diversity of ordern, if the matrix M is full rank,
that is the code matrixΨ(X, X̂) must have a full rank
of order n over all distinct pairs of codewordsX and X̂.
It can be easily seen, following the same approach, that
if the code matrixΨ(X, X̂) is rank deficient the system
will not achieve full diversity. So any code that is designed
to achieve full diversity in MIMO channels will achieve
full diversity in the case of AAF distributed space-time
coding. If the full diversity is achieved, the coding gain is

CAF =
(
aAF

1Qn
i=1 λi

)− 1
n

. To maximize the coding gain of
the AAF distributed space-time codes we need to maximize
the term

∏n
i=1 λi which is the same as the determinant

criterion used for MIMO channels [6].

IV. SIMULATION RESULTS

In this section, we present some simulations to verify
the theoretical results presented in the previous sections. In
the simulations, we take the variance of any source-relay
or relay-destination channel to be 1. We compare the per-
formance of different systems with two relays helping the
source. Fig. 1 shows the simulations for two DAF systems
using the Alamouti scheme (DAF Alamouti) [7] and the
diagonal STC (DAF DAST) [8], and the diagonal distributed
space-time codes (DDSTC) with the AAF protocol. For
fair comparison we fix the number of transmitted bits per
symbol to be 1 bit/sym. Clearly the DAF system in general
outperforms the AAF based system. Intuitively, the DAF
will deliver signals that are less noisy to the destination
because they suppress the noise by transmitting a noise free
version of the signal. The AAF delivers more noise to the
destination, due to noise propagation from the relay nodes,
than the DAF system. The assumption of correct decision
at the relay nodes (whether the relay has decoded correctly
or not) imposes practical limitations on the DAF systems in
general otherwise we may have error propagation [2] which
will highly degrade the system SER performance.

V. CONCLUSION

In this paper, We derive the code design criteria for
different systems based on PEP analysis. The different
systems differ in the processing performed at the relay
nodes. For the DAF distributed space-time codes we find
that any code that is designed to achieve full diversity
in the MIMO channels can achieve full diversity under
the assumption that the relay nodes can decide whether
they have decoded correctly or not. We prove that a code
that maximizes the coding gain in the MIMO channels is
not guaranteed to maximize the coding gain in the DAF
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Fig. 1. BER for two relays with rate 1 bit/sym.

distributed space-time coding due to the fact that not all the
relays will always transmit their code columns in the second
phase. Then, we consider the code design criteria for the
AAF distributed space-time codes. In this case, the code
designed to achieve full diversity in the MIMO channels
will also achieve full diversity. Furthermore, the code that
maximizes the coding gain in the MIMO channels will also
maximize the coding gain in the AAF distributed space-time
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