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Hence, the ratio between K1 and K2 can be expressed and simpli-
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As (34), shown below, implies, K1/K2 becomes much smaller when
m ≥ 2 and Eb/N0 is in the medium-to-high-SNR range. Conse-
quently, we have
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EXIT-Chart-Aided Three-Stage Concatenated
Ultrawideband Time-Hopping

Spread-Spectrum Impulse Radio Design

R. A. Riaz, R. G. Maunder, M. F. U. Butt,
S. X. Ng, S. Chen, and L. Hanzo

Abstract—A serially concatenated and iteratively decoded Irregular
Variable-Length Coding (IrVLC) scheme is amalgamated with a unity-rate
precoded time-hopping (TH) pulse-position-modulation (PPM)-aided
ultrawideband (UWB) spread-spectrum (SS) impulse radio design. The
proposed design is capable of operating at low SNRs in Nakagami-m
fading channels contaminated by partial band noise jamming (PBNJ) as
a benefit of lossless IrVLC joint source and channel coding. Although this
scheme may readily be used for lossless video or audio compression, for
example, we only used it here for lossless near-capacity data transmission.
A number of component variable-length-coding (VLC) codebooks having
different coding rates are utilized by the IrVLC scheme for encoding
specific fractions of the input source symbol stream. EXtrinsic Information
Transfer (EXIT) charts are used to appropriately select these fractions to
shape the inverted EXIT curve of the IrVLC and, hence, to match that
of the inner decoder, which allows us to achieve an infinitesimally low bit
error ratio (BER) at near-capacity SNR values.

Index Terms—EXIT charts, impulse radio, irregular code design,
spread-spectrum communications, three-stage concatenated iterative
detection, time-hopping, ultrawideband, ultrawideband systems, unity-
rate codes, variable-length codes.

I. INTRODUCTION

The novel contribution of this paper is that we advance the design
of time-hopping pulse-position-modulation ultrawideband (TH-PPM-
UWB) systems with the aid of sophisticated channel coding in the
interest of approaching attainable capacity. More specifically, our TH-
PPM-UWB design exploits that, analogous to irregular convolutional
coding [1], the family of Irregular Variable-Length Codes (IrVLCs)
[2] employs a number of component variable-length-coding (VLC)
codebooks having different coding rates [3] for encoding particular
fractions of the input source symbol stream. The appropriate lengths
of these fractions may be chosen with the aid of EXtrinsic Information
Transfer (EXIT) charts [4] to shape the inverted EXIT curve of the
IrVLC codec to ensure that it does not cross the EXIT curve of the
inner channel codec. This way, an open EXIT chart tunnel may be
created even at near-capacity values of SNR.

UWB communications systems are commonly defined as sys-
tems that have either more than 20% relative bandwidth com-
pared with the band’s center frequency or more than 500-MHz
absolute bandwidth. The pioneering work of Win and Scholtz [5]
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Fig. 1. Schematic of the IrVLC- and VLC-based TH-PPM-UWB schemes. In the IrVLC-coded scheme, we have N = 16, whereas in the VLC-coded
scheme, N = 1.

developed the concept of TH-PPM-UWB impulse radio systems. In the
aforementioned systems, trains of time-shifted PPM pulses are used to
transmit baseband or carrierless UWB signals.

Against this background, as a further contribution of this paper,
we extend the concept of classic two-stage extrinsic information (EI)
exchange [6] to a three-stage UWB scheme constituted by a unity-
rate decoder, an IrVLC decoder, and the TH-PPM-UWB detector.
Although this scheme may readily be used for lossless video or audio
compression, for example, we only used it here for lossless near-
capacity data transmission. The technique of EXIT charts is utilized
to investigate the serial concatenation of the TH-PPM-UWB detector,
the unity-rate decoder, and the IrVLC outer decoder to attain good
performance, even at near-capacity SNR values. We demonstrate that
the three-stage scheme outperforms the two-stage benchmarker. The
practical rationale of the proposed system is that of achieving lossless
video or data file transmission in emerging high-rate universal-serial-
bus-type applications, for example. Finally, a further novel aspect
worthy of mention is that the system imposes transmission efficiency
by further compressing the source data.

This paper is organized as follows: In Section II, our complete
system design philosophy is elaborated. In Section III, our EXIT
chart and bit error ratio (BER) results are discussed as a function of
the IrVLC code parameters. Finally, in Section IV, we present our
conclusions.

II. SYSTEM OVERVIEW

A. System Description

Our design considered in Fig. 1 assumes 16-ary VLC source symbol
values obeying a 16-ary discrete probability density function (pdf)
resulting from the Lloyd–Max (LM) quantization of independent
Laplacian-distributed source samples. The dynamic range of the sym-
bol probabilities lies between 0.002 and 0.16 when considering 4-bit
LM quantization. The entropy of the 16 symbols obeying these prob-
abilities lies between 2.6 and 8.74 bits/symbol with an overall source
entropy of 3.5 bits per VLC symbol. The rationale of the proposed
IrVLC coding scheme is that, given this nonuniform probability of
occurrence for the 16 VLC symbols and their associated entropies,

the VLC scheme is capable of data compression and high-integrity
detection at near-capacity SNRs.

The transmitter shown in Fig. 1 transmits the source symbol frame
Θ, which comprises J number of source symbols having K = 16-ary
values {Θj}J

j=1 ∈ [1, . . . , K]. These source symbols are decomposed
into N number of components {Θn}N

n=1, where we opted for N =
16 in the case of the IrVLC-TH-PPM-UWB scheme considered and
N = 1 in the case of the regular VLC-based benchmarker scheme.
The number of symbols in the source symbol frame Θ, which is
decomposed into the source symbol frame component Θn, is specified
as Jn, where we have J1 = J in the case of the VLC-based scheme.
By contrast, in the case of the IrVLC-based scheme, the specific values
of {Jn}N

n=1 may appropriately be chosen to shape the inverted EXIT
curve of the IrVLC codec so that it does not cross the EXIT curve of
the precoder, as detailed in [7].

Each of the N source symbol frame components {Θn}N
n=1 is

VLC encoded using the corresponding codebook from the set of
N VLC codebooks {VLCn}N

n=1 having a range of coding rates
{Rn}N

n=1 ∈ [0, 1]. The specific source symbols having the value of
k ∈ [1, . . . ,K] and encoded by the specific VLC codebook VLCn

are represented by the codeword VLCn,k, which has a length of
In,k bits. The Jn number of VLC codewords that represent the Jn

number of source symbols in the source symbol frame component
Θn are concatenated to provide the transmission frame component
Φn = {VLC

n,Θn
jn }Jn

jn=1.
Depending on the specific length of the VLC codewords, the number

of bits comprised by each transmission frame component Φn will
typically slightly vary from frame to frame. To facilitate the VLC
decoding of each transmission frame component Φn, it is necessary
to explicitly convey its length In =

∑Jn

jn=1
I

n,sn
jn to the receiver

with the aid of side information. The N transmission frame compo-
nents {Φn}N

n=1 encoded by the different IrVLC component codes
are concatenated at the transmitter, as shown in Fig. 1. The resultant
transmission frame Φ has a length of

∑N

n=1
In bits. Following the bit

interleaver π1, the transmission frame Φ is precoded and then inter-
leaved again by the bit interleaver π2. The interleaved bits are sent to
the buffer depicted in Fig. 1. These bits are transmitted by the TH-PPM
modulator.
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B. UWB Transmission and Detection

TH-PPM-UWB: A general TH-PPM-UWB signal is given by

g(t) =

∞∑
n=−∞

φ(t − nTF − TPPn − TCHn) (1)

where φ(t) is the signaling pulse shape, TF is the frame duration,
TPPn is the PPM-related shift in the pulse position, either forward
or backward with respect to the nominal signaling instant to represent
the binary stream, and TCHn is the time shift based on the unique user-
specific TH code reminiscent of the pseudonoise sequence of a specific
user, where the code repeats after a certain interval. The frame duration
TF is typically on the order of 1000 times the actual pulsewidth to
avoid any intersymbol interference imposed by multipath propagation.

Channel Model: The channel impulse response (CIR) ratified by
the IEEE 802.15.3 standard and considered here can be expressed
as [8]

h(t) =

L∑
l=1

hle
jϕlδ(t − lTϕ) (2)

where L represents the number of resolvable paths, whereas hl and ϕl

are the gain and the phase of the lth resolvable CIR tap. Furthermore,
lTϕ represents the corresponding delay of the lth CIR tap. As shown
in [9] and [10], the CIR taps of the UWB channel follow Nakagami
distribution, which has been validated by using Kolmogorov–Smirnov
testing at a significance level of 1%. We assume in our analysis that
the phase rotation imposed by the channel is uniformly distributed in
[0, 2π]. The transmitted signal is also corrupted by both additive white
Gaussian noise and partial band noise jamming (PBNJ) having single-
sided power spectral densities of N0 and NJ , respectively.

ZFD: The data estimates d̂ at the output of the zero-forcing detector
(ZFD) are

d̂ZFD|Rn=σ2I = (AHA)−1AHy (3)

where n is the noise sequence, which has a covariance ma-
trix of Rn = E[nnH ], and A is the overall system matrix.
Equation (3) assumes that n consists of noise samples that are zero-
mean Gaussian variables having a variance of σ2 with the corre-
sponding covariance matrix Rn = σ2I , where I is the identity matrix
[11]. After the ZFD, the corresponding symbol probabilities and log-
likelihood ratios (LLRs) are computed, which are then fed to the unity-
rate decoder in Fig. 1.

C. Iterative Decoding

The conditional probability of the jth transmitted symbol Θj , where
j = 0, . . . , J − 1, given the signal d̂ = [d0, d1, . . . , dJ−1], which
represents the set of J outputs of the ZFD in Fig. 1, is given by

P (Θj |d̂) =
p(d̂|Θj)P (Θj)

p(d̂)
(4)

where p(d̂|Θj) is the pdf of the received signal d̂ given that Θj is
transmitted. Furthermore, P (Θj) is the a priori probability of the
symbol Θj , whereas p(d̂) =

∑J−1

j=0
p(d̂|Θj)P (Θj) is the probability

of receiving the signal set d̂. At the first iteration, we have P (Θj) =
1/J for all the transmitted symbols, since no a priori information is
available. The pdf p(d̂|Θj) uniquely determines the statistics required

for estimating the probability P (Θj |d̂). The expression of p(d̂|Θj) is
given by

p(d̂|Θj) = fdj
(vj |Θj)

J−1∏
x=0,x �=j

fdn(vx|Θj) (5)

where fdn(vx|Θj) represents the pdf of the xth detector value,
x = 0, 1, . . . , J − 1, given that Θj is transmitted. The simplified
expression for p(d̂|Θj) is

p(d̂|Θj) = exp

(
vjγh

1 + γh

)
(6)

where γh = bREb/(N0L) is the SNR per hop, R is the code rate, Eb

is the transmitted energy per bit, and b = log2 M is the number of
bits per symbol. The corresponding LLRs [4] can be computed from
(5) and (6).

The derivation of the soft information from the received signal is dif-
ferent for the two- and three-stage serial concatenated schemes. In the
first case, the unity-rate a posteriori probability (APP) soft-input–soft-
output (SISO) decoder and the outer decoder exchange EI to perform
iterative detection (ID), both invoking the Bahl–Cocke–Jelinek–Raviv
algorithm using bit-based trellises. Again, we refer to this ID-aided
configuration as the two-stage scheme. Alternatively, the system may
be modified so that the TH-PPM-UWB detector, the unity-rate inner
decoder, and the IrVLC outer decoder exchange their EI, as shown in
Fig. 1. We refer to this arrangement as the three-stage scheme. The
three-stage scheme requires the additional interleaver π2 between the
precoder and the TH-PPM-UWB detector in Fig. 1.

Since N separate VLC encoders are employed in the
TH-PPM-UWB transmitter, N separate VLC decoders have to
be used in the corresponding receiver seen in Fig. 1. In parallel with
the composition of the bit-based transmission frame Φ from N VLC
source symbols, the a priori LLRs Δo

app(Φ) are decomposed into
N components, as shown in Fig. 1, although each of the components
processes a proportionely reduced number of symbols. Hence, the
associated complexity is only modestly increased. This is achieved
with the aid of the explicit side information that we assume to be
available for conveying the slightly varying number of bits In of each
transmission frame component Φn. Each of the N VLC decoders
is provided with the a priori LLR subframe Δo

app(Φn), and in
response, it generates the a posteriori LLR subframe Δo

pos(Φ
n),

n ∈ [1, . . . , N ]. These a posteriori LLR subframes are concatenated
to provide the a posteriori LLR frame Δo

pos(Φ).
During the final decoding iteration, N bit-based maximum APP

VLC sequence estimation processes are invoked instead of single-class
APP SISO VLC decoding, as shown in Fig. 1. In this case, each trans-
mission frame component Φn is estimated from the corresponding
a priori LLR frame component Δo

app(Φn). The resultant transmission

frame component estimates Φ̃
n

may be concatenated to provide the
transmission frame estimate Φ̃. Additionally, the transmission frame
component estimates Φ̃

n
may be VLC decoded to provide the source

symbol frame component estimates Θ̃
n

.

III. PERFORMANCE ANALYSIS

We have used N = 16-component VLC codebooks {VLCn}N
n=1

having approximately equally spaced coding rates in the range of
[0.2, 0.95] in the TH-PPM-UWB scheme. Moreover, unless otherwise
stated, we employ the following parameter values: source symbol
frame length of J = 80 000, outer code rate of R = 0.5, TH-PPM-
UWB spreading factor of M = 16, and a diversity order of L = 3.
In each case, we employ a variable-length error-correcting codebook
[3] that is tailored to the source symbol values’ probabilities of
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Fig. 2. Inverted VLC EXIT curves and unity-rate decoder EXIT curves,
assuming uncorrelated Nakagami-m fading channel.

occurrence. Again, these codes compress the unequal probability input
data symbols for the sake of achieving a near-entropy source rate and
a lower probability at near-capacity SNRs. By contrast, in the VLC
benchmarker scheme, we employ just N = 1 VLC codebook, which
is identical to the VLC codebook VLC10 of the IrVLC scheme having
a coding rate of R = 0.5. Note that this coding rate results in an
average interleaver length of J · E/R bits. The inverted EXIT curve
of the IrVLC scheme is also shown in Fig. 2, assuming an uncorrelated
Nakagami-m fading channel contaminated by PBNJ characterized by
Eb/NJ = 10 dB and a jamming factor of ρ = 0.1. This was obtained
as the appropriately weighted superposition of the N = 16 component
VLC codebooks’ inverted EXIT curves, where the weight applied to
the inverted EXIT curve of the component VLC codebook V LCn is
proportional to the specific number of source symbols employed for
encoding Jn [1]. Using the approach in [1], the values of {Jn}N

n=1

given in Fig. 2 were designed so that the IrVLC composite coding rate
matches that of our regular VLC benchmarker scheme, namely, 0.5.
Furthermore, we ensured that the inverted IrVLC EXIT curve did not
cross the unity-rate decoder’s EXIT curve at Eb/N0 of 5.9 dB. We note
that only four out of the 16 VLC components were indeed activated by
the algorithm in [1] to encode a nonzero number of source symbols.
As shown in Fig. 2, the presence of an open EXIT chart tunnel implies
that an infinitesimally low BER may be achieved by the TH-PPM-
UWB scheme for Eb/N0 values above 5.9 dB. By contrast, an open
EXIT chart tunnel is not afforded for Eb/N0 values below 5.8 dB in
the case of the VLC-based benchmarker scheme.

Analogous to the IrVLC design in Fig. 2, we have also
designed IrVLC codes for both two- and three-stage ID-aided
schemes, assuming various jamming scenarios in Nakagami-m
fading channels. The design parameter values are listed in Table I,
where the relevant minimum values of Eb/N0(dB) or Eb/NJ(dB)
at which an open convergence tunnel is formed are shown alongside
the specific fractions of the source symbol frame encoded by each
component code of the IrVLC scheme given by αn = Jn/J . Both the
EXIT-chart-based and the Monte Carlo simulation-based convergence
SNR values are shown in Table I for both IrVLC and VLC schemes.
Here, the theoretical values imply those predicted by the EXIT chart
analysis, whereas the actual values are those achieved in the symbol-
by-symbol Monte Carlo simulations. The code rates of the IrVLC’s
component codes used in our simulations are [0.95, 0.89, 0.85, 0.8,
0.75, 0.7, 0.65, 0.6, 0.55, 0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2].

Fig. 3 provides the BER performance of both two- and three-stage
schemes versus Eb/NJ , assuming Eb/N0 = 10 dB and ρ = 0.5. It
becomes explicit from Fig. 3 that the three-stage scheme yields an im-
provement of nearly 3 dB over the two-stage IrVLC. The performance
gain achieved by the three-stage scheme is at the expense of a slightly
higher complexity, which is imposed by the extra interleaver and

TABLE I
PARAMETER VALUES FOR THE IrVLC-BASED CONCATENATED SCHEMES

Fig. 3. BER versus Eb/NJ performance of the two- and three-stage
VLC- and IrVLC-based schemes in jammed uncorrelated Nakagami-m fading
channels assuming Eb/No = 10 dB and ρ = 0.5.

Fig. 4. BER versus Eb/No performance of the two- and three-stage
VLC- and IrVLC-based schemes in jammed uncorrelated Nakagami-m fading
channels, assuming Eb/NJ = 10 dB and ρ = 0.1.

decoder. Fig. 3 demonstrates that the three-stage scheme outperforms
the corresponding VLC-based arrangement by 1.1 dB. The effect of
reducing the number of iterations in both two- and three-stage schemes
is characterized in Fig. 4. Finally, Fig. 5 portrays the EXIT curves of
the IrVLC and unity-rate decoders and the corresponding decoding
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Fig. 5. IrVLC and unity-rate decoder EXIT curves and decoding trajectory
assuming jammed uncorrelated Nakagami-m fading channels with ρ = 0.1.

trajectory, assuming an interference-free uncorrelated Nakagami-m
fading channel for an SNR of 5.9 dB.

IV. CONCLUSION

In this paper, we have investigated the serial concatenation of IrVLC
coding with a TH-PPM-UWB design operating in Nakagami-m fading
channel in conjunction with PBNJ. Consequently, we noted that the
precoder-aided scheme yields a gain of more than 6.9 dB over the sys-
tem operating without a precoder. An open EXIT chart tunnel may be
created at low SNR values. Moreover, the proposed three-stage design
performs 2.9 dB better than the corresponding two-stage scheme.
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On Power-Loading Algorithms for Packet-Access
OFDM Systems

Lin Tang, Honglin Hu, Member, IEEE, and
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Abstract—Numerous power-loading techniques for wireless applications
have been proposed in the literature. However, most of the existing
power-loading schemes may not always be suitable for packet-access or-
thogonal frequency-division multiplexing (OFDM) systems. In this paper,
we propose a Lagrange multiplier power-loading (LMPL) algorithm for
packet-access OFDM systems with fixed modulation and coding trans-
mission. The proposed LMPL algorithm offers a closed-form solution for
the power-loading optimization problem under a total transmit power
constraint. As a closed-form solution may not be available for adaptive
modulation and coding (AMC) transmission, we use a low-complexity joint
LMPL algorithm to enhance the system throughput. Numerical results
show that the proposed LMPL algorithms outperform the traditional
channel inversion power-loading (CIPL) scheme. It is also shown that the
theoretically derived throughput very well matches the simulation results.

Index Terms—Lagrange multiplier, modulation and coding, orthogonal
frequency-division multiplexing (OFDM), power loading, throughput.

I. INTRODUCTION

In frequency-selective fading channels, different orthogonal
frequency-division multiplexing (OFDM) subcarriers may experi-
ence different channel attenuations. To maximize system throughput,
bit/power-loading algorithms are widely used to adaptively adjust
power and data rate across the subcarriers in response to varying
channel state information (CSI). The optimal solution is to use a
water-filling approach [1], where the throughput curve is assumed
to approach the Shannon limit, and the power loading is carried out
by Lagrange multiplier optimization. However, because the number
of different ways for bit assignments is constrained to be an integer
in any practical communication system, i.e., the constellation size of
modulation and coding schemes (MCSs) is finite, the water-filling-type
power loading has to be modified before it can effectively be used.

Numerous power-loading algorithms were proposed to solve the
discrete power-loading problem. These algorithms can mainly be
classified into two categories: 1) rate-maximization and 2) margin-
maximization algorithms. In the rate-maximization algorithms [2]–[6],
the total rate of the system is maximized under a total transmit power
constraint, whereas in the margin-maximization algorithms [6]–[9],
the total transmit power is minimized to meet the total rate constraint.
However, all of these bit/power-loading methods were derived for an
uncoded OFDM system, meaning that only adaptive modulation is
employed. In fact, channel coding is always integrated with different
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