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Fingerprinting Localization in Wireless Networks

Based on Received-Signal-Strength Measurements:
A Case Study on WiIMAX Networks

Mussa Bshara, Student Member, IEEE, Umut Orguner, Member;, IEEE,
Fredrik Gustafsson, Senior Member, IEEE, and Leo Van Biesen, Senior Member, IEEE

Abstract—This paper considers the problem of fingerprinting
localization in wireless networks based on received-signal-strength
(RSS) observations. First, the performance of static localization
using power maps (PMs) is improved with a new approach called
the base-station-strict (BS-strict) methodology, which emphasizes
the effect of BS identities in the classical fingerprinting. Second,
dynamic motion models with and without road network infor-
mation are used to further improve the accuracy via particle
filters. The likelihood-calculation mechanism proposed for the
particle filters is interpreted as a soft version (called BS-soft) of
the BS-strict approach applied in the static case. The results of
the proposed approaches are illustrated and compared with an
example whose data were collected from a WiMAX network in a
challenging urban area in the capitol city of Brussels, Belgium.

Index Terms—Fingerprinting, Global Positioning System (GPS),
Global System for Mobile Communications (GSM), location-based
service (LBS), navigation, path loss model, positioning, positioning
accuracy, power maps (PMs), received signal strength (RSS), road
network information, SCORE, time of arrival (TOA), WiMAX.

I. INTRODUCTION

HERE ARE several ways to position a wireless network

user. GPS is the most popular way; its accuracy meets
all the known location-dependent applications’ requirements.
The main problems with GPS, in addition to the fact that the
user’s terminal must be GPS enabled, are the high battery
consumption, limited coverage, and latency. Furthermore, GPS
performs poorly in urban areas near high buildings and inside
tunnels. Another way to position a user is to rely on the wireless
network itself, by using the available information like the cell
ID, which has widely been used in Global System for Mobile
Communications (GSM) systems, despite its limited accuracy
[1]. Using other network resources (information) like the re-
ceived signal strength (RSS), time of arrival (TOA), or time
difference of arrival (TDOA) gives better accuracy but requires
making measurements by the wireless terminal (terminal-side
measurements), by the network (network-side measurements),
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or by both [2], [3]. From this point on, we are going to refer
to these measurements as network measurements, regardless
of where these measurements have been conducted. Some
of these measurements are hard to obtain, like TOA, which
needs synchronization, and some are easy to obtain, like RSS
measurements. Many localization approaches depending on
network measurements have been proposed in GSM networks
and sensor networks. Most of the works focused on range mea-
surements depending on TOA, TDOA, and RSS observations;
see surveys [2], [4], and [5] and the references therein. These
approaches can improve the localization accuracy achieved by
using the cell ID. The basic idea in RSS-based localization is
to compare all measured RSS values to a model of RSS for
each position and then determine the position that gives the
best match. The two most common models are the general
exponential path loss model and a dedicated power map (PM)
constructed offline for the region of interest. The first alternative
is the most common strategy and is the simplest to deploy. The
exponential path loss model is known as the Okumura—Hata
(OH) model [6], [7], and in a log power scale, it says that the
RSS value linearly decreases with the distance to the antenna.
This is quite a crude approximation, where the noise level is
high and further depends on multipath and non-line-of-sight
(NLOS) conditions. In [8], the authors used this alternative to
track a target and proposed using different path loss exponents
for the links between the terminal and the base stations (BSs).
The proposed method achieved higher localization accuracy
than the conventional localization methods that use the same
path loss exponent for all the links. Furthermore, the authors
of [9] proposed using an RSS statistical lognormal model and
a sequential Monte Carlo localization technique to get better
localization accuracy. The lognormal model was also used in
[10] to estimate the mobile location, and the authors tried to
mitigate the influence of the propagation environment by using
the differences in signal attenuations.

The second alternative is to determine the RSS values in
each point and save these in a database (i.e., a map). This can
be done using offline measurement campaigns adaptively by
contribution from users or by using cell planning tools. The
advantage of this effort is a large gain in the SNR and less
sensitivity to multipath and NLOS conditions. The set of RSS
values that are collected for each position in the map from
various BSs is called the fingerprint for that location. The idea
of matching observations of RSS to the map of the previously
measured RSS values is known as fingerprinting, which proved
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to provide better performance than the first alternative [1]. In
[11] and [12], the authors used RSS information in finger-
printing positioning to improve the accuracy obtained by the
lognormal model. The authors of [13] used fingerprinting to
overcome the inconveniences related to the use of the TOA, the
angle of arrival, and the RSS lognormal model for positioning.

In this paper, we propose to use fingerprinting localiza-
tion depending on RSS-based observations for positioning
and tracking in wireless networks. We first consider classical
fingerprinting, and based on the BS identities, we propose
a method to improve fingerprinting performance. The new
method emphasizes the effects of the BS identities in classical
fingerprinting, and it is called the BS-strict method. Then, the
use of dynamic motion models is suggested for further improve-
ment. In this regard, we use particle filters (PFs) [14]-[16] with
both unconstrained and road-constrained motion models. The
simultaneous use of the motion models and the road network
information has shown to yield quite good estimation perfor-
mance. The special likelihood calculation mechanism that this
paper suggests for the dynamic case, which is called the BS-
soft method, is also interpreted as a soft version of the BS-
strict methodology proposed for the static case. We present
our results along with remarks on WiMAX networks, which
were the main motivation and the illustrative case study for this
research. However, our results equally apply to other types of
networks. The importance of the contributions of this paper can
be summarized as follows.

1) The proposed approaches yield direct methodologies for

RSS-based localization balancing the effects of measured
RSS values and the BS identities. Increasing the effect
of BS identities in location estimation is particularly
significant when the SNR in the RSS values is low and
the effects of multipath and fading are dominant.

2) Dynamic localization using PFs gives a seamless inte-
gration of fingerprinting-type approaches with dynamical
motion models and road network information.

We also argue that the approaches considered in this paper meet
the requirements of most location-dependent applications.

This paper is organized as follows. The measurement model-
ing methodologies for the RSS measurements are summarized
in Section II. The main building blocks of the proposed meth-
ods, which are different likelihood calculation mechanisms, are
given as separate algorithms in Sections III and V for the static
and dynamic estimation cases, respectively. These algorithms
are used in their corresponding positioning and tracking meth-
ods, and their performances are illustrated in Sections IV and
VI, respectively. Conclusions are drawn in Section VII.

II. MODELING RSS MEASUREMENTS
FOR FINGERPRINTING

In general, the received signal r, at the time instant ¢ can be
expressed as

Ty = iS¢ + Uy (D

Here, s denotes the transmitted (pilot) signal waveforms, a; is
the radio path attenuation, 7 is the distance-dependent delay,

and v; is a noise component. A WiMAX modem does not
readily provide information for time-delay-based localization,
and therefore, we focus on the path loss constant a;. This value
is averaged over one or more pilot symbols to give a sampled
RSS observation

2z =h(ah) + ex (2a)
oz, if 2k > Ymin
Yk = {NaN, if i < Ymin (2b)

where £ is the sample index (corresponding to time instant ¢ =
to + kT, where ¢ and T are the time of the first sample (k = 0)
and the sampling period, respectively), % is the position of
the target, and NaN stands for not a number, representing a
“nondetection” event. This expression includes one determinis-
tic position-dependent term /(2% ) including range dependence,
and ey, is the noise that includes fast and slow fading. We also
explicitly model the detector in the receiver with the threshold
Ymin, Since signals that are too weak are not detected.

The classical model of RSS measurements is based on the
so-called OH model [6], [7], which is given as

OH model: z = Pps — 10 logy (||sz — CCZHQ) + ek
3)

where Ppg is the transmitted signal power (in decibels), « is the
path loss exponent, e, is the measurement noise, and ppg is the
position of the antenna; the standard || - |2 norm is used. This
model has been used in many proposed localization algorithms
[2], [17]. Although it is a global and simple model, there are
several problems associated with using it.

1) The transmitted power needs to be known, which requires
a protocol and software that allows a higher layer of
applications to access this information.

2) The position of the antenna needs to be known. This
requires first building a database. Second, it requires that
the user application be able to access the identification
number of each antenna connected to the model. Third,
the operators in some countries consider the position of
their antennas to be classified.

3) The path loss constant needs to be known, while, in
practice, it depends on the local environment.

An alternative model is based on a local PM (LPM), which is
obtained by observing the measurement y;, over a longer time
and over a local area. Each LPM item is then computed as a
local average

LPM model: 2(x) =E(y) = E (h(z) + €) (4a)
0= {0 e S o

where the operator E denotes the corresponding averaging.
LPM provides a prediction of the observation (2) in the same
way as the OH model in (3) does. However, the LPM should
be considered to be more accurate since it implicitly takes care
of the line-of-sight/NLOS problems that are difficult to handle
[18]. The LPM model also partially includes the effects of slow
and fast fading. The total effect can be approximated as a gain in
SNR with a factor of ten, compared with the OH model; see [2].
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The collection of averaged measurements ﬁ(x) for the same
position in a single vector gives us the fingerprint h(z) for that
position, i.e.,

}ALNBS«L')}T (5)

where Npg is the number of BSs, and ﬁj (z) is the averaged
measurement from the jth BS at the position x. The advantage
of collecting fingerprints in a database is that prior knowledge
of the antenna position, transmitted power, or path loss constant
is not needed, enabling mobile-centric solutions. The price for
this is the cumbersome task of constructing the LPM. Here,
three main alternatives are plausible.

1) Collect the fingerprints during an offline phase. The
measurements to be stored have to be collected from all
possible places where the target can be and under various
weather conditions at different times in the area under
study. This method gives the most accurate database, but
it is time consuming and expensive.

2) Use the principle of wardriving [19], where the users
contribute online to the LPM. The idea is that users with
positioning capabilities (for instance, GPS) report their
position and observations (2) to a database [20], [21],
which is used to position other users.

3) Predict the fingerprints using Geographical Information
System planning tools [2]. Using the radio propagation
formulas to predict the RSS values is not as accurate as
measuring them because it is not possible to model all the
propagation effects. As a result, the predicted data are not
as accurate as the measured ones, but they are quite easy
to obtain.

In this paper, the first method was adopted, and the WiMAX
RSS values have been collected from all the possible roads in
the area under study (we assume that the target or the user is
using the public road network) during an offline phase. The
LPM has been formed from this database as follows.

1) Nppym different  grid points denoted as {pi 2
(2%, )T} NP where 7 and ' denote the - and
y-coordinates of the ith point, respectively, have been
selected on the road network. A maximum distance of
10 m has been left between these LPM points.

2) For each piece of data that has been collected, the closest
LPM grid point has been found.

3) For each LPM grid point ¢, the vector h' (called the “RSS
vector” or fingerprint) is formed such that

T

h' =[hi By P (©)
where ﬁ; is the mean of the RSS data from the jth BS
assigned to the 7th LPM grid point. If there are no RSS
data from the jth BS assigned to the ith LPM grid point,
we set hé = NaN, representing a nondetection. Note
that each fingerprint (or RSS) vector h' = h(p?) is a rep-
resentative of the expected RSS values at the position p°.

The measured RSS values at the time of localization are then
collected in another RSS vector y, which is defined as

y=I[y Ynps ] (7

where the values y; are equal to the measured RSS values
from the jth BS or are equal to NaN when there is no value
measured (no detection). The localization can then be done by
defining distance measures between the measurement vector y
and the map RSS vectors h'. In this paper, we will denote such
measures in the form of likelihoods p(y|h?) of the measurement
vector y given the RSS vector h, which represents a hypothesis
about the position of the target (i.e., p*). Note that this notational
selection makes sense in the case of dynamic localization where
probabilistic arguments quite frequently appear. However, even
in the static localization, the use of such a symbol for the
distance measures, in spite of the fact that there is no stochastic
reasoning in their definition most of the time, emphasizes the
similarity of the problems in both cases. How to define the
likelihoods is not straightforward and forms the backbone of
localization. Once they are defined, the localization procedure
in fingerprinting can mathematically be posed as the maximum-
likelihood (ML) estimation problem given as follows:

T _ 3
[y} =p ®)

i=arg max p(y[h’) ©)

1<i<Nrpm
where & and ¢ are the estimated x- and y-coordinates of the
target.

III. LIKELIHOOD DEFINITIONS FOR STATIC ESTIMATION

In defining the likelihoods used for classical (static) finger-
printing [given in (8) and (9)], if the vectors y and hi did
not have NaN values, then any norm (or normlike functions)
would do the job. The same would be true in the case where the
places of NaN values and non-NaN values would match in the
two vectors. However, it is quite unlikely that this condition is
satisfied in any real application. The classical way of defining
the likelihood function is as given in the following algorithm
(1], [12].

1) Algorithm 1—Classical Fingerprinting: Ignore the NaN
values and compute the likelihood as the distance between the
two (sub)vectors, i.e.,

ply[h®) £ |7~ (10)
where T% 2 [yi 4i, ...
are defined as

A fu— b g AN, B £ NaN
J 0, otherwise.

vi..]T is the vector whose elements
» INBs

(1)

The norm || - || (although, most of the time, its effects might be
negligible) can be selected to be any valid norm or distance. In
our paper, for the comparisons, the standard || - |2 norm is used.
On the other hand, the nonmatching NaN values, as is going
to be shown in this paper, carry valuable information that should
not be neglected in the localization. The information given by
them can be summarized for two different cases.
1) When the measurement vector y has a NaN value for
some BS (this means that the receiver did not get any
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RSS measurement from that BS), the hypotheses h' that
have a value for that BS are unlikely. In other words, the
positions p° that are far from the BS are more likely.

2) When the measurement vector has a value for some BS
(this means that the receiver has got an RSS measurement
from that BS), the hypotheses h' that does not have a
value for that BS (these are the RSS vectors h' that have
a NaN value for that BS) are unlikely, i.e., the positions
p® that are close to the BS are more likely.

The use of this (in a way) negative information in localiza-
tion to different extents is the main theme of this paper. The
localization hypotheses hi having nonmatching NaN values,
which we call nonmatching hypotheses, are punished by our
proposed methods. Two different likelihood calculation mech-
anisms (and, hence, measurement models) are proposed for the
static and dynamic estimation cases, respectively. The static
estimation case involves no assumption of temporal correlation
of the estimated position values and therefore requires the
full extent of the punishment of the nonmatching hypotheses.
Consequently, we call the likelihood calculation mechanism
proposed for this case as the BS-strict approach. The dynamic
estimation case, on the other hand, makes use of a dynamic
motion model for the estimated position values, which enables
the positioning algorithm to accumulate information from con-
secutive measurements. This requires a softer version of the
BS-strict approach in the sense that it allows for the survival of
the unlikely hypotheses between consecutive times. Hence, we
call the proposed algorithm for this dynamical case the BS-soft
approach.

We delay the stochastic derivation of the BS-soft approach
to Section V and give in the following the BS-strict approach,
which is going to be used in the static estimation in Section I'V.

2) Algorithm 2—BS-Strict: This approach calculates the
likelihoods in the same way as Algorithm 1 does, but this time,
the elements ~? of the vector I'* are defined as

y;j —hi, y; #NaN, ki #NaN
i A Y
7 =940, y; =NaN, hi =NaN (12)
o0, otherwise.

Notice that the infinite punishment given to the nonmatching
NaN values in Algorithm 2 results in the elimination of the
corresponding hypotheses because their likelihood will vanish.
Any likelihood-based method using Algorithm 2 will therefore
search for the strict match of the NaN and non-NaN values
in the two compared RSS vectors. This methodology will
then increase the effects of the BS identities in the estimation
process. The methods based on this algorithm can be more
robust than the ones using the classical algorithm, which relies
only on the measured RSS values. This is because the measured
BS identities are much more reliable than the actual measured
RSS values under a significant range of effects like weather,
NLOS, and fading.

IV. FINGERPRINTING LOCALIZATION: THE STATIC CASE

In this paper, the PMs of all available sites in the measure-
ment area shown in Fig. 1 have been generated and plotted in

1800 I
é site1
L site2
1600 + site3
1400 - . _measurement point_
E 1200
3
w 1000
=
B
o 800f
o
o
S 600f
400 |
200 -
0 . . . L ) . . .
0 200 400 600 800 1000 1200 1400 1600
X-coordinates [m]
Fig. 1. Area under study (the measurement area). The average distance

between two sites is about 1150 m.

Fig. 2. In the following sections, fingerprinting as defined in
(8) and (9) is applied to the RSS index (RSSI) and SCORE
values where the likelihoods p(y|h?) involved are calculated
by either the classical method or the BS-strict approach defined
in Section III.

A. Fingerprinting Using RSSI Values

In this section, we suppose that the user can accurately mea-
sure (the same accuracy as the PM) the received power (RSSI
values). This can be done (and has been done in this paper) us-
ing special calibrated modems with extra software installed, and
the measurements have to be collected offline, because only one
channel can be measured at a time. Currently, it is not practical
to use such modems in applications, but the purpose of using
them in this paper is to check the possible achievable accuracy
in case the user can make such measurements. The validation
data set was obtained using the trajectory shown in Fig. 3 and
was used to position a user. The two mentioned approaches
were applied: the classical fingerprinting (Algorithm 1) and the
BS-strict fingerprinting (Algorithm 2). The results are shown
in Fig. 4. The BS-strict fingerprinting approach’s performance
was significantly better than the classical one due to the fact
that the BS number is more robust against the noise than RSS
values, i.e., the same BS number will be obtained, regardless of
the presence of strong noise, but different RSS values will be
collected.

B. Fingerprinting Using SCORE Values

The SCORE values are used by the standard WiMAX
modems to evaluate the connection quality between the sub-
scriber station and the available BSs, and they can be collected
without adding any extra software or hardware to the modem.
The advantage of using the SCORE values is the possibility of
simultaneously obtaining them for all the available BSs, but the
disadvantage lies in their low accuracy compared with RSSI
values. The relation between SCORE values and RSSI values
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Fig. 2. PMs of the three WiMAX sites. (a) Site 1. (b) Site 2. (c) Site 3.
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is given, according to the information provided by the modem
manufacturer, by

SCORE = (RSSI — 22) — (0.08 x AvgViterbi)

13)
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Fig. 4. Positioning error cdf’s. The two fingerprinting approaches were used
(the classical and the BS-strict) with the available measurements (RSSI and
SCORE).

where the AvgViterbi value is statistically computed from the
Viterbi decoder. This adds an extra challenge for localization
services, since even though the performance of the decoder
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is important for handover decisions, it is only a nuisance
for localization. Measurements were collected using the same
trajectory to validate the two fingerprinting approaches (using
the same database built using RSSI values). Fig. 4 shows the
cumulative distribution function (cdf) of the positioning error.
Two observations can be made.

1) Using the SCORE values gives less positioning accuracy
than using the RSSI values. This is logical because the
SCORE values are less accurate than RSSI values.

2) The impact of using the BS-strict approach is larger in the
case of SCORE values. The SCORE values are subject to
bigger changes than the RSSI values because the SCORE
values depend on not only the received power but the
quality of the signal determined by the Viterbi decoder
as well.

V. LIKELIHOOD DEFINITIONS FOR DYNAMIC ESTIMATION

In static estimation, there is no temporal correlation between
the consecutively made estimations. In other words, once a
measurement y,, is collected at time ¢; and an estimate &7
of the target position is obtained, in the next time step ¢y 1,
the whole procedure is repeated by using only yy, . ,, and the
new estimate :%2 41 is independent of what ii is. In such a case,
the use of the information stored in the measurement y;, to its
fullest extent is reasonable because by doing this, we achieve
the following.

1) We extract most out of a single measurement.

2) Even if we make a mistake in the current estimation,
the estimation errors cannot accumulate and affect the
subsequent estimations.

Consequently, the negative information (i.e., nondetection
events or NaN values) in the measurements y has been
used to completely eliminate some positioning hypotheses in
Algorithm 2.

On the other hand, the dynamical estimation methods, which
use models to take advantage of the correlated information
in consecutive position estimations, get their power from the
accumulation of the information in the algorithm along the
time. Therefore, the survival of different hypotheses about
the position values is important in such methods for the
information-gathering process, which enables higher estima-
tion performance. Moreover, the complete elimination of some
hypotheses (like the assignment of infinite cost to nonmatching
hypotheses in Algorithm 2) can result in error accumulation in
a recursive procedure because a hypothesis deletion can never
be compensated for in the future, even if some contrasting
evidence appears. Thus, assigning still higher but finite costs
to nonmatching hypotheses, hence allowing them (or some
of them) to survive, is more suitable in dynamic estimation
procedures. Since such a cost assignment procedure makes
the hypothesis punishment softer than that in Algorithm 2 by
assigning finite costs to nonmatching hypotheses (compared
with the infinite punishment in Algorithm 2, which results in
the hypothesis elimination), we call the resulting methodology
as the “soft” approach. In the following, we give such a soft
likelihood calculation mechanism to be used in a dynamic

estimation method. The algorithm that we will present is based
on the following simple assumptions.

1) The elements {y]}jvjf of the measurement vector y
are conditionally independent, given the database RSS
vector h’.

2) Matching non-NaN values in the measurement and RSS

values satisfy

y;j =i +ej, ify; #NaNandh! #NaN  (14)

where e; ~ p.(.) represents the measurement noise for
. J
the jth BS.

Using the first assumption, the likelihood p(y|h?) can be
written as
pvie) = [ 8 ()
j=1
where [3;; 2 p(yj|fAL§) is the individual likelihood for the jth
BS. The different combinations that appear in the analysis due
to NaN values are separately considered as follows.

1) If y; # NaN (we get a measurement from the jth BS)

and iL; = NaN (the ith hypothesis has LPM data for the
jth BS), we have, by assumption 2, that

Bij = Pe; (Z/j - h;)

where p. (.) can be selected considering the application
requirements. A simple choice is to set

Bij =N (yj; ibé', U?)

(16)

a7)

where NV (y;; fzz, 07) denotes a normal density with mean
ﬁ; and standard deviation o; evaluated at y;. This cor-
responds to pe, () = N(.;0,07). If the number of data
points averaged for an LPM grid point is greater than,
e.g., ten, then by the central limit theorem, this Gaussian
likelihood seems to be the most appropriate selection. The
standard deviation o is a user-selected parameter that
could change from BS to BS.

2) If y; = NaN (we do not get any measurement from the
jth BS) and I:L; = NaN, we then have

By =P (yj < yminm;i) (18)
=P (e < yin — 1) (19)
—cdfe, (Yonin — ) (20)

where cdf., () 2 J*. pe,(x)dz is the cdf of e;. Here,
while passing from (19) to (20), we assumed that ¢; is
a continuous random variable (i.e., no discontinuity in
its cdf). The probability density function appears in the
calculation again as a design parameter. Notice here that,
although it is the same density as that required in the pre-
vious case, the density p.,(.) can be selected differently
in each case for design purposes. In fact, as observed from
several preliminary experiments, the Gaussian selection
as in the previous case gives too much (exponential)
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punishment for the nonmatching hypotheses (i.e., hy-
potheses corresponding to h’ for which /Azz £ NaN). Such
a selection would therefore yield a hard approach that
is similar to the BS-strict algorithm. Therefore, another
selection has been made, which leads to the softer result

h

Bij = 1)

Ymin

where 1 <1 is a constant design parameter. This se-
lection, in fact, corresponds to a uniform density for e;
between the values ymin and —ymin when = 0.5/ ymm
Notice that we always have ymin < h < 0 in this paper,’
and therefore, 0 < 3;; < 1. Since we do not get a mea-
surement from the jth BS, we punish the hypotheses that
have LPM values for that BS and note that the larger the
LPM value (i.e., power), the greater the punishment is,
i.e., B;; is smaller.

3) Ify; # NaNand ﬁj = NaN (for the ¢th hypothesis, we do
not have any data for the jth BS), then a similar analysis
would be

By = (w311} < Youin) @2)
P (i < yuminly ) p(55)

T P (<) >

which requires the prior likelihood p(y;) and probability

P(ﬁ; < Ymin), Which are hard to obtain. A straightfor-
ward approximation can be

Bij = P (h; < ymin|yj) (24)

which is simple to calculate in a way similar to (21) but
has been seen to give low performance in preliminary
simulations. The reason for this has been investigated and
is found to be that the term calculated using (24) can
sometimes be much larger than the terms calculated for
the hypotheses that actually have a (non-NaN) value for
that BS. We are going to illustrate our argument on the
following example case: Suppose that i7; 7# NaN (i.e., we
have collected a measurement from the jth BS) and iy
and 79 are two positioning hypotheses such that h“ = h’2

for ¢ # j. Suppose also that hz1 NaN (for the i;th
hypothesis, we do not have any data for the jth BS) and
fﬁ2 = NaN (for the isth hypothesis, we have data for
the jth BS). We would like to calculate the punishing
terms (likelihoods) 3;,; and f3;,; corresponding to these
two hypotheses. Since the hypothesis ¢; is nonmatching
(in terms of only the jth BS, ie., y; # ﬁ;l) and the
hypothesis 7; is matching (in terms of only the jth BS,

'In fact, the data collected in this paper (i.e., {fz;}fvzlf’ M for j =

1,..., Npg) satisfied this assumption, but in general, the collected data need

not satisfy it. This is, however, not a restriction because one can always find the
oA 7 :

quantity h = maxi << Npg MAX1 << Ny pyy h; and subtract it from all the

data and the online measurements when they are collected to obtain equivalent

data and measurements that satisfy the assumption for a value of Y in-

4)

e, y; = izé-l), we expect the punishment for ¢; to be
more than the one for 75, that is, the inequality

Binj < Biyj (25)

must be satisfied. Note that, since 3;,; depends on il;—z
and y; via (17), it can be arbitrarily small. Therefore,
if 3;,; is selected irrespective of the 3;,; values for the
matching hypotheses, it is a strong possibility that 3;,;
would happen to be much higher than 3;,;, and hence,
a nonmatching hypothesis will be promoted instead of
the matching ones. In fact, in the preliminary simulations
using (24), this caused the matching hypotheses to be
discarded. Therefore, for this case, we (give up (24) and)
propose the following likelihood calculation method:

ﬂij = mHEl}\I/llj ij (26)
where the set M is given as
M, & {i|iz§ £ NaN} . @7

The likelihood (26) always satisfies the condition (25),
and hence, the nonmatching hypotheses are punished
more than or as much as the matching ones. One can
actually replace the punishment factor with any smaller
value. Notice that when there are no hypotheses that have
values for the BS (i.e., the set M, is empty), arbitrary
punishing or (24) can be applied.

If y; = NaN and lAzz = NaN, then since the vectors are
matching for the jth BS, one can set 3;; = 1.

The algorithm outlined is summarized in the following from an
implementation point of view.
1) Algorithm 3—BS-Soft: Suppose the current available hy-

potheses are shown as {h’ 1, where N}, represents the num-
ber of hypotheses.
1) Calculate the quantities a;; for ¢ =1,...,N; and j =
1, RPN ,NBS as

aij:{/\/(yj,h;, 0?), wANaN, B ENN o0

2)

3)

NaN, otherwise.
Calculate the quantities 3;; for ¢ = 1,..., NV, and j =
1,..., Nps using {a;; } as
1, y; =NaN, hi=NaN
w1l y; = NaN, hi # NaN
Big=1q 1" J (29)
minay,;, y; # NaN, k% = NaN
i, Yj 75 NaN, il; 75 NaN

where only numeric values are considered in the
minimization.

Calculate the likelihoods {p(y|h?)}~* from {8;;} as
Ngs
plylh’) = H Bij (30)

fori =1,..., Np.
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The punishment terms in the likelihood calculation can be
thought of as a softened version of the BS-strict approach
previously considered in this section. In a way, by assigning
lower weights to the hypotheses that do not match the measure-
ment, one lowers their effect in the overall estimate instead of
completely discarding them (similar to BS-strict), which can be
quite harmful in dynamic approaches.

VI. FINGERPRINTING LOCALIZATION:
THE DYNAMIC CASE

For the positioning methods used in Section IV, one does
not consider the time information (stamps) available with the
measurements. When the target is localized with good accuracy
for one measurement, in the next measurement when the user
is possibly quite close to the previous location (because only
a small amount of time has passed), the previous accurate
localization is completely discarded, and a new localization is
done based on the new measurement. This is one type of static
target localization, and the dynamic information coming from
the fact that the user does not move much between consecutive
measurements is not used. One of the ways to use this extra
information in localization is to use a dynamic model for the
target (user) position given as
€2y

Xtppr = ftk+1,tk (th ) wtk+17tk)

where we have the following.

1) x¢, € R"= is the state of the target at time .

2) wy, ¢, € R™ is the process noise representing the
uncertainty in the model between time instants ¢; and
ti+1. If the process noise term is selected to be small, this
means that the target model is known with good accuracy
and vice versa.

3) ftwsr,tx(-;.) is, in general, a nonlinear function of its
arguments.

This type of models is generally used in target tracking [22],
[23] to model target motion dynamics. At each time instant ¢y,
we get a measurement yy, that is related to the state of the
target as

Yt = h(xtk) + vy, (32)

where we have the following.
1) h(.) is, in general, a nonlinear function. In our applica-
tion, it is the PM whose information is collected offline.
The likelihoods p(y+, |x, ) will be formed from the PM
using Algorithm 3. The details will be given below in
Section VI-B2.
2) vy, is the measurement noise representing the quality of
our sensors.
The state estimation with this type of probabilistic model,
which is given by (31) and (32), is a mature area of research
[24], [25]. The optimal solution when the functions f(.) and
h(.) are linear and the noise terms wy, . , ¢, and v;, are Gaussian
is the well-known Kalman filter [26]. Some small nonlinearities
can be handled by approximate methods such as the extended
Kalman filter [27], and the methods called sigma-point Kalman

filters [28], of which the unscented Kalman filter [29], [30]
is one type, have been shown to be suitable for a much
larger class of nonlinearities (see the extensive work in [31]).
These approaches are possible alternatives in the cases where
the posterior density of the state is unimodal. On the other
hand, if one assumes that the user is moving on the road, the
state density would be highly multimodal, which can quite
poorly be approximated with a single Gaussian distribution.
Complicating the facts, the measurement function A(.) that is
represented by the PM is highly nonlinear, and furthermore, it
is discontinuous. Therefore, in this paper, we are going to use
the relatively recent algorithms in the literature called PFs [14]-
[16]. Two PFs are used to track the target (user). The first one
exploits the target dynamic information (motion model) only,
and the second filter makes use of the public road information
map in addition to the dynamic information. We call these filters
off-road and on-road PFs for obvious reasons. Knowing that the
user is on the public road network is valuable information for
the positioning of the user. The TeleAtlas maps have been used
as assisting data, in addition to the measured data [32].

A. PF

PFs are the recursive implementation of Bayesian density
recursions [14]-[16]. The main aim in the method, as in
many Bayesian methods, is to calculate the posterior density

of the state x;, given all the measurements Yy, , = {yt,,
Vitys -« Y, 13 1.€., we calculate the density p(xy, |y¢,., ). While
doing this, the PF approximates the density p(xy, |y,.,) with

a number of state values {xgﬁ}f;l (called particles) and their

corresponding weights {nfz) }71\7:1,1 (called particle weights), i.e.,

Np
p(x¢, |ytl:k) ~ Z nt(;i)(sxii) (th) : (33)
i=1 .

Then, at each time step, the PF needs to calculate the par-
ticles and weights {x&),n,ﬁ;)}jﬁg from the previous particles
and weights {xgi)_l,nﬁi)_l}jvgl. We are going to use the basic
particle filtering algorithm, which is called a bootstrap filter that
was first proposed in [33]. At each step of the algorithm, one
can calculate the conditional estimate X;, and the covariance

P, of the state as

NT’
. A i) (i
S, S Yy, (34)
i=1
N, .
A i D) . D .
P, = Znt(k) [xgk) — th} [xgk) — xtk] (35)
i=1

It is possible to calculate other types of point estimates, like
maximum a posteriori (MAP) estimates [34], from the particles
and the weights of the posterior state density; however, this
would require a kernel smoothing of the particles in general
[35]. Note that the PF described is one of the simplest and com-
putationally cheapest algorithms among the more complicated
ones, as given in [36] and [14]. In the following section, we will
describe the specific models and parameters that are used in the
two differently (off-road and on-road) implemented PFs.
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B. Implementation Details of the PFs

We implemented two different bootstrap PFs using different
target motion models but with the same measurement model
(i.e., likelihood).

1) State Models: The first PF (called an off-road filter) uses
a classical (nearly) constant-velocity model with state x; =
[Df 415 Ph 1> VE 415 v 1 ]" . where variables p and v denote the
position and the velocity of the target, respectively. The motion
model is given by

p§+1 p@ 72

Pry1 | = [12 THIIQ} Pr | 4 { kzﬂI?} wry1  (36)
V41 0 I, v Tiy112

Vk+1 Uk

where w;. is a 2-D white Gaussian noise with zero mean and
covariance 5215, and I,, is the identity matrix of dimension n.
Ti+1 = ty+1 — ty is the difference between consecutive time
stamps of the measurements.

The second PF (called an on-road filter) makes use of the
road database information. The literature is abundant with a
large number of publications on target tracking with road net-
work information. Although the early studies used approaches
based on multiple-model (extended) Kalman filters [37]-[39],
the PFs, in a short time, have proved to be one of the in-
dispensable tools in road-constrained estimation [40], [41].
This is confirmed in the large number of publications on the
subject, like [42]-[47], which appeared only during the last
five years. Our approach here considers a single reduced-order
on-road motion model with a bootstrap filter. The state of the
PF is denoted by xj, where r stands for emphasizing road
information, and it is given as x} = [p}, v}, 7|7, where the
scalar variables p; and v, denote the position and speed values
of the target on the road segment, which is identified by the
integer index ¢;,. The following model is used for the dynamics
of xj:

‘s s
Pry1 Pr11 ,
U;+1 = f V2+1 RN, wkj_1 37)
ST e
Tkt1 Uk
where
Pii1 1 Tt | | P Tin r
L = k1 4+ 2wl (38)
Vi1 0 1 UL Tht1

The continuous process noise w,° is a scalar white Gaussian
acceleration noise with zero mean and 0.2-m/s* standard devi-
ation. The predicted position and speed values, i.e., p;,; and
Vi1 1, might not be on the road segment indicated by . The
function f7(.) therefore projects the values pj_, and vj_,
into the road segment denoted by 4, ;. If there is more than
one candidate for the next road segment index iy, ; due to the
junctions, the function also selects a random one according to
the value of the discrete on-road process noise term w;? ; €
{1,2,..., N, (x},)}, where N,(x},) is the number of possible
road segments in which the target with on-road state x;, might
go in the following T}, seconds.

2) Likelihoods: The measurement model is the same for
both PFs. At a single time instant ¢, the measurement vector is

TABLE 1
PARAMETER VALUES USED FOR ALGORITHM 3
FOR LIKELIHOOD CALCULATION

| Parameter | Name | Value |

gj Measurement Noise Covariance 7
I Scaling constant 1

Ymin Minimum detectable RSS -100
Np, Number of hypotheses Np

in the following form:
_ T
Yt, = [yl Y2 YNgs ] (39)

as has also been given in Section II. The likelihood value
p(ytk|x§i)) is calculated using the LPM, as given in the fol-
lowing algorithm:
3) Algorithm 4—Calculation of p(yy, |x§;))
1) Calculate the distance of the particle to all of the LPM
grid points as

d; = Hpij'} —pf‘H2 (40)

where pg? denotes the vector composed of the position

components of xg?

2) Find the closest point in the LPM to the particle posi-
tion as

j=arg max dj. (41)

1<j<Nrpm

3) Calculate p(yy, \ng)) as

i f13‘>, if d: < dehvesho
p (Ytk|X§k)> =P (yt’“‘f 1 d; - threshold 49y
p(ye, [h), otherwise

where p(yy,|h7) and p(y,, |h) are calculated using
Algorithm 3, whose specific parameters are given in
Table I. In (42), h denotes an Nyg vector with all ele-
ments being equal to NaN. dipreshold 1S a user-selected
distance threshold that determines the largest distance
between a particle and an LPM grid point at which the
LPM grid point can be used to calculate the likelihood
of the particle. This is going to be particularly important
in the off-road PF where the particles can frequently go
outside of the area of interest. In this case, using p(y:, |h)
instead of p(yy, |h?) implicitly punishes such a particle.
We selected dipreshola = 100 m in our simulations.
4) Initialization: PFs were initialized with a large Gaussian
spread of particles with mean at the true positions and zero
velocities, i.e.,

[po @ pp@ 2@ O N (me, Py)  (43)
fori=1,...,N,, where
A [ _ _

mo = [ py 0 0] (44)

Py £ diag (1002 1002 102 102]). (45)

Here, [p%, pg] is the true target coordinates at time o, and the
operator diag(.) forms a diagonal matrix from the elements of
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Fig. 5.
(b) Using SCORE measurements.

the input vector. The results that have been obtained in this pa-
per does not change with different initial distribution selection
as long as the initial distribution covers the true target position
with some probability mass. The initial Gaussian density given
has a position standard deviation of 100 m, which is, in a way,
an indirect assumption of prior information for the initial target
position with that quality. It is unfortunately not possible to
initially distribute the particles to the whole area of study and
then start the estimation. This is because in such a case, the
percentage of the probability mass that is spread around the
true position would be too small. Therefore, a suggestion for
the general case, where no prior information of the initial target
position is available, can be to initialize the particles around
an initial estimate obtained by the static fingerprinting with the
first collected measurement.

In the off-road PF, we directly use the initial particles. On
the other hand, in the on-road PF, which always needs particles
that are on the road network, the corresponding particles are
obtained by projecting the ones defined earlier onto the road
network.

To compare our fingerprinting-based bootstrap filters, we
have implemented two additional (on-road and off-road) boot-
strap PFs that use only the OH model in (3) for likelihood
calculation. For this purpose, we have estimated transmitted
powers (Pps) and measurement variances for each BS and the
path loss exponent « using the least squares method with our
previously collected data (which has been used for forming the
LPM). The estimation results for our fingerprinting-based boot-
strap filters and OH-model-based bootstrap filters are shown in
Fig. 5. Notice that using SCORE or RSSI measurements with
the OH model in the off-road filter gives almost the same results
because the dominating model errors like fading overcome the
effect of the accuracy of the measurements, and the difference
is no longer visible. In the on-road case, the difference is
more evident. The fingerprinting approach reduces the effect of
modeling errors, and therefore, the quality of the measurements
gains more importance in the results. The performance of the

0.9
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Positioning error cdf’s for the proposed fingerprinting approach and the conventional approach (based on the OH model). (a) Using RSSI measurements.

fingerprinting methodology in dynamic filtering significantly
exceeds that of the OH-model-based approach. The perfor-
mance gain with fingerprinting is overwhelming in the off-road
case but is still visible in the on-road filters, particularly with the
SCORE measurements where the SNR is lower. It is remarkable
that the on-road OH-model-based PF is almost equivalent to
the off-road fingerprinting-based filter in terms of estimation
errors, which clearly illustrate the effect of the strong modeling
capability of the fingerprinting approach.

As a last point, we make a comparison between the results
of the dynamic and the static cases, which are depicted in
Fig. 6. A very interesting observation is that, in the high-
accuracy parts of the RSSI case, the static approach makes
better estimations than the dynamic ones, although the dynamic
estimation algorithms, in the overall results, are seen to be
much more robust. Note that there is about a 10-m performance
loss in the RSSI-based dynamic on-road filter compared to
the static result. We attribute this difference to the fact that
the static estimation calculates an ML estimate, whereas the
dynamic on-road filter calculates a mean square estimate. Since
there are about 10 m between the LPM grid points and the
PF calculates the likelihood of a particle as the likelihood of
the closest LPM point, there can appear many particles with
the same weights in a 5-m radius. Calculating the average of
these particles, which may be biased toward one side of the
optimal result due to the road constraints, can give an error
of about 5 m. Considering the error terms added by averaging
over all the particles, we can expect an error of about 10 m in
the result compared with the ML-based static approach, which
would directly give the position of the most likely LPM grid
point when the SNR is high (like the case with RSSI). The
calculation of the MAP estimate in the PF can be an alternative
for this problem. In the off-road case, since the particles are
even more separated, we can expect this lower performance
effect (under a high SNR) to be more visible. Furthermore, we
think that the lack of road-network information also makes the
estimates of the off-road filter suffer from low prior information
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Fig. 6. Positioning error comparison between (on-road and off-road) dynamic positioning and static positioning. (a) Using RSSI measurements. (b) Using

SCORE measurements.

compared with static estimates, which are always constrained to
the road segments. Note that, with the SCORE measurements,
which represents a more practical low-SNR case, there are no
similar important sufferings. In the global behavior (95% lines),
the performance gains with the dynamic approaches make it
clear that these methods should be preferred when highly robust
estimators are required. The results show that, for 95% lines, the
positioning accuracy improvement caused by the motion model
compared with the static case is about 33% when SCORE
values are used and about 50% when RSSI values are used. The
localization accuracy improvement achieved by using the road
information compared with the dynamic case is about 50% in
the case of SCORE values and about 40% in the case of RSSI
values, which indicates the strong effect of the road network
information on the localization accuracy.

VII. CONCLUSION

This paper has discussed the use of fingerprinting positioning
in wireless networks based on the RSS measurements, i.e.,
RSSI and SCORE, with specific remarks on WiMAX networks.
The introduced work has been divided into two main parts:
static localization and dynamic localization. In the latter, the
information of the target’s motion model was used with and
without road information. In both approaches, the effect of
BS identities, which are more robust to propagation effects,
on the estimates has been increased via designing specific
likelihood calculation mechanisms. The results obtained show
that fingerprinting positioning is a strong and robust approach
for overcoming the RSS’s high variability. The positioning
accuracy obtained by using the motion model and the road
network information is notable. The accuracy improvement was
very promising, and new location-dependent applications could
be seen in the horizon. The positioning accuracy achieved by
using the fingerprinting-positioning approach with the motion
model and road information can therefore be seen as a further
step toward more accuracy-demanding applications and new
types of location-based services.
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