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Abstract—Wireless sensor networks (WSNs) are widely used in
many application fields. Because sensor nodes are generally bat-
tery powered, to prolong network lifetime, energy conservation be-
comes a major concern in answering queries over sensor networks.
In addition, a robust and fault-tolerant data-collection method is
highly desirable against a lossy network with low-quality wireless
communication links and unreliable sensor nodes. We propose
a signature-file-based approach to approximately answer queries
over WSNs. By combining the duplicate-insensitive structure of
signature files and the redundant multipath routing approach,
we create a robust in-network aggregation scheme, which can
answer both aggregative and range queries with high accuracy
while significantly reducing the cost of message transmissions.
Simulations have been conducted to evaluate the performance of
this approach under various network conditions. Compared with
previous solutions, our signature-file-based approach achieves the
highest accuracy under reasonable energy cost.

Index Terms—Aggregation, range query, sensor networks,
signature file.

I. INTRODUCTION

UE TO RECENT advances in computing and communi-

cation technologies, networked sensors are available to
measure real-world phenomena. A large number of sensors,
which are densely deployed in a specific region, form a wireless
sensor network (WSN). These sensor networks are designed for
monitoring an environment and supporting various queries. A
concrete example of this type of application is the environment
monitoring in underground working spaces (e.g., coal mine
tunnels that are 3000 m long and tens of meters wide), which is
a crucial task to preserve safe working conditions. A lot of en-
vironmental factors need to be monitored, including gas, water,
dust, and so on. A precise environment overview requires a high
sampling density, which results in a large number of sensing
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Fig. 1. Two types of queries over a WSN. (a) Aggregative queries. (b) Range

queries.

devices. Current environment monitoring is typically manually
conducted and in a sparse way, due to the lack of corresponding
techniques for constructing a large-scale sensing system, which
conforms to the practical underground conditions and provides
dense sensing points.

In many of our coal mine monitoring system scenarios, we
mainly need two types of information, as illustrated in Fig. 1.

With respect to the first type [Fig. 1(a)], a query is used to
collect the average value from sensors within a rectangular area
(zone) specified by the two coordinates (10, 10) and (200, 200)
every 50 s for 60 min [16], an example of which is described as
follows:

Type = Avg (temperature)
Interval = 50 s
Duration = 60 min
Zone = [10, 10, 200, 200].
The above query is called an aggregative query. The other
examples of aggregative queries are Min, Max, and Count.
In addition to aggregative queries, there are nonaggregative

queries. A typical example of a range query is shown in
Fig. 1(b), which is described as follows:

Type = Range (40 < temperature < 50)
Interval = 50 s
Duration = 60 min
Zone = [10, 10, 200, 200].
The above query is used to collect the IDs of sensors whose
sensing temperatures are within a specified value range.

The main challenge in answering these two types of queries
over WSNs is how to save sensor energy because they are
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Fig. 2. Tree (TAG) versus multipath. (a) Tree (TAG). (b) Multipath.

battery powered, and changing batteries is often very difficult
[17]. In addition, because packet loss often happens in WSNs
due to the low quality of transmission (up to a 30% loss rate is
common), it is essential to make the results robust to possible
packet loss.

A simple approach to answering the aforementioned two
types of queries is by asking all the sensors to send their sensing
values back to the sink. However, such an approach leads to a lot
of data transmissions, which will quickly deplete sensor power.

Many approaches have been proposed to address the above
issue. Among these approaches, in-network aggregation [17] is
used to reduce the number of transmissions from the sensors
to the sink for aggregative queries. As shown in Fig. 2(a), a
routing tree is built to answer aggregative queries. At each
parent node (e.g., Ss), it aggregates (e.g., computes sum and
count) the data that it receives from the child sensors and
its own sensing value and sends the partial aggregative result
(partial sum and count) to the sink. Thus, the total number of
transmissions is reduced. However, the packet loss may render
the answer inaccurate. To address this problem and make the
result robust to the packet loss, a multipath routing scheme is
used, as shown in Fig. 2(b). Sensors are divided into levels
according to their hop count from the sink. The smaller the
hop count, the higher the level will be. Each sensor sends its
partial aggregation data to multiple sensors in the next upper
level (one hop count less to the sink). Thus, the probability
of no data packet arriving at the upper level is reduced, which
makes the results robust to packet loss. However, this scheme
introduces another problem, which is the possibility of the same
data being counted more than once (duplicate sensitive). Recent
works [3], [18] use approximated aggregation for answering
aggregative queries. Duplicate-insensitive structures like sketch
are used to carry the approximated information. Their approach,
however, only works on aggregative queries, which is thus
infeasible for range queries. There is also no control over
the error rate of aggregation results due to the random hash
function properties that sketch uses. Furthermore, the accuracy
of the sketch approach is based on a large number of nodes
located in the query zone. If the number of nodes is small, the
possible excessive bias on the sketch insert may lead to very
low accuracy in the results.

In this paper, we address the above problems by encoding
the collected sensor readings using signature files, reducing the
cost of transmitting data and removing possible duplicates by a
simple bitwise “OR” operation. To reduce the cost of transmit-
ting long signature files, we introduce an adaptive compression
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scheme to shorten the length of each signature file. The goals
of this paper are summarized as follows:

1) to propose a signature-file-based approach that would
fully utilize the power of in-network aggregation and
answer both types of queries;

2) to utilize the properties of signature files and multipath
routing schemes to make the results robust to possible
packet loss and duplicate insensitive, and more impor-
tantly, to allow our approach to control the error rate, no
matter what size the networks are;

3) to develop dynamic bucket allocation schemes to adapt
various data distributions that would improve the accu-
racy of aggregative queries. We also propose an adaptive
compression scheme that would reduce the energy cost of
transmitting signature files.

The rest of the paper has been organized as follows. We
briefly introduce the signature files and review the related work
in Section II. We introduce our signature-file-based approach
to approximately answer queries in Section III. The simulation
studies of our proposed approach are presented in Section IV.
Finally, we conclude this paper in Section V.

II. BACKGROUND AND PRELIMINARIES
A. Related Work

A number of research results have been published on energy-
efficient query processing for sensor networks both on the
network and database domains. On the network domain, re-
searchers propose energy-efficient routing protocols for sensor
networks, such as directed diffusion [12], low-energy adaptive
cluster hierarchy (LEACH) [10], and sensor protocols for infor-
mation via negotiation (SPIN) [9]. Directed diffusion is a data-
centric protocol in which the sink periodically floods queries
into the network, and routing trees are constructed by selecting
low-delay paths. The data transmission rate is controlled by
the rate of data generation from each node and the available
bandwidth between nodes. LEACH is a scalable adaptive clus-
tering protocol in which nodes are organized into clusters. The
system lifetime is extended by randomly choosing the cluster
heads, thereby fairly spreading energy consumption over the
entire network. SPIN is proposed to address the deficiency
of flooding, which uses negotiation to ensure that only useful
information is transferred, and employs resource adaptation to
control the message passing or processing based on the current
available energy. All the above approaches suffer from lossy
network conditions with low-quality wireless communication
links and unreliable sensor nodes.

In the database domain, Madden et al. [17] proposed the
tiny aggregation service (TAG) to reduce the energy cost of
processing aggregation queries by in-network aggregative tech-
niques. In TAG, a routing tree is built by using flooding or
wedge flooding. TAG adaptively adjusts the sampling rate of
sensors based on the query constraints and energy of sensors.
By reducing sampling rates, energy spent on sensing is saved.
Many other works have also been proposed based on TAG to
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address energy-efficient query processing, utilizing the tempo-
ral coherence among data collected from the same sensor to
reduce the number of transmissions.

The techniques discussed above normally assume that sens-
ing data are collected through routing trees. However, the
routing tree scheme is not robust to communication loss and
“good” links are hardly expected. Spatial correlations are also
investigated for data aggregation. Deshpande et al. [5] used a
data model to encode the relationship between sensing values
at different sensors. Instead of getting values from the sensors,
the data model can be used to predict the data. Gupta et al. [8]
proposed an energy-efficient method to build a correlation
graph of the sensor network so that only a small subset of
sensor nodes are needed to reconstruct the data for the entire
network. However, these approaches heavily depend on the cor-
relations of different values. Recently, Considine et al. [3] and
Nath er al. [18] concurrently proposed approximated ap-
proaches to answer aggregative queries using sketch. In their
approach, for approximately answering aggregative queries in
the multipath routing scheme, the duplicate-insensitive sketch
is used to carry the SUM and COUNT information. Their ap-
proach achieves an approximate result with much reduced com-
munication overhead. However, it only works on aggregative
queries, and there is no control on the error rate of aggregation
results due to the property of random hash functions that sketch
uses. The accuracy of the sketch approach is based on the large
number of nodes located in the query zone. If the number
of nodes is small, the possible excessive bias on the sketch
inserting may result in very low accuracy.

B. Signature Files

Signature files were first introduced as an indexing method
for text retrieval [6]. A fixed-width signature (bitstring) m bits
(length) is assigned to represent each key word (or distinct
value) with w bits (weight) being set to 1. The m bits are set
with a number of hashing functions. One advantage of signature
files is being duplicate insensitive after superimposed coding.
Furthermore, the overall false drop (alarm rate) can be con-
trolled by carefully setting w and m. Here, we give a detailed
example of how a signature file works on the multiple-path
topology shown in Fig. 2(b). Assume that we tried to answer
the first example aggregative query in Section I. As shown in
Fig. 2(b), the distinct sensing values are 1, 2, 3, 4, 5, and 6,
and they are encoded into the following six signature files,
respectively, by a set of hash functions: 1—001011010101;
2—010010110001; 3—011001010101; 4—001010110100;
5—011000110001; and 6—011011100000.

Then, instead of sending the real values, we send the sig-
nature files to the upper level node and carry out the partial
aggregation by superimposing (ORing) with the received sig-
nature files. All the duplications can be removed because of
the “OR” operation. For example, if a sensor node receives
two “5s” from two different paths, after the “OR” operation on
two signature files, we will only get one signature file of “5,”
and the bits that have been assigned to 1 will be only counted
once. Finally, at the sink, we will get the superimposed bitstring
(result signature): 011011110101.
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At the sink, we compare (ANDed) the signature of each
distinct value with the result signature to check whether a
distinct value exists in the final result. If it does, the value will
be used to compute the final aggregation result. For example,
if the signature of 1 (“001011010101”) matches the result
signature, then it will be used to compute the aggregation result.

However, due to the “OR” operation, a value that is not sensed
by the sensors within the sensor network may be identified as
“existence,” which is named as false drop. For example, if the
signature of 7 is “001001110001,” it also matches the result
signature, but 7 does not appear in the network.

Fortunately, this false drop rate can be minimized by care-
fully setting the signature weight (w) and length (m). The
equation of computing the w and m are proved by Davis and
Kamamohanarao [4]. Assuming that each bit of a signature
has the equal probability of being set to 1, the probability that
y bits is set to 1 in a signature superimposed from x signatures
of weight w and m is P(x,y) = m[l — (1 — w/m)Y]*.

In fact, the false drop rate of a signature file P/ is P(N;w),
where N is the number of distinct values. To minimize P/, we
can get (1 —w/m)N = 0.5and P/ = (0.5)". Thus, given P/,
the w and m can be set as follows:

1 1
= 71 i N x1 71 2
m_(an) X xn(Pf>. 2)

Therefore, using signature files, we can control the error
(false drop) rate by setting m and w.

III. APPROXIMATELY ANSWER QUERIES
OVER SENSOR NETWORKS

We assume that each sensor has a unique ID and knows
its position in this paper. Many proposals have been made to
address the sensor localization problem [2], [7], [13], which
is not the focus of this paper. Without loss of generality, we
assume that the sensing values range from Vi, and Vijax.
We first explain the architecture of our approach. According to
Section II-B, the length of signature files may be quite long
to reduce the false drop rate. We then present an adaptive
compression method to compress encoded signature files to
reduce transmission cost. After that, we address how to use
signature files to answer aggregative queries. Finally, we show
how to answer range queries with signature files.

A. System Architecture

We adopt the multipath topology for data transmission in a
sensor network. The multipath topology is created in the sensor
network according to the node hops to the sink. Nodes are
divided into different levels according to their hop count. As
Fig. 3 shows, the hop count of each node from the sink indicates
its level. This could be achieved in the system initialization
phase through advertising with the node hop count from the
sink [17]. In the data-collection (query reply) phase, each node
reports its aggregated result by local broadcasting, and all its
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neighbors, which are one level lower, captures the report and
aggregates it. By following the above steps, a multipath routing
structure is built, through which robust data collection could be
achieved.

In Fig. 3, nodes at different levels aggregate data in different
time epochs during the data-collection phase, as in the TAG
approach [17]. Compared to higher level nodes (far from the
sink), lower level nodes (closer to the sink) need to wait longer
to obtain the reports from the child nodes and locally perform
the aggregation. The communication epoch for each node at dif-
ferent levels is assigned during the system initialization phase.
In each data-collection phase, nodes will receive, aggregate,
and send the reports in their communication epochs. They then
stay idle the rest of time to save energy.

B. Adaptive Signature File Compression

As indicated in (1) and (2), to make signature files more
accurate (to lessen the error rate), the length of the signature file
is usually very long. Directly transmitting raw signature files
may lead to high communication cost, which is exactly the cost
we want to avoid. By observing the generated signature files,
we have found that even when they are very long, the number
of “Is” are few. In addition, these “1s” sparsely locate in the bit
string and are separated by many continuous “0s.” An example
of an original signature file of a distinct value is

00000000000000000001000000000000000000000000100000
00000001.

To compress the above example signature file, we can use a
modified run-length encoding (RLE). The original RLE uses
block representation for both “1” and “0” appearing in the
string. To shorten the string representation, a k-bit block is
used to represent the number continuously appearing “1” or
“0.” We modify the original RLE according to the feature of
the signature file, which generally has long substrings of con-
tinuous “0s” but discrete “1s.” For compressing the signature
files, we merely substitute the continuous “Os” with the block
representations (a bit “0” 4k-bit representation of V). When
using the binary value of the block to represent the length
of continuous “0s,” with a predefined value of k, the largest
number N of continuous “0s” that could be represented in a
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single block is 2¥. Therefore, in our compression algorithm, we
first divide the continuous “Os” into several blocks, and each
block contains N “0s” except for the last one, which is normally
less than N. Then, we substitute each block with our block
representation such as RLE does. For example, given the above
bit string, if we choose k to be 3 and N to be 8, it will first be
divided into

00000000 00000000 000 1 00000000 00000000 00000000 1
00000000 0000 1.

After substituting all the blocks with the 4-b representations,
we get the compressed representation’

0000 0000 0011 1 0000 0000 0000 1 0000 0100 1.
If we choose k to be 4, the compressed representation is
00000 00011 1 00000 01000 1 01100 1.

We can encode the information about k using 4 b before the
compressed data so that the receiver node could decompress the
compressed signature files.

In fact, the block representation size k determines the com-
pression ratio. Thus, we can use an adaptive compression
method to determine the optimized k according to the percent-
age of “Is” in the signature files. Specifically, for low-level
sensors (far away from the sink), if the percentage of “1s” in
their encoded signature files is low, a large k£ value is chosen
to compress as many “0s” as possible. For high-level sensors
(near the sink), due to the aggregated results received from
low-level sensors, the encoded signature files of the high-level
sensors have a higher percentage of “1s.” In this case, a small k
value is selected to reduce the possibility that segmented blocks
have both “0” and “1.” Therefore, by carefully determining an
appropriate £ according to the number of “1s” in the signature
files, we gain a significant reduction in the transmission data
length, which is tested through our simulations.

C. Answer Aggregative Queries

To answer aggregative queries, we need to encode distinct
sensing values into signature files. The number of the distinct
value N can be easily computed with a user- or application-
specified precision € given by

N = ’V(Vmax - Vmin)

+ 0.5-‘ . 3)
€

In fact, we divide the range into N buckets and represent
each bucket with its mean value. When the sink floods the
aggregative queries, it also sends the information with respect
to bucket size and hash functions. Each sensor will determine
whether it needs to send its sensing data by checking its position
against the query specification. If it is required to send the data,
its sensing value is compared with the bucket information, and

'Note that we use k bits of 0 to represent N “0s” because the case of an
appearing 0 “0” does not exist. In this example, we use 000 to represent 8 “0.”
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a bucket, which is closest to its value, is selected. Then, the
selected bucket value is encoded into signature files using the
hashing functions.

However, the above approach divides the range into buckets
with the same size, which may introduce large errors when
data distribution does not follow the uniform distribution. For
example, the oxygen density data that we collected from the
readings in the coal mining project described in Section I show
that the data come from a Gaussian normal distribution. If we
adopt the same size bucket for each data value in the data
space, the probability that the values that will appear in some
bucket ranges will be higher than that of the other ranges. Thus,
for the buckets with a higher probability in which data will
fall, multiple sensor readings may compete for the same value
bucket. Once the different values from the different sensors
share the same bucket, they are treated as a single value, which
leads to inaccuracy in the final aggregation result.

To address this problem, we exploit the dynamic bucket-
allocation method. In this bucket-allocation method, instead
of segmenting the value space into N equal-sized buckets,
we segment the value space into various-sized buckets, which
conform to the data distribution curve. The boundary of the ¢th
bucket is computed according to the following formula:

Vii+1)
P(z)dx 4)

Vi Vinin

where P(x) is the normal probability distribution function,
1 <e <N, Vi =Vyin, and Vi1 = Viax. With this type of
segmentation, we assign equal probability to each bucket into
which the data might fall.

To obtain the data distribution P(z) of the sensor network,
we can either rely on the estimation from historical data, such as
the data we collected from the coal mining project [14], [15], or
make an approximation by sending preliminary queries to col-
lect sampling data and the data pattern. The initial estimation of
data distribution P(z) may be rough and less accurate. Accord-
ing to the approximated estimation, we use more buckets for
a value range of higher probability and less buckets for a value
range of lower probability, which forces the bucket allocation to
match the data distribution. Once the bucket-allocation strategy
closely reflects the real-data distribution, the consequent data
aggregation based on these buckets becomes more accurate.
Dynamic bucket allocation creates suitable bucket distribution
according to the real-data distribution, thus improving the ag-
gregation accuracy by reducing bucket competitions of different
sensor readings. Based on this bucket allocation, we propose
a data-migration method to further reduce the possibility of
bucket competition. In the aggregation process, a higher level
sensor node collects all the signature files from its children
(lower level sensor nodes), and then, before it hashes its sens-
ing value to some calculated bucket B, the node first checks
whether bucket B has been occupied by some other node
reading. If that is the case, this sensor tries to migrate (map)
its sensing value to the nearby bucket, e.g., B + 1. If the bucket
B + 1 is also occupied, the sensor node needs to sequentially
check buckets B — 1, B + 2, B — 2,... until it finds an empty
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bucket. The probability of bucket competition exponentially
drops as the migration process continues.

D. Answer Range Queries

To answer range queries, we assume that we know all the
sensor IDs, and they can be represented by positive integers.
As shown in Section I, a range query needs to collect at least a
set of sensor IDs whose sensing values are within the query-
specified value range. Because an ID is unique to a sensor
and values of IDs are uniformly distributed, we can divide
the value range of the IDs into N buckets, where each bucket
corresponds to one unique ID. We encode the IDs as signature
files from the sensors that are at the highest level (furthest from
the sink). Superimposing is used on lower level sensor nodes
to aggregate the signature files of the IDs. At the sink, we then
check the existence of the IDs through an ANDed operation.
Aside from being duplicate insensitive, another advantage of
using signature files to answer range queries is that the message
length is fixed. No matter how many sensors whose readings
are within the query range there are, the message length will
not change after the superimposing step. Compared to the
simple approach that directly collects and transmits a list of
IDs (LIST approach), whose message length increases along
the path from the sensors to the sink, our signature-file-based
approach significantly reduces message communication cost.

IV. SIMULATION

In this section, we evaluate the performance of our signature-
file-based approach under large-scale sensor networks through
simulation.

We create a randomized network topology, including 1000
sensor nodes as our basic simulation topology. We vary the
network density by changing the average node degree from 10
to 40 (the number of neighboring nodes per sensor) to examine
the performance under different degrees of network connec-
tivity. The links between nodes are assigned a probabilistic
delivery ratio. Our simulator models packet-level loss rates that
range from 0% to 35%. We use a 48-B message length as what
TinyDB [11] uses. In the simulation, the delivered information
may exceed the 48-B limitation so that a sensor node may trans-
mit multiple packets for one round of information delivery. At
the time of delivery failures, no packet retransmission or failure
recovery scheme is assumed. To further test the robustness and
fault tolerance of the approaches, we introduce a random node
failure rate, which ranges from 0% to 35%. Finally, we vary the
network size from 200 to 2000 (the number of nodes in total) to
investigate the scalability of the different approaches. For each
simulation, we take 100 runs and report the average.

In the simulation, each node is assigned a level according
to its hop count from the sink. Any neighbor of a lower
level node is considered to be its candidate parent. Each node
aggregates results from its children nodes with its own readings
and forwards the result to one or multiple parents. We compare
the following four different approaches in our simulation:

1) TAG [17]: an approach in which each sensor node sends

its aggregated result to its parent;
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Fig. 4. Compression ratio versus the percentage of “1” bits.

2) LIST: a multipath approach in which each sensor node
aggregates all received items in a list and removes dupli-
cates. This item list is further forwarded to all parents;

3) SKETCH [3], [18]: also a multipath approach in which
each sensor node aggregates the statistical data into
sketches and forwards them to all the parents. The sink
extracts the results from the final aggregated sketches.
Because SKETCH cannot answer range queries, we only
evaluate it for aggregative queries;

4) SIG: our signature-file-based multipath approach de-
scribed in Section III.

Simulation 1—Effect of Block Representation Size k: As
we discussed in Section III-B, the compression ratio of our
compression method is affected by the number of bits “1” and
the block representation size. In this simulation, we test the
effect of block representation size k£ on the compression ratio.
Indeed, the block representation size should be determined
based on the number of bits “1” in the signature files. With
the increase in the number of “1s” in the signature file, the
block size should be reduced to avoid using more information
to represent separated “Os” in each block. Fig. 4 plots the
compression ratio under a different percentage of “1” bits in
the signature files. The number above each data point denotes
the optimal %k value selected. Fig. 4 confirms our expectation
that k£ will decrease with the increase in the percentage of “1”
bits in the signature files to maintain an optimal compression
ratio.

Simulation 2—Comparison of Traffic Overhead Among the
Four Approaches for Answering Aggregative Queries: We
compare the traffic overhead of the four approaches for an-
swering aggregative queries. The sensing values for each node
are selected uniformly random from [0, 10000]. The traffic
overhead is measured by the number of packets because in
real WSN systems, in terms of power consumption, the traf-
fic overhead is largely determined by the number of packets
transmitted rather than the actual number of bytes during the
communication [14]. As previously described, a TinyDB packet
(up to 48 B) is assumed as the basic transmitting carrier. For
the TAG approach, an aggregated data value contained in one
packet is transmitted from each sensor node to its parent.
The LIST approach aggregates (ID, value) items into a list;
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thus, its message length is 8 B long for a single item (4 B
each). The SKETCH approach hires 20 sketches together to
improve the estimation accuracy. The length of each sketch
is set to 4 B due to 1.5logn, as specified in [3], where n is
the maximum possible number of aggregative results. In our
SIG approach, a compressed signature file is included in the
transmitted packet. The total number of transmitted packets
of TAG, SIG, SKETCH, and LIST are 1000, 1886, 2000, and
7534, respectively. As we expected, the TAG approach achieves
the lowest traffic because the tree topology communication
strategy of TAG incurs no extra cost in reducing duplicates. The
LIST approach’s performance is the worst, and the SKETCH
and SIG approaches lie in between TAG and LIST. However,
as shown in later simulations, TAG achieves very low accuracy
when introducing link loss.

Simulation 3—Comparison of Accuracy Among the Three
Approaches in Answering Range Queries: Because SKETCH
cannot answer range queries, in this simulation, we only
compare the accuracy of the TAG, LIST, and SIG approaches
in answering range queries under various network statuses. We
use two metrics, namely precision and recall, which have been
widely used in the information retrieval domain [1]. Assume 7T’
is the actual set of node IDs satisfying the range query, and )
is the actual returned set of IDs. The query precision p = |T'N
Q|/|Q|, where | o | gives the number of elements in the set, and
p represents how many effective IDs have been collected among
the returned results. A higher value of p indicates a precise
collection approach. The query recall = |T N Q|/|T|, where
7 tells us how many effective IDs are returned to the sink among
the genuine satisfied nodes. A higher value of r represents an
effective collection method. Therefore, to effectively answer
range queries, high values of both metrics should be achieved.
In fact, the LIST and TAG approaches always maintain the
query precision p = 100% because these two approaches never
aggregate the IDs of unsatisfied nodes in the collection phase.
For our SIG approach, query precision p can be constrained by
the false drop rate of the signature files. By tuning the signature
file length m and weight w, we can achieve a bounded false
drop rate. As a consequence, the query precision p can be
raised to a high value (up to 99.9%) by paying little bearable
traffic overhead. Because the query precisions of all the three
approaches are high and similar, the query recall » dominates
the overall accuracy. Thus, we run the simulations to test the
query accuracy metric recall r. The results are reported in
Fig. 5.

The results show that under various conditions, our SIG
approach consistently achieves nearly the same performance
as that of LIST, whereas TAG performs variously, particularly
under tough conditions. Fig. 5(a) shows the effects of link losses
on their performance. With the increase in link loss rate, the
query recall of TAG rapidly drops due to the lack of redundancy.
However, our SIG maintains a high recall as LIST. In the next
simulation, we introduce random node failures into the network
to test the performance when the network becomes instable.
Similar performance results in Fig. 5(a) are shown in Fig. 5(b).
Compared with Fig. 5(a), the recalls of all the three approaches
diminish more rapidly because the node failures exert a larger
effect on the query accuracy, although SIG outperforms TAG.
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Fig. 5. Query recall.

Fig. 5(c) shows the performance of the three approaches over
various node densities from 10 to 40 (neighbors per node). A
higher node density supports better network connectivity and
query accuracy. For various node densities, our SIG approach
outperforms TAG more than 40 percentiles. Last, we scale
the network and explore the scalability. The link loss rate
is set to 10%. As shown in Fig. 5(d), with the increase in
the number of sensor nodes, the recall of the TAG approach
drops to nearly half of that achieved by the SIG and LIST
approaches.

Simulation 4—Comparison of Accuracy Among the Four
Approaches in Answering Aggregative Queries: In the last sim-
ulation, we compare the accuracy of all the four approaches in
answering aggregative queries under various network statuses.
Fig. 6 shows the performance in data aggregation. Although the
sensing values are generated in a normal distribution, dynamic
bucket-allocation technology could uniformly map these values
into fixed-sized data buckets. We test the aggregative query
SUM using the four query approaches, and the relative error
is measured as |(y — ¢) /9|, where y is the calculated value, and
g is the real value. As shown in Fig. 6(a) and (b), again, SIG and
LIST outperform the TAG approach, whereas SKETCH lies in
between with a faster error increase against the rise of link loss
rate and node failure rate. This shows the sensitivity of the TAG
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and SKETCH approaches against the link loss and node failure.
Fig. 6(c) shows that with the increase in node density, the
relative errors of all the four approaches are reduced. However,
TAG still introduces more than four times the relative error that
SIG and LIST approaches achieve. SKETCH shows similar
sensitivity to the variation in node density as SIG and LIST
do. However, a larger error rate is introduced when the node
density is lower, which means SKETCH does not perform well
for sparse sensor networks. Fig. 6(d) shows the error rates of
the four approaches against the network size. TAG introduces a
large relative error that is nearly proportional to the network
size. As the SIG and LIST approaches maintain a slightly
increasing relative error, SKETCH performs worse, particularly
under a small network size.

To summarize, the simulations on range and aggregative
queries show that our SIG approach can achieve the same
accuracy as the LIST approach but only consumes one quarter
of the network traffic. Furthermore, compared to TAG, the SIG
approach is much more robust under various network status
with less communication cost, and most importantly, compared
to SKETCH, SIG can answer both types of queries and be
applied to various sizes of WSNs. Therefore, we conclude that
the SIG approach achieves higher accuracy with less communi-
cation cost among the four methods.
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V. CONCLUSION

In this paper, we have proposed a signature-file-based ap-
proach to answering two types of queries, namely range query
and aggregative query. By using multipath as the commu-
nication scheme, our design increases the robustness of the
network. Furthermore, using signature files solves the problem
of message duplication, as well as reduces the energy cost
of transmission. Our signature-file-based approach also offers
users the option to control the error rate of the results by
carefully setting the bit length and weight. The simulation
results have shown that, compared to other approaches, our
approach significantly reduces the communication cost and
provides higher accuracy.

REFERENCES

[1] R. Baeza-Yates and R. N. Berthier, Modern Information Retrieval.
Reading, MA: Addison-Wesley, 1999.

[2] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less low cost outdoor
localization for very small devices,” IEEE Pers. Commun. Mag., vol. 7,
no. 5, pp. 28-34, Oct. 2000.

[3] J. Considine, F. Li, G. Kollios, and J. Byers, “Approximate aggregation
techniques for sensor databases,” in Proc. ICDE, 2004, pp. 449-460.

[4] R. S. Davis and K. Kamamohanarao, “A two-level superimposed coding
scheme for partial match retrieval,” Inf. Syst., vol. 8, no. 4, pp. 273-280,
1983.

[5] A. Deshpande et al., “Model-driven data acquisition in sensor networks,”
in Proc. VLDB, 2004, pp. 588-599.

3153

=TAG

09 | A-uisT
08F |-B-SIG
507} ——SKETCH
)
>0.6
[
305
[
= 0.4

So3

5 20
Node failure rate (%)

()
1 . ;
-¢TAG
0.9r AeLisT ]
0.8F -B-sic i
07 ——SKETCH

1000
Node number

(d)

1400 1800

[6] C. Faloutsos, “Access methods for text,” ACM Comput. Surv., vol. 17,
no. 1, pp. 49-74, Mar. 1985.

[7] D. Goldenberg et al., “Localization in sparse networks using sweeps,” in
Proc. MobiCom, 2006, pp. 110-121.

[8] H. Gupta, V. Navda, S. R. Das, and V. Chowdhary, “Efficient
gathering of correlated data in sensor networks,” in Proc. MobiHoc, 2005,
pp. 402-413.

[9] W. Heinzelman, J. Kulik, and H. Balakrishnan, “Energy-efficient commu-
nication protocols for wireless microsensor networks,” in Proc. MobiCom,
1999, pp. 174-185.

[10] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
efficient communication protocol for wireless microsensor networks,” in
Proc. HICSS, 2000, p. 8020.

[11] J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek, “Beyond
average: Toward sophisticated sensing with queries,” in Proc. IPSN, 2003,
pp- 63-79.

[12] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion:
A scalable and robust communication paradigm for sensor networks,” in
Proc. MobiCom, 2000, pp. 56-67.

[13] M. Li and Y. Liu, “Rendered path: Range-free localization in anisotropic
sensor networks with holes,” in Proc. ACM MobiCom, 2007, pp. 51-62.

[14] M. Liand Y. Liu, “Underground structure monitoring with wireless sensor
networks,” in Proc. IPSN, 2007, pp. 69-78.

[15] M. Li, Y. Liu, and L. Chen, “Non-threshold based event detection for 3D
environment monitoring in sensor networks,” in Proc. ICDCS, 2007, p. 9.

[16] J. Lian, L. Chen, K. Naik, M. T. Ozsu, and G. Agnew, “Localized routing
trees for query processing in sensor networks,” in Proc. CIKM, 2005,
pp. 259-260.

[17] S. Madden, M. J. Franklin, and J. M. Hellerstein, “TAG: A tiny
aggregation service for ad-hoc sensor networks,” in Proc. OSDI, 2002,
pp. 131-146.

[18] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson, “Synopsis diffu-
sion for robust aggregation in sensor networks,” in Proc. SenSys, 2004,
pp. 250-262.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on September 16, 2009 at 02:25 from IEEE Xplore. Restrictions apply.



3154

Mo Li (M’06) received the B.S. degree from
Tsinghua University, Beijing, China, in 2004. He is
currently working toward the Ph.D. degree with the
Department of Computer Science and Engineering,
Hong Kong University of Science and Technology,
Kowloon, Hong Kong.

His research interests include wireless sensor net-
works, pervasive computing, network security, and
peer-to-peer computing.

Lei Chen (M’02) received the B.S. degree in com-
puter science and engineering from Tianjin Uni-
versity, Tianjin, China, in 1994, the M.S. degree
from the Asian Institute of Technology, Pathumthani,
Thailand, in 1997, and the Ph.D. degree in computer
science from the University of Waterloo, Waterloo,
ON, Canada, in 2005.

He is currently an Assistant Professor with the
Department of Computer Science and Engineering,
Hong Kong University of Science and Technology,
Kowloon, Hong Kong. His research interests include
multimedia and time series databases, sensor and peer-to-peer databases, and
stream and probabilistic databases.

Jizhong Zhao (M’02) received the B.S., M.S., and
Ph.D. degrees in computer science in 1992, 1995,
and 2001, respectively, all from Xi’an Jiaotong Uni-
versity, Xi’an, China.

He is a currently a Professor with the Depart-
ment of Computer Science and Technology, Xi’an
Jiaotong University. His research interests include
computer software, pervasive computing, distributed
systems, and network security.

Dr. Zhao is a member of the IEEE Computer Soci-
ety and of the Association for Computing Machinery.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 57, NO. 5, SEPTEMBER 2008

Qian Zhang (M’00-SM’04) received the B.S., M.S.,
and Ph.D. degrees from Wuhan University, Wuhan,
China, in 1994, 1996, and 1999, respectively, all in
computer science.

In July 1999, she was the Research Manager of
the Wireless and Networking Group, Microsoft Re-
search Asia. Since September 2005, she has been an
Associate Professor with the Department of Com-
puter Science and Engineering, Hong Kong Uni-
versity of Science and Technology, Kowloon, Hong
Kong. She has also participated in many activities
with the Internet Engineering Task Force Robust Header Compression Working
Group for TCP/IP header compression. She is the Associate Editor for Elsevier
Computer Networks and Elsevier Computer Communications. She has also
served as Guest Editor for special issues of ACM/Springer Mobile Networks and
Applications and Elsevier Computer Networks. Her current research interests
are in the areas of wireless communications, IP networking, multimedia, P2P
overlay, and wireless security. She is the inventor of about 30 pending patents.
She is the author of more than 150 refereed papers in leading international
journals and key conference proceedings.

Dr. Zhang is the Vice Chair of the Multimedia Communication Technical
Committee (MMTC) of the IEEE Communications Society. She is an Associate
Editor for the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,
the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, and the IEEE
TRANSACTIONS ON MULTIMEDIA. She has also served as Guest Edi-
tor for special issues of the IEEE JOURNAL ON SELECTED AREAS IN
COMMUNICATIONS, IEEE Wireless Communications Magazine, and IEEE
Communications Magazine. She received the Massachusetts Institute of Tech-
nology Technology Review’s TR 100 World’s Top Young Innovator Award
in 2004, the Best Asia-Pacific Young Researcher Award from the IEEE
Communication Society in 2004, the Best Paper Award at MMTC of the
IEEE Communication Society, the Best Paper Award at the Third International
Conference on Quality of Service in Heterogeneous Wired/Wireless Networks
in 2006, and the Overseas Young Investigator Award from the Natural Science
Foundation of China in 2006.

Yunhao Liu (M’02-SM’06) received the B.S. de-
gree from Tsinghua University, Beijing, China, in
1995, the M. A. degree from Beijing Foreign Studies
University, Beijing, in 1997, and the M.S. and Ph.D.
degrees in computer science and engineering from
Michigan State University, East Lansing, in 2003 and
2004, respectively.

He is currently an Assistant Professor with the
Department of Computer Science and Engineering,
Hong Kong University of Science and Technology,
Kowloon, Hong Kong. He is also an Adjunct Pro-
fessor with Xi’an Jiaotong University, Xi’an, China, and with the Ocean
University of China, Qingdao, China. His research interests include peer-to-
peer computing, pervasive computing, and sensor networks.

Dr. Liu is a member of the Association for Computing Machinery.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on September 16, 2009 at 02:25 from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


