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Abstract

This paper considers the problem of selecting either routes that consist of long hops or routes that

consist of short hops in a network of multiple-antenna nodes, where each transmitting node employs spatial

multiplexing. This distance-dependent route selection problem is approached from the viewpoint of energy

efficiency, where a route is selected with the objective of minimizing the transmission energy consumed

while satisfying a target outage criterion at the final destination. Deterministic line networks and two-

dimensional random networks are considered. It is shown that when 1) the number of hops traversed

between the source and destination grows large or 2) when the target success probability approaches one

or 3) when the number of transmit and/or receive antennas grows large, short-hop routing requires less

energy than long-hop routing. It is also shown that if both routing strategies are subject to the same delay

constraint, long-hop routing requires less energy than short-hop routing as the target success probability

approaches one. In addition, numerical analysis indicates that given loose outage constraints, only a small

number of transmit antennas are needed for short-hop routing to have its maximum advantage over long-

hop routing, while given stringent outage constraints, the advantage of short-hop over long-hop routing

always increases with additional transmit antennas.

Keywords - Random networks, large-antenna limits, multiple antennas, relays.
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1 Introduction

By combining simple yet powerful signal processing techniques with informed node deployment, relays

can significantly improve both signal quality and achieved data rates in next-generation wireless networks [1].

Many relay-based communication strategies have been proposed in the literature, including the direct-link

three-terminal channel originally proposed by van der Meulen [2] and the multi-source cooperative diversity

strategy originally studied by Sendonaris et al [3]. In this paper, we are primarily concerned with multihop

relaying where direct communication is not possible between a single source and its intended destination [4,5].

Multihop relaying involves the source data being forwarded over several “hops” between intermediate relay

nodes until reaching the destination.

One method for improving both multihop transmission, and relaying in general, is the use of multi-input

multi-output (MIMO) signaling. Recent work has shown that by exploiting the additional spatial degrees of

freedom, MIMO relaying can yield the key benefits of improved signal quality and increased throughput [6–9].

The rewards of multiple-antenna relaying come at a price, though. In particular, multiple-antenna signaling

leads to increased per-node cost and complexity due to the need to deploy multiple RF chains at each

node. Also, the power drain required to operate the multiple RF chains may be problematic in a network of

battery-powered nodes.

The transmission energy of MIMO relaying is closely connected to the lengths of the “hops” that are

employed, motivating a study of the impact of routing hop length on energy consumption in a wireless network

of multiple-antenna nodes. The most related work to this paper is a study by Haenggi for single-antenna

networks [26]. Multihop relaying in deterministic line networks and two-dimensional random networks is

considered in [26] with the objective of satisfying an outage constraint at the destination node. While previous

studies used unrealistic “disk” models for signal reception to conclude that short-hop routing consumed less

energy than long-hop routing, the objective of [26] is to perform this comparison subject to Rayleigh fading.

It is shown in [26] that Rayleigh fading significantly closes the performance gap between short-hop and

long-hop routing, and given appropriate delay constraints, long-hop routing actually consumes less energy

than short-hop routing.

In this paper, we study the impact on transmit energy consumption of hop length-based routing in a

MIMO network. We employ the signal model in [27], where each transmitting node does not have channel

state information and employs spatial multiplexing. As in [26], we consider both deterministic and random

networks with an outage constraint at the destination, where an outage occurs if the achieved mutual
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information between a transmitter-receiver pair falls below a target rate. This mutual information expression

is much more unwieldy than the analogous single-antenna expression in [26]. To obtain a more tractable

expression for the mutual information, we employ the large-antenna limiting results in [27] and approximate

the mutual information as a Gaussian random variable.

We then use this Gaussian approximation to solve for the energy required to satisfy the target outage

constraint at the destination. We compare the required energy for both short-hop and long-hop routing

in several limiting cases. First, we show that 1) as the number of hops traversed between the source and

the destination grows large or 2) as the target success probability approaches one or 3) as the number of

transmitter and/or receiver antennas grows large, short-hop routing outperforms long-hop routing. We then

show that long-hop routing outperforms short-hop routing when the same delay constraint is applied to both

approaches and the target success probability approaches one.

In our numerical analysis, we study the impact of increasing the number of transmit antennas on the

energy ratio of short-hop to long-hop routing and observe a “crossing point.” Specifically, increasing the

number of transmit antennas causes the ratio to increase for moderate values of the target success probability,

implying that when more transmission failures can be tolerated, only a small number of antennas are needed

to yield the maximum benefit for short-hop routing. Also, increasing the number of transmit antennas

causes the ratio to monotonically decrease for high values of the target success probability, implying that

given stringent outage constraints, short-hop routing always benefits from additional transmit antennas.

We note that the problem of choosing either a long-hop route or a short-hop path is just another instance

of the well-studied relay selection problem [10–16]. Even though the relay selection problem is inherently

difficult due to its dependence on multiple layers of the Open Systems Interconnection (OSI) protocol stack,

we can glean valuable insights by focusing on a small subset of the key system parameters. In this case,

relays are selected by considering transmission energy and the inter-node distances in the network.

We also note that we evaluate energy consumption in random networks for two key reasons. First,

problems formulated on random networks are usually mathematically tractable, since the study of random

networks has a solid theoretical foundation [24, 25]. Second, the behavior of random networks can be used

to model real-world networks, and the resulting insights can prove invaluable for network designers. For

example, if network connectivity is essential in a real-world network, the network designers can determine

the conditions required for connectivity in a random network and consider these conditions when planning

node deployments [17]. The analytical and applied benefits of random network analysis have led to a flurry

of stochastic geometry-inspired research [18–23].
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This paper is organized as follows. In Section II we describe the system model for both network classes

that we consider and present the routing strategies of interest. We present a summary of our results on

the energy-based comparison between long-hop and short-hop routing in Section III. After presenting some

numerical analysis and simulation results in Section IV, we conclude the paper in Section V. The Appendix

contains derivations of our key results from Section III.

The notation used throughout the paper is as follows. We use boldface to denote matrices. log(·) denotes

the base-2 logarithm. INt denotes the Nt × Nt identity matrix. A† denotes the Hermitian conjugate of a

matrix A. P (B) denotes the probability of the event B occurring. E denotes the expectation operator.

2 System Model

We consider two types of networks in this paper. The first type of network that we consider is the

deterministic line network model in Fig. 1. Each neighboring pair of nodes in the network is separated by a

fixed distance d.

For this network, the short-hop routing strategy is as follows. The source node initially transmits a

message to its nearest neighbor in the direction of the destination. This nearest neighbor attempts to decode

the source message, and if it succeeds, it retransmits the source message to its nearest neighbor in the

direction of the destination. The process continues until the destination receives the source message.

In contrast, the long-hop strategy involves the source node directly transmitting a message to its n-th

nearest neighbor in the direction of the destination. This n-th nearest neighbor attempts to decode the

source message, and if it succeeds, it retransmits the source message to its n-th nearest neighbor in the

direction of the destination. The process continues until the destination receives the source message. Note

that the short-hop strategy requires n transmissions for every transmission in the long-hop strategy.

The second type of network that we consider is the two-dimensional (2-D) random network model in

Fig. 2. Based on the exposition in [26, Section 2.B], this network is generated via a Poisson point process of

intensity λ in the 2-D plane. In particular, the probability of having n nodes in a given area A is

P (n nodes in A) = e−λA (λA)n

n!
. (1)

As in [26] we set λ = 1 without loss of generality. We employ the Poisson point process model for two reasons.

First, it corresponds to a uniform distribution when conditioning on the number of nodes to be dispersed

in the 2-D plane. Thus, it is an appropriate model for sensor networks that consist of randomly placed
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nodes, including battlefield sensors that are dropped during an airborne reconnaissance mission. Second, the

Poisson point process model facilitates the subsequent analysis in our paper. Other point processes are more

appropriate for modeling a wider class of ad hoc networks, though these models are relatively intractable

and employing them requires a solid grasp of Palm theory [25]. This is beyond the scope of our paper.

For this network, we adopt the short-hop routing of Strategy A from [26, Section 2.D]. The notion of

progress is essential to facilitate routing in the 2-D plane. As defined in [26, Section 2.B], positive progress

in routing occurs when the x-distance between a selected node on the route and the destination decreases.

The basic idea behind Strategy A, then, is to consider the source-to-destination line and draw a sector of

angle φ about it. Next, the source node initially transmits a message to the closest node within this sector

such that positive progress is made. This nearest neighbor attempts to decode the source message, and if it

succeeds, it retransmits the source message to the closest node within the sector such that positive progress

is again made. The process continues until the destination receives the source message.

We also adopt the long-hop routing of Strategy B from [26, Section 2.D], where the source node directly

transmits its message to the n-th node in the route of Strategy A. This node attempts to decode the source

message, and if it succeeds, it retransmits the source message to the 2n-th node in the route of Strategy A.

The process continues until the destination receives the source message. As in the case of the deterministic

line network, Strategy A requires n transmissions for every transmission in Strategy B.

Note that we do not consider the performance impact of amplify-and-forward relaying [33, 34] in this

paper. We constrain the relays to employ a decode-and-forward approach in order to build on the theoretical

framework in [26]. We remark that the energy comparison in this paper can be performed in an amplify-

and-forward network, where the objective for each routing strategy is to satisfy a target outage constraint

at the destination. It is evident that target outage criteria do not need to be satisfied at any of the relays

in an amplify-and-forward network. On one hand, if the amplify-and-forward relays have either full channel

state information or knowledge of the channel statistics, they can possibly adjust their amplification factors

to give short-hop routing an advantage over long-hop routing. On the other hand, it should be stated

that increased noise amplification results from employing additional hops, so it is not clear as to whether

short-hops outperform long-hops in this case.

2.1 Key Assumptions

We make the following critical assumptions in this paper:
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• In both the deterministic and the 2-D random networks, each node is equipped with Nt transmit

antennas and Nr receive antennas.

• As in [27, Section 1.A], we assume that each transmitting node sends independent Gaussian signals

with equal average power over each of its antennas.

• The power of each signal is chosen such that the average signal-to-noise ratio (SNR) at each receive

antenna is ρ. In particular, this average SNR value includes the effects of path loss.

• The elements of each channel matrix Hi,a between transmitting node i and receiving node a are

circularly symmetric complex Gaussian zero-mean random variables, each with variance 0.5 for its real

and imaginary parts. This assumption simplifies our analysis and is typically used in the literature to

obtain insights on the performance of real-world wireless systems.

• Additive noise that consists of samples from a circularly symmetric complex Gaussian random process

is present at each receiving node. Each of the additive noise samples is a zero-mean random variable

with variance 0.5 for its real and imaginary parts.

• Consider a transmitting-receiving node pair (i, a). The receiving node a has full knowledge of Hi,a,

while the transmitting node i only knows the distribution of the elements of Hi,a. Note that allowing

for limited feedback of Hi,a from a to i could alter our results.

• We do not consider the presence of interference, including external sources of RF energy, for the

purposes of performance benchmarking. As discussed in [26, Section 2.A], the performance impact via

changing the transmit energy is more apparent in a zero-interference network. This is based on the

fact that if the source node and all interferers identically scale their power, the signal-to-interference-

plus-noise ratio (SINR) at any receiving node will only increase slightly.

• We also do not consider the effects of lognormal shadowing for the purposes of analytical tractability.

It should be noted that for a network of single-antenna nodes, increasing the fading variance decreases

the minimum node density that is required to obtain a connected network with high probability [31].

To the best of our knowledge, this result has not been extended to networks of multiple-antenna nodes.
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3 Energy Comparison

In this section, we present our results on the energy required to transmit from the source node to the

destination node in the networks in Figs. 1 and 2.

Let H be the channel between a neighboring pair of nodes. Assuming an identity transmit covariance

matrix, the mutual information between this node pair is [27]

I = log det

(

INt +
ρ

Nt
H†H

)

(2)

where the transmitting node performs spatial multiplexing. Note that the lack of channel state information

at the transmitter precludes the use of transmission strategies such as antenna selection.

We want to achieve a success probability of p between each neighboring node pair [26]. Thus, for a rate

threshold of R

p = P (I > R). (3)

We consider outage probability as the key performance metric in this paper for two reasons. First, target

data rates must be satisfied to enable efficient video transmission over commercial wireless networks such as

HSPA [32]. Second, this performance criterion facilitates our analytical contributions. It should be clear,

though, that the intuition gleaned from this information-theoretic metric cannot be directly applied to a

practical system. In particular, we are assuming that the transmitter employs Gaussian-distributed coding

over infinite block lengths and that the receiver employs maximum-likelihood decoding.

3.1 Gaussian Approximation

We have

p = P

(

log det

(

INt +
ρ

Nt
H†H

)

> R

)

. (4)

It is proved in [27, Theorem 1] that, if we fix the number of transmit antennas Nt and let the number of

receive antennas Nr grow large for each node, then the mutual information converges (in distribution) to a

Gaussian random variable, and so

p → 1

2
erfc

(

R−Nt log(1 + ρNr/Nt)
√

2Nt/Nr log(e)

)

. (5)

As shown in [27, Theorem 2], this result also holds if we fix the number of receive antennas Nr and let the

number of transmit antennas Nt grow large for each node. In addition, [27, Theorem 3] shows that this
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result holds if we let both Nr and Nt grow large and let either ρ → 0 or ρ → ∞. Interestingly, the result

in [27, Theorem 3] does not require Nr/Nt to be fixed as both Nr and Nt grow large.

As illustrated by [27, Fig. 1], approximating the mutual information as a Gaussian random variable is

accurate even for Nt = Nr = 2 antennas. Inspecting [27, Fig. 1] shows that the Gaussian approximation

error is generally at most 5% when measuring the CDF of the mutual information. As noted in [27, Section

2.B], this approximation error decreases for larger values of Nt and Nr.

Solving (5) for ρ and letting k = R/Nt −
√

2/(NtNr)(log(e))erfc
−1(2p) yields

ρ =
Nt

Nr
(2k − 1). (6)

3.1.1 Deterministic Line Networks

Since ρ is the average SNR at each receive antenna, it follows that ρ = E0d
−α/N0. Assume that pr

is the target success probability between the source and its n-th nearest neighbor in the direction of the

destination. Let ks = R/Nt −
√

2/(NtNr)(log(e))erfc
−1(2pr). The energy required to transmit over a single

long-hop between the source and this n-th nearest neighbor is

Es = N0(n · d)α Nt
Nr

(2ks − 1)

= nα · (N0d
α)Nt

Nr
(2ks − 1).

(7)

Let km = R/Nt −
√

2/(NtNr)(log(e))erfc
−1(2p

1/n
r ). The energy required to transmit over n short-hops

between the source and this n-th nearest neighbor is

Em = n · (N0d
α)

Nt

Nr
(2km − 1). (8)

Thus, we want to compare Es and Em to determine the relative energy efficiency of long-hops and short-hops

in a deterministic MIMO line network.

3.1.2 2-D Random Networks

Using the long-hop routing of Strategy B, the expected transmit energy, normalized by N0(Nt/Nr), can

be derived from [26, (29)]

EB = nα

(

2

φ

)α/2

Γ

(

1 +
α

2

)(

1− αφ2(n− 1)

24n

)

(2ks − 1). (9)

Using the short-hop routing of Strategy A, the expected transmit energy, normalized by N0(Nt/Nr), can

be derived from [26, (24)]

EA = n

(

2

φ

)α/2

Γ

(

1 +
α

2

)

(2km − 1). (10)
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Thus, we want to compare EB and EA to determine the relative energy efficiency of long-hops and

short-hops in a random MIMO 2-D network.

3.2 Limiting Cases for Line and 2-D Networks

Now we state our results for the energy comparison between long-hop routing and short-hop routing in

deterministic line networks and random 2-D networks. First, we consider the limiting case where the number

of hops n for short-hop routing goes to infinity.

Theorem 1. Consider a deterministic line network. Assuming that α > 1 and pr ∈ (0.9, 1),

Em

Es
→ 0

as n → ∞. In other words, short-hop routing consumes less energy than long-hop routing to satisfy the same

outage requirement in this regime.

Proof. See Appendix A.

To interpret this result, recall the energy expressions in (7) and (8). As the hop-count n increases, the

energy consumed for long-hop routing scales as nα. This posynomial scaling overcomes the impact of the

monotonic decrease in the erfc−1(·) function on the energy consumed for short-hop routing.

Note that our assumption that pr ∈ (0.9, 1) can be used to model typical end-to-end delivery requirements

for Transmission Control Protocol (TCP) traffic and video content [30]. We now extend this result to 2-D

networks as follows.

Corollary 1. Consider a random 2-D network. Assuming that α > 1 and αφ2 < 24,

EA

EB
→ 0

as n → ∞. In other words, Strategy A consumes less energy than Strategy B to satisfy the same outage

requirement in this regime.

Proof. As shown in Appendix A, n1−α · (2km − 1)/(2ks − 1) → 0 as n → ∞.

Note that the ratio between the energy consumed by short-hop and long-hop routing in this case is

EA

EB
= n1−α · 2

km − 1

2ks − 1
· 1

1− αφ2(n−1)
24n

. (11)

Also, 1/(1 − αφ2(n − 1)/(24n)) → 1/(1 − αφ2/24) as n → ∞, which is finite based on the assumptions

of the corollary. It then follows that EA/EB → 0 as n → ∞.
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The analysis for Corollary 1 is slightly different from that for Theorem 1, since the energy consumed

by long-hop routing now includes a term (1 − αφ2(n − 1)/(24n)) due to its increased path efficiency. This

increased path efficiency cannot overcome the posynomial energy scaling of nα for long-hop routing, though.

It should be stressed that Theorem 1 and Corollary 1 involve an unfair comparison between short-hop

and long-hop routing, as short-hop routing is subject to a relatively loose delay constraint. This is the

critical factor behind the asymptotic success of short-hop routing. Nevertheless, we believe that these results

serve two important purposes. First, they provide the first known energy-based comparison of short-hop and

long-hop routing in a multiple-antenna wireless network, laying the foundation for further work in this area.

Second, the mathematical tools that are introduced in Appendix A will be applied in Section 3.2.1, where a

more practical system with the same delay constraint on both routing strategies is studied.

Next, we consider the limiting case where the target success probability pr goes to one.

Theorem 2. Consider a deterministic line network. Assuming that n1−α < 1/2,
(

lim
pr→1

Em

Es

)

< 1.

In other words, short-hop routing consumes less energy than long-hop routing to satisfy the same outage

requirement in this regime.

Proof. Recall f1(n, pr) as defined in (17). As pr approaches one, we obtain the following limit

lim
pr→1

f1(n, pr) = 1.

It follows that Em/Es < f2(n, pr) such that limpr→1 f2(n, pr) = n1−α · 2 < 1, which follows from the

assumptions of the theorem. This establishes the theorem.

Again, recall the energy expressions in (7) and (8). As pr approaches one, note that the difference between

p
1/n
r and pr for fixed n decreases steadily. This yields a corresponding decrease in the difference between

erfc−1(2pr) and erfc−1(2p
1/n
r ). The key difference between short-hop routing and long-hop routing in this

limiting case, then, is the posynomial impact of the path loss exponent α on long-hop routing.

We now extend this result to 2-D networks as follows.

Corollary 2. Consider a random 2-D network. Assuming that n1−α/(1− αφ2(n− 1)/(24n)) < 1/2,
(

lim
pr→1

EA

EB

)

< 1

In other words, Strategy A consumes less energy than Strategy B to satisfy the same outage requirement in

this regime.

10
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Proof. From the proof of Theorem 2, it follows that in this case, EA/EB < g2(n, pr) such that

limpr→1 g2(n, pr) = n1−α ·2/(1−αφ2(n−1)/(24n)). The assumption of the corollary that n1−α/(1−αφ2(n−

1)/(24n)) < 1/2 establishes the corollary.

The critical difference between Corollary 2 and Theorem 2 is the requisite constraint on the parameters

n, α and φ. By fixing the hop-count n for the short-hop strategy, the increased path efficiency of long-hop

routing improves its energy consumption.

It should be stressed that Em → ∞ as pr → 1, and the same is true for Es, EA and EB. We believe that

Theorem 2 and Corollary 2 serve an important purpose, though. Specifically, these results provide valuable

insights into the relative behavior of short-hop and long-hop routing for values of pr that are close to one.

Also, the behavior of the erfc−1(x) function as x → 1 is such that the transmit energy is moderate for these

values of pr. These insights will be illustrated by Fig. 3 in Example 3.1.

Then, we consider the limiting case where the number of transmit antennas Nt and/or the number of

receive antennas Nr goes to infinity.

Theorem 3. Consider a deterministic line network. Assuming that n1−α · 2 < 1,

Em

Es
→ 0

as Nt → ∞ and/or Nr → ∞. In other words, short-hop routing consumes less energy than long-hop routing

to satisfy the same outage requirement in this regime.

Proof. This result follows immediately from (15).

In the large-antenna limit, which forms the basis of the results in [27], the path loss exponent α negatively

impacts long-hop routing.

We now extend this result to 2-D networks as follows.

Corollary 3. Consider a random 2-D network. Assuming that n1−α · 2/(1 − αφ2(n− 1)/(24n)) < 1,

EA

EB
→ 0

as Nt → ∞ and/or Nr → ∞. In other words, Strategy A consumes less energy than Strategy B to satisfy the

same outage requirement in this regime.

Proof. This result follows immediately from (11) and (15).

11
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As in Corollaries 1 and 2, the increased path efficiency of long-hop routing narrows its energy gap with

short-hop routing.

We now consider an example that further illustrates the energy efficiency of short-hop routing in a

deterministic line network.

Example 3.1. Line Network

Consider a line network where α = 2 and each node employs Nt = Nr = 2 antennas. Assume

that the short-hop strategy routes through n = 3 nearest neighbors. Let pr ∈ (0.9, 1).

As shown in Appendix B, short-hop routing consumes less energy than long-hop routing. Note

that for α = 2, short-hops yield the same energy consumed as long-hops in a network of single-

antenna nodes [26]. When we consider a MIMO line network, it is apparent that using multiple-

antenna transmission is inherently more energy-efficient than single-antenna transmission. Specif-

ically, MIMO requires less energy than single-input single-output (SISO) signaling to achieve the

same target success probability. Thus, MIMO short-hops should be even more energy-efficient

than SISO short-hops for α = 2.

Similar results can be obtained for the cases of n = 4 and n = 5 hops, and Fig. 3 shows the

long-hop versus short-hop energy comparison for n = 4 hops. It is clear that even though the

upper bound in (15) is quite loose, we still observe that short-hop routing outperforms long-hop

routing. It is also evident that short-hops outperform long-hops under the approximations in

steps (a) and (d) of (18). Note that step (a) of (18) is based on the approximation in (16),

and the tightness of this approximation to the upper bound in (15) can be seen in Fig. 3. In

addition, as pr approaches one, short-hops continue to outperform long-hops, which illustrates

our analytical result in Theorem 2 and shows that it can be extended to scenarios where finite

transmit energy is expended.

Next we consider an example that further illustrates the energy efficiency of short-hop routing in a random

2-D network.

Example 3.2. 2-D Network

Consider a 2-D network where α = 2 and each node employs Nt = Nr = 2 antennas. Assume

that the short-hop Strategy A routes through n = 3 nearest neighbors in a sector with angle

φ = π/2. Let pr ∈ (0.9, 1) given a target rate R = 4.

12
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As shown in Appendix C, Strategy A consumes less energy than Strategy B. A similar analysis

can be carried out for n = 4 hops and R ∈ {4, 8, 16} along with n = 5 hops and R ∈ {4, 8, 16},

and it can be shown that in these cases, Strategy A requires less energy than Strategy B. The

inherent energy efficiency of MIMO leads to this result.

3.2.1 Delay Constraints

Now we consider the impact of imposing the same delay constraint on the long-hop and short-hop

routing strategies. From [26, Section 4.A], we impose a delay constraint of n time slots on both strategies.

As in [26, Section 4.A], we also assume that the long-hop routing strategy can exploit this flexible delay

constraint by transmitting to its n-th nearest neighbor in the direction of the destination in each time slot.

We refer to this modification of the standard long-hop approach as “multi-transmit” long-hop routing. Since

the target success probability at this n-th nearest neighbor after n time slots is pr for short-hop and “multi-

transmit” long-hop routing, the per-slot target success probability pr,1 for the “multi-transmit” long-hop

strategy is

pr,1 = 1− (1− pr)
1/n.

This is obtained by noting that (1− pr) = (1− pr,1)
n.

First we consider routing in a deterministic line network. Let Es,mult denote the energy required to

transmit over a single long-hop between the source and its n-th nearest neighbor, assuming that the source

transmits during n time slots. Let ks,mult = R/Nt −
√

2/(NtNr)(log(e))erfc
−1(2pr,1). From (7), we see that

Es,mult = n · nα · (N0d
α)Nt

Nr
(2ks,mult − 1)

= nα+1 · (N0d
α)Nt

Nr
(2ks,mult − 1).

(12)

This follows from the fact that the source uses the same transmit energy in each time slot.

Then we consider routing in a 2-D random network. Let EB,mult denote the expected transmit energy,

normalized by N0(Nt/Nr), for the long-hop routing of Strategy B assuming that the source transmits during

n time slots. Using (9), we see that

EB,mult = n · nα
(

2
φ

)α/2
Γ
(

1 + α
2

)(

1− αφ2(n−1)
24n

)

(2ks,mult − 1)

= nα+1
(

2
φ

)α/2
Γ
(

1 + α
2

)(

1− αφ2(n−1)
24n

)

(2ks,mult − 1).
(13)

Again, this follows from the fact that the source uses the same transmit energy in each time slot.

Now we compare the performance of “multi-transmit” long-hop routing with that of short-hop routing.

13



Paper: J5-TVT, Second Revision, First Draft, October 9, 2018

Theorem 4. For a deterministic line network,

Es,mult

Em
→ 0

as pr → 1. In other words, “multi-transmit” long-hop routing consumes less energy than short-hop routing

to satisfy the same outage requirement.

Proof. The ratio of the energies consumed by “multi-transmit” long-hop routing and short-hop routing is

Es,mult

Em
= nα · 2

ks,mult−1
2km−1

(a)
≈ nα · 2ks,mult−km

where step (a) holds as pr → 1.

Then we apply the approximation for erfc−1(·) in (16) to obtain

ks,mult − km =
√

2
NtNr

log(e)(erfc−1(2(1 − pr)
1/n)− erfc−1(2− 2p

1/n
r ))

≈
√

2
NtNr

log(e)

(

√

− ln
(√

π(2(1 − pr)1/n)
√

− ln(2(1− pr)1/n)
)

−
√

− ln

(√
π(2− 2p

1/n
r )

√

− ln(2− 2p
1/n
r )

)

)

, f4(n, pr).

(14)

In particular, we obtain the following limit

lim
pr→1

nα · 2f4(n,pr) = 0.

It follows that limpr→1Es,mult/Em = 0, which establishes the theorem.

As will be in seen in Section 4, this result only holds for pr ≈ 1. For smaller values of pr, short-hop

routing outperforms “multi-transmit” long-hop routing.

We now extend this result to 2-D networks as follows.

Corollary 4. For a random 2-D network,

EB,mult

EA
→ 0

as pr → 1. In other words, “multi-transmit” Strategy B consumes less energy than Strategy A to satisfy the

same outage requirement.

Proof. This follows directly from the proof of Theorem 4.

Note that the asymptotic behavior of pr does not affect the path efficiency of “multi-transmit” Strategy

B. Also, as will be seen in Section 4, this result only holds for pr ≈ 1. For smaller values of pr, Strategy A

outperforms “multi-transmit” Strategy B.

14
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4 Numerical Analysis and Simulation Results

Here we perform further energy-based comparisons of the long-hop and short-hop routing strategies.

Fig. 4 shows the impact of the target rate R on the energy comparison between short-hops and long-hops.

We consider transmission in a deterministic line network with n = 4 hops and Nt = Nr = 2 transmit and

receive antennas. In addition, we fix α = 2.

It is apparent that as the target end-to-end success probability pr increases, short-hop routing outperforms

long-hop routing for all considered target rates. Also, we observe that the energy advantage of short-hop

routing over long-hop routing increases as the target rate R increases. It should be stressed that the benefits

of short-hop routing for large target rates do not necessarily translate to an interference-limited environment.

As shown in [29] for an interference-limited network of single-antenna nodes, long-hop routing requires less

energy than short-hop routing for sufficiently large target rates.

Fig. 5 compares the energy efficiency of long-hop and short-hop routing in a random 2-D network. We

uniformly distribute 30 points in a sector of angle φ = π/2 between the source and the destination. We also

consider α = 2 and set pr = 0.92. In addition, we set Nt = Nr = 2 along with R = 2.

We observe that short-hops consume less energy than long-hops as the hop-count n increases, which

illustrates our result in Corollary 1. Note that the energy advantage of short-hop routing increases as the

hop-count increases. From additional Monte Carlo simulation we determined that the energy advantage of

short-hop routing does not change as the number of nodes in the network increases. In addition, the energy

consumed for long-hops increases with the hop-count due to longer distances traversed and the effects of

path loss.

Fig. 6 and Fig. 7 illustrate the performance impact of Nt and pr in a line network. We consider α = 2

and set Nr = 2. We also set R = 4 for transmission over n = 5 hops with pr ∈ (0.9, 1).

First, as shown in Fig. 7, adding transmit antennas causes the short-hop-to-long-hop energy ratio to

monotonically decrease for pr ≥ 0.98. This can be explained by noting that km is dominated by the

expression containing erfc−1(·) for increasing Nt, and the same is true for ks. Also, the difference between

the long-hop target pr and the per-hop short-hop target p
1/n
r is small, implying that the difference between

erfc−1(2pr) and erfc−1(2p
1/n
r ) for long-hop and short-hop routing, respectively is small. Thus, the path loss in

(7) is the key factor that penalizes long-hop routing for stringent outage constraints, implying that short-hop

routing always benefits from increasing Nt in this regime.

Second, as shown in Fig. 6, adding transmit antennas eventually causes the energy ratio to increase for
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pr ≤ 0.93. This behavior for looser outage constraints can be explained as in the previous paragraph. In

particular, the larger difference between the long-hop target pr and the relatively stricter per-hop short-hop

target p
1/n
r partially mitigates the advantages of short-hop routing for looser outage constraints, implying

that short-hop routing derives its maximum benefit from a small number of transmit antennas.

Fig. 8 shows the impact of Nr on the energy ratio of short-hop to long-hop routing in a line network.

We employ most of the same parameters in Figs. 6 and 7, except that we fix Nt = 2.

We observe that adding receive antennas causes the energy ratio to monotonically decrease for all pr ∈

(0.9, 1). This can be explained by inspecting (7) and (8). By fixing Nt and increasing Nr, the performance

impact of the outage constraint pr is minimized. Then, the path loss in (7) becomes the key factor that

penalizes long-hop routing, implying that short-hop routing always benefits from increasing Nr.

Now we consider the impact of delay constraints. Fig. 9 shows the impact of Nt on the energy ratio of

“multi-transmit” long-hop to short-hop routing in a line network. We employ most of the same parameters

in Figs. 6 and 7, except that we set pr ∈ (0.95, 1) and n = 2.

We observe that “multi-transmit” long-hop routing is outperformed by short-hop routing in this regime,

and we are not able to illustrate the result in Theorem 4 due to the finite precision arithmetic employed by

Matlab. Also, for a large number of transmit antennas Nt, short-hop routing gains an energy advantage over

“multi-transmit” long-hop routing as pr increases. This is due to the fact that as pr increases, the difference

between the per-slot target success probabilities p
1/n
r and pr,1 for short-hop and “multi-transmit” long-hop

routing, respectively, decreases. Thus, “multi-transmit” long-hop routing is hindered by the source having

to transmit in each time slot.

Fig. 10 performs the same comparison as in Fig. 9 except that we set Nr = 4. Interestingly, as in Fig.

6, we observe that short-hop routing begins to lose its energy advantage over “multi-transmit” long-hop

routing as the number of transmit antennas Nt increases beyond a certain level. This behavior is observed

for relatively low values of the target success probability pr, and so the larger difference between pr and the

per-hop short-hop target p
1/n
r in this regime partially mitigates the energy advantage of short-hop routing.

Fig. 11 performs the same comparison as in Figs. 9 and 10, except in a 2-D random network. We employ

the same parameters as in Fig. 9, except that we set φ = π/2 and n = 5. In this case we observe analogous

behavior to that in Fig. 10.
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5 Conclusion

We have compared the performance of long-hop and short-hop routing strategies in MIMO networks in

terms of energy consumption. For both deterministic line networks and two-dimensional random networks,

we have shown that short-hop routing actually improves upon long-hop routing in several limiting cases. Our

numerical analysis indicates that given loose outage constraints, only a small number of transmit antennas

are needed for short-hop routing to have its maximum benefit, while given stringent outage constraints, short-

hop routing always benefits from additional transmit antennas. The obtained results imply that in MIMO

systems with reasonably loose delay constraints, short-hop routing is a viable strategy for consideration.

The results in this paper should not be taken to conclude that short-hop routing is always preferable to

long-hop routing in a MIMO network. In particular, the benefits of long-hop routing, at least for single-

antenna networks, are most fully realized when reasonably loose delay constraints are applied in conjunction

with full channel state information at each transmitting node [26]. A more complete treatment of this

problem, then, would consider the combined impact of these two factors on energy efficiency. Also, while

the Poisson point process is a useful model for random sensor node deployments, other wireless networks of

interest may exhibit a more structured pattern. As mentioned in Section 2, additional tools from stochastic

geometry will be required to model the long-hop/short-hop comparison in such networks.

A Proof of Theorem 1

The ratio of the energies consumed by short-hop routing and by long-hop routing is

Em
Es

= n1−α · 2km−1
2ks−1

< n1−α · 2km

2ks−1

< n1−α · 2km−ks+1.

(15)

In particular, km − ks + 1 =
√

2/(NtNr) log(e)(erfc
−1(2pr)− erfc−1(2p

1/n
r )) + 1.

Next we employ an approximation for erfc−1 due to Philip [28]

erfc−1(x) ≈
√

− ln
(√

πx
√

− ln(x)
)

. (16)

This approximation is particularly good for small x, and the error is less than 1.35% for x ≤ 0.2. Note that

we have assumed that pr ∈ (0.9, 1), so to apply this approximation we need the relation erfc−1(2 − x) =
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−erfc−1(x) [28, (1.6)]. Now we can apply (16) to yield

km − ks + 1 =
√

2
NtNr

log(e)(erfc−1(2− 2p
1/n
r )− erfc−1(2− 2pr)) + 1

≈
√

2
NtNr

log(e)

(
√

− ln

(√
π(2− 2p

1/n
r )

√

− ln(2− 2p
1/n
r )

)

−
√

− ln

(√
π(2− 2pr)

√

− ln(2− 2pr)

)

)

+ 1

, f1(n, pr).

(17)

In particular, as n grows large, we obtain the following limit

lim
n→∞

n1−α · 2f1(n,pr) = 0.

This does not immediately establish that limn→∞ n1−α · 2km−ks+1 = 0. Now let

a(n) =
√

2/(NtNr) log(e)erfc
−1(2− 2p

1/n
r )

b(n) =
√

2/(NtNr) log(e)

√

− ln

(√
π(2− 2p

1/n
r )

√

− ln(2− 2p
1/n
r )

)

.

We now know that

lim
n→∞

n1−α · 2b(n) = 0

and so ∀ǫ1 > 0,∃N1 such that |n1−α · 2b(n)| < ǫ1 ∀n > N1.

Also, we can write a(n) = b(n) + c(n). The key step is to observe from [28, Table 2] that

lim
n→∞

c(n) = 0

since 2− 2p
1/n
r → 0 as n → ∞, and so ∀ǫ2 > 0,∃N2 such that |c(n)| < ǫ2 ∀n > N2.

Let N3 = max(N1, N2). Then, ∀n > N3, we have

|n1−α · 2a(n)| = |n1−α · 2b(n)+c(n)|

= |n1−α · 2b(n)| · |2c(n)|

< ǫ1 · 2ǫ2 .

This shows that ∀ǫ3 > 0,∃N3 such that |n1−α · 2a(n)| < ǫ3 ∀n > N3, where ǫ3 = ǫ1 · 2ǫ2 , and so we have

lim
n→∞

n1−α · 2a(n) = 0.

It now follows from (15) that limn→∞Em/Es = 0, which establishes Theorem 1.
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B Computations for Example 3.1

Consider a deterministic line network with the parameters from Example 3.1. We see that for short-hops

to be more energy-efficient than long-hops, we need (2km−1)/(2ks−1) < 3. By employing the same approach

used to obtain (15), we want to show that km − ks + 1 < log(3).

Now we apply the same approximation due to Philip from Appendix A and obtain

f(pr) , km − ks + 1

= 1.02(erfc−1(2− 2p
1/3
r )− erfc−1(2− 2pr)) + 1

(a)
≈ 1.02

√

− ln(2
√
π)− ln(1− p

1/3
r )− 1

2 ln(− ln(2) − ln(1− p
1/3
r ))

−1.02
√

− ln(2
√
π)− ln(1− pr)− 1

2 ln(− ln(2)− ln(1− pr)) + 1
(b)
≈ 1.02

√

− ln(2
√
π) +

∑104

k=1
1
kp

k/3
r − 1

2 ln(− ln(2)− ln(1− p
1/3
r ))

−1.02
√

− ln(2
√
π) +

∑104

k=1
1
kp

k
r − 1

2 ln(− ln(2)− ln(1− pr)) + 1
(c)
≈ 1.02

√

− ln(2
√
π) +

∑104

k=1
1
kp

k/3
r − 1

2 ln(− ln(2) + p
1/3
r )

−1.02
√

− ln(2
√
π) +

∑104

k=1
1
kp

k
r − 1

2 ln(− ln(2) + pr) + 1
(d)
≈ 1.02

√

− ln(2
√
π) +

∑104

k=1
1
kp

k/3
r − 1

2(−1− ln(2) + p
1/3
r )

−1.02

√

− ln(2
√
π) +

∑104

k=1
1
kp

k
r − 1

2(−1− ln(2) + pr) + 1

, g(pr)

(18)

where we applied a Taylor series approximation with 104 terms for ln(1− x) to obtain step (b) of (18), and

we applied a first-order Taylor series approximation to obtain steps (c) and (d) of (18).

Our objective is to show that the approximation to f(pr) is monotone decreasing for pr ∈ (0.9, 1). We

differentiate this approximation and observe its behavior in pr ∈ (0.9, 1)

g
′

(pr) = 0.51 · (1/6)p
−2/3
r +(1/3)

P

10
4

k=2
p
k/3−1

r
q

−(1/2) ln(2π)+(1/2)(1+p
1/3
r )+

P

104

k=2
(1/k)p

k/3
r

−0.51 · (1/2)+
P

10
4

k=2
pk−1
r

q

−(1/2) ln(2π)+(1/2)(1+pr )+
P

104

k=2
(1/k)pkr

.
(19)

Note that since x < x1/3 for x ∈ (0.9, 1), the denominator of the first term in (19) is greater than that of the

second term in (19). Also, it is straightforward to show that (1/6)p
−2/3
r < 1/2 for pr ∈ (0.9, 1).

Thus, to show that the approximation to f(pr) is monotone decreasing for pr ∈ (0.9, 1) we need to show

that (1/3)p
k/3−1
r < pk−1

r for k ∈ {2, 3, . . . , 104}. This is equivalent to showing that (1/3)p
k/3
r < pr, which

is clear for k ≥ 3 since pmr < pr for m > 1 and pr < 1. As for k = 2, we must show that (1/3)p
2/3
r < pr,

which is equivalent to showing that (1/3) < p
1/3
r . Since 0.91/3 > (1/3) and p

1/3
r is monotone increasing for

pr ∈ (0.9, 1), we have established this claim.
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Based on the tightness of the approximations that we have employed, as further evidenced by Fig. 12, we

conclude that f(pr) is monotone decreasing for pr ∈ (0.9, 1). Note that f(0.9) < log(3), so we conclude that

km − ks + 1 < log(3) for pr ∈ (0.9, 1), establishing that short-hops are more energy-efficient than long-hops

in this case for a deterministic MIMO line network.

C Computations for Example 3.2

Consider a random 2-D network with the parameters from Example 3.2. Then, the ratio EA/EB can be

simplified as

EA

EB
=

1

n
· 48n

(48 − π2)n+ π2
· 2

km − 1

2ks − 1
. (20)

Note that for n = 3, (1/n)(48n/((48 − π2)n+ π2)) ≈ 0.386. Thus, if we can show that

2km−1
2ks−1

< 1
0.386

≈ 2.59
(21)

then short-hops will be more energy-efficient than long-hops in this case.

In particular, consider the following bounds

2km−1
2ks−1

(a)
< 2km−1

(3/2)·2ks−1

< 2
3 · 2km−ks+1.

(22)

As shown in Section 3.2, 2km−ks+1 < n for n = 3. Thus, if we can prove step (a) of (22), we will have

established (21).

From inspecting (22), we want to show that 2ks − 1 > (3/2) · 2ks−1, which is equivalent to requiring that

(4/3) > 2ks/(2ks − 1). Note that the function f(x) = 2x/(2x − 1) is monotone decreasing. In particular,

as pr increases, ks increases based on the expressions in Section 3.1.1. Also, for pr = 0.9 and R = 4,

2ks/(2ks − 1) < 4/3.

Thus, we have proved (22) for pr ∈ (0.9, 1) and established that short-hops are more energy-efficient than

long-hops in this case for a random MIMO 2-D network.
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Figure 2: Randomly dispersed nodes between source and destination.
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Figure 3: Long-hop vs. short-hop energy for n = 4 hops.
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Figure 4: Impact of target rate on energy comparison.

24



Paper: J5-TVT, Second Revision, First Draft, October 9, 2018

2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.5

1

1.5

2

2.5

3

3.5

x 10
−10

n

A
ve

ra
ge

 e
ne

rg
y 

co
ns

um
ed

Energy comparison, α = 2, p
r
 = 0.92, φ = π/2

Short−hop routing
Long−hop routing

Figure 5: Energy consumption in a 2-D random network.
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Figure 6: Impact of Nt on long-hop vs. short-hop energy given a loose outage constraint.
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Figure 7: Impact of Nt on long-hop vs. short-hop energy given a strict outage constraint.
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Figure 8: Impact of Nr on long-hop vs. short-hop energy.
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Figure 9: Impact of Nt on “multi-transmit” long-hop vs. short-hop energy for Nr = 2.
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Figure 10: Impact of Nt on “multi-transmit” long-hop vs. short-hop energy for Nr = 4.
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Figure 11: Impact of Nt on “multi-transmit” long-hop vs. short-hop energy in a 2-D random network.
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Figure 12: Long-hop vs. short-hop energy for n = 3 hops.
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