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Optimal Node Selection for Target Localization in
Wireless Camera Sensor Networks
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Abstract—This paper studies the node-selection problem for
target localization in wireless camera sensor networks. The goal
of node selection is to optimize the tradeoff between the energy
consumption of wireless camera sensor networks and the quality
of target localization. We propose a cooperative target localization
algorithm, which is implemented by two phases: 1) target detect-
ing phase and 2) target locating phase. For the target detecting
phase, we develop a probing environment and adaptive sleeping
(PEAS)-based density control algorithm to select the proper subset
of deployed camera sensors for maintaining the desired density
of nodes in the detecting mode. For the locating phase, we map
the node-selection problem into an optimization problem and then
propose an optimal node-selection algorithm to select a subset
of camera sensors for estimating the location of a target while
minimizing the energy cost. We conduct extensive experiments and
simulations to validate and evaluate our proposed schemes.

Index Terms—Density control, node selection, optimization
problem, target localization, wireless camera sensor networks.

I. INTRODUCTION

R ECENT advances in the technologies of image sensors
and embedded processors have enabled the deployment

of large-scale wireless camera sensor networks [1]–[3] for
various security and surveillance applications, as well as smart
environment applications [4]–[6]. For most security and sur-
veillance applications, the users are interested not only in
the occurrence/existence of some watched events/targets but
also in the locations of these events/targets. Therefore, local-
ization capability is one of the most desirable characteristics
of wireless camera sensor networks. In general, localization
has two meanings: 1) self-localization of sensor nodes and
2) target localization. In this paper, we address the problem
of target localization, and thus, throughout the rest of this
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paper, unless otherwise mentioned, localization refers to target
localization.

The localization problem has received considerable attention
in the area of wireless sensor networks [7]. Most existing
localization algorithms for wireless sensor networks are based
on the following sensing model—the sensing region is formed
as a disk centered around the sensor where the parameters of
a target/event linearly decay with the distance. However, the
sensing model used in the wireless camera sensor networks is
based on a sector sensing region and the perspective projection
model. As a result, the comparison of those sensing models pro-
vides us with the opportunity to develop the novel localization
approaches for wireless camera sensor networks. Thus, we need
to design a vision-based localization algorithm that employs
lightweight image processing and cooperation among camera
sensors.

Unlike the vision-based localization algorithm in computer
vision areas [8], the vision-based localization algorithm for
wireless camera sensor networks imposes new challenges. The
accuracy of localization can gradually be improved by selecting
the most informative camera sensors until the required accuracy
level of the target’s location is achieved. This implies that the
quality of localization improves with an increasing number
of measurements from different camera sensors. Thus, from
the perspective of localization, it is desirable to have many
camera sensors involved in the process of localization. On
the other hand, the limited energy is the major constraint of
wireless camera sensor networks. Gaining measurements from
many camera sensors and transmitting these measurements
will reduce the lifetime of wireless camera sensor networks.
Moreover, the bandwidth constraint also limits the number
of obtained measurements. Therefore, to balance the tradeoff
between the accuracy of localization and the cost of network
energy, we need to properly select a small number of camera
sensors that can provide the most informative measurements.

For the localization application, the operations of wireless
camera sensor networks can be divided into two phases.

1) Detecting phase: Determine whether there exists any
possible target in the field.

2) Locating phase: If any camera sensor detects the target,
the camera sensors that can detect this target need to
collaborate in accurately estimating the target location.

In addition, for a given time point, each camera sensor can
operate in one of three different modes.

1) Sleeping mode: The camera sensor is almost shut down.
The only activity of the camera sensor is to periodically
detect the awaking messages.
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2) Detecting mode: The camera sensor captures the image
frames with a low frequency and then determines whether
there is any possible target.

3) Locating mode: The camera sensor captures the image
frames with a high frequency and then sends these mea-
surements to the fusion center node.1 The camera sensor,
which functions as the fusion center node, estimates the
target location by using the measurements.

In the detecting phase, putting all the camera sensors in the
detecting mode is too costly. At any given time, enabling a part
of camera sensors in the detecting mode, which are called the
detecting camera sensors, and the others in the sleeping mode,
which are called the sleeping camera sensors, can efficiently
prolong the lifetime of the wireless sensor networks. Therefore,
it is necessary to choose a small set of detecting camera sensors
from the deployed camera sensors to guarantee the quality of
detection while minimizing the number of detecting camera
sensors. In the locating phase, there are two problems that need
to be solved: 1) how to find the camera sensors that can detect
the target and 2) how to select the optimal set of camera sensors
from the camera sensors that can detect the target to participate
in the target localization process. We also call the camera
sensors in the locating mode the locating camera sensors.

In this paper, we mainly focus on node selection, i.e., camera
sensor selection, for localization in wireless camera sensor
networks. The goal of node selection is to balance the tradeoff
between the energy consumption of wireless camera sensor
networks and the quality of localization. First, we propose a
novel localization-oriented sensing model for camera sensors
by taking the perspective projection and camera noisy models
into account. Based on this sensing model, we develop a
cooperative localization algorithm and then describe the cor-
responding procedure of wireless camera sensor networks. As
to the detecting and locating phases, we design a two-step
node-selection scheme. For the detecting phase, we analyze
the relationships among detection-oriented coverage, called
D-coverage for short, localization-oriented coverage, called
L-coverage for short,2 and the density of camera sensors. Ac-
cording to the expressions of D- and L-coverage probabilities,
we propose a probing environment and adaptive sleeping [9]
(PEAS)-based density control algorithm to select the requested
subset of deployed camera sensors for maintaining the desired
density of detecting nodes. For the locating phase, we first
define cost and utility functions. The cost function is used to
calculate the energy cost, including processing and commu-
nicating energy costs, of wireless camera sensor networks for
localization. The utility function based on continuous entropy is
used to quantify the contribution to localization accuracy made
by the locating camera sensors. Using continuous entropy, we
map the node-selection problem into an optimization problem
and then develop an optimal selection algorithm to properly
select a subset of camera sensors for cooperatively estimating
the location of a target.

1In this paper, all nodes in the wireless camera sensor network are homoge-
neous. The camera sensor, which functions as the fusion center node, is elected
by a certain rule.

2L-coverage is to strictly be defined in Section IV-A.

We summarize the main reasons for requiring node selection
in wireless camera sensor networks in the list that follows.

1) With unlimited power supply, the more camera sensors
work, the better the quality of localization. However,
since the camera sensor has limited power, node selec-
tion is necessary for balancing the tradeoff between the
accuracy of localization and the cost of network energy.
Furthermore, node selection can homogenize the energy
cost over all the camera sensors.

2) For the detecting phase, it is not necessary to put all the
camera sensors in the detecting mode. Node selection can
dynamically alternate camera sensors’ modes to guaran-
tee the quality of detection while maximizing the number
of sleeping camera sensors.

3) For the locating phase, node selection can choose the
most informative camera sensors to satisfy the accuracy
requirement of localization while minimizing the en-
ergy cost.

The rest of this paper is organized as follows: Section II high-
lights the related works. Section III proposes our collaborative
target localization algorithm and describes its corresponding
procedure in wireless camera sensor networks. Section IV de-
velops a PEAS-based node-selection scheme for the detecting
phase. Section V defines cost and utility functions and then
develops an optimal node-selection algorithm for the locating
phase. Section VI conducts experiments to validate and evaluate
our proposed scheme. This paper concludes with Section VII.

II. RELATED WORKS

The existing works about target localization in wireless
sensor networks are mainly based on the disk sensing model
and focus on the signal processing aspect. The authors of
[10] proposed a framework for collaborative signal processing
in distributed sensor networks and applied minimum square
estimation to locate the target during the tracking process. The
authors of [11] estimated the target location by incorporating
the current measurement at a sensor with the past history at
other sensors.

On the other hand, most previous research works of node
selection aimed at saving energy and increasing scalability in
wireless sensor networks. The authors of [12] developed a
novel approach, called the information-driven sensor querying
(IDSQ) algorithm, to select the “best” sensor measurement
for updating the posterior belief state of an object. However,
because the expected posterior distribution involves integrat-
ing over all possible measurements, this approach is difficult
to be implemented. The authors of [13] proposed a mutual
information-based scheme to address sensor node selection.
They used the mutual information to quantify the expected
posterior uncertainty. The feature of this scheme is the signifi-
cant reduction of the computational complexity. The authors of
[14] expanded the work in [13] and proposed a novel entropy-
based sensor node-selection heuristic algorithm for target lo-
calization. This heuristic algorithm can select the suboptimal
additional sensor subset without retrieving the measurements
of all candidate sensors. The authors of [15] established an
unscented Kalman filter framework to solve the problem of
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Fig. 1. (a) Perspective projection model of the camera sensor. (b) Picture of the target at T . The distance X from the vertical centerline of the target blob to the
centerline of the picture is the observation measurement by this camera sensor when the target is at T . (c) Picture of the target at T ′. X′ is the corresponding
observation measurement when the target is at T ′.

TABLE I
PARAMETERS USED IN THE PROJECTION EQUATION

optimal sensor selection. This scheme maximizes the informa-
tion utility gained from a set of sensors subject to a constraint
on the average energy consumption. In [16], the authors used
a heuristic approach to select a subset of horizontal camera
sensors for minimizing the visual hull of all objects in a
scene. Their scheme adopts a heuristic method to compute
the viewpoint scores and finds the optimal solution by using
the combinatorial optimization techniques. The authors of [17]
proposed a generic sensor model, where the measurements are
interpreted as polygonal convex subsets of the plane. Their
approach uses an approximation algorithm to minimize the
error in estimating the target location. However, this work does
not address the cost of using cameras.

From aforementioned related works, we can observe that the
existing methods fail to satisfy the need of the tradeoff be-
tween the accuracy of vision-based localization and the cost for
wireless camera sensor networks. To overcome this problem,
we propose the optimal node selection scheme based on the
collaborative target localization in camera sensor networks.

III. COLLABORATIVE TARGET LOCALIZATION

IN CAMERA SENSOR NETWORKS

In this section, we propose a Bayesian-estimation-based
localization scheme and then describe the collaborative target
localization procedure in wireless camera sensor networks.
To make the system model tractable, we need to make three
reasonable assumptions.

A1. All camera sensors follow the same sensing model.
We assume that the camera sensors are modeled by

perspective projection and have the same shape as the
field-of-view (FOV) region. Additionally, all noises are
Gaussian noises with zero mean.

A2. The camera sensors can synchronously observe a mov-
ing target. The synchronization can be implemented by
using the methods proposed in [18] and can guarantee
adequate accuracy if the target moves with a limited
speed.

A3. The message functions and transmissions introduce
no information loss. In other words, quantization/
modulation/encoding for measurements and the trans-
mission channels are lossless.

A. Bayesian-Estimation-Based Localization Scheme

In the computer vision area, a point with the coordinates
(xt, yt, zt) can be mapped onto the image plane by using the
perspective projection model. To ease presentation, we use the
physical unit instead of the pixel unit in image coordinates.
As shown in Fig. 1, the origin of image coordinates is the
intersection of the optical axis and the image plane. For a given
camera sensor ci, the perspective projection equation [19] is
shown as follows:⎡⎣ sXi

sYi

s

⎤⎦ =

⎡⎣ cos θi 0 sin θi −xi

0 1 0 −Hi
sin θi

F
0 − cos θi

F
− zi

F

⎤⎦
⎡⎢⎣

xt

0
zt

1

⎤⎥⎦ . (1)

The descriptions of parameters in (1) are summarized in Table I
and shown in Fig. 1. From Fig. 1, we can observe that there
exist two types of projection for the target.
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1) Partial projection: In the scenario illustrated in Fig. 1(a),
when a target is at T (T is a point in the reference
plane), the camera sensor can only capture the half-length
image of the target [see Fig. 1(b)]. In other words, the
corresponding Yi is out of the image. According to (1),
we have

Xi =
(cos θixt + sin θizt − xi)F

sin θixt − cos θizt − zi
. (2)

2) Complete projection: As shown in Fig. 1(a), when a target
is at T ′, the camera sensor can capture the full-length
image of the target [see Fig. 1(c)]. The image coordinates
of the target location can be calculated by{

Xi = (cos θixt+sin θizt−xi)F
sin θixt−cos θizt−zi

Yi = −HiF

sin θixt−cos θizt−zi

. (3)

Generally speaking, it is difficult to obtain camera sensor ci

height Hi [see Fig. 1(a)]. Then, for simplicity, we use (2) as the
perspective projection model instead of using (1).

Identifying the moving objects from a set of pictures or a
video sequence is a fundamental and critical task in the target
localization application of wireless camera sensor networks.
When a camera sensor captures a frame, it can employ back-
ground subtraction3 [20], [21] to remove the static background.
As shown in Fig. 1(b) and (c), the area of an image frame
where there is a significant difference between the observed and
estimated images indicates the location of a moving object in
this image plane. The area containing the change in the frame
is further processed to find the horizontal shift, denoted by X ,
of the target’s image from the center of the image plane. In
our localization scheme, X is the measurement of the camera
sensor, and only X is communicated to the central processor
(sink node).

Generally speaking, the random measurement variable, de-
noted by Xi (the horizontal shift), for camera sensor ci is not
equal to the accurate Xi given by (2). This is because the
perspective projection model in (2) is just an ideal model, and
the measurement Xi can be corrupted by some additive noises
in practice. Then, we have

Xi = Xi + ei ∀ i ∈ {1, . . . , k}

where ei is the additive noise of Xi. The noise mainly comes
from two aspects: 1) the sensing model of camera sensors and
2) the processing of background subtraction. Similar to [22],
we also assume that the measurement error variance, which is
by denoted σ2

i , for ci is of the following form:

σ2
i = ζd2

i + σ2
p + σ2

s (4)

where di is the distance from ci to the target. Making camera
noise variance dependent on distance can efficiently model the
weak perspective projection while allowing the use of (2). Our
noise model also accounts for errors in the calibration of camera
sensors. Errors in the location of ci are taken into account in

3Background subtraction is a commonly used technique for segmenting out
objects of interest in a scene for applications such as video surveillance.

σ2
p, and errors in the orientation are reflected in ζ. Moreover,

the accuracy of the background subtraction method and the
postures/motions of targets also cause errors, and these errors
are contained in σ2

s .
Therefore, we adopt the Gaussian error model to represent

the relationship between Xi and the target location, denoted by
T (xt, zt), i.e., ei ∼ N(0, σi). For an arbitrary value, denoted
by Xi, for random measurement variable Xi, the probability
density function (pdf) for Xi is

f(Xi|T ) =
1√

2πσi

exp
(
− (Xi − Xi)2

2σ2
i

)
. (5)

Let S be a deployment filed in the reference plane and T ∈ S
be the location of a target. Assume that the a priori probability
distribution of T obeys the uniform distribution in S. Thus, for
an arbitrary point t(x, z) in the reference plane, the pdf of T is

f(t) =
{

1
‖S‖ , t ∈ S

0, t /∈ S
(6)

where ‖S‖ denotes the area of S.
If T can simultaneously be detected by k camera sensors,

then k measurements are available. Let X = (X1,X2, . . . ,Xk)
be an arbitrary point in the k-dimensional real-number space of
(X1,X2, . . . , Xk), then

f(X|t) =
k∏

i=1

f(Xi|t) =
k∏

i=1

1√
2πσi

e
− (Xi−Xi)

2

2σ2
i . (7)

According to the Bayesian formula and (6), we can get

f(t|X) =
f(X|t)f(t)∫ ∫

S f(X|t)f(t)dx dz
=

f(X|t)∫ ∫
S f(X|t)dx dz

. (8)

Let T̂k(x̂, ẑ) and T̃k
Δ= |T̂k − T | denote the estimate and the

estimation error for a given (X1,X2, . . . , Xk), respectively.
The estimation error T̃k is calculated by

T̃k = |T̂k − T | =
√

(x̂ − xt)2 + (ẑ − zt)2 (9)

which is the Euclidean distance between T̂k(x̂, ẑ) and
T (xt, zt). The mean square error (MSE) is a commonly used
measure of estimator quality. A well-known Bayesian estimator
can be applied to estimate T̂k while achieving the minimum
MSE. Then, the minimum MSE estimate is

T̂k(x̂, ẑ) =

⎛⎝∫ ∫
S

xf(t|X)dx dz,

∫ ∫
S

zf(t|X)dx dz

⎞⎠ .

(10)

When the distance between a target and ci is too large, the
background subtraction method cannot segment out the target.
This implies that the camera sensor ci cannot detect the target.
Let r be the maximal detecting distance. Because r � F, we
employ a sector model to describe the sensing region of a
camera sensor. Here, we use Di to denote the sensing region
of ci. If a point belongs to Di, then the point can be detected
by ci. As shown in Fig. 2, the sector model can be denoted by
a 4-tuple (Li, r,

−→
V i, α). Li(xi, zi) is the location of ci.

−→
V i is
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Fig. 2. Sector sensing model.

Fig. 3. Localization procedure of wireless camera sensor networks. There
exist one target and three kinds of camera sensors, i.e., sleeping camera sensors,
detecting camera sensors, and locating camera sensors.

the unit vector, which evenly splits the sensing sector into two
halves, determining the sensing direction,4 and α is the offset
angle in the FOV on both sides of

−→
V i.

B. Localization Procedure of Wireless Camera
Sensor Network

As shown in Fig. 3, N geographically distributed camera
sensors, i.e., C = {c1, c2, . . . , cN}, are deployed in a surveil-
lance region S. At the beginning, we need to decide the value
of N , i.e., how many camera sensors should we deploy to
satisfy the requirement of localization? L-coverage [23] is an
important measure for the quality of localization. According to
the cooperative localization scheme, a point that is detected by
camera sensors does not imply that this point can be located.
Then, to guarantee the quality of localization, we need to
deploy much more camera sensors than the requirement of
target detection.

In most surveillance applications, the targets infrequently
appear with long intervals. If there is no target in S, then the
camera sensor network is in the detecting phase, i.e., the task of
camera sensors is detecting the target. Because the density of
deployed camera sensors is much higher than the requirement
of target detection, it is unnecessary to let all of the N camera
sensors be in the detecting mode. Then, we should periodically
select a set of detecting camera sensors to guarantee that most
points in S can be detected by camera sensors and let the other
camera sensors be in the sleeping mode to save energy.

4θi is the angle of
−→
V i.

If the target is detected by a camera sensor ci, then the
locating phase begins. The camera sensor ci becomes the fusion
center node and broadcasts its location (xi, zi), orientation an-
gle θi, and measurement Xi to all the camera sensors in its com-
munication range.5 After receiving (xi, zi), θi, and Xi, each
camera sensor calculates the probability of detecting the target.
If the probability is below a predefined threshold, i.e., the cam-
era sensor cannot detect the target with a high probability, then
this camera sensor remains in the sleeping mode. Otherwise,
the camera sensor becomes a candidate for the localization
process. When a sleeping camera sensor becomes a candidate,
this camera sensor is awaked to be in the detecting mode.

All the candidate camera sensors send their measurements to
ci. According to these measurements, ci selects a set of camera
sensors from the candidates to participate in the localization
process. These selected candidate camera sensors periodically
send the corresponding X’s to ci, and the others switch to the
sleeping mode.

IV. NODE SELECTION IN THE DETECTING PHASE

In the detecting phase, the goal of node selection is deciding
the set of detecting camera sensors. There are two problems we
need to address.

1) How to derive the density of deployed camera sensors and
the density of detecting camera sensors for the desired
L- and D-coverage probabilities, respectively.

2) How to design a density control scheme to determine
the modes of camera sensors (sleeping or detecting) for
maintaining the desired D-coverage probability.

A. L-Coverage and D-Coverage Probabilities

In this paper, we consider the random deployment where
camera sensors are randomly scattered within a vast 2-D
geographical region, and their locations are uniformly and
independently distributed in the region [24]. Such random de-
ployment can be the result of certain deployment strategies. For
example, sensors may be airdropped or launched via artillery in
battlefields or unfriendly environments. Under this deployment
strategy, the locations of camera sensors can be modeled by
a 2-D stationary Poisson point process with intensity λ. This
indicates that the number N(S ′) of camera sensors in any
subregion S ′ follows a Poisson distribution with a parameter
λ‖S ′‖, where ‖S ′‖ is the area of S ′. Let k be a positive integer,
the probability that N(S ′) is equal to k is then given by

Pr {N(S ′) = k} =
(λ‖S ′‖)k

k!
e−λ‖S′‖. (11)

Moreover, we assume that the orientation of each camera
sensor is a random variable with the uniform distribution
on [0, 2π], i.e., θ ∼ U(0, 2π). Fig. 4(a) and (b) illustrates
a randomly scattered wireless camera sensor network with
100 nodes and a prototype camera sensor developed by our
group, respectively.

5In general, the communication radius of all sensor nodes is assumed to be
two times larger than the sensing radius. This implies that camera sensors that
can detect the target must be in the communication range of ci.
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Fig. 4. (a) One hundred camera sensors are deployed according to a 2-D
Poisson process. (b) Prototype camera sensor.

In the literature, if a point is in a sensor’s sensing range,
then this point is covered by this sensor. This implies that the
coverage in most existing works is D-coverage. If a point can
be detected by at least K sensors, this point is K-covered.
In the following lemma, we will derive the expression of the
K-coverage probability for wireless camera sensor networks.

Lemma 1: Let T be an arbitrary point in S and NT be
the number of camera sensors that can detect T . If camera
sensors are modeled by a 2-D stationary Poisson point process
with intensity λ, then the probability that T is synchronously
detected by k camera sensors is

Pr{NT = k} =
(λαr2)k

k!
e−λαr2

(12)

and the K-coverage probability, denoted by PK , is

PK = 1 −
K−1∑
i=0

(λαr2)i

i!
e−λαr2

. (13)

Proof: The detailed proof is provided in Appendix A. �
According to Lemma 1, the detecting coverage probability,

denoted by Pd, is

Pd = P1 = 1 − e−λdαr2
(14)

where λd is the density of detecting camera sensors. Then, we
also have

λd =
log(1 − Pd)

−αr2
. (15)

From the localization scheme in Section III, we can use
the expected value of estimation error T̃k, denoted by δk,
to measure how well the point T is located by k camera
sensors, i.e.,

δk
Δ= E[T̃k] =

∫



T̃kf(X|t)dX (16)

where T̃k is given by (9), and 
 is the real-number space of
(X1,X2, . . . , Xk). The smaller the δk, the more reliable the
estimated T̂k. Assume that the accuracy of localization satisfies
the requirement if δk is smaller than a predefined threshold ε.
Therefore, a point is said to be L-covered if there exist k camera
sensors that can estimate the location of this point, and the

corresponding mean of estimation error E[T̃k] = δk satisfies
δk < ε, where 0 < k ≤ N .

Let a be the ratio of ε to r, i.e., a
Δ= ε/r. We then define

ϕ(a) Δ= Pr{δ2 < ar}, and furthermore, at
Δ= inf{a | ϕ(a) ≥

0.8}. Then, we can derive an approximative expression of the
L-coverage probability, denoted by Pl, as follows:

Pl ≈ 1 − e−λlαR2 − λlαR2e−λlαR2
(17)

where λl is the density of deployed camera sensors, and

R =
{

r, if ε > atr
ε
at

, otherwise. (18)

The derivation of (17) is given in Appendix B.
From (17), we can obtain the corresponding density of

camera sensors for a given L-coverage probability. Let εl be
the desired value of Pl. Then, the density of deployed camera
sensors is

λl =
−1 − W

(
εl−1

e

)
αR2

(19)

where W (·) is the Lambert W -function.

B. Density Control for Detecting Camera Sensors

We use PEAS [9], which is a probing mechanism-based
density control algorithm, to maintain a subset of camera
sensors that is in the detecting mode while ensuring the desired
D-coverage probability. The main procedure of this algorithm
is as follows: After sensor deployment, all camera sensors are
in the sleeping mode. Each sleeping camera sensor wakes up
for an exponentially distributed period of time specified by
the wake rate φt. When a sleeping camera sensor wakes up,
it broadcasts a probing message, called PRB, within a certain
probing range, denoted by rc. If there exists a camera sensor
that is in the detecting mode within the range rc, then this
detecting camera sensor broadcasts a reply message, called
RPY, over the wireless channel. For the wake-up camera
sensor, the received RPY message implies that there already
exits a detecting camera sensor. Thus, if a wake-up camera
sensor does not hear the RPY message within a given time
interval, then this camera sensor assumes that there is no
detecting camera sensor within the probing range rc and then
switches to the detecting mode. Otherwise, this camera sensor
goes back to the sleeping mode.

In the aforementioned density control scheme, the probing
range rc and the wake rate φt are two important parameters
for maintaining the density of detecting camera sensors at a
desired value. We can use the method proposed in [9] to decide
φt. However, this method cannot be applied to deriving rc for
wireless camera sensor networks, because the sector sensing
model and the disk sensing model are different. Therefore, we
derive the expression of rc, which is given in the following
lemma.

Lemma 2: Let εd be the desired D-coverage probability.
If the deployment of wireless camera sensors follows the
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2-D stationary Poisson point process with intensity λl, then the
probing range rc is determined by

rc =

√
−αr2

π log(1 − εd)
. (20)

Proof: Let N ′ be the number of camera sensors deployed
in a disk region with radius rc. From the density control
scheme, if a camera sensor is in the detecting mode, then there
is no other detecting camera sensor in the disk centered around
this camera sensor with rc. This implies that

λd

λl
= E

[
1
N ′

]
. (21)

Because the camera sensors are modeled by a 2-D stationary
Poisson point process with intensity λl, from (11), we have

E[N ′] =
∞∑

k=0

k Pr{N ′ = k} = λlπr2
c .

Then, according to (21), the expression of rc is

rc =
√

1
πλd

. (22)

From (15), when Pd = εd, the corresponding λd is [log(1 −
εd)]/(−αr2). Then, substituting λd = [log(1 − εd)]/(−αr2)
into (22), we get (20). �

V. NODE SELECTION IN THE LOCATING PHASE

In the locating phase, we first need to decide the set, denoted
by Cc, of candidate camera sensors that can detect the target
with a high probability. Ideally, we can obtain the maximum
information gain when the fusion center node merges the mea-
surements from all camera sensors in Cc, but this would be too
costly. Our goal is to select the optimal set of camera sensors
from Cc to obtain a precise estimate of the target location while
minimizing the energy cost. In general, there exist two different
criteria to define the optimal selection problem:

1) maximum utility: maximizes the accuracy of localization
under the specified cost;

2) minimum cost: minimizes the cost to attain specified
accuracy of localization.

Due to the constrained resource of wireless camera sensor
networks, energy saving is one of the most important problems
to be considered. Motivated by this, we study the selection
of locating camera sensors by using the second criterion, i.e.,
minimum cost. Let 2Cc denote the set of all subsets of Cc. To
model this tradeoff between utility and cost, we need to define
the following functions:

1) a utility function U : 2Cc → R
+, which quantifies the

localization utility of measurements obtained by each
C ′

c ⊆ Cc;
2) a cost function C : 2Cc → R

+, which quantifies the en-
ergy cost of taking measurements from each C ′

c ⊆ Cc.

Then, we can formulate the optimal selection problem as
follows.

Locating node selection (LNS): Choose a subset C ′
c ⊆ Cc,

which minimizes C(C ′
c) subject to U(C ′

c) ≥ ϑ, where ϑ is the
predefined threshold for localization accuracy. Thus, LNS can
be also expressed as

LNS(Cc, ϑ) = arg min
C′

c⊆Cc, U(C′
c)≥ϑ

C(C ′
c).

A. Candidate Camera Sensors

Assume that camera sensor c0 is first to detect the target and
that the corresponding measurement is X0. Then, c0 broadcasts
its location (x0, z0), orientation angle θ0, and X0 in its com-
munication range. Let ci be an arbitrary camera sensor within
the communication range of c0. After receiving (x0, z0), θ0,
and X0, sensor ci can get f(t|X0) according to the Bayesian
formula as follows:

f(t|X0) =
f(X0|t)∫ ∫

S f(X0|t)dx dz
. (23)

Then, the probability, denoted by pi, that ci can detect the
target is

pi =
∫ ∫

Di

f(t|X0)dx dz (24)

where Di is the sensing region of ci. If pi exceeds a predefined
threshold ξ, then ci becomes a candidate camera sensor and
sends its location, orientation, and measurement to c0. This
implies that the set of candidate camera sensors

Cc = {ci|pi > ξ, |c0ci| < 2r, 0 ≤ i < N} (25)

where |c0ci| denotes the Euclidean distance between c0 and ci.
However, pi > ξ only implies that ci can detect the target

with a high probability. Therefore, it is possible that a few
candidate camera sensors in Cc cannot detect the target,
and a few camera sensors, which can detect the target, are
not in Cc.

B. Utility Function

Let X be a measure vector of C ′
c ⊆ Cc. The utility of C ′

c

can be defined as the uncertainty of the target location reduced
by X. We use continuous entropy and mutual information
to quantify the uncertainty reduction for target localization.
According to the expression of continuous entropy and (5), the
continuous entropy of f(t|X) is

h [f(t|X)] = −
∫ ∫

S

f(t|X) log f(t|X)dx dz (26)

where h[·] is the continuous entropy function.
Because the a priori probability distribution of the target

location f(t) is known, we can get the initial estimate of the
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target location. Then, according to (4), we have

h [f(t)] = −
∫ ∫

S

f(t) log f(t)dx dz = − log
1

‖S‖ . (27)

The mutual information, which is determined by

I(t;X) = h [f(t)] − h [f(t|X)] (28)

is the utility of C ′
c for localization. Thus, we can define the

utility function as follows:

U(C ′
c) = I(t;X)

= log
1

‖S‖ −
∫ ∫

S

f(t|X) log f(t|X)dx dz. (29)

C. Cost Function

For a locating camera sensor, the energy cost for location
operations can be partitioned into two parts: 1) the energy cost
for capturing and processing images, denoted by ep; and 2) the
energy cost for transmitting the measurement X , denoted by et.
In this paper, we assume that all the camera sensors have
the same energy cost for image capturing and processing, and
measurement transmitting. For a wireless sensor network, the
failure of several sensor nodes can affect the whole network
topology. Thus, energy saving requires not only minimizing the
total cost of the sensor network but also homogenizing the cost
of the sensor nodes.

Let ei be the remaining energy of sensor ci. We define
the cost function of ci as the ratio between the total energy
consumption of localization and the remaining energy, i.e.,

C(ci) =

{
ep+et

ei
, if ci is not the fusion center node

ep

ei
, if ci is the fusion center node.

(30)

For a set of camera sensors C ′
c, the cost value of this set of

sensors is the maximum cost value in this set, i.e., the cost
function is

C (C ′
c) = max

cm∈C′
c

C(cm). (31)

D. LNS Algorithm

If there exist more than one candidate camera sensors, then
we sort these candidate camera sensors by their cost values
and generate an ascending queue Qc. Every element in Qc

is a subset of Cc, which is defined by (25). Let id be an
index pointing at the elements in Qc, and let Qc[id] be the
idth element of Qc. Set the initial value of id to be 0, i.e.,
id points at the head of Qc. The head of Qc only consists of
the camera sensor with the minimum cost value. Equation (2)
implies that it is impossible to get the target location by using
one measurement, i.e., U(Qc[0]) cannot satisfy the requirement.
Then, id points at the next element of Qc. Because Qc[1] is
also the set consisting of only one camera sensor, U(Qc[1])
cannot satisfy the requirement. From (31), C(Qc[0]

⋃
Qc[1]) =

C(Qc[1]) ≤ C(Qc[2]). Then, we insert Qc[0]
⋃

Qc[1] into Qc

Fig. 5. Selection algorithm for the locating camera sensors.

Fig. 6. Scene of a walking-man localization. We deploy ten camera sensors,
i.e., c0–c9, in a rectangular surveillance field.

after Qc[1], i.e., Qc[2] = Qc[0]
⋃

Qc[1], and move the index id
to the next element, i.e., Qc[2]. If U(Qc[2]) is larger than the
predefined threshold, denoted by ϑ, then Qc[2] is the optimal
set we wanted. Otherwise, id moves to the next element of Qc.

For the element Qc[id], if Qc[id] is the set that
has only one camera sensor, then insert Qc[id]

⋃
Qc[0],

Qc[id]
⋃

Qc[1], . . . , Qc[id]
⋃

Qc[id − 1] into Qc after Qc[id]
and move id to the next element. On the other hand, if Qc[id]
is the set that has at least two camera sensors and U(Qc[id])
is larger than ϑ, then Qc[id] is the optimal set we look for.
Otherwise, id moves to the next element of Qc. The pseudocode
of the LNS algorithm is summarized in Fig. 5.

VI. CASE STUDY AND SIMULATIONS

To verify our proposed schemes and the derived relevant
analytical analyses, we first utilize a case to illustrate the
procedure of LNS in the locating phase and then show the
effect of our proposed scheme on energy saving by extensive
simulations.

A. Case Study of LNS

As shown in Fig. 6, we deploy ten camera sensors in a
rectangular region. The values of related parameters6 are as

6The values of parameters are based on a commonly used digital camera
(Sony DSC-717F) and the related calibration process.
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TABLE II
MEASUREMENTS Xi AND TARGET DETECTION PROBABILITIES pi OF THE TEN CAMERA SENSORS. BECAUSE

WE SET THE THRESHOLD OF THE DETECTING PROBABILITY TO BE 0.5, SOME Xi’S ARE NOT AVAILABLE

Fig. 7. Image frames captured by camera sensors c0–c5, respectively. ui, i = 0, 1, 2, and 4 denote the horizontal pixel coordinates of the target. For the camera
sensor c3, u3 is not available, because the target detection probability p3 = 0.2646 < 0.5, and thus, c3 is not the candidate node. Because the distance between
c5 and the target exceeds the sensing range r so that p5 = 0.0012 < 0.5, c5 is also not the candidate node, and thus, u5 is not available.

follows: F = 9.45 mm, α = 25◦, r = 4000 mm, ζ = 5 × 10−8,
σp = 0.1, σs = 0.1, ep = 1, and et = 2. The locations and
orientations of these camera sensors are listed in Table II.

Assume that the location of the target is (1950 mm, 650 mm)
and that c0 is the first to detect the target. From (23), we can
obtain the pdf of P (xt, zt|X0) [see Fig. 8(a)]. According to
(24), every camera sensor can calculate the probability of de-
tecting the target. Their probabilities are also listed in Table II.
In this paper, we assume that if the probability of detecting the
target exceeds 0.5, the corresponding camera sensor becomes
the candidate. Then, Cc = {c0, c1, c2, c4, c7}. Moreover, Fig. 7
shows the target images captured by the six camera sensors,
respectively. From Fig. 7(d), we can find that c3 can detect the
target. However, the corresponding probability p3 = 0.2646 <
0.5, and thus, c3 is not the candidate node. Meanwhile, c7 is a
candidate node, but it cannot detect the target. Fig. 7(f) shows
that c5 can detect the target, but p5 is 0. This is because the
distance between c5 and the target exceeds r. Therefore, the
final candidate set Cc = {c0, c1, c2, c4}.

Let ui denote the horizontal pixel coordinates of the target
for camera sensor ci (see Fig. 7). In Fig. 7, u0 = 140, u1 =
1055, u2 = 990, and u4 = 612 are the pixel-coordinate-based

measurements of c0, c1, c2, and c4, respectively. We first need to
transform the horizontal pixel coordinates ui into the real-world
coordinates of the horizontal shifts Xi. Because the resolution
of these camera sensors is 1280 × 960 and the size of the
charge-coupled device is 8.8 mm × 6.6 mm, the transformation
formula is as follows:

Xi =
(

ui −
1280

2

)
× 8.8

1280
. (32)

Using (32), we derive a number of the corresponding mea-
surements Xi’s, as summarized in Table II.

Set e0 = 25, e1 = 30, e2 = 80, e4 = 20, and ϑ = 7. Accord-
ing to (30), we can get the initial Qc as follows:

Qc : {c2}, {c0}, {c1}, {c4}.

Because one camera sensor cannot satisfy the requirement
of localization [U({c0}) = 4.9685, see Fig. 8(a)], we insert
{c2, c0} into Qc after {c0}, which leads to the following queue:

Qc : {c2}, {c0}, {c2, c0}, {c1}, {c4}.
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Fig. 8. Probability distribution of the target’s location. (a) P (xt, zt|X0 = −3.4375). (b) P (xt, zt|X2 = 2.4063, X0 = −3.4375). (c) P (xt, zt|X2 =
2.4063, X1 = 2.8531). (d) P (xt, zt|X1 = 2.8531, X0 = −3.4375).

Combing the measures of c2 and c0, we can get the pdf
of P (xt, zt|X2 = 2.4063,X0 = −3.4375) [see Fig. 8(b)]. The
corresponding utility value is 6.0534, which cannot satisfy the
requirement. Because the next element {c1} in Qc cannot also
satisfy the requirement, we insert {c2, c1}, {c0, c1}, {c2, c0, c1}
into Qc, i.e.,

Qc : {c2}, {c0}, {c2, c0}, {c1}, {c2, c1},
{c0, c1}, {c2, c0, c1}, {c4}.

Fig. 8(c) illustrates the pdf of P (xt, zt|X2 = 2.4063,X1 =
2.8531). The corresponding utility value, i.e., 5.8614, can-
not also satisfy the requirement. For the set {c0, c1}, the
distribution of P (xt, zt|X1 = 2.8531,X0 = −3.4375) is more
concentrative than P (xt, zt|X2 = 2.4063,X0 = −3.4375) and
P (xt, zt|X2 = 2.4063,X1 = 2.8531) [see Fig. 8(d)]. The cor-
responding utility value is equal to 7.0239, satisfying the re-
quirement, which implies that {c0, c1} is the optimal set of
locating camera sensors.

B. Experimental Evaluations of Our Proposed Schemes

To perform empirical evaluations of our schemes, we have
built up a simulation platform by VC++. The fixed parameters
of the simulation platform are as follows: S = 500 × 500,
r = 40, α = π/6, ζ = 5e − 4, σp = 0.1, and σs = 0.1. The
accuracy requirement of localization ε = 4. As shown in
Appendix B, the corresponding at = 0.09. Because ε > atr =
3.6, Pl ≈ P2, we get

Pl ≈ 1 − e−λlαr2 − λlαr2e−λlαr2
.

In each simulation run, we randomly scatter a number of
camera sensors according to a 2-D Poisson process with the
mean equal to λ × 250 000 within S. The number of camera
sensors N varies from 0 to 1000 per 100 steps. This implies
that the density of camera sensors λ varies from 0 to 0.004 per
0.0004 step. A grid of 500 × 500 vertices is created for S. For a
given λ, we generate a network topology. Assume that there are
n vertices, which are covered by at least one camera sensor.
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Fig. 9. L-coverage probability Pl and D-coverage probability Pd against the
camera sensor density λ.

Fig. 10. Topology of the wireless sensor network with 600 camera sensors.

Then, the corresponding D-coverage probability is the ratio
between n and 250 000. The aforementioned process is repeated
100 times to obtain the mean of the D-coverage probability for
the given λ. Thus, the simulation result of Pd is E[n]/250 000.
By using the similar method, we can also get the simulation
results for Pl.

Fig. 9 plots the simulation and analytical results of Pd

and Pl. From Fig. 9, we can have the observe the following.

1) For Pd and Pl, the simulation results are close to the
corresponding analytical results.

2) To obtain a given coverage probability, the simulation re-
sult of λ should be slightly smaller than the corresponding
analytical result.

We set εd = εl = 0.7. Substituting εd = 0.7 into (20), we
have rc = 14. According to the simulation results of Pl in
Fig. 9, we generate 600 camera sensors, which leads to Pl that is
approximately equal to 0.7. As shown in Fig. 10, when rc = 14,
the number of the detecting camera sensors is about 310, and Pd

is about 0.72.

Assume that the initial energy of each camera sensor is 100;
the energy consumption of the sleeping state can be neglected;
and, for a fixed period τ , the energy consumption levels of
the detecting and locating states are 0.1 and 1, respectively.
For each τ , we randomly generate a target in S. Then, we
apply three different schemes to the wireless camera sensor
network.

1) N scheme: All the deployed camera sensors detect the
target in the detecting phase, and all the camera sensors
that can detect the target collaboratively estimate the
location in the locating phase.

2) D scheme: In the detecting phase, the density control
scheme selects the set of detecting camera sensors from
deployed camera sensors; in the locating phase, all the
camera sensors that can detect the target collaboratively
estimate the location.

3) L scheme: This is the scheme proposed in this paper.
Fig. 11(a)–(f) shows the statistical results for the remaining

energy of camera sensors. The x-axis denotes the remaining
energy, and the y-axis denotes the ratio between the number
of camera sensors with a given remaining energy and the total
number of camera sensors. Fig. 11(a)–(f) shows that the energy
cost of the N scheme is much higher than those of the D
and L schemes, and this energy cost difference increases as
the number of τ increases. The main reason is that almost
half of the camera sensors are in the sleeping state in the D
and L schemes. For a wireless camera sensor network, there
is no event/target in most of the lifetime; thus, most energy is
consumed for the detecting state.

When the number of τ is at the lower end, for most camera
sensors, the remaining energy of the L scheme is the same
as that for the D scheme. However, in the D scheme, there
exist a few camera sensors that consume much more energy.
For example, after 200τ , as shown in Fig. 11(b), the energy of
0.17% camera sensors are in [81, 83], and the energy of most
camera sensors are in [87, 90]. This is because there are a few
points in S that are covered by many camera sensors. As the
number of τ increases, for most camera sensors, the remaining
energy difference between the L scheme and the D scheme
increases. As shown in Fig. 11(f), after 800τ , for the L scheme,
the energy of 62.84% camera sensors are in the range of
[57, 60], and for the D scheme only 37.5% camera sensors’
energy falls in [57, 60].

VII. CONCLUSION

We have tackled the node-selection problem by balancing
the tradeoff between the accuracy of target localization and the
energy consumption in camera sensor networks. Based on
the sensing model of camera sensors, we have proposed a
cooperative localization algorithm, which is implemented by
two phases: 1) detecting phase and 2) locating phase. As to
the detecting and locating phases, we have designed a two-
step node-selection scheme. For the detecting phase, we have
developed a PEAS-based density control algorithm to select the
proper subset of detecting camera sensors for maintaining the
desired quality of detection. For the locating phase, we have
mapped the LNS problem to an optimization problem and then
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Fig. 11. Energy consumption comparisons among the N, D, and L schemes with different numbers of time periods. (a) N scheme, 200τ . (b) N and L schemes,
200τ . (c) N scheme, 400τ . (d) N and L schemes, 400τ . (e) N scheme, 800τ . (f) N and L schemes, 800τ .

proposed an optimal algorithm to select a set of camera sensors
for estimating the location of target with the minimum cost. We
have also conducted extensive experiments and simulations to
validate and evaluate our proposed scheme.

APPENDIX A
PROOF OF LEMMA 1

Proof: From the sensing model of the wireless camera
sensor networks, it is easy to know that, if a camera sensor can
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detect a point T , then the location of this camera sensor must
be in the disk, denoted by R, which is centered around T with
radius r. On the other hand, not all camera sensors in R can
detect T because of their orientations. Assume that there are n
camera sensors in R, from (11), we have

Pr{NR = n} =
(λπr2)n

n!
e−λπr2

where NR is the number of the cameras sensors within R.
The probability that a camera sensor within R can detect T is
α/π. Then, the conditional probability that k(k ≤ n) of these
n camera sensors can detect T is

Pr{NT = k|NR = n} =
(α

π

)k (
1 − α

π

)n−k
(

n

k

)
.

Thus, we have

Pr{NT = k} =
∞∑

n=k

Pr{NR = n}Pr{NT = k|NR = n}

=
∞∑

n=k

(λπr2)n

n!
e−λπr2

(α

π

)k(
1 − α

π

)n−k
(

n

k

)

=
(λαr2)k

k!
e−λαr2

.

From the definition of the K-coverage probability, we have

PK
Δ= Pr{NT ≥ K} =

∞∑
i=K

Pr{NT = i}

=
∞∑

i=K

(λαr2)i

i!
e−λαr2

= 1 −
K−1∑
i=0

(λαr2)i

i!
e−λαr2

.

�

APPENDIX B
DERIVATION OF (17)

Let L(T ) be the indicator function of whether a point T is
L-covered or not, i.e.,

L(T ) =
{

1, if T is L-covered
0, if T is not L-covered.

According to [25] and Fubini’s theorem [26], if Pr{L(T ) =
1} is constant for all T ∈ S, then the L-coverage probability is
equal to the probability that T is L-covered, i.e.,

Pl = Pr {L(T ) = 1} . (33)

A point T ∈ S that is L-covered by k camera sensors implies

that there exist k camera sensors that can detect T and that the
corresponding δk of these k camera sensors is smaller than the
predefined threshold ε. Referring to (2), we can obtain that it
is impossible to get (xt, yt) by using only one X . This implies
that the point that is detected by only one camera sensor is not

Fig. 12. Relationship between Pr{δ2 < ε} and a with different r. We set
ζ = 5 × 10−8, σp = 0.1, and σs = 0.1.

L-covered. Let NT be the number of camera sensors that can
detect T . Then, we have

Pl =
∞∑

k=2

Pr{NT = k}Pr{δk < ε}. (34)

However, according to (16), it is difficult to derive the closed-
form analytical expression for Pr{δk < ε}. Thus, we calculate
Pr{δ2 < ε} by using Monte Carlo simulations.

We randomly deploy two camera sensors, i.e., c1 and c2, in
the disk centered around T with radius r. Their orientations,
i.e., θ1 and θ2, satisfy the random uniform distribution on
[γ1 − α, γ1 + α] and [γ2 − α, γ2 + α], where γ1 and γ2 are the
orientations of

−−→
L1T and

−−→
L2T , respectively. Then, we can get

the corresponding δ2 according to (16). The aforementioned

process is repeated 1000 times to obtain 1000 δ2’s. Let a
Δ= ε/r

vary from 0 to 0.25 per 0.025 step. For each value of a, we can
summate the number, denoted by NL,2, of δ2’s that are smaller
than ε. Then, Pr{δ2 < ε} approximates the ratio of NL,2

to 1000.
Define Pr{δ2 < ε} Δ= ϕ(a) as the function of a, where

a
Δ= ε/r. As shown in Fig. 12, we can get the plot of ϕ(a)

according to 1000 δ2’s of the corresponding Monte Carlo runs.
When r = 4000, about 80% δ2’s are smaller than r/10. This
implies that, if the requirement of localization accuracy is not
very strict, then the probability that a point is L-covered by two
camera sensors, i.e., Pr{δ2 < ε}, is high. Furthermore, from
Fig. 12, we can also observe that, for a fixed a, Pr{δ2 < ε}
decreases as r increases.

When k ≥ 3, it is complicated to derive δk according to
(16), because the dimensions of 
 are large. A property of
Pr{δk < ε} is that Pr{δk < ε} increases as k increases, i.e.,
Pr{δk < ε} < Pr{δk+1 < ε}. This is because using one more
camera sensor for estimation reduces the estimation error. Then,
when Pr{δ2 < ε} approaches 1, we can use P2 as the approxi-
mation of Pl.

In this paper, we assume that, if Pr{δ2 < ε} ≥ 0.8, then
Pl ≈ P2. Because Pr{δ2 < ε} monotonously increases as a



LIU et al.: OPTIMAL NODE SELECTION FOR TARGET LOCALIZATION IN WIRELESS CAMERA SENSOR NETWORKS 3575

increases, we can obtain a threshold value of a, denoted by at,
where at = inf{a | ϕ(a) ≥ 0.8}. Thus, if ε ≥ atr, then

Pl ≈ P2 = 1 − e−λlαr2 − λlαr2e−λlαr2
.

However, if ε < atr, i.e., Pr{δ2 < ε} < 0.8, then the dif-
ference between Pl and P2 cannot be neglected. As shown in
Fig. 12, if ε = 0.05r < atr, then Pr{δ2 < ε} = 0.26. Let us
define

r′
Δ=

ε

at
.

Then, we can get the corresponding δ2, Pr{NT = 2}, and
PK with sensing radius r′, denoted by δ′2, Pr{N ′

T = 2}, and
P ′

K , respectively. Because Pr{δ2 < ε} decreases as r increases,
ϕ′(at) > 0.8, where ϕ′(a) is the function of the relationship
between Pr{δ′2 < ε} and a. This implies that

Pl ≈ P ′
2 = 1 − e−λlαr′2 − λlαr′2e−λlαr′2

.

Therefore, we can derive the approximative expression for the
relationship between Pl and λ as follows:

Pl ≈ 1 − e−λlαR2 − λlαR2e−λlαR2

where

R =
{

r, if ε > atr
ε
at

, otherwise

which is (17).
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