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Abstract—A recently proposed space–time block-coding (STBC) sig-
nal construction method that combines orthogonal design with sphere
packing (SP) (referred to here as STBC-SP) has shown useful per-
formance improvements over Alamouti’s conventional orthogonal de-
sign. In this paper, we propose a purely symbol-based, low-density
parity-check (LDPC)-coded scheme, demonstrating that the perfor-
mance of STBC-SP systems can further be improved by concatenat-
ing SP-aided modulation with nonbinary LDPC and by performing
symbol-based turbo detection between the nonbinary LDPC decoder
and a rate-1 nonbinary inner precoder. We also investigate the con-
vergence behavior of this symbol-based concatenated scheme with the
aid of novel nonbinary extrinsic information transfer (EXIT) charts.
Finally, we demonstrate that in the investigated scenarios, it requires
1–2 dB lower power in comparison with the equivalent effective-
throughput 0.5-, 0.75-, and 1-bit/symbol systems employing bit-based
turbo detection.

Index Terms—Nonbinary low-density parity check (LDPC), space–time
codes, sphere packing (SP), symbol-based extrinsic information transfer
(EXIT) chart, turbo detection.

I. INTRODUCTION

The adverse effects of channel fading may significantly be reduced
by employing space–time (ST) coding that invokes multiple antennas
[1]. Alamouti [2] discovered an appealingly simple transmit diversity
scheme employing two transmit antennas. This low-complexity design
inspired Tarokh et al. [3] to generalize Alamouti’s transmit diversity
scheme using the principle of orthogonal design to an arbitrary number
of transmit antennas. The concept of combining orthogonal transmit
diversity designs with the principle of sphere packing (SP) was intro-
duced by Su et al. in [4], where it was demonstrated that the proposed
SP-aided ST block-coded (STBC) system (referred to here as STBC-
SP) was capable of outperforming the conventional orthogonal design-
based STBC schemes in [2] and [3].

Surprisingly, the family of low-density parity-check (LDPC) codes
originally devised by Gallager as early as 1963 [5] remained more or
less unexploited until after the discovery of turbo codes in 1993 [6].
Since then, however, LDPC codes have experienced a renaissance and
attracted substantial research interest. In 1998, Davey and MacKay
proposed a nonbinary version of LDPC codes [7], which was poten-
tially capable of outperforming binary LDPC codes.
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It was also shown in [8] that a recursive rate-1 inner code is
beneficial to maximize the interleaver gain and, hence, to avoid a bit
error ratio (BER) floor when employing iterative decoding. In [9],
it was shown that a reduced transmit power may be required when
symbol-based rather than bit-based iterative decoding is employed.

Motivated by the performance improvements reported in [4] and
[7]–[9], we propose a novel purely symbol-based iterative scheme.
We will demonstrate that the proposed nonbinary turbo-detection-
aided STBC-SP scheme is capable of providing further performance
improvements over both the STBC-SP scheme in [4] as well as over
a bit-based LDPC-coded, turbo-detected STBC-SP scheme. The novel
nonbinary extrinsic information transfer (EXIT) characteristic charts
in [10] and [11] are employed to design our nonbinary scheme. The
rationale of the proposed architecture is explicit.

1) SP modulation maximizes the coding advantage of the trans-
mission scheme by jointly—rather than separately—designing
and detecting the SP symbols hosting the two time-slots’ STBC
symbols.1

2) The inner rate-1 encoder and its low-complexity recursive de-
coder beneficially distributes the extrinsic information without
reducing the effective throughput, maximizes the interleaver
gain at a given length, and, hence, avoids having a BER floor.

3) Symbol-based iterative SP detection and decoding outperforms
its bit-based counterpart.

This paper is organized as follows. A brief description of our
system is presented in Section II. An overview of orthogonal STBC
design using SP modulation is provided in Section III. Symbol-based
iterative decoding is described in Section IV. Section V provides our
EXIT chart analysis, whereas our simulation results are discussed in
Section VI. Finally, we conclude in Section VII.

II. SYSTEM OVERVIEW

In this section, we will describe the proposed turbo-detected
symbol-based scheme as well as its bit-based counterpart. The
schematic of the nonbinary arrangement is shown in Fig. 1. The source
bits are encoded by a rate R = 1/2 nonbinary LDPC encoder [7]
to generate the LDPC-encoded symbols v = {v0, v1, . . . , vKldpc−1},
vk ∈ GF (q), where Kldpc is the LDPC output block length, and q
is the size of the LDPC decoding field. In this paper, we consider
randomly constructed nonbinary LDPC codes [7] having an average
column weight of ωl and employing Richardson’s fast-Fourier-
transform-based decoding algorithm [12]. The LDPC-encoded sym-
bols are then precoded by a nonbinary rate-1 encoder before each of
them is mapped to the corresponding SP-modulated symbol sl ∈ S,
0 ≤ l ≤ L − 1. There is a natural one-to-one mapping between l and
the elements of the nonbinary LDPC code defined over GF (q), where
we have L = q, allowing us to create a purely symbol-based system.
Again, the rate-1 precoder shown in Fig. 1 is also a nonbinary encoder,
which is defined by the binary generator polynomial G = (g/gr) =
(10/11), where g denotes the feedforward output, and gr is the
feedback to the input using modulo q addition. Observe that channel
interleaving is not required between the nonbinary LDPC encoder and
the rate-1 encoder since the LDPC parity check matrix is randomly

1By contrast, Alamouti detected two seemingly independent QPSK ST
symbols, although their amalgam constitutes a combined symbol.
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Fig. 1. Symbol-based turbo detection STBC-SP system.

constructed, where each of the parity check equations is checking
several random GF (q) symbol positions in a codeword, which has a
similar effect to that of the channel interleaver. The STBC encoder
then maps each SP-modulated symbol sl ∈ S to an ST signal Cl,
0 ≤ l ≤ L − 1. Subsequently, each STBC-SP symbol is transmitted
over T = 2 consecutive time slots using two transmit antennas. The
details and motivation of SP-aided STBC are discussed in Section III.

In this treatise, we considered an uncorrelated narrowband Rayleigh
fading channel based on the Jakes fading model. The complex fading
envelope is assumed to be constant across the transmission period of
an ST-coded symbol spanning T = 2 time slots. The complex additive
white Gaussian noise (AWGN) of n = nI + jnQ is also added to the
received signal, where nI and nQ are two independent zero-mean
Gaussian random variables having a variance of σ2

n = σ2
nI

= σ2
nQ

=

N0/2 per dimension, where N0/2 represents the double-sided noise
power spectral density.

As shown in Fig. 1, the received complex-valued symbols are first
decoded by the STBC decoder to produce a received SP symbol r,
which is fed into the SP demapper, where the soft metric Q(k)
is calculated. More explicitly, the notation Q(k) represents the soft
metric passed from the SP demapper to the nonbinary rate-1 decoder
based on the probability of the kth symbol of the encoded codeword
by the rate-1 encoder, as will be shown in (7). As shown in Fig. 1, the
rate-1 decoder processes these soft metrics in conjunction with the
a priori information Aurc to generate the a posteriori probability
(APP) Durc, where the subscript “urc” refers to the unity rate code.
After removing the a priori information Aurc from the APP denoted
by Durc, Aldpc is passed as a priori information to the LDPC decoder,
which carries out a specified number of LDPC iterations and produces
the decoded APP Dldpc. Based on the APP, a tentative hard decision
will be made, and the resultant codeword will be checked by the
LDPC code’s parity check matrix. If the resultant vector is an all-zero
sequence, then a legitimate codeword has been found, and the hard-
decision-based sequence will be outputted. Otherwise, if the maximum
affordable number of iterations has not been reached, the a priori
information Aldpc is removed from the APP denoted by Dldpc.

The structure of the bit-based scheme is identical to its symbol-
based counterpart shown in Fig. 1, except that a binary—rather than
nonbinary—LDPC code is invoked to investigate the employment
of bit interleaving and bit-based iterative decoding. We consider a

randomly constructed binary LDPC code [5] having an average col-
umn weight of ωl. A bit-to-symbol probability conversion is required
when passing extrinsic information from the binary LDPC decoder
to the rate-1 decoder. On the other hand, symbol-to-bit probability
conversion is required when passing extrinsic information from the
rate-1 decoder to the binary LDPC decoder.

III. ORTHOGONAL DESIGN WITH SP MODULATION

This section briefly reviews the STBC-SP scheme proposed in [4].
In this contribution, ST systems employing two transmit antennas are
considered, where the ST signal is given by [2]

G2(x1, x2) =

[
x1 x2

−x∗
2 x∗

1

]
(1)

and the rows and columns represent the temporal and spatial dimen-
sions, which correspond to two consecutive time slots and two transmit
antennas, respectively. According to Alamouti’s design [2], for exam-
ple, x1 and x2 represent conventional BPSK-modulated symbols trans-
mitted in the first and second time slots, and no effort is made to jointly
design a signal constellation for the various combinations of x1 and x2.
It was shown, however, in [4] that the diversity product quantifying
the coding advantage2 of an orthogonal transmit diversity scheme is
determined by the minimum Euclidean distance (MED) of the various
vectors (x1, x2). Therefore, to maximize the achievable coding advan-
tage, it was proposed in [4] to use SP schemes that have the best-known
MED in the 4-D real-valued Euclidean space R

4 [13]. For the sake of
generalizing our treatment, let us assume that there are L legitimate
ST signals G2(xl,1, xl,2), l = 0, 1, . . . , L − 1, where L represents
the number of SP-modulated symbols. The transmitter then has to
choose the modulated signal from these L legitimate symbols, which
have to be transmitted over the two antennas in two consecutive time
slots, where the throughput of the system is given by (log2 L)/2 bits
per channel use. In contrast to Alamouti’s independent design of the
two time slots’ signals, our aim is to jointly design xl,1 and xl,2 so that

2The diversity product or coding advantage was defined as the estimated
gain over an uncoded system having the same diversity order as the coded
system [4].
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they have the best MED from all other (L − 1) legitimate transmitted
ST signals, since this minimizes the system’s error probability. Let
(al,1, al,2, al,3, al,4), l = 0, 1, . . . , L − 1 be phasor points from the
4-D real-valued Euclidean space R

4, where each of the four elements
al,1, al,2, al,3, and al,4 gives one coordinate of the two time slots’
complex-valued phasor points. Hence, xl,1 and xl,2 may be written as

{xl,1, xl,2} =Tsp(al,1, al,2, al,3, al,4)

= {al,1 + jal,2, al,3 + jal,4}. (2)

In the 4-D real-valued Euclidean space R
4, the lattice D4 is defined

as an SP constellation having the best MED from all the other
(L − 1) legitimate constellation points in R

4 [13]. More specifically,
D4 may be defined as a lattice that consists of all legitimate SP
constellation points having integer coordinates [a1a2a3a4] uniquely
and unambiguously describing the legitimate combinations of the two
time slots’ modulated symbols in Alamouti’s scheme but subjected
to the SP constraint of a1 + a2 + a3 + a4 = k, where k is an even
integer. Assuming that S = {sl = [al,1al,2al,3al,4] ∈ R

4 : 0 ≤ l ≤
L − 1} constitutes a set of L legitimate constellation points from the

lattice D4 having a total energy of E
Δ
=

∑L−1

l=0
(|al,1|2 + |al,2|2 +

|al,3|2 + |al,4|2), and upon introducing the notation

Cl =

√
2L

E
G2(xl,1, xl,2), l = 0, 1, . . . , L − 1 (3)

we have a set of ST signals {Cl : 0 ≤ l ≤ L − 1} whose diversity
product is determined by the MED of the set of L legitimate SP
constellation points in S.

IV. SYMBOL-BASED ITERATIVE DECODING

For the sake of simplicity, a system having a single receive antenna
is considered, although its extension to systems having more than
one receive antenna is straightforward. Assuming perfect channel es-
timation, the complex-valued channel output symbols received during
two consecutive time slots are first diversity combined to extract the
estimates x̃1 and x̃2 of the most likely transmitted symbols xl,1 and
xl,2 [1, pp. 400–401], [2], resulting in x̃i = (|h1|2 + |h2|2) · xl,i +
ńi for i = 1, 2. h1 and h2 represent the complex-valued channel
coefficients corresponding to the first and second transmit antennas,
respectively, and ń1 and ń2 are zero-mean complex Gaussian random
variables with a variance of σ2

ń = (|h1|2 + |h2|2) · σ2
n. A received SP

symbol r is then constructed from the estimates x̃1 and x̃2, where r =
{[ã1 ã2 ã3 ã4] ∈ R

4}. The received SP symbol r can be written as [14]

r = h ·
√

2L

E
· sl + w (4)

where h = (|h1|2 + |h2|2), sl ∈ S, 0 ≤ l ≤ L − 1, and w is a 4-D
real-valued Gaussian random variable having a covariance matrix
of σ2

w · IND
= σ2

ń · IND
= h · σ2

n · IND
, where ND = 4, since the

symbol constellation S is 4-D. According to (4), the conditional
probability density function (pdf) p(r|sl) is given by

p(r|sl) =
1

(2πσ2
w)

ND
2

e
− 1

2σ2
w

(r−α·sl)(r−α·sl)T

=
1

(2πσ2
w)

ND
2

e
− 1

2σ2
w

(∑4

i=1
(ãi−α·al,i)

2
)

(5)

where we have α = h ·
√

2L/E, and (·)T represents the transpose of
a vector.

Similarly, the conditional pdf p(sl|r) is given by

p(sl|r) =
p(r|sl) · p(sl)

p(r)
. (6)

Since the LDPC codeword consists of KldpcGF (q) symbols, the
SP demapper in Fig. 1 will process Kldpc received SP symbols
(r0, r1, . . . , rKldpc−1) at a time to produce the following (Kldpc × L)
soft-metric matrix using (6):

Q = [Q(0) Q(1) · · · Q(Kldpc − 1) ]T (7)

where Q(k) = [p(sk = s0|rk)p(sk = s1|rk) · · · p(sk = sL−1|rk)]
for k = 0, 1, . . . , Kldpc − 1. All the probabilities corresponding to a
specific row in Q, which correspond to a specific received symbol,
should be normalized so that they sum up to unity.

The nonbinary rate-1 decoder in Fig. 1 then processes the soft-
metric matrix Q of (7) in conjunction with the a priori information
Aurc to produce a decoded APP matrix Durc of size (Kldpc × L)
using a standard implementation of the forward–backward recursion-
based APP algorithm [15]. During the first iteration, p(sl), 0 ≤ l ≤
L − 1, which is shown in (6), has to be set to 1/q since no a priori
information is available from the LDPC decoder. The a priori knowl-
edge fed into the rate-1 decoder in Fig. 1 is removed from the decoded
APP matrix Durc using symbol-based element-wise division [10] for
the sake of generating the extrinsic probability matrix Eurc, which is
then fed into the LDPC decoder as the a priori knowledge Aldpc,
as alluded to before. More specifically, the following (Kldpc × L)
a priori information matrix is constructed:

Aldpc = [Aldpc(0) Aldpc(1) · · · Aldpc(Kldpc − 1)]T (8)

where Aldpc(k) = [p(sk = s0)p(sk = s1) · · · p(sk = sL−1)], and
we have p(sk = sl) = (durc)

l
k/(aurc)

l
k, 0 ≤ l ≤ L − 1 and 0 ≤ k ≤

Kldpc − 1, whereas (durc)
l
k and (aurc)

l
k refer to the elements at the

crossover point of the kth row and lth column of the matrices Durc and
Aurc, respectively. Again, the probabilities corresponding to a specific
row of the matrix Aldpc should be normalized so that the values
add up to unity. The LDPC decoder exploits the a priori information
Aldpc for the sake of producing a decoded soft metric Dldpc. Again,
the a priori information Aldpc is removed from the decoded APP
matrix Dldpc by symbol-based element-wise division for the sake of
generating Eldpc, which is passed to the rate-1 decoder in Fig. 1 as
the a priori knowledge Aurc for further iterations until a legitimate
codeword is found or the affordable maximum number of iterations
has been exhausted.

V. NONBINARY EXIT CHART ANALYSIS

A. Theoretical Background

The main objective of employing EXIT charts [16] is to predict the
convergence behavior of the iterative decoder by examining the evo-
lution of the input/output mutual information exchange between the
inner and outer decoders in consecutive iterations. Denoting the mutual
information between two random variables X and Y as I(X;Y ), the
average a priori information IAurc at the input of the inner nonbinary
rate-1 decoder and the average extrinsic information IEurc at the
output of the inner nonbinary rate-1 decoder can be defined as [17]

IAurc :=
1

M

M−1∑
i=0

I (Vi;Aurc(i))

IEurc :=
1

M

M−1∑
i=0

I (Vi;Eurc(i)) (9)
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where Vi is an L-ary random variable representing the ith integer
symbol vi at the input of the rate-1 encoder in Fig. 1, and M is the
total number of legitimate symbols vi. Note that Aurc(i) and Eurc(i)
are vectors of random variables corresponding to the ith row of the
matrices Aurc and Eurc, respectively. The transfer characteristic
Turc of the inner rate-1 decoder is a function of IAurc and Eb/N0

expressed as IEurc = Turc(IAurc , Eb/N0). Similarly, the average
a priori information IAldpc at the input of the outer nonbinary LDPC
decoder and the average extrinsic information IEldpc at the output of
the outer nonbinary LDPC decoder can be defined as

IAldpc :=
1

M

M−1∑
i=0

I (Vi;Aldpc(i))

IEldpc :=
1

M

M−1∑
i=0

I (Vi;Eldpc(i)) (10)

where the transfer characteristic Tldpc of the outer nonbinary LDPC
decoder is given by IEldpc = Tldpc(IAldpc), which does not depend
on the Eb/N0 values.

It was shown in [11] that by averaging over a sufficiently large
number of length Kldpc blocks, the mutual information IE can be
estimated as

IE = −H(V1) + E

{
1

Kldpc

Kldpc−1∑
i=0

L−1∑
l=0

el
k

}
(11)

where el
k refers to the element at the crossover point of the kth

row and lth column of the matrices Eurc or Eldpc, and the entropy
H(V1) can readily be determined from the a priori L-ary symbol
distributions p(vi). For example, if we have p(vi = l) = 1/L for
l = 0, 1, . . . , L − 1 (i.e., equiprobable L-ary symbols), then we arrive
at H(V1) = − log2(L).

B. EXIT Chart Results

Fig. 2 shows the EXIT chart of the symbol-based LDPC-coded
STBC-SP scheme (Fig. 1) in combination with L = 4 and the 1/2-
rate outer LDPC code [7] defined over GF (4) when operating at
a signal-to-noise ratio (SNR) of 0.5 dB and using Iint = 3 internal
LDPC iterations as well as the system parameters outlined in Table I.
This is referred to as Scheme 1. Observe in Fig. 2 that the maximum
mutual information is log2(L) = 2, which is also evident from (11).
Fig. 2 also shows the EXIT chart of an identical-throughput 1/2 bit-
per-symbol bit-based LDPC-coded STBC-SP scheme in combination
with the 1/2-rate outer LDPC code defined over GF (2). Binary EXIT
charts [16] are employed to study the convergence behavior of bit-
based schemes. Ideally, for the exchange of extrinsic information
between the rate-1 decoder and the outer LDPC decoder in Fig. 1 to
converge at a specific SNR value, the EXIT curve of the rate-1 decoder
recorded at the SNR value of interest and that of the outer LDPC
decoder should only intersect at the point of (IA, IE) = (2.0, 2.0).
If this condition is satisfied, then a so-called open convergence tunnel
[16] appears in the EXIT chart. The narrower the tunnel, the closer the
system’s performance to the channel capacity, and hence, in the spirit
of Shannon’s information theory, more iterations are required to reach
the (2.0, 2.0) point.

Observe in Fig. 2 that the symbol-based Scheme 1 in Table I
exhibits an open convergence tunnel at SNR = 0.5 dB, whereas the
equivalent bit-based scheme requires higher SNR values before an
open convergence tunnel can be formed. This implies that according
to the predictions of the EXIT chart shown in Fig. 2, the symbol-based

Fig. 2. EXIT chart of symbol-based and bit-based LDPC-coded STBC-SP
schemes in combination with the 1/2-rate outer LDPC code defined over
GF (4) and GF (2), respectively, using three internal LDPC iterations and the
system parameters outlined in Table I.

TABLE I
SYSTEM PARAMETERS

Scheme 1 in Table I is expected to have a lower convergence threshold
than its bit-based counterpart, and hence, the former will exhibit a BER
turbo cliff at a lower SNR value.

Fig. 3 shows the EXIT chart of the symbol-based Scheme 3 in
Table I when using Iint = 3 internal LDPC iterations and operating
at SNR of 4.50 dB. Fig. 3 also shows the EXIT chart of the equivalent-
throughput bit-based scheme. Observe that although both symbol-
based and bit-based schemes require similar SNR values to exhibit
an open convergence tunnel, the symbol-based scheme exhibits a
wider tunnel. Hence, a lower number of iterations is needed to reach
the convergence point of (IA, IE) = (4.0, 4.0). These EXIT tunnel-
based convergence predictions are usually verified by the actual EXIT
trajectory of iterative decoding as well as by the BER curves, as will
be discussed in Section VI.

VI. RESULTS AND DISCUSSION

Without loss of generality, we considered an SP modulation scheme
associated with L = 4, 8, and 16 using two transmit and a single re-
ceiver antenna to demonstrate the performance improvements achieved
by the proposed system. All simulation parameters are listed in Table I.
There are more than L legitimate SP symbols in the lattice D4,
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Fig. 3. EXIT chart of symbol-based and bit-based LDPC-coded STBC-SP
schemes in combination with the 1/2-rate outer LDPC code defined over
GF (16) and GF (2), respectively, using three internal LDPC iterations and
the system parameters outlined in Table I.

Fig. 4. Decoding trajectory of the symbol-based 1/2-rate nonbinary LDPC-
coded [7] STBC-SP scheme defined over GF (16) in combination with the
system parameters outlined in Table I and operating at Eb/N0 = 5.0 dB after
five joint external iterations and three internal LDPC iterations.

and hence, the required L SP symbols were chosen according to the
minimum energy and the highest MED criterion proposed in [14].

Fig. 4 illustrates the actual decoding trajectory of the turbo-detected,
symbol-based nonbinary LDPC-coded STBC-SP scheme in Fig. 3
when operating at SNR = 5.0 dB after Iext = 5 joint external it-
erations and Iint = 3 internal LDPC iterations. The “zigzag path”
shown in Fig. 4 represents the actual EXIT between the rate-1 inner
decoder and the outer nonbinary LDPC decoder at SNR = 5.0 dB.
The deviation of the decoding trajectory from the prediction of the
EXIT chart is due to the fact that a finite LDPC output block length of
Kldpc = 6000 bits is employed, rendering the assumption of having

Fig. 5. Decoding trajectory of the bit-based 1/2-rate binary LDPC-coded
[5] STBC-SP scheme in combination with the system parameters outlined in
Table I and operating at Eb/N0 = 5.0 dB after 15 joint external iterations and
three internal LDPC iterations.

Fig. 6. Performance of symbol-based and bit-based LDPC-coded STBC-SP
schemes in combination with the system parameters outlined in Table I after
five joint external iterations and three internal LDPC iterations when using an
LDPC output block length of Kldpc = 12 000.

Gaussian-distributed symbol probabilities only approximately valid.
This assumption was exploited when creating Aurc and Aldpc for
the sake of generating the appropriate a priori information IA to
characterize the EXIT characteristics of the constituent decoders.
Fig. 5 illustrates the decoding trajectory of the turbo-detected, bit-
based binary LDPC-coded STBC-SP scheme of Fig. 3 when operating
at SNR = 5.0 dB after Iext = 15 joint external iterations and Iint = 3
internal LDPC iterations. Observe in Figs. 4 and 5 that more joint
external iterations are required by the bit-based scheme to converge
than by the symbol-based scheme.

Fig. 6 compares the attainable performance of both the symbol-
based nonbinary LDPC-based [7] and the bit-based binary LDPC-
coded [5] STBC-SP schemes using the system parameters in Table I
after Iext = 5 joint external iterations and Iint = 3 internal LDPC
iterations when using an LDPC output block length of Kldpc =
12 000 bits. Observe in Fig. 6 that the symbol-based LDPC-coded
STBC-SP schemes require lower SNR values to achieve a BER of
10−5, as compared with the bit-based schemes, when using the system
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parameters in Table I and using three internal LDPC iterations as well
as an LDPC output block length of Kldpc = 12 000 bits.

VII. CONCLUSION

In this paper, we have proposed a novel symbol-based iterative
scheme that exploits the advantages of nonbinary LDPC codes [7],
the rate-1 inner codes in [8], and the STBC-SP scheme in [4]. Our
investigations have demonstrated that attractive performance improve-
ments may be achieved by the proposed scheme over the equivalent-
throughput bit-based schemes. Subsequently, novel nonbinary EXIT
charts were used to study the convergence of the proposed symbol-
based scheme. By contrast, binary EXIT charts were used to ex-
plore the convergence of the bit-based binary LDPC-coded STBC-SP
schemes. Again, it was demonstrated both by EXIT chart analysis and
by the corresponding BER performance curves that the symbol-based
scheme is capable of outperforming its bit-based counterpart, and
both designs had an edge over Alamouti’s now classic STBC scheme,
dispensing with the SP-based joint design of the QPSK ST symbols.
Our future research will consider similar differentially encoded low-
complexity SP designs for the sake of requiring no channel estimation
as well as ST-equalized systems.
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Recovering Signal Energy From the
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Abstract—In orthogonal frequency-division multiplexing (OFDM) sys-
tems, a cyclic prefix (CP) is often added at the transmitter and discarded
at the receiver. When the length of the CP exceeds the delay spread of
the channel, a portion of the CP can be used to recover additional signal
energy. In the past, Nyquist windowing techniques have been proposed
to recover signal energy, thereby improving performance. In this paper,
linear maximum-likelihood (ML) and minimum-mean-square-error
(MMSE) approaches are developed, which further improve performance,
particularly when the signal-to-noise ratio (SNR) is low. Simpler two-
valued windowing (TVW) solutions are also provided, which generally
employ one or two non-Nyquist windows.

Index Terms—Cyclic prefix (CP), demodulation, maximum-likelihood
(ML) detection, multicarrier transmission, orthogonal frequency-division
multiplexing (OFDM).

I. INTRODUCTION

Orthogonal frequency-division multiplexing (OFDM), which was
originally developed in the late 1950s and 1960s (see references in [1]),
is being used or considered in a variety of wireless communication
systems. With OFDM, a block of symbols is sent in parallel on
different frequency subcarriers. Wireless communication channels are
often dispersive, introducing interference between and within blocks
of symbols. Ideally, all symbols should be jointly detected [2], which
requires significant receiver complexity. To simplify receiver process-
ing, part of the block of symbols is copied and preappended at the
transmitter, forming a “cyclic prefix” (CP) [3]. At the receiver, this
portion of the signal is typically discarded, thus avoiding interblock
interference and allowing for simple subcarrier separation using a fast
Fourier transform (FFT).

The CP may be longer than is needed for a particular user’s receiver.
For broadcast, the CP should be designed for the worst-case delay
spread, which typically is not experienced by all users. For multiple-
access, where different subcarriers are allocated to different users, the
CP should be designed for the user with the largest delay spread. In
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