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ABSTRACT 
 
In recent years, game theory has emerged as a promising approach to solving the power 
control problem in wireless networks. This thesis extends the reach of game-theoretic 
analysis to embrace link adaptation, thereby constituting a generalization of the power 
control problem. A realistic and natural problem formulation is attempted, wherein 
transmitter power and a discrete-valued Adaptable Link Parameter (ALP), e.g. code rate, 
constitute the action set of a player in this game. The dual goals of maximizing 
throughput and minimizing power consumption are reflected in the utility function 
selection, which uses the accurate sigmoid model for approximating throughput. The 
discrete action space makes it difficult to verify the existence of a Nash Equilibrium (NE) 
in this game using standard techniques. To circumvent this limitation, a heuristic 
algorithm is proposed. This algorithm is analytically shown to always converge to a NE. 
The subsequent results probe its validity and sensitivity. Favorable comparisons are 
drawn between these game-theoretic results and those arising from parallel systems 
techniques. A linear programming system optimization that exploits properties of the 
dominant eigenvalue of the system gain matrix is also presented in a comparative context. 
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1 Introduction 
 

1.1 Third Generation (3G) Wireless Communications1 
 
At the time of writing, cellular operators are continuing to roll out Third Generation (3G) 
services in several markets worldwide. Historically, the earliest analog systems, e.g. 
AMPS, are referred to as First Generation systems. These were superseded by a plethora 
of Second Generation (2G) standards, which employ digital communications technology. 
The proven “killer application” for mobile telephony has been and continues to be voice. 
However, starting with 2G systems, rudimentary data services, such as text messaging, 
have proved to be feasible. 3G wireless systems constitute a significant technological 
advancement over existing 2G systems. They differ from 2G systems in that they 
combine voice and data services, signifying a convergence of wireless technology with 
the Internet and computing. 3G is expected to be driven by applications as diverse as 
multimedia messaging, email, video telephony, music, Internet gaming, and other data 
services. 3G standards are, therefore, designed to support traffic classes with differing 
characteristics. For such an ambitious catalog of services to be realizable, several exciting 
new technologies that are unheard of in 2G standards are being deployed. These 
technologies include turbo coding, link adaptation, which is studied in this thesis, packet 
scheduling, multiuser detection and antenna diversity, to name a few.  
 
As per the requirements set forth by the ITU’s IMT-2000 recommendations [3], in order 
for a network to be classified as a 3G network, it must be able to transmit wireless data at  

• 144 kbps to mobile users, 
• 384 kbps to pedestrian users, and 
• 2 Mbps to fixed locations. 

 
In addition, 3G networks must be able to achieve the following. 

• Provide equally effective symmetrical and asymmetrical data transfer capability 
• Improve the voice quality over what 2G networks offer 
• Increase the capacity for a given bandwidth 
• Simultaneously support multiple classes of traffic with differing quality of service 

(QoS) requirements 
• Permit global roaming for users 

 
Requirements such as these have ensured that 3G technologies are far more sophisticated 
than 2G technologies. The performance analysis of 3G systems is likely to be 
complicated by a vast number of system variables, whose impact on system performance 
will be better understood with experience.  
 

                                                 
1 The acronyms used in this chapter are defined in the List of Acronyms in the front matter. 
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1.2 3G: Evolution and Status  
 
Figure 1-1 illustrates the evolutionary path followed by 2G standards to 3G. The 2.5G 
standards are an intermediate step in this evolution.  

 
Figure 1-1 Evolution of global cellular standards2 

The enormous expenditure on spectrum licenses for 3G and the lukewarm response 
received from the consumer market have served to delay the deployment of 3G systems. 
Market research by Ovum, the largest European-headquartered advisor on telecoms, 
software and IT services, published in 2003, shows that, today, there are approximately 
1.1 billion cellular subscribers worldwide [1]. Of these, less than 30 million subscribe to 
a 2.5/3G service. This statistic is an indicator that we are only in the nascent stage of 3G 
growth.  
 
It is interesting to note that the ultimate 3G technologies will revolve around CDMA, of 
which cdma 2000 and WCDMA form two mutually incompatible standards (China’s in-
house TD-SCDMA deserves mention as a domestic if not global contender). In general, 
the legacy 2G standard at the root of the 3G evolution path has dictated the direction 
adopted by migrating operators. 3G made its first appearance in the trendsetting Japanese 
market, where NTT’s UMTS faced off with rival KDDI’s cdma 2000 1x for the first 
                                                 
2 Opinion on the classification of technology into the 2.5G or 3G categories is divided. In some quarters, 
cdma 2000 1xRTT is regarded as being a 3G technology. It also remains unlikely that cdma 2000 3x will 
ever be deployed.  
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time. In GSM-dominated Europe, there has been a delay in the deployment of true 3G 
UMTS networks but GPRS and EDGE networks have proven to be a stopgap measure. 
For the carriers offering CDMA (Verizon and Sprint PCS) in the United States, 
upgrading to cdma 2000 1x has been an automatic choice. The TDMA carriers (AT&T 
and Cingular Wireless) have decided to revamp their networks to GSM/GPRS/EDGE. 
The South Korean market is dominated by CDMA, hence an upgrade to cdma 2000 1x 
was the inevitable decision. Quoting an iGilliot report, dated April 2003 [2], “most of the 
3G networks commercially operating are CDMA 1x – 46 networks worldwide and 21 
more expected by the end of 2003. There are also 4 commercial CDMA 1x EV-DO 
networks operating and 3 more expected by the end of the year. While lagging behind on 
commercial network launches to date, by the end of 2003 there will be at least 12 UMTS 
commercial network launches”. Interesting developments in the cellular industry can be 
expected in forthcoming years. 
 

1.3 Radio Resource Management (RRM) for 3G Networks  
 
Radio resource management [4] is the field of systems engineering which relates to the 
optimum utilization of the limited resources available in a wireless network. The 
performance of a wireless network depends on several parameters, including, but not 
limited to, bandwidth, load, frequency re-use, maximum power allocation, topography, 
and terminal speed. The impact of different technologies must often be factored into a 
performance study. The ultimate allocation of resources must be satisfactory for the user 
as well as the provider of the services. For example, CDMA networks present unique 
challenges not found in TDMA or FDMA. Often several resources must be traded off 
against each other, such as loading, measured by the number of users in the system or 
cell, versus link performance, measured by the bit error rate (BER). System performance 
can be evaluated using performance metrics such as system throughput, power 
consumption, and coverage probability. RRM involves the utilization of mathematical 
analysis and simulation to study the impact of the aforementioned parameters on system 
performance, as measured by the performance metrics. The results of such analysis and 
simulation translate into the implementation of favorable RRM schemes in network 
design. The areas of power control, handoff, admission control, and scheduling can be 
classified as belonging to the rather broad field of RRM. 
 
In 2G networks, voice is the predominant application (circuit-switched data is the only 
other option). As a result, variable QoS need not be provisioned. Of greatest interest is 
the number of users that can be supported at an acceptable voice quality in a given 
bandwidth and coverage area [5]. Since voice is circuit-switched, for TDMA and FDMA 
based technologies, a fixed number of channels are available in a given bandwidth. The 
design parameters that affect average signal to interference and noise ratio3 (SINR), a 
measure of link quality, need to be optimized. In addition, the ability to provide an 
acceptable SINR to all the users in the network - in other words, the coverage probability 
                                                 
3 Other common terms substitutable for SINR are signal to interference ratio (SIR) and carrier to 
interference ratio (C/I). In this thesis, we distinguish between SNR and SINR; the former incorporates only 
noise while the latter, both interference and noise.  
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- must be evaluated. Of further interest are the call blocking and call dropping 
probabilities, which are functions of the number of available circuit-switched 
connections, i.e., the load [5]. In CDMA networks, there is the capability to increase 
capacity at the cost of degradation to voice quality. Achieving a delicate balance between 
these two requirements, where the first satisfies the provider of the service and the second 
the end-user, is an important network design challenge. 
 
RRM of 3G networks is vastly different from that of 2G networks. There are several 
options available in 3G in terms of data rates and QoS. Some services, such as web 
browsing are delay tolerant, whereas others, such as voice and even more so, video-
conferencing are delay intolerant. Thus, the homogeneity in service requirements for 
voice-only systems no longer exists for 3G systems. Moreover, system performance is 
now a function of a greater number of variables. Since 3G services will use a 
combination of packet-switched and circuit-switched channels, throughput and delay are 
more relevant metrics for common types of packet-switched data services, such as file 
transfer and web browsing. Technologies unique to 3G systems, such as scheduling and 
link adaptation, create new challenges in RRM. The techniques used in the analysis of 
voice networks need to be modified or supplemented by newer ones to address these 
challenges.  
 
In this thesis, traditional analytical approaches to solving problems in RRM are 
categorized under “systems theory.” In Chapter 2, we focus on the important RRM area 
of transmitter power control. A useful review of power control literature from a system-
theoretic perspective is provided. It includes a review of significant research on multi-rate 
power control. Systems techniques involve the application of linear algebra, queuing 
theory, and optimization to RRM problems. These techniques have found successful 
application in the analysis of 2G networks and are evolving to find application to the new 
needs of RRM of 3G networks.  
 
Recently, new techniques utilizing game theory have come to light, especially in their 
application to the power control problem. Game theory is heretofore little understood or 
utilized by wireless systems engineers. It is the subject of extensive research in 
economics and the study of human interaction. Chapter 3 contains a self-contained 
introduction to game theory and the mathematical foundations of the game-theoretic 
ideas that are relevant to this work. The recent applications of game theory to the RRM of 
cellular systems that have shown it to be a promising and novel alternative to systems 
theory are also reviewed therein.  
 
This thesis attempts to further contribute to existing work on RRM for 3G networks using 
game theory and systems theory as parallel, but contrasting approaches to the same end. 
We have selected a problem pertinent to a generic 3G network, that of multi-rate power 
control or link adaptation and power control. Our literature review in Chapter 3 reveals 
that this problem has not been studied sufficiently using game-theoretic models. While 
the approach adopted parallels earlier approaches to the power control problem, the 
problem we solve is a generalization of these other works. To support users with variable 
link quality, 2.5G and 3G systems permit switching between the members of a set of 
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multiple code rates, modulation schemes, or spreading factors. The switching is 
conducted as a function of link quality and, hence, is appropriately called link adaptation. 
Considering, as an example, the next-generation standards evolving from GSM [6], we 
observe that in GPRS there is a choice of four coding schemes. In EDGE, there is the 
added choice of 8-PSK modulation over the existing GMSK of GSM/GPRS. In WCDMA 
[7], there exists the ability to adjust the spreading factor of a physical channel in response 
to varying link conditions. The different degrees of coding gain or, more generally, 
energy efficiency afforded by multiple rates and modulation schemes affect the average 
transmitter power consumption of the link, which suggests that power control and link 
adaptation can be carried out jointly. While decreasing the code rate improves energy 
efficiency, it might also result in lower throughput when channel conditions improve to 
the extent that the extra redundancy becomes unnecessary. However, further degradation 
may mean that the degree of redundancy provided by the code is insufficient to balance 
the losses of entire frames of information, which once again results in lower throughput. 
A typical set of link adaptation simulation profiles [73], shown for GPRS in Figure 1-2, 
illustrates the impact of varying code rate over various received SINR values, which are 
an indicator of link quality. The advantages of link adaptation over using a fixed code 
rate are evident from these curves. 

 
Figure 1-2 Example GPRS throughput versus SINR simulation curves [73] showing 

comparison of performance using different coding schemes (CS-1 – CS-4). The y-axis is 
in units of kilobytes per second (KBps). (TU-50: Typical Urban fading channel, mobile 

speed = 50 km/hr. FH = Frequency Hopping.) 

As a running example in this work, we study a GPRS network. The existence of a 
discrete set of code rates disturbs the otherwise well-behaved nature of this problem. 
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Elementary results from game theory are applied to construct a model for the problem at 
hand and derive a solution in Chapter 4. In the next chapter, a novel solution to the same 
problem using systems theory is presented. This approach is not distributed and frames 
our problem as a system optimization. The two approaches are compared with each other 
and other system-theoretic solutions from the literature. We believe that that this often 
ignored exercise is important in validating game-theoretic analyses. 
 
This thesis provides evidence that game theory is a viable alternative for solving RRM 
problems. Its usefulness will be evidenced by the emergence of new applications that are 
amenable to analysis using techniques from game theory. In Chapter 6, we conclude with 
some thoughts and observations on the utility of game theory within the scope and 
limitations of our research. 
 



 

 7

2 Power Control in RRM 
 

2.1 Introduction to Power Control 
 
In Chapter 1, we introduced the subject of radio resource management (RRM), mentioned 
several important areas in RRM, and identified some of the RRM challenges presented by 
3G networks. One ubiquitous and important area within RRM is that of transmitter power 
control or simply power control (PC). Power control has been studied for the last four 
decades. The earliest work on power control appears to be by Axelby and Osborne [8]. 
 
Transmitter power control is the adjustment of the transmitter power to achieve a desired 
link quality, e.g. receiver power level or signal to interference ratio. There are two factors 
that make power control necessary in cellular systems:  
 

• The time-varying wireless propagation environment, which includes path loss, 
shadowing and small scale fading, and 

• Co-channel interference  
 
In cellular systems, several cells in a coverage area re-use frequencies and, hence, the 
transmissions in these co-channel cells interfere with each other. Co-channel interference 
is arguably the biggest impediment to increasing system capacity. In Figure 2-1, a seven-
cell frequency reuse scheme, in which the cells are represented by hexagons, is 
illustrated. A subset C of one group of co-channel cells is shaded. A close-up of cell 
i C∈  is also shown in Figure 2-1. Let there be N users in the system. Since each of the 
users is part of a wireless link, which in turn belongs to a cell, we use the terms users, 
cells and links interchangeably depending on the context. We focus on the downlink case 
in the following discussion. The link gain on a typical link is a positive real number less 
than one that includes both large-scale and small-scale fading. The link gain from 
transmitter or interferer (in this case the base station) j to the receiver (in this case the 
mobile) in cell i, is denoted by Gij. iiG  is the link gain from the transmitter to receiver in 
cell i C∈ . If the base-station (BS) transmitter power on the link in cell i C∈  is denoted 
by Pi, and the thermal noise power at the receiving mobile station (MS) in cell i C∈  by 

in , the signal to interference and noise ratio (SINR) at MS i, iγ  is given by the relation in 
Equation (2-1). A similar expression can be derived for the uplink.  

1,

ii i
i N

ij j i
j j i

G P

G P n
γ

= ≠

=
+∑

 
(2-1) 

It is convenient to use matrix notation to describe the link gains G. Let G = {Gij} be the 
link gain matrix of the system described in Figure 2-1. Each element (i,j) of the matrix 
simply represents the link gain from BS i to MS j. The value of SINR that a link 
i C∈ strives to achieve is referred to as an SINR target and is denoted by t

iγ . The matrix 
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H, defined in Equation (2-2) in terms of the targets and G, is called the normalized link 
gain matrix. 

{ }

,

0 ,

t
i ij

ij
ii

GH i jG

i j

γ⎧ ⎫
= ≠⎨ ⎬
⎩ ⎭

= =

  (2-2) 

The link gain matrix and its normalized form will be used extensively throughout this 
thesis. The transmitter powers can be expressed in the form of a vector 

[ ]1 2, ,..., T
NP P P=P , where the iP ’s are defined as in Equation (2-3). 

{ }| , 0 ,iP p p p i C∈ ∈ > ∈\   (2-3) 

We similarly define the normalized noise vector [ ]1 2, ,..., T
Nη η η=η  and define its 

component iη  in Equation (2-4). The normalized noise vector also appears later in this 
thesis. 

, 0,
t
i i

i i
ii

n n i C
G
γη
⎧ ⎫

= > ∈⎨ ⎬
⎩ ⎭

  (2-4) 

 

 
Figure 2-1 System model of a typical non-CDMA cellular system, employing seven-cell 

frequency re-use. The shaded cells are co-channel interferers 

To achieve satisfactory quality on a wireless link, a certain SINR must be maintained. 
The quality of service (QoS) requirement for voice is uniform throughout the network, 
i.e. all voice links must achieve the same BER. The same may not be the case for data 
networks. In CDMA networks the requirements of power control differ for the downlink 
and uplink. However, an ideal power control algorithm will adjust transmitter power P 
such that the exact SINR requirement, or some other link quality measure, is achieved, if 
at all possible. In our work, we consider receiver SINR to be the link quality measure. 
Increasing the power causes unnecessary interference to other co-channel links and 
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wastes capacity. However, an inadequate amount of power will result in the deterioration 
of link quality.  
 
The nature of the wireless propagation environment results in fluctuations of both the 
average signal strength, due to slow large-scale fading, as well as the instantaneous signal 
strength due to fast small-scale fading. The link path gain coefficients G vary as a 
function of the MS position and movement in a coverage area. The power control 
algorithm must respond to these fluctuations in link quality by adjusting P in a timely 
manner so that SINR remains at the target value that ensures satisfactory link quality.  
 

2.2 Power Control Terminology 
 
Based on this understanding of the requirements of power control, a block diagram of a 
power control loop is shown in Figure 2-2. The implementation of the functionality in the 
blocks depends on the details of the cellular system or standard. However, a channel 
quality estimate is compared with a desired target value of that estimate and the new 
power level is determined accordingly.  

 
Figure 2-2 A generic power control loop 

Depending on where the estimate is obtained, we can have open loop or closed loop 
power control. In an open loop power control scheme, a channel quality measurement 
made at the transmitter, assuming similar fading characteristics at the transmitter to those 
found at the receiver, is used to drive the transmitter power. However, while this 
reciprocity assumption is likely to be valid in forming an estimate of the path loss and 
shadowing, it is unlikely to be able to compensate for small scale fading [9]. The reason 
for this is that the frequency separation between the uplink and the downlink exceeds the 
coherence bandwidth [5] of the fading channel, rendering their small-scale fading 
components uncorrelated. The advantage of open loop power control is that it obviates 

 
Gain 

Channel 
Quality 
Estimation

Target 

 
Estimate 

Open or Closed 
Loop  
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feedback from the receiver and the delay associated with it. It also tends to mitigate fast 
fading by averaging it out. A closed loop power control scheme involves communication 
between the receiver, where the channel quality estimation occurs, and the transmitter, 
where the power level is appropriately adjusted. In slow fading this is necessary, since 
deep fades tend to be much longer than the duration of a symbol. However, the inherent 
feedback delay means that in a fast fading channel the channel quality may change before 
the new power level takes effect, rendering the closed loop ineffective.  
 
Typically, for reasons mentioned in the preceding paragraph, the closed loop algorithm 
needs to operate at a much greater frequency than the open loop algorithm. Thus, a 
classification of power control based on the frequency of power control loop operation is 
possible. However, in general, fast power control is used to combat instantaneous fast 
fading effects, while slow power control is used to counteract large-scale propagation 
effects such as path loss and shadowing. A fast power control loop typically updates at 
intervals that are comparable to the coherence time [5] of a fading channel. 
 
Channel quality estimation is essential for the successful operation of power control. 
Channel quality can be estimated from received signal strength, received SINR, or a 
moving average BER. In our work, the received SINR is the channel quality metric of 
choice. We further assume that SINR (we drop the “received” prefix henceforth) is 
estimated perfectly at the receiver. 

2.2.1 CDMA Power Control  
 
In CDMA, power control is slightly different on the uplink and downlink [10]. On the 
uplink of CDMA voice systems, there is a possibility that distant users’ transmissions 
may be much weaker than those of near users in what is known as the near-far effect. It is 
shown in [11] that the performance of a multiple-access spread spectrum link using non-
orthogonal codes is optimized when all users are received with equal power. The main 
purpose of power control on the UL of CDMA voice systems is to alleviate the near-far 
effect.  
 
On the CDMA downlink, users are separated by orthogonal Walsh (or similar) codes. 
However, power control is necessary to reduce interference caused to other cells which 
share the same code set. With universal frequency reuse normally being implemented, 
neighboring cells might interfere with each other. Multipath propagation delays also 
result in the codes of different users no longer being time-synchronous at the MS. This 
makes it necessary to control downlink power and the result is an increase in network 
capacity.  
 
Two terms, inner loop and outer loop power control (OLPC), have been popularized in 
CDMA parlance. The inner loop was described earlier in Figure 2-2. The outer loop [12] 
is a target adjustment algorithm in which the cyclic redundancy check (CRC) carried out 
on each frame determines whether that frame was in error or not. The target referred to 
here is the set-point of the closed inner loop. If in error, the target is increased by a 
particular up-step; if not, it is decreased by a down-step. These steps are typically 
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measured in decibels (dB). If an x % FER is desired, the relation between the up-step and 
the down-step is given by Equation (2-5). 

( )100Up x Down= −  (2-5) 

For example, an FER of 1% would mean that, on average a frame error can be expected 
to occur once in every 100 frames. Hence, there should be 100-1 = 99 correct frames, 
corresponding to down-steps, for each erroneous frame.  
 
In general, an outer-loop can be described as being any algorithm that finds the target 
utilized by the inner loop. A logical representation of an OL algorithm appears in Figure 
2-3. 
 

 
Figure 2-3 Generic outer loop power control 

In a cellular system that supports packet-switched connections, as was mentioned in 
Chapter 1, it is often feasible to support users at different throughputs. This usually 
depends on the rate assigned to a user. Different rates often have different optimum 
targets. This thesis is related to OLPC in that it focuses on algorithms and analytical 
techniques that determine the selection of the rates in packet-switched data networks that 
optimize network performance based on some performance criteria. It is assumed that 
fast fading can be counteracted by a fast power control inner loop.  
 

2.3 Power Control Theory 
 
Power control is recognized as a vital RRM technique to counteract fading and co-
channel interference and in the process, improve system capacity. Early work in this area 
understandably focused on voice systems, to be later extended and adapted to data 
systems. We now provide a brief overview of significant contributions to the literature on 
the theory of power control. Power control algorithms can be categorized as being 
centralized or distributed. In centralized schemes, signaling within the BS system is 
required to exchange system-wide power allocation information. This permits a single 
entity in the BS system to execute power control. In distributed schemes, each link 
consisting of a BS and MS can independently compute the appropriate amount of power 
required without externally supplied knowledge of the same process being executed in 
other links. Centralized schemes are impractical to implement but theoretically useful in 
that they can provide bounds on the achievable SINR in every member belonging to a set 
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of co-channel links. Distributed schemes form the basis of practical power control 
algorithms. An overview of work in this area can be found in Chapter 4 of [13].  
 
A notable early effort [14] proposed keeping received power at a fixed level. This scheme 
was subsequently outperformed by other schemes. One of these is described in [15], in 
which the author approaches the problem of the optimum achievable SINR in a purely 
interference-limited system.  

Definition 2-1 Achievable Signal to Interference and Noise Ratio 

A particular SINR tγ is said to be achievable if every link Ci∈ can achieve an SINR 
equal to or in excess of it. Mathematically, this condition translates to Equation (2-6). 

,t
i i Cγ γ> ∀ ∈    (2-6) 

□ 
 
In [15], the author proposes a “C/I balancing” scheme in which he shows that the 
maximum achievable downlink SINR in the network is given by Equation (2-7). 

max
max

1
λ

γ =   (2-7) 

Here maxλ  is the largest real eigenvalue [16] of the matrix Z defined in Equation (2-8).  

ij
ij

ii

G
Z

G
=  (2-8) 

The links are said to be balanced when the condition in Equation (2-9) is satisfied. 
, ,i j i j Cγ γ= ∀ ∈   (2-9) 

 
The same paper [15] asserts that C/I balancing can be extended to the uplink. Then, the 
author proposes an iterative Stepwise Removal Algorithm (SRA) in which cells that do 
not exceed the SINR target are made to stop transmitting. The iterations continue until all 
such cells have been silenced and maxγ for the remaining cells exceed the target SINR. In 
other words, the condition of Equation (2-10) must be satisfied, where C′ is the set 
obtained by iteratively applying SRA starting with C. 

max , ,i j i j Cγ γ γ ′= = ∀ ∈   (2-10) 

 
A distributed version of this algorithm, called the Distributed Balancing Algorithm 
(DBA) was suggested in [17]. The algorithm starts with an arbitrary initial approximation 
to P, and uses the update Equation (2-11). 

0,111 >⎥
⎦

⎤
⎢
⎣

⎡
+=+ β
γ

β n
i

n
i

n
i PP    (2-11) 

Here n is the iteration count and as ∞→n , it is shown that max ,i i Cγ γ→ ∀ ∈ . This 
algorithm has been shown to converge by an application of the power method for finding 
the dominant eigenvalue of a matrix [16]. Convergence proves to be slow in the case of a 
high target C/I. A practical limitation of this method is that an appropriate value of β  
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cannot be computed in a distributed manner. A Limited Information SRA algorithm 
based on the DBA is also proposed in [17].  
 
The schemes mentioned here consider cellular systems to be strictly interference-limited, 
but in [18], a distributed algorithm that considers noise in the system is proposed. This 
work suggests that user i change its SINR in proportion to its offset from a predefined 
SINR target. Mathematically, this is equivalent to the update iteration of Equation (2-12). 
As before, n is the iteration count. 

)(1 tn
i

n
i

n
i γγβγγ −−=−+  (2-12)  

Here, 0>β  is an arbitrary positive constant. Assuming that the interference remains 
constant during the power update interval, the update equation can be shown to be 
equivalent to Equation (2-13). 

n
i

t
n

i
n

i PP
γ
γ

=+1    (2-13) 

Written in matrix form using Equation (2-1), Equation (2-2), Equation (2-3) and Equation 
(2-4) in Equation (2-13), we arrive at Equation (2-14) below. 

ηHPP +=+ nn 1    (2-14) 

 
Provided the target tγ  is achievable as per Definition 2-1, the algorithm is shown to 
converge to the following solution, obtained by setting nn PP =+1  in Equation (2-14), 
since convergence occurs when the powers are the same between two consecutive 
iterations. 

1( )−= −P I H η    (2-15) 

Here, I is the identity matrix. The proof of convergence follows from the Jacobi 
relaxation method (see [4] for a description and the proof). The power-update scheme 
proposed at the time was synchronous between users, but subsequent research in [19] has 
shown that the same result can be achieved asynchronously.  
 
In all the work summarized until now, power is assumed to be an infinite resource. 
Hence, the next logical step was the development of algorithms for constrained power 
control. Perhaps the most renowned of these is the Distributed Constrained Power 
Control (DCPC) algorithm [20]. The necessary modification to the update Equation 
(2-13) is shown in Equation (2-16). 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=+
n
i

t
n

i
n

i PPP
γ
γ

,min max
1    (2-16) 

Here, Pmax is the peak power available to that link. Grandhi, et al. [20] prove that DCPC 
converges to a fixed point provided that tγ is achievable (Definition 2-1). 
 
We now summarize the goals of power control algorithms. A list of desirable properties 
of power control algorithms should include the following. 
 
• They should be distributed 
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• They should be optimum with respect to some criterion 
• They should converge rapidly in a wide variety of cases 
• They should avoid the “party effect” in which convergence does not take place and 

power on each co-channel link continuously increases up to its maximum 
• They must support use of constrained power 
• Ideally, they should be amenable to implementation in an actual network 
 
In summary, the algorithms discussed in this section, when evaluated in accordance with 
these criteria, compare as shown in Table 2-1. 

Table 2-1 Qualitative Comparison of Power Control Algorithms 

Property C/I Balancing DBA DCPC 
 

Distributed No Not strictly Yes 
Avoids Party Effect? Yes No No 
Constrained Power No No Yes 
Implementation No Impractical Yes 
Rate adaptive No No No 
 

2.4 Multi-rate Power Control 
 
An interesting observation in Table 2-1 (indicated by the italicized row) is that none of 
the algorithms discussed so far are able to jointly carry out link adaptation and power 
control. The requirement that a single system-wide SINR target be attained is responsible 
for this limitation. Link adaptation or adaptive modulation refers to the ability to trade-
off energy efficiency for spectral efficiency as a function of link quality. It might be 
carried out by selecting one of a number of different modulation, coding, or spreading 
schemes, or some combination of these schemes. For example, GPRS [6] offers four 
coding schemes with Gaussian Minimum Shift Keyed (GMSK) modulation. In EDGE 
[6], the more spectrally-efficient 8-PSK modulation may be used in addition to multiple 
code rates to further boost data rates, while in WCDMA [7], several spreading codes and 
coding schemes are available to support an even wider variety of rates. It is, therefore, 
evident that in next-generation networks, adaptive modulation will be one of the means of 
achieving the most efficient use of spectrum. The theory of power control has been 
extended to involve power control of users with a number of adaptable rates, namely 
multi-rate power control. The SINR target and rate are directly related. Higher rates are 
supported at higher SINR values and vice-versa. Hence, the assignment of SINR is 
synonymous with the assignment of rates. We now survey some of the significant 
literature in this area. A more comprehensive summary appears in Berggren’s dissertation 
[21].  
 
Qiu and Chawla [22] address the maximization of total throughput, given a set of users 
and the corresponding path gain matrix G. The total throughput is defined as the sum of 
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individual user throughputs. The expression for user i’s throughput, in terms of its SINR 
iγ  and the power vector P, is given by Equation (2-17). 

( ) ( )( )Pii kT γγ += 1log2    (2-17) 

Here, k depends on the modulation or coding scheme being used. To solve this 
constrained non-linear optimization problem, where constraints are on power, the authors 
suggest iterative non-distributed algorithms, for each of two objective functions – the 
first, the sum of throughputs, and the second the product of individual SINRs. Both 
solutions employ the method of feasible directions [23]. The first algorithm suffers from 
a tendency to converge to sub-optimal solutions depending on the initial guess for P, 
even though it can potentially lead to optimal throughput, whereas the second is shown to 
converge to a unique global, albeit slightly sub-optimal, maximum. However, since this 
work does not address the minimization of power resources, both algorithms result in at 
least one user transmitting at maximum power. 
 
In [24], Wu addresses inner loop power control in the context of CDMA systems, in 
which the assumption of a single system-wide SINR target is relaxed. Instead, each link 
can be assumed to have heterogeneous thresholds. It is assumed that the outer loop sets a 
feasible SINR target for the inner loop to achieve. This work neglects the effect of 
background noise, assuming the system to be strictly interference-limited. The proposals 
in [24] are essentially extensions of the algorithms suggested for C/I balancing, in either a 
centralized or quasi-distributed manner.  
 
An early paper to address combined power control and link adaptation is [25]. In this 
work Kim, et al. relax the assumptions that the rates must be continuous. They then 
propose two power control algorithms. The first is an iterative algorithm that maximizes 
instantaneous system throughput using the method of Lagrangian multipliers [26].  This 
algorithm first computes target rates using the Lagrangian technique, which are then used 
to solve for power using DCPC [20]. In the second, called Selective Power Control 
(SPC), they consider the problem of throughput maximization together with minimization 
of energy consumption. The two algorithms are shown to perform favorably compared to 
results in [22].  
 
A more recent effort [27] frames the resource allocation problem, again in the context of 
CDMA networks, as the following optimization problem: determine the allocation of 
powers P, rates r, and base station assignments in single cell and multi-cell scenarios that 
maximize the objective function Z defined in Equation (2-18). 

1

N
l

i i h
i

Z r hλ λ
=

= −∑    (2-18) 

The terms in Equation (2-18) are defined below. 
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Residual delay
Rate
Cost associated with handoff

Number of handoffs associated with BS assignment 
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The optimization is subject to typical constraints on power and rate. Moreover, a solution 
is attempted for single-cells as well as multiple cells. However, the work does not 
explicitly focus on lowering energy consumption, since it does not include power as an 
optimization criterion.  
 
In Berggren’s dissertation [21], the minimization of power consumption in a CDMA 
system is explicitly specified as an optimization criterion. The optimization problem 
presented therein is as described in Equation (2-19). 

1
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   (2-19) 

In Equation (2-19), jR  is the throughput of user j. The minimum power solution of 
Equation (2-15) is then derived for the uplink of a CDMA system, as shown in Equation 
(2-20).  
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  (2-20) 

In Equation (2-20) iG  is the link gain from MS i to its BS, and I is the inter-cell 
interference. The aforementioned optimization problem and its constraints are suitably 
modified using Equation (2-20). This leads to a heuristic solution algorithm for the same, 
called Greedy Rate Packing (GRP) [21]. We show how GRP may be adapted to non-
CDMA systems in Section 2.4.1. In GRP, the maximum feasible rate is allocated to each 
mobile, starting with the one having the best channel (hence the name “greedy”). 
Furthermore, GRP is shown to minimize total power by assigning SINR in proportion to 
the prevailing channel conditions. In other words, if i jG G>  then i jγ γ> . In [21], GRP is 
also extended to the CDMA downlink. 
 
The same work [21] also generalizes the SPC algorithm of [25] and calls it Generalized 
Selective Power Control (GSPC). GSPC is shown to be optimal, given feasibility, i.e. 
every mobile can be supported at its maximum rate within the feasible range of powers. 
In the case of infeasibility, a technique of gradual rate removals (GRR) is suggested. In 
GRR, the rate of the user with the minimum channel gain, amongst those that do not meet 
their SINR targets, is reduced. This procedure is repeated until the system becomes 
feasible. GSPC and GRR are described in greater detail in Section 2.4.1.   
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Yet more related literature exists, for example, [28], [29] and [30]. In [28], a distributed 
algorithm that discovers the throughput-maximizing P and r vectors is proposed, and the 
network is shown to have a Nash Equilibrium. The concept of Nash Equilibrium [33] will 
be studied further in Chapter 3. Furthermore, multiple Nash Equilibria are identified. In 
[29], the power control and rate allocation problem that maximizes throughput while 
meeting a specific FER target is shown to be NP-complete. A heuristic algorithm that 
achieves the stated objective is then proposed. In [30], the minimization of the sum of 
powers and maximization of the sum of rates are separately considered as objectives, and 
the corresponding non-linear optimization problems are formulated. Suggestions for their 
solution are also offered. 

2.4.1 GRP and GSPC 
 
An important aspect of our work is the comparison of our results with those obtained 
using some of the techniques described earlier. We have decided to use the following. 
  

• Greedy Rate Packing (GRP) 
• Generalized Selective Power Control with Gradual Rate Removals (GSPC-GRR) 

 
We now describe these algorithms in greater detail and adapt them to the system model in 
Figure 2-1. In GRP, users are assigned rates (actually SINR, which is synonymous with 
rate) in an order determined by their relative signal strengths. The algorithm is greedy 
since it assigns SINR to the users with best link quality first, and assigns the remaining 
capacity to the weaker users. Equation (2-20) is not valid for non-CDMA systems. 
Hence, it is necessary to modify GRP to suit our purposes. We do not distinguish 
between the uplink and downlink. Let us assume that the users are sorted such that 

11 22 ... NNG G G> > > . Each user i C∈  is assigned an SINR such that min maxiγ γ γ< ≤ . 
Initially 0=P . We set an iteration counter k = 1 and count up to N. At each iteration k , 
the following steps are executed. 
 
1. Assuming the worst-case interference, assign the maximum SINR within the 

available power ,maxkP , to user k. This is equivalent to selecting kγ  according to 
Equation (2-21). 

,max
min max1

,max
1

max ,min ,k kk
k k

ki i k
i

P G

G P n
γ γ γ−

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟=
⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑
 (2-21) 

The reason for assuming worst-case interference is that the preceding users i k<  
must be favored by the greedy nature of the scheme, i.e. their targets must not be 
compromised for succeeding users. The worst case for these users is that they attain 
their current targets at peak power consumption ,maxiP . This in turn leads to the upper-
limit on interference received at k. Thus, kγ  must be selected in a manner that is 
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consistent with this requirement. Following this line of reasoning, we obtain Equation 
(2-21).    

2. Calculate kP  as follows. 

,maxmin ,k
k k k

kk

IP P
G

γ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (2-22) 

Here, kI is the actual interference at k. 

1,

N

k kj j k
j j i

I G P n
= ≠

= +∑  (2-23) 

Note that the manner of choosing kγ  in Equation (2-21) implies that ,maxk kP P≤ . Also, 
note that, for any user j k> , the power jP  required to achieve the same kγ will be 
greater than kP , since by our ordering of users, jj kkG G< . 

3. Using Equation (2-22) and Equation (2-23), recalculate iP  in descending order of i, 
where { }1, 2,...,1i k k∈ − − . This order is important since any user j calculates its 
required power based on the updated powers of all lower priority users i j> . Due to 
the addition of user k, iP  will have increased for all users.  

4. Recalculate iγ  for { }1, 2,...,i k∈ using Equation (2-1). This reflects the latest power 
updates. Note that 1γ  will be unchanged, for the highest priority user. However, for 
all other i, iγ  will have decreased from its value at the last iteration. The decrease 
follows by noting that in Step 3, the recalculation of power for user j does not take 
into account the increased interference caused by the increasing powers of users 
i j< , i.e. the higher priority users. Hence, the degradation of iγ  will be most severe 
for the users experiencing poor channel conditions. 

 
Note that, at any iteration k, the power increase ( )iP k∆  experienced by user i, which 
follows from step 3, is shown in Equation (2-24). The summation is over the set of all 
lower priority users. 

( ) ( ) ( ) ( )
1 1

1k k
i ij

i j ij j
j i j iii

k G
P k P k H P k

G
γ

= + = +

−⎛ ⎞
∆ = ⋅∆ = ∆⎜ ⎟

⎝ ⎠
∑ ∑  (2-24) 

From Equation (2-24) it is apparent that by assigning rates (SINR) in the prescribed 
order, i.e. 11 22 ... NNG G G> > > , the power increases are more likely to be minimized for a 
given target assignment, since ijH  is more likely to be reduced in the case of a higher 

iiG . However, unlike in the case of the CDMA uplink, the power is not guaranteed to be 

minimized. This is contingent on the ratios ij

ii

G
G and not iiG  alone. However, using iiG  

for the ordering is simple and more practical.  
 
GSPC works in a different manner. In this algorithm, it is assumed that each user has a 
number of different available rates in bits per second. We assume that a user Ci∈  has 
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iK  different rates, chosen from a set of rates { }(max )1 2, ,..., i
i C

K
R r r r ∈=  such that its set of 

rates iR  can be written in ascending order as { }1 2, ,..., iK
iR r r r= . Let the rate assigned for 

any user Ci∈  from iR  be denoted by ir . We define the shorthand for a rate increment as 
follows: if m

ir r= , then 11 m
ir r ++ = . Similarly, a rate decrement involves a simple sign 

change. The target that link i is required to achieve is a function of ir  and is denoted by 

( )t
i irγ . Corresponding to the set of rates iR , we define a set of targets 

( ){ }| , 1, 2,...,t t m m
i i i ir r R m KγΓ = ∈ = . Hence, ( )t t

i i irγ ∈Γ . 

 
Initially, each user is assigned its lowest rate, i.e. 1

ir r i C= ∀ ∈ . The GSPC algorithm 
then proceeds as follows. Until the powers of all the users have converged, the algorithm 
described in the following two steps, A and B, is iterated. Step B is known as GRR. It is 
required if any users have been assigned a rate that they might not be able to achieve 
after the assignment of every user has been accomplished by GSPC (step A). GRR works 
by penalizing the weakest users by decrementing their maximum rates. 
 
Thus, at any iteration k, if i∃  such that ( ) ( )1i iP k P k ε+ − > , where 0ε >  is an 
arbitrarily small tolerated error, perform the following steps: 
A. For all Ci∈  

1. ( ) 1
ir k r i C= ∀ ∈  

2. While ( ) iK
ir k r<  

a. If the rate ( )ir k  is achievable within the maximum power, or, 
mathematically, 

( )( ) ( )
( ) ,max

t
i i i

i
i

r k P k
P

k
γ

γ
<    (2-25) 

  increment to the next higher rate, as shown in Equation (2-26). Here, iγ  is 
defined in Equation (2-1).   

( ) ( ) 1i ir k r k= +    (2-26) 

b. Else go to step 3. 
3. Compute the power required to achieve the highest achievable ( )ir k  resulting 

from step 2. 

( ) ( )( ) ( )
( )

1
t
i i i

i
i

r k P k
P k

k
γ

γ
+ =    (2-27) 

 
B. For all Ci∈  

1. If ( ) ( )( )1 t
i i ik r kγ γ+ <  
a. Find the weakest user j. 
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( )arg min iii C
j G

∈
=    (2-28) 

b. Reduce maximum rate of  j by a single rate decrement. 
( ) ( )1 1j jK k K k+ = −    (2-29) 

c. Return to step A. 
 
Thus, the two part procedure described in steps A and B is repeated until the powers of 
all users remain constant between any two iterations of the algorithm. The performances 
of GRP and GSPC are compared with our own contributions in Chapter 5. 
 

2.5 Summary 
 
This chapter presented a self-contained introduction to power control in cellular 
networks. A basic system model of a non-CDMA cellular system was presented in 
Section 2.1, and the importance of power control in RRM was clearly outlined. 
Additionally, key system concepts such as the link gain matrix and SINR were introduced 
for the first time in this thesis. These concepts will be repeatedly encountered throughout 
this document. In Section 2.2, important power control terminology was clearly spelt out, 
and an introduction to CDMA power control was provided. The underlying mathematics 
from linear algebra, which facilitates the system-level analysis of power control 
problems, was presented in Section 2.3. Several important examples from early power 
control literature were cited with intent to assist the reader in following the development 
of power control theory. The evolution of analytical techniques, from the early methods 
used for voice-only systems, to the more recent ones used to study data systems, was 
traced. The subject of multi-rate power control, which is the area of interest in this thesis, 
was given due attention in Section 2.4, accompanied once again by several examples. 
Detailed algorithmic implementations of two techniques, GRP and GSPC-GRR, were 
explained in the same section. Their performances form a basis for comparison with the 
new results presented later in this thesis. The following chapter introduces a new view of 
power control – one that uses game theory.   
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3 Game Theory and its Applications 
 

3.1 Introduction to Game Theory 
 
To the unfamiliar reader, the term “game theory” might sound rather frivolous. In truth it 
is a vast and growing body of knowledge that is as applicable to markets as it is to 
describing animal behavior. Expressed succinctly, game theory is a set of tools designed 
to analyze the interactions between interdependent decision-making entities. Quoting 
from [31], “A game is a description of strategic interaction that includes the constraints 
on the actions that the players can take and the players’ interests, but does not specify the 
actions that the players do take. A solution is a systematic description of the outcomes 
that may emerge in a family of games. Game theory suggests reasonable solutions for 
classes of games and examines their outcomes.” 
 
A more rudimentary description of game theory, offered by [32], portrays it as the 
scientific study of conflict of interest. Indeed, it is possible to imagine several such 
situations in which more than one individual’s actions may determine their outcomes, and 
in which different individuals have differing preferences amongst the outcomes. Game 
theory enhances the understanding of conflict by devising theories, mathematical models 
and abstractions that serve to explain the nature and results of conflict. Several 
applications are listed later in this chapter. 
 
There are a few basic assumptions underpinning game theory that facilitate the 
construction of tractable models for real situations whose complete details would perhaps 
be impossible to capture. The existence of such assumptions casts a shadow of doubt on 
the efficacy of game theory, but debating their limitations is beyond the scope of this 
thesis. A complete discussion can be found in [32], but here we will only state some of 
these assumptions.  
 
First, it is assumed that each individual involved in a game, in other words, each player, 
has a definite ordering of preferences over all outcomes of a given situation. These 
preferences, when expressed numerically, take the form of a utility function. Each player 
wishes to maximize his (or her) utility function. 
 
Second, it is assumed that the variables upon which the outcomes of a situation depend 
and the values that they can assume can be precisely characterized. Further, the decision-
makers in the game can be assumed to have complete knowledge of the actions and even 
the preferences of their peers. 
 
These characteristics are often described by the term “rational.” Thus, one way in which 
we can informally formulate a game is as a situation where there exist n decision-making 
entities or players, whose choices or actions influence the outcomes of that situation. A 
player attaches a utility to each one of these outcomes and is motivated to act in a manner 
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that maximizes his utility, given the choices of his peers. This characterization of an n-
player game is known as the normal or strategic form of a game. In this form, each 
player makes his choices at the outset of the game without knowing the choices of the 
other players. There is no scope for a player to revise his strategy after making his choice. 
A contrasting model of a game is the extensive form. In the extensive form, it is possible 
to specify an order of play in which a player, at any stage of the game is able to assess the 
impact of previous actions before formulating his present strategy. 
 

3.2 Applications of Game Theory 
 
We now enumerate some applications of game theory to appreciate its usefulness in the 
analysis and solution of a diverse collection of problems. Although developed by 
mathematicians, game theory finds ready application to problems in the social sciences, 
especially economics, politics and military strategy. Several applications, both traditional 
and modern, are discussed in [33]. Some of these applications are elaborated upon in the 
following.  
 

• Auctions – In an auction, a group of bidders place an ascending sequence of bids 
on a commodity until one bidder acquires some or the entire commodity. The 
ultimate going price of an item on auction arrives when all but the winning bidder 
are no longer willing to bid further. Each bidder is faced with the dilemma of 
selecting a price which ensures that he does not end up empty-handed and also 
does not simultaneously expend all his resources. Commodities that are traded at 
auctions include art, securities, and even wireless spectrum!  

 
• Elections – In a typical election, several parties with selfish interests vote in an 

attempt to elect their preferred candidate into a position of authority, or vote for or 
against a statute. The preferences of any one party are likely to influence the 
decision making of one or more other parties. This makes an election a very 
interesting game. 

 
• Markets – A company in a competitive market is confronted by several 

challenging questions – how much to produce, how much to invest in the creation 
of a new product, how to price the product, and so on. Often the answer to these 
questions depends on factors that are not entirely in control of the company. 
Inevitably, a company pays close attention to the business activities of its 
competitors in its endeavor to stay at the forefront of competition. At the same 
time, it must not ignore the expectations of its clients and shareholders. The 
analysis of economic markets is a traditional topic for game-theoretic analysis. 

 
• Animal behavior – Recently, the competitive behavior among animals has been 

subjected to game-theoretic analysis. Competition arises on account of the scarce 
resources available to the animal population, including but not restricted to 
feeding, shelter and mating. 
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• Random drug testing of sportspersons – To catch drug users in competitive sport, 
the international and domestic sporting governing bodies conduct random drug 
tests. Cheating athletes stand to improve their chances of victory at the cost of 
being banned from their sport, while the drug-testing agencies must deter athletes 
from taking drugs by conducting tests to trap cheaters on one hand and balance 
their budgets on the other. 

 

3.3 The Prisoners Dilemma 
 
In addition to the real-world examples mentioned above, several unrealistic examples can 
be constructed for pedagogical purposes. These help to capture the essence and nature of 
games and game theory. Perhaps, none is more famous than the Prisoners’ Dilemma, 
which was invented by A.W. Tucker. In this simple game, two criminals A and B have 
been arrested in connection with a crime. The authorities possess sufficient evidence to 
convict both criminals with one-year sentences. However, both criminals are offered an 
escape clause. Each is told that if he confesses to the crime and the other does not, he will 
go free while the other is assigned a fifteen-year sentence. However, if both do end up 
confessing, they shall both be imprisoned for five years. This simple game is summarized 
in Table 3-1. 

Table 3-1 The Prisoner’s Dilemma 

 ‘A’ Confess ‘A’ Not Confess 
‘B’ Confess 5,5 15,0 

‘B’ Not Confess 0,15 1,1 
 
The players in this game are A and B. The strategies or actions available to them are 
{Confess, Not Confess}. The payoffs or utilities are the durations of their prison 
sentences, displayed as pairs in the cells of Table 3-1. Every utility pair consists of A’s 
utility followed by that of B. Note that a lower utility is preferable.  
 
The analysis of this game proceeds as follows. Both players know that by not confessing 
they can come away with light sentences. However, for either of them there is the 
attraction of getting away with no sentence by confessing, provided the other does not do 
likewise. Subsequently, both players end up confessing, and receive sentences of five 
years each. The final outcome of the game is known as the Nash Equilibrium. It is the 
most ubiquitous solution concept in game theory. A subsequent section of this chapter 
will formally present this key concept in game theory. 
 

3.4 A Brief History of Modern Game Theory 
 
We now trace the development of modern game theory through the years. The seminal 
work of Von Neumann and Morgenstern, encompassed in their masterwork Theory of 
Games and Economic Behavior [34] (1944), is regarded as the genesis of modern game 
theory. Their work essentially contained an axiomatic treatment of utility, detailed 
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solutions of zero-sum games, and introduced cooperative game theory. John Nash then 
made perhaps the most influential contribution to game theory by introducing the idea of 
a Nash Equilibrium [35] (1950). In a Nash Equilibrium, no action in any player’s action 
set can yield a superior utility to the current choice. As explained later, since this applies 
to all players, no player finds any means to improve his/her utility by unilaterally 
deviating from his/her equilibrium action. Further important contributions in the late 
1960’s and early 1970’s were made by Reinhard Selten who applied the Nash 
Equilibrium concept to what are known as dynamic games [37]. Dynamic games involve 
time as a parameter, which implies that the timing of a player’s action is as important as 
the actions itself. Of equal importance was John Harsanyi’s extension of Nash’s work to 
the domain of games with incomplete information [36]. In games with incomplete 
information, a player may have only partial or no information about the game situation.  
 
Thus far, much attention has been devoted to non-cooperative game theory. There also 
exists a less popular field called cooperative game theory. The differences between the 
two can be encapsulated in the following [31]. When individual players make strategic 
decisions autonomously, we can classify the situation under non-cooperative game 
theory. When groups of players jointly make a strategic decision, we consider the 
situation to be a problem in cooperative game theory. Thus, cooperative game theory 
admits to the possibility of coalition formation amongst groups of players.  
 

3.5 Mathematical Concepts 
 
A few fundamental ideas from game theory are employed in this thesis. They can only be 
precisely described in mathematical terms. For completeness, we first review some 
preliminary results, which we shall refer to on several occasions in this thesis. Most of 
these results are basic to set theory and real analysis. All sets are assumed to belong to an 
n-dimensional Euclidean space, denoted by En.  
 

Definition 3-1 Bounded Set [23] 
A set S in En is said to be bounded if it can be contained within a ball of finite radius. 
□ 
 

Definition 3-2 Closed Set [23] 
A set S in En is said to be closed if it contains all points that are arbitrarily close to it. The 
set of all such arbitrarily close points is called the closure of S and is denoted by cl S. A 
point cl S∈x  if, for each 0ε > , ( )S Nε ≠ ∅x∩ , where ( ) { }:Nε ε= − ≤x y y x . Thus, 
a set is said to be closed if clS S= . 
□ 
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Definition 3-3 Compact Set [23] 
A compact set S in En is both closed and bounded. For every sequence in a compact set S, 
there must be a convergent subsequence with a limit in S.  
□ 
 
A discrete-valued finite set is always closed and bounded. Hence, it is compact. A 
segment of the real line that includes its endpoints is also closed and bounded. Hence, it 
too is compact. The set of natural numbers is not bounded, and, hence, it is not compact. 
For the same reason, the real line is not compact either. 
 

Definition 3-4 Convex Set [23] 
A set S in En is convex if a line segment joining any two points in the set, lies entirely 
within that set.  
□ 
 
Applying Definition 3-4, we conclude that the sets in Figure 3-1 are convex, whereas the 
sets in Figure 3-2 are not. 

 

 
Figure 3-1 Examples of convex sets 
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Figure 3-2 Examples of non-convex sets 

 

Definition 3-5 Concave Function [23] 

A function 1:f S E→ , where S is a convex set in En, is said to be concave on S if  

( )( ) ( ) ( ) ( )1 2 1 21 1f f fλ λ λ λ+ − ≥ + −x x x x  (3-1) 

for each 1 2, S∈x x and ( )0,1λ∈ . If the inequality in Equation (3-1) holds as a strict 
inequality, then f is said to be strictly concave. 
□ 
 

Definition 3-6 Quasi-concave Function [23] 

A function 1:f S E→ , where S is a convex set in En, is said to be quasi-concave on S if  

( )( ) ( ) ( ){ }1 2 1 21 min ,f f fλ λ+ − ≥x x x x  (3-2) 

for each 1 2, S∈x x  and ( )0,1λ∈ . 
□ 
 
If –f is concave (quasi-concave), then f is said to be convex (quasi-convex). In Figure 3-3, 
three functions are depicted. Here (a) is a concave function, (b) is convex, while (c) is 
quasi-concave. 
 

Definition 3-7 Strongly Quasi-concave Function [23] 

A function 1:f S E→ , where S is a convex set in En, is said to be strongly quasi-concave 
on S if  

( )( ) ( ) ( ){ }1 2 1 21 min ,f f fλ λ+ − >x x x x  (3-3) 

for each 1 2 1 2, ,S∈ ≠x x x x  and ( )0,1λ∈ . 
□ 
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Figure 3-3 Examples of concave, quasi-concave and non-concave functions 

 

Definition 3-8 Continuous Function [23] 

A real-valued function 1:f S E→ ,  where S is a convex set in En, is said to be continuous 
at S∈x  if, for any given 0ε > , there exists 0δ >  such that, andS δ∈ − <x x x  imply 

that ( ) ( )f x f ε− <x . 
□ 
 
In this thesis, we apply the concept of a game in the strategic form. The definitions that 
follow pertain to strategic form games and will be utilized throughout the thesis. 
 

Definition 3-9 Strategic Form Game [31] 
A game G in the strategic form consists of the following. 

• A finite set of players, denoted by N. 
• For each player i N∈ , a non-empty set of actions, denoted by Ai. The action 

space of the game is given by j N jA A∈=× , the Cartesian cross product of the 
action sets of individual players. 

• For each player i N∈ , a preference relation ( ),iR a b  is defined on A. The relation 

( ),iR a b  is read as the action-tuple a is preferable to another action-tuple b, for 

(a) 
(b) 

(c) 
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player i N∈  . An action-tuple4, denoted by the shorthand, ( )i i N
a

∈
 can be 

considered to be the vector (or profile) of actions (or strategies) chosen by the 
players, one action per player. The notation ia−  is used to indicate the profile of 
actions taken by all players except player i. Thus, it is possible to express an 
action tuple using the shorthand ( , )i ia a a−= . The preference relation is usually 
represented in terms of a utility function :iU A→ \ , where the relation ( ),iR a b  

implies that ( ) ( )i iU a U b> . 
□ 
 
Recall that in the discussion of the Prisoner’s Dilemma (Section 3.3), the solution was 
called the Nash Equilibrium (NE) of the game. This solution idea is the most ubiquitous 
in all game theory. From an intuitive standpoint, it is not possible for any player in 
equilibrium to profit by unilaterally deviating from his or her equilibrium action. 
However, it might be possible for all players to select new strategies such that a new NE 
is attained wherein all players benefit. In fact, the earlier NE is then said to be Pareto 
inefficient. It is possible for a game to possess more than one NE; hence, a NE need not 
be unique.  
 

Definition 3-10 Nash Equilibrium [31] 

The NE of a strategic game G = <N,A,R> is an action-tuple a′  which satisfies the 
following property for all i N∈  

( ), ( , )i i i i i i i iU a a U a a a A− −′ ′ ′≥ ∀ ∈  (3-4) 

□ 
 

Definition 3-11 Nash Equilibrium (2) [31] 
An alternative but equivalent definition of a NE is possible in terms of the best-response 
function B. The best-response function of a player i N∈ , given the set of actions ia−′  
chosen by the other players, is the set of actions 

( ) ( ) ( ){ }ˆ ˆ: , , ,i i i i i i i i i i i iB a a A U a a U a a a A− − −′ ′ ′= ∈ ≥ ∀ ∈  (3-5) 

A NE is the action-tuple ia′  for which ( ) ,i ia B a i N−′ ′∈ ∀ ∈ .  
□ 
 
A NE represents the situation where each player is playing its best-response action. This 
latter definition of the NE points to a method of solving a game. If it is possible to 
compute the best-response function of each player, the simultaneous solution of the set of 
best response functions will be the NE. Note that a NE does not exist for every game. 
Before undertaking an attempt at solving the game, it is important to verify the existence 
of a NE using the Nash Existence Theorem [35] [38]. 
                                                 
4 In the analysis in Chapter 4, we use boldface vector notation to denote action-tuples. This is consistent 
with power control literature (see Chapter 2) 
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Theorem 3-1 Nash Existence Theorem [35] 

A strategic game G = <N,A,R> has at least one NE if, i N∀ ∈ , the following conditions 
hold: 

• the set Ai of actions is a non-empty, convex polyhedral set in a Euclidean space; 
• the preference relation is continuous on A and quasi-concave on Ai. 

□ 
 
This theorem is based on Kakutani’s fixed point theorem [38]. The terms from set theory 
used in Theorem 3-1 are concisely defined in Definition 3-1 to Definition 3-8. There is an 
equivalent version of the Nash Existence Theorem attributed to Debreu [39], Glicksberg 
[41] and Fan [40]. This form of the theorem, which is stated in Theorem 3-2, directly 
employs the utility function and is, therefore, more convenient to use. To differentiate it 
from Theorem 3-1, we call it the Glicksberg-Fan Theorem. 
 

Theorem 3-2 Glicksberg-Fan Theorem [39][40][41] 

A strategic game G = <N,A,U> has at least one NE if, i N∀ ∈ , the following conditions 
hold: 

• the set Ai of actions is a non-empty, compact and convex subset of a Euclidean 
space; 

• the utility function Ui is continuous on A and quasi-concave on Ai. 
□ 
 
An important point to note here is that the failure to comply with the requirements 
stipulated in Theorem 3-1 or Theorem 3-2 does not preclude the existence of a NE in a 
game. Thus, these conditions are sufficient, but not necessary. 
 
Finally, we mention an important property for characterizing NE, that of Pareto 
efficiency or superiority. Informally speaking, a NE is said to be Pareto-optimal if it is 
not possible to choose another action-tuple that improves the utility of at least one player, 
while simultaneously not reducing the utilities of the others. In mathematical terms, the 
concept of Pareto efficiency is defined in Definition 3-12. 
 

Definition 3-12 Pareto Superiority and Optimality [53] 

An action-tuple a′ is Pareto superior to another action-tuple a, if,  
• ( ) ( )i iU a U a′ ≥  for all i N∈  
• ( ) ( )j jU a U a′ >  for some j N∈  

An action-tuple a  is said to be Pareto optimal if there exists no other tuple that is Pareto 
superior to it. 
□   
 



 

 30

3.6 Application of Game Theory to Power Control  

3.6.1 Motivation 
 
Recently game theory has no longer been restricted to strictly economic problems. A 
growing number of applications in fields related to electrical engineering and computer 
science have appeared in recent literature. Examples include robotic control [43], 
scheduling problems [45], optimal routing [44], flow control [46], network admission 
[47], contention-based multiple access [48] and power control. A good starting point is 
the survey paper by MacKenzie and Wicker [42]. 
 
As we have pointed out earlier in this chapter, the rationality assumptions of game theory 
have been subjected to attack in economic circles. Due to the greater degree of 
determinism in the manner in which computing machines operate, these assumptions 
appear more plausible when applied to engineering situations. Specifically, machines 
possess limited intelligence relative to human beings, permitting the engineer to isolate a 
few significant variables by which he may wish to characterize the problem at hand. It 
may also be reasonable to assume that each decision-making entity possesses sufficient 
intelligence to be completely aware of the characteristics of peer decision-making 
entities. Very often, the decision makers in an engineering problem are approximately 
similar to each other, if not identical. This limited variability in their characteristics can 
be accommodated without making the model of the game excessively complicated. In a 
similar manner, it might often be possible to frame realistic and mathematically tractable 
utility functions that may be based on theoretical or empirical findings. Thus, there is 
likely to be less difficulty and controversy in applying the rich set of techniques existing 
in game theory to engineering problems.  
 
In the context of this thesis, power control is the most interesting engineering-specific 
application area in game theory. It is fairly simple to imagine why game theory is a 
worthwhile tool in the system-level analysis of radio resource management (RRM) 
problems. The nodes in a wireless network compete for the use of scarce radio resources. 
Obvious examples are power, access to a shared channel in multiple-access scenarios, the 
allocation of spreading codes from a shared pool in adaptive multi-rate systems, and so 
on. The wireless environment is inherently interference-limited, which results in 
interaction between its nodes. By adopting the view that the nodes in a wireless network 
wish to selfishly appropriate as much of the shared radio resources as possible, it is 
possible to model situations that fit this description as non-cooperative games. In this 
thesis, we have applied these ideas to the link adaptation problem. The link adaptation 
problem can be viewed as an extension of traditional power control problems (see 
Chapter 2) to incorporate multiple rates. Therefore, adaptations of the set of techniques 
applied to problems in power control for voice-only systems can be used to solve 
problems in link adaptation for data systems.  
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3.6.2 Review of Literature 
 
Game theory was first proposed as a viable alternative for solving the power control 
problem for wireless data networks in a series of publications by Goodman, Mandayam, 
et al. [49] [50] [51] [53]. There are several similarities in the approach adopted by these 
authors to our own, which is described in Chapter 4. In this respect, their contribution 
serves as a template for application of strategic form game-theoretic techniques to power 
control problems. The breadth of their research is captured in [51].   
 
In [51], the authors propose the model { } ( ){ }, , .j jG N P u⎡ ⎤= ⎣ ⎦  for their non-cooperative 

power control game (NPG). In the model G, { }1, 2,..., NN = is the set of players, jP  is the 
strategy set of powers of player j, and ju  is the utility function of player j. Each player 
selects a power level j jp P∈ . The utility function of player j is defined as 

( ) ( ) bits,
Joulej j j j

j

LRu p p f
Mp

γ− =  (3-6) 

Here M is the total number of bits per frame, L is the number of information bits per 
frame, and L<M. R is the information rate in bits/sec. jγ  is the SINR at terminal j, 
defined in Equation (3-7) in terms of channel bandwidth W, AWGN noise power at the 
receiver 2σ , and path gains from mobile to base stations { }jh , for the uplink of a CDMA 
system. 

2
j j

j
i ii j

h pW
R h p

γ
σ

≠

=
+∑

 (3-7) 

The efficiency function ( )f γ  is related but not identical to the probability of correctly 
decoding a frame and is defined in terms of the bit error rate (BER) Pe, as follows. 

( ) ( )( )1 2
M

ef Pγ γ= −  (3-8) 
 
Note from Equation (3-6) that the utility function, illustrated in Figure 3-4, monotonically 
increases with SIR, and monotonically decreases with power. It thus serves as an 
intuitive, if not exact, representation of a user’s perception of quality of service (QoS). In 
addition, it exhibits several desirable mathematical properties [49]. These properties are 
sufficient to verify the existence of NE in the NPG using Theorem 3-2. Additionally, all 
terminals are shown to achieve the same SINR in NE. The equilibrium of the NPG is then 
shown to be unique, since its best-response function is found to be a standard interference 
function [52]. However, the NE turns out to be Pareto inefficient (Definition 3-12), which 
is proved by noting the improvement in utilities of all terminals when the powers of a 
subset of N are scaled down by a factor 0 1µ< ≤ . 
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Figure 3-4 Shape of utility function in [51] 

To bring about a Pareto improvement in the NE of the NPG, the authors of [51] consider 
pricing. This idea has its origins in economics literature (taxation) and has been applied 
to computer networks [54]. The pricing function selected by the authors is linear in jp . 
The new NPG with pricing (NPGP) differs from the NPG in the formulation of its utility 
function, as stated in Equation (3-9). 

( , )c
j j j j j ju p p u c pα− = −  (3-9) 

 
It turns out that in the presence of a pricing function j jc pα , it is no longer possible to 
verify the existence of a NE in NPGP using Theorem 3-2. The authors resort to the theory 
of supermodular games [55], specifically those aspects that relate to supermodular games 
with exogenous parameters. Here, pricing factor c is an exogenous parameter. 
Supermodular games possess a highly desirable property: they always have NE. These 
equilibria are usually not unique; they belong to a set called the Nash set that is bounded 
from above and below. The presence of the exogenous parameter requires a modification 
of the action sets jP  in order for the NPGP to satisfy the conditions imposed by the 
definition of a supermodular game. Note that although the original formulation of the 
NPGP cannot be guaranteed to possess NE, it does not preclude the existence of NE in 
that game. 
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To discover the power vector that represents an equilibrium of the modified NPGP, the 
authors of [51] propose a distributed and asynchronous algorithm that executes at the 
terminal. This algorithm uses the minimum power vector of the modified action space as 
an initial approximation, and is shown to generate a sequence of powers that converge to 
the lower bound of the Nash set. This is shown to be the Pareto-optimal equilibrium of 
the NPGP. At equilibrium, the SINRs are no longer equal; they tend to be higher for users 
in more favorable channel conditions. Thus, in general, this NE will not be a social 
optimum, i.e., it will not be the optimum solution of a social objective function of the 
form j j

j N

uβ
∈
∑ , where jβ  is a positive constant. A pricing function that achieves the 

social optimum is presented in Equation (3-10). 

1,

1( ) ( )
N

i j j
i j j i

c uββ
= ≠

⎛ ⎞−= ⎜ ⎟
⎝ ⎠ ∑p p  (3-10) 

Obviously, this pricing function is virtually impossible to realize in a distributed manner. 
The same work [51] investigates, through simulation, the best choice of pricing factor c. 
Further work on the optimal pricing factor selection is presented in [56], with an intent to 
simultaneously maximize , 0j j j

j N

uβ β
∈

>∑ , at equilibrium.  

 
In a follow-up to [51], the NPG is extended to a multi-cell CDMA network [57]. 
Assuming that each terminal can only communicate with a single base station, implying 
that soft handoff is not permitted, the optimal assignment of terminals to base stations is 
an added dimension to the authors’ earlier problem. Two assignment strategies are 
chosen. The first, based on maximum received signal strength (MRSS) simply assigns a 
terminal to the closest base station. This reduces the original two-dimensional problem to 
a single-dimensional problem in the powers only, similar in form to the single-cell system 
considered in [51]. Pricing may be global, implying the assignment of a single pricing 
factor to all base stations, or local, where each base station selects its own pricing factor. 
The choice of a local pricing factor that is proportional to the number of terminals 
assigned to a base station is investigated.  
 
The second assignment strategy arises from the joint maximization of ( ),

ja j j ju p p− over 

the assignment ja  and power jp . It is shown that this reduces to choosing 
arg max

j
j

j a ja
a γ′ =  (3-11) 

This is equivalent to assigning a terminal to the base station at which its SINR is 
maximized (MSIR). In the absence of pricing, a unique equilibrium SINR is shown to 
exist. Pricing results in a different base station assignment since the SINR set is now 
heterogeneous.  
 
There have been similar efforts in literature to the one described in [51], differing from 
each other primarily in their choices of utility function models. The nature of the results 
presented in most work is contingent on the choice of utility function. It is important for 
this function to be intuitive, accurate and mathematically tractable. In [58], the uplink of 
a multi-rate CDMA system is once again studied. The authors use the information-
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theoretic capacity formula [59] for a binary input Gaussian output (BIGO) channel, or a 
binary symmetric channel (BSC), as part of the utility function. This formula, denoted by 
f(x), is graphically illustrated in Figure 3-5, where x is the SINR. Scaling f(x) by the 
signal transmission rate of the source iR , we obtain an expression for the throughput of 
user i. This choice of utility function is shown to possess more suitable mathematical 
properties than the one proposed in [51] (see Equation (3-6)).  

 
Figure 3-5 Information-theoretic capacity [f(x)] versus SINR [x] of a BSC channel [58] 

In the absence of pricing, there will be some users that reach their received power 
ceilings, and this solution is shown to be Pareto-optimal. The reason for this is that f is 
monotonically increasing in x. However, this kind of power saturation is inefficient from 
a system perspective. The solution, once again, is to introduce pricing. The choice of 
pricing function for a terminal i is proportional to the fraction of total received power at 
the base station, due to i. This accurately describes the contribution of i to the 
interference at the base station, and penalizes it proportionately. The modified utility 
function has the following form. 

( ), ( ) i
i i i i i

i i

Qv Q Q R f x
Q I
λ

− = −
+

 (3-12) 

Here λ is the pricing factor, Qi is user i’s received power and Ii is the interference caused 
to user i by the transmissions of other users. Hence, the denominator of the pricing 
function is the total received power at the base station. A unique NE ( )λQ  is shown to 

exist in this game, for a reasonable choice of λ . The solution ( )*λQ  for a particular 
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value of *λ λ=  is claimed to be Pareto-optimal for the game without pricing. This 
solution once again results in some users transmitting at maximum power. The author’s 

then claim that such a solution will maximize system throughput ( )
1

N

j j
j

R f x
=
∑ , for a given 

total received power 
1

N

j
j

Q
=
∑ , since system throughput is a monotonically increasing 

function of SINR. However, their proof in this case assumes that the solution ( )*λQ  is 
Pareto-optimal for the game with pricing. This assumption is clearly in contradiction with 
the previous result for the game without pricing. Hence, it is not clear whether ( )*λQ  
could maximize system throughput.  
 
In [60], the utility function is the difference of a linear pricing function and a term that is 
proportional – iα  being the proportionality factor – to Shannon capacity, as shown in 
Equation (3-13). 

( ), ln(1 )i i i i i i iJ p p pλ α γ− = − +  (3-13) 

Here, due to the formulation of the utility function, the objective is to minimize iJ . Using 
the standard first-order derivative condition for minima, the authors establish conditions 
for the existence of a unique NE in which all but a certain number of users have non-zero 
powers. A closed-form solution for the non-zero equilibrium power levels is also 
presented. The work also features two iterative algorithms for updating the power. In 
[61], the following form of utility function, where a and b are positive constants, and the 
rest of the terms have the same meaning as before, is shown to result in the existence of a 
unique NE. 

( ), i
i i i i i

i

u p p a p
b
γ λ
γ−

⎛ ⎞
= −⎜ ⎟+⎝ ⎠

 (3-14) 

 
As we have already seen, it is common to encounter the use of utility functions that are 
monotonically increasing in SINR, priced by a term proportional to power. In our work, 
we employ a sigmoid model for throughput. This model, as we shall demonstrate in 
Chapter 4, is the closest approximation to typical simulated throughput versus SINR 
profiles. An intuitive and analytically tractable utility function based on this model is 
derived in [62]. The sigmoid function is an S-shaped curve described by Equation (3-15). 

( ) ( )1 x

Af x
e λ δ− −

=
+

 (3-15) 

Here A is the peak value of the sigmoid function, δ is the abscissa of the point of 
maximum slope, such that ( ) 2

Af δ = , and λ  is a steepness factor. Curves of this nature 

can be often encountered in the neural networks literature. The sigmoid function is 
plotted in Figure 3-6, with 1, 0, and 1A δ λ= = = . 
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Figure 3-6 Sigmoid function with 1, 0, 1A δ λ= = =  

The sigmoid model is employed in the utility-based power control (UBPC) scheme 
presented in [63]. While not strictly employing game theory, the utility-based approach 
bears several similarities to a rigorous game-theoretic approach. The belief that user 
satisfaction will depend on both QoS and power consumption forms the foundation of 
this work. The paper compares the merits of using UBPC to traditional distributed power 
control (DPC) [18] and justifies that the divergence that occurs in DPC when the system 
is infeasible is not an issue in UBPC. The reason offered is that the hard SINR target 
requirement in DPC is “softened” in UBPC. In other words, an unachievable SINR target 
is reduced, or, in extreme cases, a user is turned off until system feasibility is attained. A 
noteworthy feature of this work is the detailed analysis conducted on the choice of 
sigmoid function parameters for different scenarios, and the bounds imposed on the slope 
of the linear pricing function. Extensions such as adapting the pricing parameter as either 
a function of channel conditions, or to mitigate the near-far unfairness that is inherently 
produced by UBPC, are suggested. Integration of UBPC with admission control, dynamic 
base-station assignment and link adaptation are further recommendations. In fact, in 
Chapter 4 we address joint link adaptation and power control. In summary, the merits of 
[63] are applicable to other utility functions. Thus, it serves as a convincing rationale for 
the usefulness of utility-based approaches to power control. Another related application 
of this approach is the distributed multi-user power control scheme for Digital Subscriber 
Line (DSL) technology presented in [64]. 
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Joint transmission rate adaptation and power control is the subject of [65]. This work 
utilizes the same form of the utility function without pricing, as proposed in [51] (see 
Equation (3-6)), with the distinction that the transmission rate and power are both 
controllable. Using first-order optimality conditions, a solution that achieves the same 
SINR for all users is obtained. The optimality conditions result in N equations with 2N 
variables, consisting of N power-rate pairs. Therefore, according to Equation (3-7), there 
are infinite combinations of power and rate that accomplish this SINR. The authors 
assume that the rates must be fixed, and identical for all users. To maximize the 
processing gain, the maximum of the minimum rates of all users is selected. An intuitive 
justification for the multiplicity of solutions in this problem is that the ratio of power (P) 
and transmission rate (R) is the energy per bit, and infinite combinations of power and 
rate can solve the equation EP

R = , where E is a constant. The key point is that this 

scheme does not classify as true link adaptation. In true link adaptation, the FER 
probability should be a function of rate. Then, even for the same energy per bit, different 
rates result in different utilities. In the following chapter, we address precisely this 
problem. 
 

3.7 Summary 
 
Game theory is considered to be an unfamiliar topic to the wireless engineer. Thus, the 
presentation in this chapter began at a fundamental level, providing a number of textbook 
references for further reading. Core mathematical concepts from set theory and game 
theory were stated in Section 3.5, the only mathematical section of this chapter. These are 
necessary for understanding the content of Chapter 4. The next section presented an 
exhaustive number of examples of game-theoretic applications to power control. A brief 
rationale for applying game theory to power control problems was also mentioned. It is 
worth contrasting game-theoretic approaches to the approaches presented in Section 2.4, 
which we refer to as “system-theoretic” approaches. The current chapter sets the stage for 
the main contribution of this thesis, i.e. our own game-theoretic technique for solving the 
link adaptation problem, which forms the subject of Chapter 4. 
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4 A Game-theoretic Approach to Link 
Adaptation5 

 
In our literature review in Chapter 3, we summarized several game-theoretic approaches 
to the power control problem for data networks. We also observed that these approaches 
can be extended and generalized to incorporate schemes with multiple code rates and 
modulation schemes. To date, there has not been sufficient literature on this subject. In 
this chapter, we develop a utility-based model that is a function of two variables – 
transmitter power and code rate. Note the distinction from the typical utility-model of the 
previous chapter in which the only variable was power. By keeping the code rates fixed 
our model collapses into a function of solely power. Thus, we claim that our model is a 
generalization of the models found in Chapter 3.   
 

4.1 Link Adaptation 
 
Link adaptation is a well-understood technique for exploiting the variability of a fading 
mobile radio channel [66]-[70]. Other terms applied to this technique are adaptive 
modulation and coding, rate adaptation, and variable-rate modulation. Traditional 
communication techniques employ fixed modulation and coding schemes. These 
techniques may use power control to adapt their transmit power to achieve a particular 
performance target in terms of bit error rate (BER). The spectral efficiency of a fixed 
modulation and coding scheme remains fixed. However, it is possible to achieve a greater 
average spectral efficiency by varying a performance-impacting link characteristic such 
as the modulation or coding scheme. This is essentially what link adaptation 
accomplishes. A generic link adaptation scheme works by forming a channel quality 
estimate [71] at the receiver, which is fed back to the transmitter. Assuming that the 
channel remains static during this period, the transmitter chooses the value of the 
adaptive link characteristic that maximizes the spectral efficiency whilst meeting the 
BER constraint. Since the transmitter power will be a function of the choice of 
modulation and coding, power control and link adaptation are related. It is, therefore, 
sensible to consider a scheme in which these two functions are jointly executed. This 
chapter focuses on the development of one such scheme using a game-theoretic approach.   
 
 
 

                                                 
5 This chapter utilizes the mathematical concepts and notation presented in Section 3.5. It is recommended 
that the reader familiarize himself/herself with the contents of this section. 
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4.2 Game-theoretic Formulation 

4.2.1 System Model 
 
We consider a set { }1 2, ,..., NT T T T= of N co-channel links in a cellular data system. A 
single transmitter-receiver pair is referred to as a link. For the purpose of our analysis, we 
consider a “traditional” system model of the form described in Section 2.1 (see Figure 
2-1). Note that although this system model is typical for non-CDMA systems, the 
extension to CDMA systems is fairly straightforward. To construct a model that is as 
general as possible, we do not distinguish between the uplink and downlink. The link 
gain matrix of the system, described in Section 2.1, is assumed to remain constant 
throughout the analysis. The channel can be assumed to be static for the period of 
convergence of the algorithms that execute on each link i T∈ . 
  
It is assumed that each link i T∈  can adapt a particular link characteristic or parameter 

ir , referred to as the adaptable link parameter (ALP). We require that ir  be chosen from 

a finite set { }1 2, ,..., RR r r r= . The number of different variations of this parameter is the 

cardinality R  of set R. In addition, each link i T∈  is power controlled, i.e., it can adjust 
its power iP . The powers are selected from a set min max{ : [ , ]}P p p P P= ∈ . Thus, iP  is 
lower-bounded by minP and upper-bounded by maxP . 
 
We specify that the information that is communicated across each link is non-voice, best-
effort type data. There are no pre-assigned priorities among different classes of traffic, 
which implies that all links can expect identical service, all other parameters being equal. 
The impact of the upper layers of the protocol stack (above the medium access control 
(MAC) layer) on performance is neglected. For this type of data service, a valid measure 
of link performance is the effective (net) link throughput L. The link throughput is 
essentially the “goodput.” If bR  is the transmission rate in bits/sec on the link i T∈ and 
FER is the frame error rate, as a function of Signal to Interference and Noise Ratio 
(SINR) iγ , then we have the following expression for net throughput on link i, which we 
shall simply refer to as throughput henceforth. 

( )( )1 ,i b i iL R FER rγ= −  (4-1) 
 
It is obvious that one objective of each link is the maximization of its throughput. 
However, that this is at cross-purposes with the objectives of other links is evident from 
Equation (4-1). The FER is a monotonically decreasing function of iγ . Hence, as iγ  
increases, link throughput increases. We observe that the SINR of link i in Equation (4-2) 
increases in direct proportion to its own power (numerator), but in inverse proportion to 
the interference (denominator). Thus, it is clear that increasing the throughput of a 
particular link degrades the throughput of the others.  
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ii i
i

ij j i
j i

G P
G P n

γ

≠

=
+∑  (4-2) 

 
In addition, we note from Equation (4-1) that throughput is also a function of the ALP ir . 
It is, therefore, possible to model this situation as a non-cooperative game, which we 
conveniently name the Link Adaptation Game (LAG). To construct a game-theoretic 
model for this situation using Definition 3-9, we must identify players, their actions and 
define a preference relation or utility function for each player.  

4.2.2 Players 
 
An obvious candidate for the set of players is T, the set of co-channel links. Henceforth, 
we use the term player and link interchangeably.  

4.2.3 Action Space 
 
We define the action selected by any player i T∈  as the pair ( ),i iP r , where iP P∈  is the 
power of player i and ir R∈  is the ALP of player i. A power vector P and an ALP vector 
r are defined as ( )i i TP ∈=P  and ( )i i Tr ∈=r . The action space Ai of any player is defined 
by iA P R= × . The action space of the game is ( )i i TA A ∈= × .  

4.2.4 Utility Function  
 
Equation (4-1) and the discussion accompanying it suggest that the expression for 
throughput merits inclusion as a component in an expression for link utility. However, 
due to the non-cooperative nature of this game, it is easy to see that in an attempt to 
maximize throughput at any cost, each link is likely to consume maximum power, since 
throughput increases monotonically with power. This will also serve to create excessive 
interference, leading instead to performance degradation, since throughput decreases 
monotonically with interference. In the case of the uplink, there is the additional 
consideration of battery life, since power conservation is of paramount importance to 
power-limited handsets. Similar observations6 have been made in other game-theoretic 
analyses of power control schemes, such as those in [49] and [51]. These schemes were 
described in Chapter 3. The suggested solution to this problem in these instances was to 
introduce pricing. We adopt the same approach to penalize the use of excessive power. 
This strategy also induces a degree of co-operation amongst links, and can be imagined to 
bring about an improvement in system performance. The utility function of player i T∈  
is defined as follows. 

( , ) ( , ) ( )i i i i i i iU r L r C Pγ= −P , (4-3) 

                                                 
6 The analogy with the famous “Tragedy of the Commons” essay [Garrett Hardin, Science, Dec 1968] is 
illuminating. In this instance, the “commons” refers to the shared wireless medium. Overuse of wireless 
resources can be discouraged by introducing a usage cost. 
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Here, the throughput function L is described by Equation (4-1) and ( )i iC P  is called the 
penalty or pricing or cost function. It is a function of only the power of player i T∈  and 
is defined in Equation (4-4).  

( ) q
i i iC P KP=  (4-4) 

The parameters of the cost function, K and q, are positive constants. To restrict the range 
of our variables we set the weighting or scaling parameter K to 1, and permit variation in 
index or exponent, q. When q = 1 we have linear pricing that is commonly used in the 
literature. However, we can shape the penalty function by using 1q > , such that links are 
penalized more severely for consuming power, than they would be under linear pricing. 
Alternatively, if power is not critical, a more lenient 1q <  might be preferable. The 
penalty function profiles for different values of q are depicted in Figure 4-1. 

 
Figure 4-1 Penalty function as a function of power for different indices q 

In Equation (3-15) and Figure 3-6, the sigmoid function was introduced. This model has 
been shown in [62] and [63] to be capable of accurately approximating the throughput 
versus SINR profile of a wireless link. The sigmoid function of SINR is presented in 
Equation (4-5). 

[ ]( ) ( )

( )( , )
1 i i i

i
i i i r r

rL r
e λ γ δ

αγ
− −

=
+

 (4-5) 

Here, the SINR of  i T∈  in dB is defined in Equation (4-6). 
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⎝ ⎠
∑

 (4-6) 

α is the peak value of the sigmoid function, δ is the abscissa of the point of maximum 

slope of the sigmoid, such that ( ) ( ), 2
i

i
rL r αδ = , and λ  is the steepness factor. Figure 

1-2, justifies the need for the parameters of the sigmoid function, namely , ,  and α λ δ , to 
be functions of the ALP, which, in Figure 1-2, is the code rate. We demonstrate in the 
Section 4.2.5, how the parameters of the sigmoid function can be chosen to closely fit the 
simulated throughput-SINR profile of a given link.  

4.2.5 Example: GPRS 
 
The preceding development is rather general. However, in all our simulations and results 
we have exemplified our work through a typical GPRS network. GPRS supports link 
adaptation [6]. In GPRS, the modulation scheme is Gaussian minimum shift keying 
(GMSK), but four options for code rate, referred to as coding schemes (CS), are 
specified. Thus, the ALP of a GPRS network is its code rate. The key features of the 
GPRS coding schemes are summarized in Table 4-1 [73]. 

Table 4-1 GPRS Coding Schemes [73]  

Coding Scheme Modulation Code Rate Data rate/ Time slot 
CS-I GMSK 0.49 9.05 kbps 
CS-II GMSK 0.64 13.4 kbps 
CS-III GMSK 0.73 15.6 kbps 
CS-IV GMSK 1 21.4kbps 

 
Simulation curves for throughput versus SINR are reproduced from [73] and shown in 
Figure 4-2 for a particular channel model (TU-50), with ideal frequency hopping, for all 
the rates listed in Table 4-1.  
 
The sets of parameters of the sigmoid model in Equation (4-5) that best approximate the 
simulation curves of Figure 4-2 are selected by computer-aided search and summarized in 
Table 4-2.  

Table 4-2 Parameters of Sigmoid Models for Throughput vs. SINR curves 

CS α kbps λ δ dB 
CS-1 7.36 0.272 4.75 
CS-2 10.52 0.256 8.250
CS-3 11.88 0.256 9.5 
CS-4 14.36 0.231 15 
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Figure 4-2 Example GPRS throughput versus SINR simulation curves [73] showing 

comparison of performance using different code rates. The y-axis is in units of kilobytes 
per second (KBps). (TU-50: Typical Urban fading channel, mobile speed = 50 km/hr. FH 

= Frequency Hopping.) 

A sample population of n coordinate pairs ( ),X Y  on the simulation curves, selected at 
regular dB intervals of SINR, is fed as raw data to the following procedure for deriving 
the sigmoid approximation parameters, given a particular coding scheme. 
 
1. The parameter α  is the peak throughput (since lim

i
iL

γ
α

→∞
= ) and is easily found by 

searching for the peak of the ordinates of the sample population, as stated in Equation 
(4-7).  

maxα = Y  (4-7) 
2. In the next step, the knowledge that δ is the abscissa of the point of maximum slope is 

exploited in order to arrive at a first approximation to δ. This step is equivalent to first 
finding the approximate index iδ of maximum slope, as shown in Equation (4-8). 

{ }
1

1,2,..., 1
1

arg max i i

i n
i i

Y Yi
X Xδ

+

= −
+

⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

 (4-8) 

Then, as shown in Equation (4-9), the mid-point of the corresponding abscissa 
iX
δ

and its immediate higher neighbor in X forms the first approximation to δ.  
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1

2
i iX X
δ δδ ++

′ =  (4-9) 

Note that the expression in the parentheses in Equation (4-8) is always positive due to 
the monotonic nature of the throughput-SINR profile. The paucity of points in the 
sample population introduces inaccuracy in the calculation of δ and motivates the 
next step. 

3. A joint search for δ and λ is now conducted. A range of values [ ]0,1λ ∈�  is used as the 
search space for λ and a small search window (approximately 10∆ =  dB) in the 
neighborhood of δ ′ , denoted by ,2 2δ δ δ∆ ∆⎡ ⎤′ ′∈ − +⎣ ⎦

� , is used as the range for δ. 

The ( ),λ δ� �  pair that minimizes the mean-square error σ  in Equation (4-10) is 

assigned to ( ),λ δ . 

( )

2

1

1

1 i

n

i X
i

Y
n e λ δ

ασ
− −

=

⎛ ⎞
= −⎜ ⎟

+⎝ ⎠
∑ � �  (4-10) 

 
The result of this curve fitting process for CS-3 is illustrated in Figure 4-3 to demonstrate 
the efficacy of our parameter approximation algorithm. Perhaps more importantly, it also 
supports our choice of the sigmoid function for throughput. 

 
Figure 4-3 Results of sigmoidal curve-fitting to simulation data for CS-3. The dashed 

curve is the approximation 
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In Figure 4-4, the utility function for a player involved in a 2-player game is shown. The 
x-axis of the figure is the power and the y-axis, the utility. The power of the second 
player is 2 units. The link gains are 11 121, and 0.01G G= = . It is assumed that the signal 

to noise ratio b

o

E
N , referenced to a signal energy of 1 unit, is 20 dB. Thus, the noise 

power works out to be 0.005 units. The penalty function parameters are 1 and  2K q= = . 
The utility function profiles seem to indicate the existence of a unique maximum. In the 
next section, we formally assess some significant properties of the LAG and its utility 
function.   

 
Figure 4-4 Utility function in a 2-player game, as a function of power, for different rates 

 

4.3 Properties of the Game 
 
In this section, we prove some useful properties of the game LAG, which will 
subsequently be used in establishing some important results. 
 

Lemma 4-1  

The action space Ai of player i T∈  is non-empty and compact. 
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Proof: 
By definition, the action set of player i T∈ is non-empty. By definition (see Section 
4.2.1), P is closed and since maxP < ∞ , it is also bounded. The set of rates R is finite; 
hence, R is also closed and bounded. Therefore, every ordered pair ( ),i iP r  belongs to a 
space Ai that is closed and bounded. Therefore, by Definition 3-3, Ai must be compact. 
This completes the proof. 
□ 

Lemma 4-2 

Ai is not a convex set. However, under the condition that ir  is fixed, Ai is a convex set. 
 
Proof: 
To prove that Ai is not convex, we simply choose two points, ( )1

1 1,A P r=  and 

( )2
2 1,A P r= , that have the same power component. A line connecting these points 

consists of only two points, 1 2 and  A A  themselves, that belong to Ai. The intervening 
points on this line do not belong to Ai. Hence, by Definition 3-4, the set Ai is not convex. 
 
However, suppose the ALP is fixed at, say 1r . We note that a convex combination 

( ) [ ]1 21 , 0,1A Aλ λ λ′ ′ ′+ − ∈  – where ( )1
1 1,A P r=  and ( )1

2 2 ,A P r=  are any two arbitrarily 

selected actions in Ai, such that min 1 2 maxP P P P≤ < ≤ – belongs to the set 

[ ]{ }1 2: ,P p p P P′ = ∈ . Clearly, P P′ ⊆ . Hence, applying Definition 3-4, the set Ai is 

convex when ir  is fixed and the proof is complete. 
□ 
 
Figure 4-5 depicts the action space of a player from the GPRS example introduced in 
Section 4.2.5. It is easy to see graphically that Ai is not convex, but P is. Therefore, if we 
maintain ir  fixed, it follows that Ai is convex.  

 
Figure 4-5 Ai: Action space of player i T∈  
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Due to Lemma 4-2, the existence of a NE in game LAG is not guaranteed. However, by 
maintaining the ALP ir  at a fixed value, we show that it is possible to show the existence 
of a NE. To this end, we present the following two lemmas. The first, Lemma 4-3, shows 
that the utility function of each player is continuous in the action space of the game A. In 
the second, Lemma 4-4, the utility function is shown to be quasi-concave in the power of 
player i.  
 

Lemma 4-3 

iU  is continuously differentiable on A, when r is fixed. Hence, iU  is continuous on A. 
 
Proof: 
Since the derivative of iU  is undefined w.r.t. ir , the ALP vector r is fixed. Then, for iU  
to be continuously differentiable, it is sufficient to show that the first-order partial 
derivatives of iU  w.r.t. the components of power vector P are continuous [26]. 
Differentiating iU  in Equation (4-5) w.r.t. Pi, we obtain 

( )

( )( )
1

2
1

i

i

qi i
i

i i

U e KqP
P Pe

λ γ δ

λ γ δ

γαλ − −
−

− −

∂ ∂
= ⋅ −

∂ ∂+
 (4-11) 

Inserting into Equation (4-11) the expression for iγ  from Equation (4-6), we have after 
some simplification 

( )

( )( )
1

2
10 1

ln101

i

i
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i

i i

U e KqP
P Pe

λ γ δ

λ γ δ

αλ − −
−

− −

⎛ ⎞∂
= ⋅ ⋅ −⎜ ⎟∂ ⎝ ⎠+

 (4-12) 

Similarly, differentiating iU  in Equation (4-5) w.r.t. Pj, j i≠ , yields 
( )

( )( )2
10 ,

ln101

i

i

iji

j i

GU e j i
P Ie

λ γ δ

λ γ δ

αλ − −

− −

⎛ ⎞∂ −
= ⋅ ⋅ ≠⎜ ⎟∂ ⎝ ⎠+

 (4-13) 

Here, Ii is the interference and noise power at the receiver of link i. It is defined in 
Equation (4-14). 

1,

N

i ij j i
j
j i

I G P n
=
≠

= +∑    (4-14) 

We observe that the partial derivatives in Equation (4-12) and Equation (4-13) are sums, 
differences, products and ratios of exponentials and polynomials. Therefore, these 
expressions are continuous. Hence, iU  is continuously differentiable on A, which implies 
that iU  is continuous on A and the proof is complete. 
□  

Lemma 4-4 

iU  is quasi-concave over Ai, when ir  is fixed. 
 
 



 

 48

Proof:  
Since ir  is fixed, it remains to prove that iU  is quasi-concave over Pi. We use graphical 
techniques in this proof. We consider the two-player GPRS game, described in Section 
4.2.5, as an example. A series of utility function profiles for a player, say player 1, are 
shown in Figure 4-6. The x-axis of the figure is the power and the y-axis the utility. 
Without loss of generality, the code rate of the player 1 is fixed at CS-1. The power of the 
second player, say player 2, is assigned in turn to each of the values in the set 
{ }0,3.33,6.67,10 to obtain variable amounts of interference. Whether the interference is 
generated by one player or several players is immaterial. Hence, the two-player example 
is equivalent to the general N-player case for the purpose of this proof. For each value of 
interference, an instance of the utility function profile of player 1 is illustrated in Figure 
4-6. In this example, min max0  and 10P P= = . Hence, the profiles marked by “Pmin” and 
“Pmax” bound the entire family of utility profiles of player 1 that are obtained by letting 

2P  take every value in [ ]min max,P P . The link gains are 11 121, and 0.01G G= = . It is 

assumed that the signal to noise ratio b

o

E
N , referenced to a signal energy of 1 unit, is 

100 dB. Thus, the noise power works out to be 5e-11 units. The penalty function 
parameters are 1, and  2K q= = . 

 
Figure 4-6 Demonstration of quasi-concavity of the utility function 



 

 49

We make use of the following property of quasi-concave functions: the level-sets of 
quasi-concave functions are convex. This useful property is formally stated as follows 
[23]: 
 
A function 1:f S E→ , where S is a convex set in En, is said to be quasi-concave on S, if 
and only if its level set ( ) ( ){ }:S a S f a= ∈ ≥x x is convex for each real number a.  
 
In Figure 4-6, we select an arbitrary level marked “a.” The level set corresponding to “a” 
is denoted by “S(a).” Applying Definition 3-4, we conclude that this set is convex. 
Therefore, using the recently defined level-set property, iU  is quasi-concave in Pi 
irrespective of the value of “a.” Hence, the proof is complete. 
□ 
 
Note that it is also possible to prove Lemma 4-4 using Definition 3-6. In fact, it is 
possible to apply Definition 3-7 to show that iU  is strongly quasi-concave. This is useful 
in proving the existence of a unique global maximum, as shown in Proposition 4-1.  
 

Proposition 4-1 

iU  has a unique global maximum, assuming ir  is fixed. 
 
Proof: 
We can see in Figure 4-6 that, if we choose any open-interval ( )1 2, iP P P′ ′ ⊂ , any point p 

belonging to it satisfies the condition ( ) ( ) ( ){ }1 2min ,i i iU p U P U P′ ′> . Then, by Definition 
3-7, iU  is strongly quasi-concave. The proof follows from the application of the 
following theorem [23]: 
 
Let 1: nf E E→  be strongly quasi-concave. Consider the problem: maximize f(x) subject 
to S∈x , where S is a non-empty convex set in En. If x  is a local optimal solution, then 
x  is the unique global optimal solution. 
 
Returning to our problem: Maximize ( )i iU P  subject to iP P∈ . The set P is non-empty 
and convex by Lemma 4-2. Further, iU  is upper-bounded since, being a continuous 
image of a compact space, it is compact. Therefore, it follows that iU  has a local 
maximum. Then, by the aforementioned theorem, it immediately follows that iU  must 
have a unique global maximum. Hence, the proof is complete. 
□ 
 
Finally, we prove the existence of a NE when the ALP ir  is fixed. When the ALPs are 
fixed, the game LAG reduces to a power control game of the type described in Section 
3.6.2. 
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Proposition 4-2 
A Nash Equilibrium exists in game LAG, if r is fixed. 
 
Proof: 
Using Lemma 4-1 to Lemma 4-4, we note that the conditions stated in Theorem 3-2 are 
satisfied. Hence, a NE exists in LAG, when r is fixed.  
□ 
 
We have already cited examples of work where supermodularity was invoked to verify 
existence of NE [51]. Supermodular games always possess NE [55]. Therefore, it is 
worth investigating whether our game LAG is a supermodular game. The utility function 
of a supermodular game must demonstrate the property stated in Definition 4-1 (from 
Section 2.6.1 of [55]).  
 

Definition 4-1 Non-Decreasing Differences of Utility Function [55] 

If iU  is twice differentiable on A, then it is said to have non-decreasing differences 
(NDD) in A, if and only if Equation (4-15) holds for all i and j, such that i j≠ , and for all 
a A∈ . 

( )2

0i

i j

U a
A A

∂
≥

∂ ∂
 (4-15) 

Here, A is the action space of the game.  
□ 
 
If the opposite inequality holds in Equation (4-15), then the utility function has non-
increasing differences (NID), which characterize what is known as a submodular game 
[55]. In fact, the following proposition shows that neither the NDD nor the NID 
properties hold for the game LAG.  
 

Proposition 4-3 
The game LAG is neither supermodular nor submodular. 
 
Proof: 
We show that iU  does not satisfy the NDD property outlined in Definition 4-1. Since iU  
is not differentiable w.r.t. the ALP, we fix this parameter. This is equivalent to the special 
case of the game LAG in which the cardinality of the ALP set R is one. If the game LAG 
is supermodular, then it should be so for any R . Equation (4-12) supplies the expression 
for /i iU P∂ ∂ . This expression can be rearranged in the form shown in Equation (4-16). 

( ) ( )

2

1

2 2

10 1 1
ln10 i i

qi
i

i i

U KqP
P P

e e
λ λγ δ γ δ

αλ −

− − −

⎛ ⎞∂ ⎛ ⎞ ⎜ ⎟= ⋅ ⋅ −⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ +⎝ ⎠
 (4-16) 
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Noticing that the term in the exponentials is the sech function, we can further simplify 
Equation (4-16). 

( )2 110 1 sech
ln10 2

qi
i i

i i

U KqP
P P

αλ λ γ δ −∂ ⎛ ⎞ ⎛ ⎞= ⋅ ⋅ − −⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠
 (4-17) 

Differentiating Equation (4-17) w.r.t. jP , j i≠ , we obtain after simplification 

( ) ( )
2

25 sech tanh
ln10 2 2

iji
i i

i j i i

GU
P P PI

αλ λ λγ δ γ δ
⎛ ⎞∂ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ ⋅ − −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (4-18) 

iI  is defined in Equation (4-14). In Equation (4-18), we notice that all terms are positive 
real numbers except the tanh term, which is an odd function of iγ δ− . Thus, we have the 
following result. 

0

0

i
i

i j

i

U
P P

γ δ

γ δ

∂
≥ ≥

∂ ∂

< <
 (4-19) 

Applying Definition 4-1, we conclude that iU  is neither supermodular nor submodular.  
□ 
 
Thus far, we have not been able to confirm the existence of NE in the game LAG. 
However, as pointed out in Section 3.5, it is still possible for a NE to exist in this game. 
To discover the NE, we propose, in the following section, an algorithm based on intuitive 
premises.   
 

4.4 Solution: Algorithm LAG 
 
At the outset of a play of game LAG, it is not possible that a player i T∈  knows the 
complete channel gain matrix G, and the utility functions of all other players. Hence, it is 
not immediately possible for a set of links in a realistic distributed environment to 
discover a NE immediately. However, suppose each player i makes a guess, denoted by 
the ordered pair ( ),i iP r , regarding what its equilibrium power and choice of ALP, 

denoted by ( ),i iP r  should be. Then, assuming that the interference, i.e. iP− , remains fixed 
while it makes a decision, player i improves its guess by selecting a new combination 
( ),i iP r  that maximizes iU . This results in a new approximation to ( ),i iP r . It is logical for 
each player to repeat the same process of utility-maximizing unilateral deviations from 
the previous action, so as to obtain further refinements of the approximation to ( ),i iP r . In 
game-theoretic vocabulary, the player is said to be playing a best-response. When the 
deviations in all players’ actions become negligibly small, the algorithm can be assumed 
to have converged to a NE. We use the index variable k to represent an iteration of the 
algorithm or, in general, a time index. Then, the flowchart in Figure 4-7 summarizes this 
algorithm, referred to as Algorithm LAG. Notice how, in the main step, we keep ir  
constant while maximizing iU  as a function of iP  only, and vice-versa. 
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Figure 4-7 Algorithm LAG 
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Is ( ) ( )1i ir k r k+ =  
?i T∀ ∈  
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No 

( ) ( ) ( )( )
( ) ( )( )

1 arg max , , ,

1 arg max 1 , ,
i

i

i i i i iP

i i ir

P k U P P k r k i T

r k U k r i T

−+ = ∀ ∈
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4.4.1 Convergence of Algorithm LAG 
 
An important property of a distributed, iterative algorithm is its convergence. From the 
preceding development of Algorithm LAG, it becomes apparent that proof of its 
convergence is equivalent to proof that it will always result in the discovery of a Nash 
Equilibrium. To elaborate, when Algorithm LAG converges, no player can profitably 
deviate from its present action. All deviations would lead to a reduction in utility. By 
Definition 3-11, this must be a NE.  
 
To demonstrate convergence of Algorithm LAG, we follow the approach outlined in 
Chapter 7 of [23]. In this approach, an algorithm is regarded as being a point-to-set map, 
say A, that assigns a subset of the domain X to each point k X∈x . An iteration of A is 
represented by the equation ( )1k k+ ∈x A x . We define the algorithmic map M for 
Algorithm LAG in Definition 4-2. 
 

Definition 4-2 Algorithmic Map M 

In our work, we define the algorithmic map : A A→M  to describe Algorithm LAG 
(Figure 4-7) as a sequence consisting of the following two interchangeable steps.  
 
1. At iteration k, for each i T∈ , 

( ) ( )
( ) ( )

( 1) , iff. ( ), ( ), , { }

min( , ), if ( ), ( ),

l l j j l
i i i

j l l j
i i

r k r U k r U k r r R r

r r U k r U k r

+ = > ∀ ∈ −

= =

P P

P P
 (4-20) 

 
2. At iteration k, for each i T∈ , 

( )( 1) arg max , ( ), ( 1)
i

i i i i i
P P

P k U P P k r k−
∈

+ = +  (4-21) 

From Proposition 4-1, iU  has a single global maximum in its argument iP  as long as ir  is 
fixed, which, in this step, is indeed the case. This ensures that the left-hand side of 
Equation (4-21) is single-valued. 
□ 
 
Since the penalty function Ci is not a function of ir , it is easy to show that step 1 of 
Definition 4-2 results in selection of ALP jr  if and only if ( , ) ( , ),j l l jL r L r r rγ γ> ≠ . If, 
for a particular lr , ( , ) ( , ),j l l jL r L r r rγ γ= ≠ , the lower of the two ALP values is chosen. 
Note that this choice is arbitrary. A mapping from SINR to r is possible, based on the 
ranges of SINR where one value of the parameter r produces greater throughput than the 
other. This is illustrated in Figure 4-8 for the GPRS example described in Section 4.2.5.  
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Figure 4-8 Mapping from γ to r for the GPRS example 

In Figure 4-8, the points 1 2 3, , andγ γ γ  are defined as follows. ,  {1,2,3}j
i jγ γ= ∈ , when 

1( , ) ( , ) j j
i iL r L r +=P P . At these points, by Equation (4-20), j

ir r=  since the lower of the 
two values of ir  is selected. The labeling of discontinuities in Figure 4-8 illustrates this. 
This relationship can also be equivalently defined in more general terms, as a mapping 
from R→\ , as shown in Equation (4-22). 

( )

( )
( )
( ) ( ) ( ){ }

{ }

1

0

R

1

1 ,
where

: , ,

1, 2,...,

n n n
i i

n n n
i i i

r k r

i

ii

iii L r L r

n R

γ γ γ

γ

γ

γ γ

−

+

+ = < ≤

= −∞

= ∞

= =

∀ ∈

P P

 (4-22) 

iγ  (dB) is defined in Equation (4-6). 
 
Step 2 of Definition 4-2 assumes that ir  is fixed during the course of the computation. 
Recalling Proposition 4-1, this step will discover the unique global maximum. In 
subsequent proofs, we make the following important assumption (Assumption 4-1) 
regarding the computation of Step 2 of Definition 4-2. A plethora of non-linear 
programming techniques are available to solve this sub-problem. Detailed descriptions of 
these techniques are available in [23]. In all examples presented in this thesis, we have 
allowed our simulation package MATLAB™ to select an appropriate approach. In all 
cases, a Successive Quadratic Programming algorithm with Quasi-Newton 
approximations produced satisfactory results for a seven-player game.  

r

1r

2r

3r

4r

γ3γ2γ1γ
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Assumption 4-1 
The numerical algorithm used to solve the non-linear program: 
 

Find Pi to maximize ( , )i iU rP subject to iP P∈ , 
 
always converges to a solution in A. 
□ 
 
We now describe Algorithm LAG in Figure 4-7, utilizing the map M described in 
Definition 4-2. 
 

Definition 4-3 Algorithm LAG 

1. Initialization: Let 1 A∈a  be the starting point of Algorithm LAG. Set iteration 
count k =1. 

2. Iterate: 1 ( )k k+ =a M a . 
3. Stop, if 1 ( )k k+ ∈Ωa , where ( )kΩ  is the solution set at iteration k. The solution set 

at any iteration k is defined in Equation (4-23). 
{ }( ) ( , ) : ( ) , 0, , and ( )i ik P P k i kε εΩ = − ≤ > ∀ =P r r r  (4-23) 

4. Else, set k = k+1 and return to step 2. 
□ 
 
We now turn our attention to the convergence analysis of Algorithm LAG. In the 
following Lemma, we prove that the utility function Ui is continuous over Ai. This result 
will be used in subsequent proofs. 
 

Lemma 4-5  
The utility function Ui is continuous over Ai. 
 
Proof:  
Continuity is defined in Definition 3-8. Consider any two arbitrarily selected points 

0 ( , )i i iA P r=  and 1 ( , )i i iA P r′ ′= , in Ai. Since both P and R are bounded, it is possible to find 

0δ > , such that 1 0
i iA A δ− < . It is easy to see that 0 max ( )

i
i ir R

L rα
∈

≤ ≤  and 

max 0.q
iKP C− ≤ − ≤  Hence, max max ( )

i

q
i ir R

KP U rα
∈

− ≤ ≤ . Then, given 0ε > , we must have 
1 0( ) ( )i i i iU A U A ε− < . Since Ui is bounded, it is possible to make ε  as large as necessary 

so that, for any 0δ > , 1 0
i iA A δ− < . Alternatively, lets suppose we shrink ε , such that 

0ε → . Then, as we correspondingly shrink δ , we must have i ir r′ = , since the set of 
ALP R is discrete, and theδ –neighborhood of any ir  contains only a single point, i.e. ir  



 

 56

itself. Hence, 1 0( ) ( ) i
i i i i i i

i

UU A U A U P
P

∂
− = ∆ ≈ ∆

∂
. Since we now have, ,i iU Pε δ∆ = ∆ =  

and i

i

U
P

∂
∂

 is continuous for any 0 ( , )i i iA P r=  (as shown in Lemma 4-3), choosing 

0( )i i

i

U A
P

εδ ≤
∂
∂

 results in 1 0( ) ( )i i i iU A U A ε− < . Hence, the proof is complete. 

□ 
 
The idea of a closed map is central to proving the convergence of algorithms using the 
algorithmic map approach. This concept is often one requirement amongst others in 
proving the convergence of algorithms. We present the definition of a closed map given 
in [23]. 
 

Definition 4-4 Closed Map [23]   

Let X and Y be non-empty closed sets in Euclidean spaces. Let : X Y→A be a point-to-
set map. The map A is said to be closed at X∈x if 

,
( ),

k k

k k k

X∈ →
∈ →

x x x
y A x y y

 

imply that ( )∈y A x . The map A is said to be closed on Z X⊆ if it is closed at each point 
in Z. 
□ 
 
We now show that the algorithmic map M is not closed. We shall eventually demonstrate 
that this property is not strong enough to preclude convergence of Algorithm LAG.  
 

Proposition 4-4  
The algorithmic map M is not closed. 
 
Proof:  
To investigate whether the map M is closed, we directly apply Definition 4-4. It is 
sufficient to find a single point at which M is not closed to prove this assertion. We first 
define a converging sequence ( ){ }( ) ( ), ( )k k k=X P r  in A. Let the limiting point of this 
sequence be denoted by the vector ( , )x x=X P r . Since the set of ALP is discrete, a 
converging sequence of ALPs implies that there exists K such that, for all 
k K≥ , ( ) ( ) xk K= =r r r .  
 
The image produced by mapping { }( )kX  under M is the sequence 

( ) ( ){ }* *( ) ( ) ( ), ( )k k k k= =Y M X P r . Does this sequence converge? The sequence 
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( ){ }( ) ( ), ( )k k k=X P r  produces a sequence of powers that converge to xP  and ALPs that 

converge to xr . Since the SINR γ  is continuous over A, { }( )kX generates a converging 

sequence of SINR vectors { ( )} xk →γ γ . We are free to select { }( )kX  in an arbitrary 

manner. Suppose, we specifically select { }( )kX such that, 1
,1xγ γ=  and ( ){ }1 kγ  

approaches 1γ  from the right. It is easy to visualize this with the help of Figure 4-8.  
 
From Lemma 4-5, since all Ui are continuous over Ai, { }( )kX will generate a converging 
sequence of utility function profiles. 

( ){ } ( ),( ), ( ) , ,i i i x i xU k r k U r i→ ∀P P  (4-24) 
Then, from Equation (4-22), there must exist K ′ , such that for k K ′≥ , 

* **( 1) ( ) ( ),i i ir k r k r K i′+ = = ∀  (4-25) 

In this particular instance, using Equation (4-22), we have 2
,1yr r= , since, recalling our 

definition of { }( )kX , { } 1 1
1 1( ) , but  ( )k kγ γ γ γ→ > . Let the convergence point for the 

ALP be denoted by yr . 
 
If the utility function profiles and ALPs converge as shown in Equation (4-24) and 
Equation (4-25) respectively, and Assumption 4-1 holds, it follows that step 2 of M in 
Definition 4-2 will yield a converging sequence of powers 
{ }*

, ,( ) arg max ( , , )
i

i i i i x i x
P P

P k U P P r−
∈

→ , whose accumulation point is denoted by yP . 

Therefore, the sequence { }( )kY  converges to a point ( , )y y=Y P r  such that 2
,1yr r= , as 

demonstrated earlier. 
 
According to Definition 4-4, to prove that M is closed it needs to be shown that * =Y Y , 
where * ( )=Y M X . Since xP  maps to xγ , we have * 1

1 ,1xγ γ γ= = . From the careful 

application of Equation (4-22), it follows that * 1
1 ,1yr r r= ≠ . We have, therefore, found a 

point X at which the mapping M is not closed. Therefore, by Definition 4-4, M is not 
closed over the set A and the proof is complete. 
□ 
 
It is possible for an algorithm with a map that is not closed to converge to a point in its 
solution set. If it is possible to decompose the map of an algorithm into two maps, one of 
which is closed, and the other possibly not, then, provided certain other conditions are 
met, the algorithm may still converge. The convergence theorem for algorithms with 
composite maps from [23] is stated here in Theorem 4-1, in a slightly modified form. The 
condition in the theorem below, which requires that the sequence produced by the 
algorithm be contained in a compact set, is from Polak [74] and replaces a more stringent 
condition in [23]. However, the proof of the theorem remains unchanged after this 
substitution. 
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Theorem 4-1 Convergence of Algorithms with Composite Maps 

Let X be a non-empty closed set in En, and let XΩ⊆ be a non-empty solution set. Let 
1: nE Eβ →  be a continuous function, and consider the point-to-set map : X X→C  

satisfying the following property: Given X∈x , then ( ) ( )β β≤y x  for ( )∈y C x . Let 
: X X→B  be a point-to-set map that is closed over the complement of Ω , and satisfies 
( ) ( )β β<y x  for each ( )∈y B x , if ∉Ωx . Now, consider the algorithm defined by the 

composite map A = CB. Given 1 X∈x , suppose that the sequence { }kx is generated as 
follows: 
 

If k ∈Ωx , stop; otherwise, let ( )1k kA+ ∈x x , replace k by k+1, and repeat. 
 
Suppose the sequence{ }kx is contained in a compact subset Λ of X. Then, either the 
algorithm stops in a finite number of steps with a point in Ω , or all accumulation points 
of { }kx belong toΩ . 
□ 
 
It is quite straightforward to view the algorithmic map M as being composed of two 
maps: C, consisting of step 1 of M, and B, consisting of step 2 of M (see Definition 4-2). 
The maps B and C are defined in Definition 4-5 and Definition 4-6, respectively. The 
composite map can be expressed as M = CB. This composite mapping involves a 
mapping under B, followed by a mapping under C. 
 

Definition 4-5 Algorithmic Map B 
: A A→B  

Let ( ),P r  be the input to B and ( ),′ ′P r  be its output. Then, for each i T∈  

i ir r′=  

( )arg max , ,
i

i i i i i
P P

P U P P r−
∈

′ =  

From Proposition 4-1, iU  has a single global maximum in its argument iP  since ir  is 
fixed. This ensures that iP′ is single-valued. 
□ 
 

Definition 4-6 Algorithmic Map C 
: A A→C  

Let ( ),P r  be the input to C and ( ),′ ′P r  be its output. Then, for each i T∈  

i iP P′=  
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( )
( )
( ) ( ) ( ){ }

{ }

1

0

R

1

,
where

: , ,

1, 2,...,

n n n
i i

n n n
i i i

r r

i

ii

iii L r L r

n R

γ γ γ

γ

γ

γ γ

−

+

′ = < ≤

= −∞

= ∞

= =

∀ ∈

P P

 

 
iγ  (dB) is defined in Equation (4-6). 

□ 
 
As an intermediate step in proving the convergence of Algorithm LAG, we show in 
Proposition 4-5 that the algorithmic map B is closed. The map C is probably not closed, 
but Theorem 4-1 does not necessitate that both maps be closed. 
 

Proposition 4-5 
The algorithmic map B is closed. 
 
Proof:  
Applying Definition 4-4 to investigate whether the map B is closed, we first define an 
arbitrary converging sequence ( ){ }( ) ( ), ( )k k k=X P r  in A. Let the limiting point of this 
sequence be denoted by the vector ( , )x x=X P r . Since the set of ALPs is discrete, a 
converging sequence of ALPs, implies that there exists K, such that, for all k K≥ , 

( ) ( ) xk K= =r r r  (4-26) 
 
The image produced by mapping { }( )kX  under B is the sequence 

( ) ( ){ }* *( ) ( ) ( ), ( )k k k k= =Y B X P r . Does this sequence converge? The sequence  

( ){ }( ) ( ), ( )k k k=X P r  produces a sequence of powers that converge to xP  and ALP 
vectors that converge to xr . By the definition of B in Definition 4-5, the ALPs remain 
unchanged. Hence, we must have *( ) ( )i ir k r k= . Using Equation (4-26), clearly 

{ }*( ) xk →r r . Let the convergence point for the ALP vectors, produced by mapping 

{ }( )kX  under B, be denoted by yr . It follows that y x=r r . 
 
From Lemma 4-5, since Ui is continuous over Ai, { }( )kX  will generate a converging 
sequence of utility function profiles. 

( ){ } ( ),( ), ( ) , ,i i i x i xU k r k U r i→ ∀P P  (4-27) 
Thus, we must have,   
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( ){ } ( ), ,max , ( ), ( ) max , ,
i i

i i i i i i i x i xP P P P
U P P k r k U P P r− −∈ ∈

→  (4-28) 

If Assumption 4-1 holds, we conclude that map B yields a converging sequence of 
powers { }*

, ,( ) arg max ( , , )
i

i i i i x i x
P P

P k U P P r−
∈

→  with accumulation point denoted by yP . 

Therefore, { }( )kY  converges to a point ( , )y x=Y P r , since y x=r r . Further, let 
( )′ =Y B X . Then, , ,arg max ( , , )

i

i i i i x i x
P P

P U P P r−
∈

′=  and ,i i xr r′= , by definition of map B 

(Definition 4-5). Hence, ′ =Y Y . Thus, by Definition 4-4, the map B is closed and the 
proof is complete. 
□ 
 
We are now equipped with the results we need to prove that Algorithm LAG (Definition 
4-3) does indeed converge.  
 

Proposition 4-6  
The Algorithm LAG converges to a Nash Equilibrium, provided Assumption 4-1 holds.  
 
Proof:  
The proof follows from a systematic application of Theorem 4-1. Note that the definition 
M = CB is in an order that permits direct application of this theorem. We first define the 
descent function β, at iteration k, as follows. 

( )
1

( , ) , ( ) , , and ( , )
N

i i i i i i
i

k U x I k A x P rβ
=

= − ∈ =∑x x  (4-29) 

Here, ,( ) ( )
N

i i j j i
j i

I k G P k n
≠

= +∑  is the interference at i at iteration k.  

1. β is the sum of N continuous functions (using Lemma 4-5). Hence, β is continuous.  
 
2. We first show that if ( ),C A= ∈y x x , then ( , ) ( , )k kβ β≤y x , at iteration k. Let 

( , )x x=x P r  and ( , )y y=y P r . By definition of C (Definition 4-6), y x=P P . If y x=r r , 
as would occur when the ALPs do converge, then, from Equation (4-29), we must 
have ( , ) ( , )k kβ β=y x . It is important to realize that this does not necessarily mean 
that the algorithm terminates here, since the powers might not have converged. If the 
ALPs have not converged either, i∃  such that , ,( , ) ( , )i y x i y i x i xU r U r= >P P P . Thus, in 
this case, ( , ) ( , )k kβ β<y x . Note that it is not possible for ( , ) ( , )k kβ β>y x  since this 
would be inconsistent with the definition of the map M and becomes apparent by 
studying Equation (4-20). 

 
3. The map B is closed, by Proposition 4-5. 
 
4. We now show that, given ( ), A= ∈y B x x , then ( , ) ( , )k kβ β<y x , if ( 1)k∉Ω −x , 

where ( 1)kΩ −  is the solution set at iteration k-1, as defined in Equation (4-23). 
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By contradiction, suppose that at iteration k, ( , ) ( , )k kβ β=y x  and the algorithm has 
not converged, i.e. ( )k∉Ωy , where ( , )x x=x P r and ( ) ( , )y y= =y B x P r . Assumption 
4-1 implies that y exists. Since by definition of the map B (Definition 4-5), y x=r r . 
Then, we must have , , , , , ,( , , ) ( , , )i i y i x i x i i x i x i xU P P r U P P r i− −= ∀ . Note that this is the only 
possibility, since Equation (4-21) precludes the occurrence of the only other 
possibility , , , , , ,( , , ) ( , , )i i y i x i x i i x i x i xU P P r U P P r− −< , for any i. This implies that , ,i y i xP P= . 

Obviously, we must have , ,i y i xP P ε− < , implying that the algorithm M has in fact  

converged, i.e. ( )k∈Ωy . Note that, since ( ),i x iP P k= and ( ), 1i y iP P k= + , at the next 
iteration k+1, the set of iU  will be identical to what it was at iteration k. Thus, when 
the powers have converged, the ALPs cannot change. The convergence implies that 
our original assumption, ( , ) ( , )k kβ β=y x , must be false. Hence, we must strictly 
have ( , ) ( , )k kβ β<y x . Note that it is not possible for ( , ) ( , )k kβ β>y x  since this 
would be inconsistent with the definition of the map M and is evident from Equation 
(4-21). 
 

5. Any sequence produced by the mapping M is contained in the set A. The set A is 
compact by Lemma 4-1, since iA  is compact, i T∀ ∈ . 

 
Since all the conditions required by Theorem 4-1 are satisfied, the algorithm described by 
the map M converges. Suppose that the accumulation point is denoted by ( ),=a P r . 
Then, at the point of convergence, the following property must be satisfied for all i T∈ . 

( ) ( ), , ,i i i i i i i iU a a U a a a A− −≥ ∀ ∈  (4-30) 
Comparing Equation (4-30) with Equation (3-4), we observe that Equation (4-30) is 
simply the definition of a NE. Thus, we have shown that the convergence point of 
algorithm LAG is a NE and the proof is complete. 
□ 
 

4.5 Results and Discussion 
 
Having established a model for the LAG based on the principles of strategic-form games 
in Section 4.2, and conceived an algorithm that specifies a pattern of play leading to a NE 
in Section 4.4, we present in this section, several interesting results based on the GPRS 
example in Section 4.2.5. These results are also published in [72]. For example, it is not 
obvious yet what allocation of power and rate will result from the execution of Algorithm 
LAG. While this algorithm has been shown in Section 4.4 to converge without making 
any assumptions on its initial conditions, the sensitivity of the NE to different sets of 
initial conditions is yet to be investigated. We have not been able to make any general 
analytical predictions on this subject and, therefore, the results can be expected to provide 
valuable insight on the same. We also investigate the use of different penalty function 
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parameters and their impact on power consumption and system throughput. The equally 
interesting matter of comparing these results with those obtained using systems 
techniques, for the same network configuration, is postponed until the next chapter.  

4.5.1 System Configuration 
 
The basis for our results is the seven-cell star type network configuration illustrated in 
Figure 4-9. A cutaway consisting of seven co-channel cells is depicted. The intervening 
area is occupied by adjacent channels, which are not considered in the game. It is 
important to note that only the first-tier of co-channel interferers relative to the central 
cell is considered in the subsequent discussion. The interference from the second and 
third tiers is usually not negligible, but this simplification helps in limiting the 
computational scale of the problem. Consequently, the ensuing results will be optimistic.  

 

 
 

Figure 4-9 Seven-player game, re-use factor = 3. A set of co-channel cells is shown. 

The downlink case is considered in all the forthcoming examples. The base-stations of the 
cells numbered 1 to 7 are the co-channel interferers, and constitute the set T. In 
computing the path loss coefficients, the distance from each interferer to the receiver of 
interest is approximated as the distance between the centers of their cells. The frequency 
re-use factor is set to 3. This is the minimum possible value in a GSM system [5]. With 
this setting, the first-tier of interfering base stations lie on a circle of radius 3R, where R 
is the cell radius. The path loss model is log-distance but variations due to log-normal 
shadowing have not been considered. This permits the establishment of a path loss matrix 
that remains identical between simulation trials. Noise is referenced to the maximum 
possible received power of the weakest user, as shown in Equation (4-31), and is identical 
for all i T∈ .  

( ) maxmin

SNR
iii T

i

G P
n i T∈= ∀ ∈  (4-31) 

The maximum transmitter power per link maxP  is 10 mW, while minimum transmitter 
power minP  is 0 mW. The positioning of the terminals in the system, which stays the same 
in all examples that follow, is shown in Table 4-3. 

1

2

3

4

5

6

7

d1 
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Table 4-3 System Configuration 

Player i 1 2 3 4 5 6 7
di/R 1 0.1 1 0.5 1 1 1

 

In Table 4-3, the first row indexes the players in accordance with the numbering scheme 
given in Figure 4-9. The second row indicates the distance id  of a terminal i T∈  from its 
serving base station, normalized by the cell radius R. A value of 1 is the worst case 
situation, where the handset is located at the cell boundary. Thus, the handset in cell 2 is 
10 times closer to its base station than that in cell 1. Movement of terminals is 
inconsistent with our assumption that the link gain matrix does not change for the 
convergence period of Algorithm LAG (Section 4.4) and is therefore, not permitted. 

4.5.2 Figures of Merit 
 
To compare and evaluate our results in a consistent manner, we propose a set of three 
figures of merit (FOM). FOM1 is the ratio of the sum of link throughputs, referred to as 
the system throughput, to the sum of the fractions of peak power consumed by the links, 
each fraction being referred to as the power consumption coefficient (PCC) of its link. 
The mathematical expression for FOM1 is given in Equation (4-32). 

1

1

1

N

i
i

N
i

maxi

L
FOM

P
P

=

=

=
∑

∑
 (4-32) 

FOM2 is the difference of system throughput and scaled sum of the PCCs, where the 
scaling factor is the peak throughput. The mathematical expression for FOM2 is given in 
Equation (4-33). 

( ){ }
max1 1

2 max
N N

i
i r Ri i

PFOM L r Pα
∈

= =

= − ⋅∑ ∑  (4-33) 

FOM3 is simply the system throughput, as shown in Equation (4-34). 

1
3

N

i
i

FOM L
=

= ∑  (4-34) 

The proposed FOMs require that the sum of throughput be maximized. However, the first 
two add the condition that power consumption be minimized. In all three cases, a higher 
FOM is preferable. 

4.5.3 Simulation Results 
 
Since our primary interest lies in the interference-limited case, we set signal to noise ratio 
(SNR) to 100 dB. We begin our presentation of results with an example based on the 
model described in Section 4.5.1, in which the penalty function parameters are set to K 
=1, q = 0.7, and all players initially choose CS-1. The simulation, as expected, discovers 
the NE and the results for this trial are shown in Table 4-4. The second row of this table 
expresses, as a percentage, the PCC of each link in NE; the third displays the final coding 
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schemes that each link has converged to; and the next two rows display the SINR attained 
on each link and their corresponding equilibrium throughputs, respectively. 

Table 4-4 Example simulation, with K = 1, q = 0.7 

Player  1 2 3 4 5 6 7 

max
100P

P
⎛ ⎞×⎜ ⎟
⎝ ⎠

 49 7 80 40 72 73 69 

CS 1 4 3 3 2 2 2 
SINR (dB) 5.8 28.9 11.9 15.7 10 9.7 10.5 

iL  (kbps) 4.2 13.8 7.7 9.8 6.4 6.2 6.7 
System Throughput = 54.8 kbps 

 
The results in Table 4-4 are intuitive. The following inferences can be drawn from these 
results. 
 
• The equilibrium rates reflect the channel quality of the respective links. The links that 

receive favorable channel conditions select higher code rates (CS-3 or CS-4). There is 
a direct correspondence between the SINR operating point of each link and its NE CS 
selection. A practical implementation would use an estimate of SINR, which it maps 
to an appropriate coding scheme [75] based on the cross-over points of the 
throughput-SINR curves in Figure 1-2. Table 4-5 identifies the mapping for these 
curves.  

Table 4-5 SINR to CS mapping in GPRS 

SINR Region (dB) Coding Scheme
0–7 1 
7–11 2 
11–21 3 
21– 4 

 
• Link 1, which receives maximum interference by virtue of being at the center of the 

star configuration, cannot select a rate higher than CS-1.  
 
• It is interesting to note, that despite the fact that the MS of link 3 resides at its cell 

boundary, link 3 selects CS-3, while similarly disposed links 5, 6 and 7, end up 
selecting CS-2. This can be explained by the fact that the sources of interference for 
link 3 include links 2 and 4, which receive favorable channel conditions and, hence, 
can maintain high throughput while operating at relatively lower power. This results 
in less interference for link 3, compared to the interference experienced by links 5, 6 
and 7, thereby allowing link 3 to operate in the higher SINR region corresponding to 
CS-3. 

 
One can immediately notice from Table 4-4 that the PCCs of some terminals are rather 
high, implying that they are operating inefficiently. One suspects that this might be on 
account of too lenient pricing. The present results also motivate one to consider the 
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impact of different initial CS choices on the NE. We address these topics in the following 
subsections. 

4.5.3.1 Sensitivity to Initial Conditions 
In Figure 4-10, the histogram of the equilibrium FOMs, resulting from several plays of 
LAG, each of which is initialized with one of the 47 different starting rates, is plotted for 
K = 1, q = 2 and an SNR of 100 dB. In Figure 4-10, the NE CS vector is printed beside 
the histogram bar corresponding to that NE. The key observations from this exercise are 
as follows. 
  
• There are just four well-defined, though closely spaced, NE.  
• One of these equilibria clearly occurs far more frequently than the rest. This is the CS 

combination [1 4 2 3 2 2 2]. In over 80 per cent of all cases, Algorithm LAG 
converges to this equilibrium. 

• Observing the third pane of Figure 4-10, the variation in system throughput obtained 
at these equilibria is insignificant, the maximum being approximately 200 bps.  

 

 
Figure 4-10 Histogram plot of FOMs in NE 
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4.5.3.2 Impact of Penalty Function Parameters7 
Recall that the penalty function parameters are q and K. We maintain K = 1 at all times 
and investigate the impact of q on system performance. Figure 4-11 and Figure 4-13 
illustrate the effect that q has on the FOMs and power consumption, respectively. The 
former plots all 3 FOMs on the same axis versus q whereas the latter plots the sum of the 
PCCs versus q. In Figure 4-12, a close-up of the variation in system throughput (FOM3), 
is illustrated. Due to scale, this was not clearly visible in Figure 4-11. We notice a clear 
peak in system throughput at 0.7q ≈ . At this value, it can be observed from Figure 4-13, 
that the power consumption is nearly 60% of its maximum. There seems to be a 
convergence of system throughput, as q increases, towards a value of approximately 53 
kbps. However, FOM1 and FOM2 are small for lower values of q due to their excessive 
penalizing of power consumption. In fact, Figure 4-13 suggests that selecting q > 1.5 will 
be generally conservative of power. In Figure 4-11 , FOM1 is observed to be maximized 
for 4.9q =  and FOM2, for 3.6q = . These FOMs, therefore, lead to a more power-
conservative tuning of q. Such settings might be more germane when applying this model 
to an uplink situation where battery life is a critical design parameter.  

 
Figure 4-11 Effect of q on FOMs, SNR = 100 dB 

                                                 
7 A lower power bound of  minP = 0.1 was used in these simulations. 
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Figure 4-12 Close-up of system throughput of Figure 4-11 

 

 
Figure 4-13 Effect of q on power consumption, SNR = 100 dB 
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At low SNR, we have a noise-limited scenario. A rather extreme case of SNR = 5 dB is 
shown in Figure 4-14. The distinguishing factor between the interference and noise-
limited cases is that it might not be possible in the noise-limited case, to support some of 
the higher rates, even at peak power, due to the establishment of a higher “noise floor.” 
As a result, when higher power is penalized more heavily, as is the case for higher values 
of q, there is a significant drop in throughput. Thus, we observe a greater variation in 
system throughput for the noise-limited case. In Figure 4-14, FOM1 is observed to be 
maximized for 1.6q =  and FOM2 for 1.3q = . However, the drop in throughput is too 
great at these values. Figure 4-15 suggests that the use of 0.6q ≈  results in a small 
reduction in throughput from its maximum value. This throughput is observed to be 
achievable within 60% of the maximum power. 
 
A feature of our model is that it does not deal with hard SINR targets. The softening of 
targets was mentioned in [63] and the same behavior is apparent from the present 
discussion. Here, we compare two different situations in which the SINR is adapted so 
that all users achieve some feasible SINR target, without entering a situation where they 
all are compelled to transmit at maximum power. As pointed in Section 3.6, this is a 
common feature of utility-based models. 
  

 
Figure 4-14 Effect of q on FOMs, SNR = 5 dB 
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Figure 4-15 Effect of q on power consumption, SNR = 5 dB 

 

4.6 Summary 
 
In this chapter, we presented a game-theoretic framework for analyzing the performance 
of a system that supports link adaptation. This framework generalized the approaches for 
solving power control problems in systems without link adaptation (for examples, see 
Section 3.6). The action set we chose was non-convex, the consequence of which was 
that we could not show, using standard techniques, that NE exist in the game LAG. This 
motivated us to develop a heuristic algorithm that iteratively computes each player’s best-
response action until the actions of all players converge. Due to this best-response 
dynamic, Algorithm LAG converges to a NE. We proved that Algorithm LAG always 
converges regardless of its initialization. Using a seven-cell system configuration 
modeled after the downlink of a GPRS system, we showed that Algorithm LAG results in 
intuitive performance for a given channel realization. Moreover, the NE is not unique. 
However, our results seemed to indicate that the non-unique equilibria are likely to be 
close in performance, which is desirable. We introduced a number of FOMs that were 
used to help tune the parameters of the penalty function, so as to obtain a desired 
spectral-energy efficiency tradeoff. These results will be consulted in the next chapter 
when we conduct a performance comparison between Algorithm LAG and several 
system-theoretic algorithms.      
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5 A Comparison of Game and System-
theoretic Results 

 
There has been little research comparing game-theoretic approaches to solving power 
control problems with corresponding systems approaches. It is often tempting to trade-off 
accuracy in utility-based models, in favor of analytic tractability. As an example, 
consider the utility model [51] described by equations (3-6) – (3-8), in which the utility 
function was modified to equal zero when power went to zero. Inaccurate modeling may 
lead to sub-optimal results. 
 
In this chapter, we seek to improve our understanding of the game-theoretic model in 
Chapter 4 by using a parallel suite of systems techniques to solve the network 
configuration described in Section 4.5. The development of systems techniques is 
highlighted in Chapter 2 of this thesis. In that chapter, the power control problem is 
shown to be related to the dominant eigenvalue of the channel gain matrix of a set of 
interferers [15]. The evolution of these techniques to embrace data networks is traced 
through Section 2.4, which discusses power control with multiple rates. The rate a user 
can achieve is a monotonically increasing function of its received signal to interference 
and noise ratio (SINR). Hence, it is obvious that selecting rates for the users in a network, 
or analogously selecting SINR targets corresponding to those rates, is closely tied to 
power control. The problem considered in Chapter 4 is indeed a power control problem, 
with multiple rates.  
 
In the following sections, we first formulate the problem of calculating the set of 
achievable SINR targets that are optimum in the sense that they maximize the sum of 
targets. Our method differs from others existing in the literature (see Chapter 2) in that it 
exploits the relationship between the desired targets and the dominant eigenvalue of the 
channel gain matrix, and uses the subsequently defined “row-sum criterion” in the 
optimization formulation. A desirable feature of this formulation is that it can be framed 
as a linear programming problem (LPP), which is easier to solve than a non-linear 
program. This optimal formulation forms the basis of a systematic algorithm that 
achieves the same purpose. We also apply the GSPC and GRP algorithms to obtain 
solutions analogous to the game-theoretic NE. 
 

5.1 System Model and Problem Definition 
 
We use a system model and notation consistent with Section 2.1. Let T be the set of N co-
channel interfering links. The link gain matrix G of the system is assumed to remain 
constant throughout the analysis, as in Chapter 4. The channel can be assumed static for 
the duration of convergence of the algorithms that execute on each link i T∈ . The SINR 
target of link i is denoted by t

iγ . The vector of targets is defined as 1 2, ,...,t t t
Nγ γ γ⎡ ⎤= ⎣ ⎦

tΓ . 
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SINR is defined in Equation (2-1). The vector of SINRs is defined as [ ]1 2, ,..., Nγ γ γ=Γ . 

Each link i T∈  wishes to achieve t
i iγ γ≥ . Using Equation (2-1), this condition is 

equivalent to  

1

t tN
i ij i i

i j
j ii ii
j i

G nP P
G G
γ γ

=
≠

⎡ ⎤
≥ +⎢ ⎥

⎢ ⎥⎣ ⎦
∑  (5-1) 

Using the definition for H in Equation (2-2), and that of η  in Equation (2-4), we can 
rewrite Equation (5-1) in matrix form as follows. 

( )− ≥I H P η  (5-2) 
Here, I is the NxN identity matrix and P is the power vector. P is defined in Section 4.2.1. 
For simplicity, we denote the set of feasible powers by P . 
 
From the system performance perspective, it is desirable to find an achievable vector tΓ  
that maximizes the system throughput. Thus, on the surface, it seems logical that system 
throughput be made the objective function. In our link adaptation problem, the 
throughput is a function of the discrete-valued Adaptable Link Parameter (ALP), which is 
defined in Section 4.2. Unfortunately, the optimal allocation of the ALP is unknown at 
the outset and can be any one of the NR  ALP vector combinations, where R  is the 
cardinality of the ALP set R. Thus, it is unclear as to which throughput model we should 
use in the objective function. However, since throughput is a monotonically increasing 
function of iγ , we can alternatively maximize the sum of targets t

iγ . In other words, we 
define the objective function as follows. 

1

N
t
i

i
Z γ

=

=∑  (5-3) 

The next sub-section presents a method to solve Equation (5-3), subject to a set of 
derived feasibility constraints.  
 

5.2 Optimum Target Assignment (OTA) 
 
We first discuss some important properties of the matrix H. 
 

Lemma 5-1 
1. H is a non-negative real matrix. 
2. H is an irreducible [76] matrix. 

 
Proof:  

1. H is real and non-negative by its definition, since G is real and non-negative, and 
tΓ is real and non-negative.  

2. It can be observed that no combination of row or column rearrangements can 
bring H to a form in which a zero matrix of order u x (N-u) can be formed, where 
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u is an integer such that 0<u<N. On account of this observation, H must be an 
irreducible matrix [76]. 

□ 
 
Theorem 5-1 is an application of the famous Perron-Frobenius theorem to the matrix H. 
 

Theorem 5-1 Perron-Frobenius Theorem 
The Perron-Frobenius Theorem [76] states that if H is a real, non-negative and 
irreducible matrix, then the following is true. 
 

1. The dominant eigenvalue of H, denoted by 1λ , is real and positive. 
2. 1λ  is unique, i.e., it is a simple eigenvalue. 
3. The eigenvector corresponding to 1λ  is positive, i.e., it does not change its 

sign. 
4. H cannot have two linearly independent non-negative eigenvectors. 

□ 
 
In Lemma 5-2, the feasibility condition of the system is derived in terms of the dominant 
eigenvalue. 
 

Lemma 5-2 

The system ( )− ≥I H P η  (Equation (5-2)) is feasible when 1λ <1. 
 
Proof: 
This property is proved in [77]. For the system ( )− ≥I H P η  to have a solution, the 
series on the right of Equation (5-4) must converge. 

( ) 1 ...−− = + + +2I H I H H  (5-4) 
Letλ be an eigenvalue of H, with eigenvector x. Equation (5-4) is equivalent to 

( ) 2... (1 ...)λ λ+ + + = + + +2I H H x x
 (5-5) 

The series on the right converges if λ <1 and the same must hold for any eigenvalue of 
H. This implies that 1λ <1. This completes the proof.  
□ 
 
We now present, without proof, the “row-sum” criterion which places further constraints 
on 1λ . 
 

Lemma 5-3 

1λ  must satisfy the condition in Equation (5-6). 

1min maxi ii i
RS RSλ≤ ≤  (5-6) 
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Here, iRS  is the row-sum of the ith row of matrix H, given by the expression in Equation 
(5-7). 

1

N

i ij
j

RS H
=

= ∑  (5-7) 

Equation (5-6) is known as the row-sum criterion. The equality sign on the right holds if 
and only if, the upper and lower bounds are equal. 
 
Proof: 
See Gantmacher [76]. 
□ 
 
We now derive a relationship between the row-sum criterion and the objective function in 
Equation (5-3).  
 

Proposition 5-1 
The objective function Z in Equation (5-3) is maximized when the following condition is 
satisfied. 

1iRS i Tλ= ∀ ∈  (5-8) 
 
Proof:  
Using the definition of iH  in Equation (2-2), we can rewrite Equation (5-7) as shown in 
Equation (5-9). 

1 1

tN N
i ij ijt t

i i i i
j jii ii
j i j i

G G
RS RS

G G
γ

γ γ
= =
≠ ≠

′= = =∑ ∑  (5-9) 

Here iRS ′ , given in Equation (5-10), is constant for the purpose of the analysis, since G is 
assumed constant at the outset of Section 5.1. 

1

N
ij

i
j ii
j i

G
RS

G=
≠

′ = ∑  (5-10) 

From Equation (5-3) and Equation (5-9), we have an expression for the objective function 
Z in terms of the row-sums. 

1

N
i

i i

RSZ
RS=

=
′∑  (5-11) 

Let arg max ii T
k RS

∈
=  and arg min ii T

j RS
∈

= . It follows from Lemma 5-3 that 

1j kRS RSλ≤ ≤  (5-12) 

Let us denote the optimal value of the objective function by optZ . Let this value be 
achieved when 1 1λ λ= �  and t t

i iγ γ= � . Denoting the corresponding row-sums by opt
iRS , we 

have  
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1 1

optN N
opt t i

i
i i i

RSZ
RS

γ
= =

= =
′∑ ∑�  (5-13) 

Equation (5-11) is maximized if and only if, i kRS RS= , for all i. Hence optZ Z=  if and 
only if, opt opt

i kRS RS= , for all i. Then, opt opt
j kRS RS= , which implies, from Equation 

(5-12), that 1,
opt
iRS i Tλ= ∀ ∈� . This completes the proof. 

□ 
 
Lemma 5-2 states that the maximum value of 1λ  for the system to be feasible is 1, but 
this may not necessarily be the value of 1λ  that achieves the targets that maximize Z. 

Note that in Equation (2-4) i

t
i

i
ii

n
G
γ

η
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

. It is clear that the contribution of noise increases 

in direct proportion with SINR target. In the purely interference-limited case, the 
optimum system throughput would correspond to 1 1λ = . However, in general, the 
dominant eigenvalue is constrained by noise, which leads us to propose the following. 
 

Proposition 5-2 

There exists P∈P  such that P is an eigenvector of ( )−I H , if and only if max ≥P η . 
 
Proof: 
Theorem 5-1 states that the eigenvector corresponding to 1λ  is positive (Theorem 5-1.3) 
and unique (Theorem 5-1.4). If there exists an eigenvector 1P  corresponding to the 
eigenvalue ( )11 λ−  of ( )−I H , then, using Equation (5-2), we have ( )1 11 λ− ≥P η . 
Rearranging, we get Equation (5-14). 

( )1
11 λ

≥
−
ηP  (5-14) 

Lemma 5-2 and Theorem 5-1 (see 5-1.1) imply that 10 1λ≤ < . It follows that 

11 λ
≤ < ∞

−
ηη  (5-15) 

For feasible 1P , we must have 1 max≤P P . Combining this result with Equation (5-14) and 
Equation (5-15), we must have max ≥P η . This completes the proof. 
□ 
 
Proposition 5-2 establishes the necessary condition for the dominant eigenvector of 
( )−I H  to be a feasible solution to Equation (5-2). We now derive the constraints of our 
optimization problem. From Proposition 5-2, we can develop the following constraint on 

1λ . Using Equation (5-14) and Equation (2-4), we have  
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1
max

1 ,
t
i i

ii

n i T
G P
γλ ≤ − ∀ ∈  (5-16) 

Proposition 5-1 suggests that 1λ  must be maximized. However, from Lemma 5-3, 1λ  
must always be bounded by the maximum row sum but is permitted to be greater than all 
the other row sums. By this reasoning, we have our second constraint, as expressed in 
Equation (5-17). 

1
1

,
N

ijt
i

j ii
j i

G
i T

G
λ γ

=
≠

≥ ∀ ∈∑  (5-17) 

Proposition 5-1 shows that, at the solution, Equation (5-17) will become an equality. 
Otherwise, at all times, we will have 1 max ii T

RSλ
∈

= . In Definition 5-1, we formally define 

the optimization problem using the objective in Equation (5-3), subject to the constraints 
in Equation (5-16) and Equation (5-17). 
 

Definition 5-1 Max-Sum of SINR Targets 

1, 1
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j ii
j i
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i T

G
λ γ

=
≠

≥ ∀ ∈∑ . 

c. 10 1, tλ≤ < ≤0 Γ . 
□ 
Our problem formulation is an LPP in the independent variables tΓ  and 1λ . It can be 
solved using well known linear programming techniques [78].  
 

5.3 Stepwise Rate Removals Algorithm 
 
Based on the work in Section 5.2, we propose a heuristic algorithm that commences with 
a potentially infeasible system and uses the row-sum criterion to bring it to feasibility. 
This algorithm, called Stepwise Rate Removals (SRR), is centralized, and begins by 
assigning maximum possible SINR targets to all users. Generally, this assignment will be 
infeasible. SRR iteratively calculates the eigenvalue of the system, and reduces the rates 
of those users demanding unreasonably high rates, until feasibility is achieved.  The 
feasibility bound on the eigenvalue is derived using Equation (5-16). The row-sum 
criterion of Equation (5-17) is used to identify the user most likely to make the system 
infeasible. 
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Definition 5-2 Stepwise Rate Removals Algorithm 
The SRR algorithm is now presented and uses the notation developed in the preceding 
sections. We define a discrete-valued set of targets { }1 2, ,...,γ γ γ ΓΓ =  such that 

,t
i i Tγ ∈Γ ∀ ∈ . Furthermore, we require that the targets be in a geometric progression, 

i.e., 
11 2

2 3 ... fγ γ γ
γ γ γ

Γ −

Γ
= = = = . The variable f is the rate removal factor and must be 

strictly less than one. 
 
1. Start. 
2. Initialization 

a. Iteration k = 0. 
b. Initialize targets to maximum: { }(0) max ,t

i i Tγ γ Γ= Γ = ∀ ∈ . 

3. While 1
max

1 max i

i T P
ηλ

∈

⎧ ⎫
> − ⎨ ⎬

⎩ ⎭
 

a. Find row with maximum row-sum. 
arg max ii T

j RS
∈

=  (5-19) 
b. Scale down the target of that row. In other words, remove a rate. 

( 1) ( )t t
j jk f kγ γ+ =  (5-20) 

c. Recalculate row j of H and jη  from Equation (2-2) and Equation (2-4) 
respectively. 

d. k = k + 1. 
4. Stop. 
□ 
 
We now show that the SRR algorithm is guaranteed to converge. 
 

Proposition 5-3 
The Stepwise Rate Removals algorithm always converges. 
 
Proof: 
At iteration k, let ( )iq k  be the scalar that counts the number of times each user i has 

demanded an infeasible rate; in other words, ( )iq k  counts the instances when 

1
max

1 max l

l T P
ηλ

∈

⎧ ⎫
> − ⎨ ⎬

⎩ ⎭
 and arg max ll T

i RS
∈

= . At iteration k of SRR, we must have 

( )( ) (0),iq kt t
i ik f i Tγ γ= ∀ ∈ . As k →∞ , ( ) . Hence, ( ) 0,t

i iq k k iγ→∞ = ∀ . Thus, as 
k →∞ , N N×=H 0 , and 1N×=η 0 , where 0 is the null matrix. Then, 1λ = 0, which being 
less than 1, will result in termination of the SRR algorithm at step 3.  
□ 
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It is not straightforward to calculate 1λ , the dominant eigenvalue of H, in a distributed 
manner. This implies that the SRR algorithm is centralized and not convenient for 
implementation. However, it serves as a good substitute for the LPP formulated in 
Section 5.2. The results presented in Section 5.4 substantiate this observation. Distributed 
or semi-distributed techniques already exist for finding the feasible achievable SINRs in a 
network. A good example is Generalized Selective Power Control (GSPC) [21]. 
 

5.4 Simulation Results and Comparison 
 
To facilitate comparison between the results in Chapter 4 and this section, we use the 
system description for a GPRS network presented in Section 4.5.1. In the present section, 
we compare the performance achieved by the following techniques for assigning rates.  
 
1. The optimum target assignment (OTA) calculated by the optimization formulation in 

Section 5.2. 
2. The Stepwise Rate Removals (SRR) algorithm of Section 5.3. 
3. Generalized Selective Power Control with Gradual Rate Removals (GSPC-GRR), 

which is proposed in [21]. Our own implementation of this algorithm is described in 
Section 2.4.1. 

4. The Greedy Rate Packing (GRP) algorithm, that also appears in [21]. Our own 
implementation of this algorithm is described in Section 2.4.1. 

5. The game-theoretic Algorithm LAG, described in Section 4.4. 
 
We consider the interference-limited and noise-limited scenarios, the results for which 
are presented via a series of tables, labeled Table 5-1 to Table 5-10. Each table 
corresponds to results obtained by using one of the techniques mentioned in the foregoing 
paragraph, and is labeled accordingly. The tables state the achievable SINR targets, 
GPRS coding schemes (CS) allocated, the system throughput and transmitter power for 
each link. CS selection in all methods, except Algorithm LAG, is accomplished by 
mapping SINR to CS according to the rules described in Table 4-5. These rules ensure 
that the maximum possible throughput is achieved for the given SINR. SRR and GSPC 
are implemented using a logarithmically increasing sequence of discrete SINRs, 
belonging to the set { }0,1, 2,...,50 dB. The maximum value of 50 dB is arbitrary. In GRP, 
we limit the SINR to occupy the interval [0,30] dB. The penalty-function parameters of 
Algorithm LAG are selected using values recommended by the tuning exercise carried 
out in Section 4.5.3.2 (see Figure 4-11 – Figure 4-15). A value of q = 2 is chosen for the 
interference-limited scenario (Section 5.4.1) and q = 0.6 for the noise-limited scenario 
(Section 5.4.2). The results are then discussed in Section 5.4.3. 
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5.4.1 Interference-limited Scenario 
 
For the interference-limited scenario, the signal to noise ratio (SNR) is set to 100 dB. 
 

Table 5-1 Optimum Target Assignment (SNR = 100 dB) 

User 1 2 3 4 5 6 7 
SINR (dB) 6.53 38.77 8.77 17.80 8.77 8.77 8.77 
CS 1 4 2 3 2 2 2 
Power(mW) 0.504 0.504 0.504 0.504 0.504 0.504 0.504 
System Throughput (kbps):   51.93 

1λ = opt
iRS = 0.9999 

 
Table 5-2 Stepwise Rate Removal (SNR = 100 dB) 

User 1 2 3 4 5 6 7 
SINR (dB) 6 38 9 18 9 9 9 
CS 1 4 2 3 2 2 2 
Power(mW) 0.43e-6 0.40e-6 0.49e-6 0.50e-6 0.51e-6 0.51e-6 0.49e-6 
System Throughput (kbps):   52.31 
 

Table 5-3 Generalized Selective Power Control (SNR = 100 dB) 

User 1 2 3 4 5 6 7 
SINR (dB) 4.59 49.02 3.13 11.23 3.24 3.34 3.00 
CS 1 4 1 3 1 1 1 
Power(mW) 2.43e-6 1.775e-5 1.62e-6 0.52e-6 0.6e-6 0.7e-5 1.58e-6 
System Throughput (kbps): 36.81 
 

Table 5-4 Greedy Rate Packing (SNR = 100 dB) 

User 1 2 3 4 5 6 7 
SINR (dB) 3.44    30.00    2.63    29.78   -1.91    4.15     5.56 
CS 1 4 1 4 1 1 1 
Power(mW) 7.72e-7   1.25e-7   6.03e-7   7.79e-6   2.17e-7   2.92e-7   3.83e-7 
System Throughput (kbps): 42.00 
 

Table 5-5 Game Theory: Algorithm LAG (SNR = 100 dB, q = 2, K =1)  

User 1 2 3 4 5 6 7 
SINR (dB) 6.63 33.34 10.38 16.85 9.53 9.27 10.04 
CS 1 4 2 3 2 2 2 
Power(mW) 1.01 3.18e-1 1.16 8.71e-1 1.19 1.2 1.18 
System Throughput (kbps): 54.22  



 

 79

5.4.2 Noise-limited Scenario 
 
For the noise-limited scenario, the SNR is set to 5 dB. 
 

Table 5-6 Optimum Target Assignment (SNR = 5 dB) 

User 1 2 3 4 5 6 7 
SINR (dB) 1.23 33.48 3.48 12.51 3.48 3.48 3.48 
CS 1 4 1 3 1 1 1 
Power(mW) 7.064 9.692 9.692 9.692 9.692 9.692 9.692 
System Throughput (kbps): 36.53 

1λ  = opt
iRS = 0.2953 

 

Table 5-7 Stepwise Rate Removal (SNR = 5 dB) 

User 1 2 3 4 5 6 7 
SINR (dB) 1 33 3 12 3 3 3 
CS 1 4 1 3 1 1 1 
Power(mW) 6.32 8.37 8.366 8.311 8.366 8.37 8.37 
System Throughput (kbps): 35.15 
 

Table 5-8 Generalized Selective Power Control (SNR = 5 dB) 

User 1 2 3 4 5 6 7 
SINR (dB) 2 33 3 12 3 3 3 
CS 1 4 1 3 1 1 1 
Power(mW) 8.01 8.524 8.521 8.464 8.52 8.524 8.524 
System Throughput (kbps): 35.56 
 

Table 5-9 Greedy Rate Packing (SNR = 5 dB) 

User 1 2 3 4 5 6 7 
SINR (dB) 2.66    30.00    3.70    12.57    3.53    3.53     3.70 
CS 1 4 1 3 1 1 1 
Power(mW) 9.56      4.47 10.0 10.0 10.0 10.0 10.0 
System Throughput (kbps): 37.21 
 

Table 5-10 Game Theory: Algorithm LAG (SNR = 5 dB, q = 0.6, K = 1)  

User 1 2 3 4 5 6 7 
SINR (dB) -∞  26.64 3.27 13.15 2.91 3.03 3.39 
CS 1 4 1 3 1 1 1 
Power(mW) 0 1.8 8.0 10 7.7 7.8 8.1 
System Throughput (kbps):  33.55 
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5.4.3 Discussion 
 
We make some general observations from the results presented in Table 5-1 to Table 
5-10. To aid this discussion, we calculate the corresponding FOM values (Section 4.5.2) 
and present them in Table 5-11. FOM 3 is the system throughput which, by virtue of 
already being included in the earlier results, is not restated here. 

Table 5-11 Comparison of results based on FOM 1 and FOM 2 values 

SNR = 100 dB SNR = 5 dB Technique 
FOM 1 FOM 2 FOM 1 FOM 2 

OTA 147.19 46.86 5.60 -57.12 
SRR 1.5709e8 52.31 6.22 -45.95 
GSPC 1.1686e7 36.81 6.02 -49.29 
GRP 4.1249e7 42.00 5.81 -54.74 
Algorithm LAG 78.25 44.27 7.73 -28.77 
 
Table 5-11 seems to suggest that, on the surface, SRR performs best in the interference-
limited scenario and Algorithm LAG does likewise in the noise-limited scenario. 
However, this does not present the entire picture and a more thorough examination of 
results is required. By studying system throughput, we note that although OTA is 
designed to maximize the sum of SINRs, it need not be guaranteed to maximize system 
throughput. The reason, which is evident from performance curves such as Figure 1-2, is 
that throughput saturates at high values of SINR. Beyond a certain point, the power 
increment required to achieve even small increases in throughput is large, causing more 
interference. GRP and GSPC tend to favor users that experience good channel conditions 
to a greater extent than any of other schemes studied. This is not the fairest way of 
allocating resources, since users in poor or even moderate conditions might tend to suffer 
from throughput starvation. Specifically, as many as 5 out of 7 users are assigned CS-1 in 
both Table 5-3 (GSPC) and Table 5-4 (GRP). The FOM calculations are unable to reflect 
this fact. By punishing excessive power consumption, and at the same time attempting to 
maximize throughput, Algorithm LAG generates results that are fair. Like OTA and 
SRR, Algorithm LAG results in only a single user being assigned CS-1.    
 
Comparing the power consumption figures, Algorithm LAG and OTA result in higher 
power consumption than necessary to achieve the observed system throughput. As the 
targets increase, the excess power required to achieve them grows faster than the gain in 
throughput that is achieved. However, at SNR = 100 dB, it is obvious that by scaling 
down all the powers by some common factor, similar system throughput can still be 
attained. The SRR scheme, which we recall is derived from OTA, effectively 
demonstrates this point (compare Table 5-1 to Table 5-2). Note, however, that if it were 
possible to introduce more spectral efficiency by switching to a higher modulation 
scheme when conditions permitted, these throughput saturation effects could be avoided. 
Yet, in the SNR = 100 dB scenario, the maximum PCC (Section 4.5.2) is still 
approximately less than 10% for all schemes. Since the top priority for the downlink is to 
maximize throughput, the observed power consumption might still be reasonable. Despite 
its apparent inefficiency, Algorithm LAG results in the highest system throughput for the 
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SNR = 100 dB scenario. It is yet possible to ameliorate its slightly disappointing power 
consumption by increasing the penalty function parameter K. The dramatic improvement 
in the power consumption of Algorithm LAG is reflected in Table 5-12. This table charts 
the descent of the maximum PCC (expressed as a percentage) of the system. 
Significantly, this improvement is not accompanied by any perceptible decrease in the 
system throughput.  

Table 5-12 Impact of varying K on PCC 

K Max PCC < System Throughput

1 10 % 54.22 

10 4 % 54.22 

1000 0.4 % 54.18 

100000 0.04 % 54.24 
 
In general, Algorithm LAG, OTA and SRR achieve good tradeoffs between throughput 
and power consumption. In the interference-limited scenario, SRR performs the best 
overall. The FOM calculations in Table 5-11 support this observation. GRP tends to 
minimize the power consumption in the interference-limited scenario. However, it 
achieves the highest throughput amongst the schemes considered for the noise-limited 
scenario, but consumes the maximum power in doing so. It is worth noting that 
Algorithm LAG is the most power efficient in the noise-limited scenario. At the same 
time, it does not excessively compromise throughput. This is due to the flexibility in 
tuning the parameters of Algorithm LAG to achieve the best throughput-power 
consumption tradeoff. The FOM calculations in Table 5-11, once again substantiate this 
observation. Amongst the techniques being compared here, this feature is unique to 
Algorithm LAG and is an advantage of employing a game-theoretic approach.  
 
From this discussion, we suggest a simple solution for introducing fairness in GSPC. We 
propose restricting the maximum value of the set of targets to a lower value than before. 
For the example we are considering, 30 dB might be an appropriate value, based on the 
knowledge that the same worked well for the GRP simulations. The impact of this target 
limitation is reflected in the decisive improvement of approximately 9 kbps in the 
resulting system throughput, seen in Table 5-13, when compared to Table 5-3. In 
addition, there are only 3 users, as compared to the earlier 5, that are assigned the 
minimum rate by GSPC. The performance of the users that benefited most in Table 5-3 is 
not compromised by target limitation, even though it has improved the situation for at 
least three users, viz. users 1, 3 and 4. Thus, target limitation has made GSPC clearly 
fairer. 
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Table 5-13 GSPC with Target Limitation (SNR = 100 dB, Max. target = 30 dB) 

User 1 2 3 4 5 6 7 
SINR (dB) 8.51 32.08 7.32 23.56 3.58 3.71 3.00 
CS 2 4 2 4 1 1 1 
Power(mW) 6.84e-7 9.83e-8 4.89e-7 1.55e-6 2.13e-7 1.25e-7 1.01e-7 
System Throughput (kbps): 45.85 
 
To obtain an unbiased performance comparison between all the techniques considered 
here, we run several simulations for each of them with random mobile locations within a 
seven-cell configuration. In addition, the path gain on each link also includes a log-
normal shadowing component with an 8 dB standard deviation. These are the only 
changes to the model proposed in Section 4.5.1. We compare the downlink system 
throughput obtained in an interference-limited scenario (SNR = 100 dB). In Figure 5-1, 
we plot the empirical cumulative distribution function (CDF) of system throughput for 
GSPC-GRR, GRP, SRR, OTA and Algorithm LAG. 

   
Figure 5-1 Performance comparison of GSPC-GRR, GRP, SRR, OTA and Algorithm 

LAG using CDF of system throughput (kbps) for the interference-limited scenario (SNR 
= 100 dB). Note that the performances of SRR and OTA are nearly identical. 

The improvement in system throughput – a measure of system capacity improvement – 
which Algorithm LAG achieves over the other techniques we have considered is clearly 
evident in Figure 5-1. For example, if we consider the fraction of the time system 
throughput exceeds 60 kbps, we notice that this works out to 41% for Algorithm LAG, 
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which is clearly greater than the 35% for OTA and SRR, 27% for GRP and 16% for 
GSPC-GRR. The mean percentage system capacity improvement that Algorithm LAG 
achieves over its competitors is calculated in Table 5-14, using average system 
throughput as a measure of capacity. The nearest competitors are OTA and SRR. 
Algorithm LAG obtains over 4% improvement over these methods. However, note that 
Algorithm LAG is completely distributed, while OTA and SRR are centralized. This 
observation favors Algorithm LAG. Furthermore, the improvement over GRP, which is 
centralized, is nearly 10%, while over GSPC-GRR, which is distributed, it approaches 
20%. 
 

Table 5-14 Percentage System Capacity Improvement obtained by Algorithm LAG 

Compared  
to 

% Capacity 
Improvement

GSPC-GRR 18.35 
GRP 9.75 
OTA 4.36 
SRR 4.36 

   

5.5 Summary 
 
This chapter drew revealing performance comparisons between game and system-
theoretic techniques. An optimization approach using systems techniques (OTA and 
SRR), which attempts to maximize the sum of SINR targets of the system, was first 
presented. Next, the performance of this approach was compared with GSPC-GRR, GRP 
and Algorithm LAG. The comparison was based on system throughput on the downlink, 
power consumption, fairness and flexibility. The main conclusion was that Algorithm 
LAG achieves a capacity gain over all competing techniques. The performances of OTA 
and SRR were within 5 % of Algorithm LAG. However, neither of these is distributed. In 
terms of power consumption, we initially observed that Algorithm LAG consumes more 
power than necessary, for an interference-limited scenario. The increase of the penalty 
function weighting factor K was found to decrease power consumption by a few orders of 
magnitude, without compromising throughput. In terms of fairness, Algorithm LAG was 
shown to achieve a fairness that is matched by OTA and SRR, but not by GRP and 
GSPC-GRR. The latter two are greedy in that they assign maximum resources to the few 
users in the most favorable conditions, to the extent that several users in less favorable 
conditions are starved. We finally mention that the comparison exercise carried out here 
is not conducted in other game-theoretic work.  
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6 Conclusions 
 
Game theory is an exciting new approach for solving RRM problems. While systems 
theory, which we vaguely define in Chapter 1, has been hitherto favored for this task, the 
complex nature of 3G systems has prompted researchers to take a fresh look at available 
solution methodologies8. To assess the significance and usefulness of game theory in 
wireless communications, it helps to understand the characteristics of systems approaches 
that have rendered them so attractive to the wireless engineer. Foremost amongst these 
considerations is the formidable collection of mathematical concepts from fields such as 
linear algebra, optimization, queuing theory, statistics and calculus that lend themselves 
to the analysis of almost any RRM problem. The versatility of these techniques is clearly 
demonstrated in [4]. Equally important is the readiness with which implementation-
friendly distributed algorithms emerge from system-level analysis. In power control 
literature, excellent examples of implementations arising from optimal problem 
formulations can be found in [18], [20], and [21]. In our opinion, these qualities make 
systems techniques almost indispensable. 
 
Analogously, game theory has proven itself to be just as important to economists. This 
has resulted in the establishment of an equally vast body of literature in game theory. The 
realization that several problems in wireless networks can be viewed as non-cooperative 
games has spawned numerous attempts at game-theoretic system analysis. The rationality 
assumptions (Section 3.1) of game theory are conveniently valid when applied to 
computing machines. In no other area of wireless communications is the popularity of 
game-theoretic analysis more evident than in power control [48] [51]. This thesis is 
simply an extension of these approaches.  
 
Our main contribution is the generalization of power control games to incorporate link 
adaptation, as discussed in Chapter 4. This resulted in a modification of the typical action 
set of a power control game to include a discrete-valued Adaptable Link Parameter 
(ALP), in addition to power. The impact of this change is that it becomes impossible to 
guarantee the existence of a Nash Equilibrium (NE) in the network using well-known NE 
existence results. Resorting to heuristic approaches, we construct an iterative algorithm 
that discovers a NE and show that it – the algorithm – always converges. The simulation 
results arising from this intuitive approach are themselves satisfyingly intuitive. More 
significantly, the performance of this algorithm is shown to be favorable compared to 
analogous system-theoretic schemes. As indicated in Section 5.4.3, the game-theoretic 
approach stands out in terms of fairness and flexibility. In an interference-limited 
scenario, it also achieves a downlink system throughput improvement of 4 – 20 % over 
competing schemes, with reasonable power consumption. We notice that the important 
task of performance validation and evaluation is missing in most game-theoretic analyses. 
However, we stress that the importance of this exercise in benchmarking the efficacy of 

                                                 
8 Chapter 3 provides a comprehensive summary of game-theoretic applications in power control 
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game theory must not be underestimated. The ultimate success of game-theoretic analysis 
will rely on such comparisons. 
 
Moving beyond analysis to the practicalities of implementation, it is not clear how our 
scheme in Chapter 4, though distributed, can find its way into an actual implementation. 
An immediate impediment is estimating the parameters of the utility model. It might help 
to simplify the utility function, but this might be accompanied by a loss of accuracy. The 
incorporation of the dynamic aspects of fading is lacking in our model and the subsequent 
analysis. While this is consistent with the “one-shot event” philosophy that is pervasive in 
power control literature [15], we believe that the nature of a dynamic fading channel will 
have a significant impact on algorithm convergence and model parameter estimation. 
These intriguing problems are natural extensions of the research in this thesis. As a more 
immediate extension, it is possible to vary penalty function parameters as a function of 
some promised QoS class for each link. While seemingly simple to implement, the results 
would nevertheless be interesting. 
 
A final thought – we believe that the last word in game-theoretic applications in wireless 
communications has not been said. At the wireless frontier there awaits a vast and 
growing collection of problems that have not been conclusively solved. We identify two 
fascinating areas – ad-hoc networks [79] and software radios [80] – that will ensure the 
vitality of wireless system engineering in the future. Ad-hoc networks do not have a fixed 
infrastructure, might have a constantly evolving network graph that is induced by node 
mobility, and may consist of dissimilar nodes with limited power and conflicting QoS 
objectives. In this sense, these networks are completely distributed and tasks such as 
network-formation, power control, and routing must be accomplished by each node in 
accordance with its objectives. Software radios are fully programmable radios that 
support several modes (frequencies, standards, etc.) of operation. The multi-mode 3G 
phones that are entering markets today are, in fact, rudimentary software radios. 
Undoubtedly, further developments will endow these devices with a mind-boggling 
complement of technologies and features. Software radios are likely to be characterized 
by their dynamic, real-time reconfigurability and the software implementation of a 
majority of their features. The RRM of networks of software radios will be complicated 
by the degree of heterogeneity introduced by having several such radios in a network. It 
might not be too far-fetched to suggest that software radios might be involved in the 
formation of ad-hoc networks. Established techniques for studying the comparatively 
bland fixed infrastructure systems, such as cellular networks, will not work without 
modification. At the same time, this is an excellent reason to consider game-theoretic 
techniques for this purpose. Several promising game-theoretic tools already exist. For 
example, the concept of a potential game [81] was unutilized in this thesis. Finite 
potential games are known to have NE in their pure strategies. These games have, to date, 
received little attention in the wireless literature [82]. Finding the right tools for the 
problems at hand is a genuine challenge confronting researchers adopting the game-
theoretic approach. We speculate that the challenge of the future will be to unlock the 
potential of game-theoretic techniques to arrive at meaningful solutions to wireless 
engineering problems.    
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