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Abstract

Spectrum sensing is a fundamental and critical issue for opportunistic spectrum access in cognitive

radio networks. Among the many spectrum sensing methods, the information theoretic criteria (ITC)

based method is a promising blind method which can reliably detect the primary users while requiring

little prior information. In this paper, we provide an intensive treatment on the ITC sensing method.

To this end, we first introduce a new over-determined channelmodel constructed by applying multiple

antennas or over sampling at the secondary user in order to make the ITC applicable. Then, a simplified

ITC sensing algorithm is introduced, which needs to computeand compare only two decision values.

Compared with the original ITC sensing algorithm, the simplified algorithm significantly reduces the

computational complexity without losing any performance.Applying the recent advances in random

matrix theory, we then derive closed-form expressions to tightly approximate both the probability of

false alarm and probability of detection. Based on the insight derived from the analytical study, we

further present a generalized ITC sensing algorithm which can provide flexible tradeoff between the

probability of detection and probability of false alarm. Finally, comprehensive simulations are carried out

to evaluate the performance of the proposed ITC sensing algorithms. Results show that they considerably

outperform other blind spectrum sensing methods in certaincases.

Index Terms

Cognitive radio networks, spectrum sensing, information theoretic criteria, random matrix theory.

I. INTRODUCTION

Due to the increasing popularity of wireless devices in recent years, the radio spectrum has

been an extremely scarce resource. By contrast, 90 percent of the existing licensed spectrum
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remains idle and the usage varies geographically and temporally as reported by the Federal

Communication Commission (FCC) [1]. This indicates that the fixed frequency regulation policy

conflicts drastically with the high demand for frequency resource. Cognitive radio (CR) is one

of the most promising technologies to deal with such irrational frequency regulation policy [2],

[3] and has received lots of attention. In cognitive radio networks, secondary (unlicensed) users

first reliably sense the primary (licensed) channel and thenopportunistically access it without

causing harmful interference to primary users [4]. By doingthis, the spectrum utilization of

existing wireless communication networks can be tremendously improved. FCC has issued a

Notice of proposed Rule Making to allow the unlicensed CR devices to operate in the unused

channel [5]. The IEEE has also formed the 802.22 working group to develop the standard for

wireless regional area networks (WRAN) which will operate on unused VHR/UHF TV bands

based on cognitive radio technology. Both of these activities will significantly change the current

wireless communication situation.

As mentioned above, the secondary users need to opportunistically access the unused licensed

channel while causing negligible interference to the primary users. As a result, the detection

of presence of primary users is a fundamental and critical task in the cognitive radio networks.

Although the detection of presence of signals is known as a classical problem in signal processing,

however, sensing the presence of primary users in a complicated communication environment,

especially a CR-based network, is still a challenging problem from the practice perspective. This

is mainly due to the following two limiting factors: Firstly, it is very difficult, if not possible,

for the secondary user to obtain the necessary prior information about the signal characteristics

of the primary user for most of the traditional detection techniques to apply. Secondly, the CR

devices should be capable of sensing the very weak signals transmitted by primary users. For

instance, the standard released by FCC has required that spectrum sensing algorithms need to

reliably detect the transmitted TV signals at a very low signal-to-noise ratio (SNR) of at least

−18dB [4].

Thus far, there are mainly four types of spectrum sensing methods: energy detection [6], [7],

matched filtering (coherent detection) [8], feature detection [9] and eigenvalue-based detection

[10]–[12]. Among them, energy detection is optimal if the secondary user only knows the local

noise power [13]. The matched-filtering based coherent detection is optimal for maximizing the

detection probability but it requires the explicit knowledge of the transmitted signal pattern (e.g.,
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pilot, training sequence etc.) of the primary user. The feature detection, often referred to as the

cyclostationary detection, exploits the periodicity in the modulation scheme which, however,

is difficult to determine in certain scenarios. By constructing the decision variables based on

eigenvalues of the sampled covariance matrix to detect the presence of the primary user, the

eigenvalue-based sensing methods presented in [10]–[12] do not need to estimate the power of

the noise and hence are more practical in most CR networks. Recently, several new spectrum

sensing schemes by incorporating system-level design parameters have been introduced, such

as throughput maximization [14]–[16] and cooperative sensing using multiple nodes [17]–[20].

Nevertheless, the aforementioned four types of sensing techniques are still treated as a basic

component in these new schemes.

In this paper, we study a blind spectrum sensing method basedon information theoretic

criteria (ITC), an approach originally for model selectionintroduced by Akaike [21], [22] and

by Schwartz [23] and Rissanen [24]. Applying information theoretic criteria for spectrum sensing

was firstly introduced in [25]–[28]. This work provides a more intensive study on the ITC sensing

algorithm and its performance. The main contributions of this paper are as follows:

• First of all, to make the information theoretic criteria applicable, a new over-determined

channel model is constructed by introducing multiple antennas or over sampling at the

secondary user.

• Then, a simplified information theory criteria (SITC) sensing algorithm which only involves

the computation of two decision values is presented. Compared to the original information

theory criteria (OITC) sensing algorithm in [25], SITC is much less complex and yet almost

has no performance loss. Simulation results also demonstrate that the proposed SITC based

spectrum sensing outperforms the eigenvalue based sensingalgorithm in [10] and almost

obtains the similar performance with [11]. The proposed sensing algorithm also enables a

more tractable analytical study on the detection performance.

• Applying the recent advances in random matrix theory, we then derive closed-form ex-

pressions for both the probability of false alarm and probability of detection. which can

approximate the actual results in simulation very well.

• Finally, based on the insight derived from the analytical study, we further present a gener-

alized information theory criteria (GITC) sensing algorithm. By involving an adjustable

threshold, the proposed GITC can provide flexible tradeoff between the probability of
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detection and probability of false alarm in order to supply different system requirements.

The rest of paper is organized as follows. In Section II, the preliminary on the information

theoretic criteria is provided. The proposed over-determined system model is presented in Section

III. Section IV gives the proposed SITC sensing algorithm and the theoretical analysis of

its detection performance, followed by the GITC sensing algorithm in Section V. Extensive

simulation results are illustrated in Section VI. Finally,Section VII offers some concluding

remarks.

Notations: E [·] denotes expectation over the random variables within the brackets.Tr(A) stands

for the trace of matrixA. Superscripts(·)T and (·)† denote transpose and conjugate transpose.

II. PRELIMINARY ON THE INFORMATION THEORETIC CRITERIA

Information theoretic criteria are an approach originallyfor model selection introduced by

Akaike [21], [22] and by Schwartz [23] and Rissanen [24]. There are two well-known criteria

that have been widely used: Akaike information criterion (AIC) and minimum description length

(MDL) criterion. One of the most important applications of information theoretic criteria is to

estimate the number of source signals in array signal processing [29]. Consider a system model

described as

x = As+ µ, (1)

wherex is thep× 1 complex observation vector,A is a p× q (p > q) complex system matrix,

s denotes theq × 1 complex source modulated signals andµ is the additive complex white

Gaussian noise vector. It is noted that the definite parameters q, A andσ2 are all unknown. The

resulting cost functions of AIC and MDL have the following form [29]:

AIC(k) = −2 log

(

∏p
i=k+1 l

1/(p−k)
i

1
p−k

∑p
i=k+1 li

)N(p−k)

+ 2k(2p− k) + 2, (2)

MDL(k) = − log

(

∏p
i=k+1 l

1/(p−k)
i

1
p−k

∑p
i=k+1 li

)N(p−k)

+

(

1

2
k(2p− k) +

1

2

)

logN, (3)

whereN signifies the observation times andli denotes thei-th decreasing ordered eigenvalue

of the sampled covariance matrix. The estimated number of source signals is determined by

choosing the minimum (2) or (3). That is,

k̂AIC = arg min
j=0,1,...,p−1

AIC(j), (4)
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k̂MDL = arg min
j=0,1,...,p−1

MDL(j). (5)

III. SYSTEM MODEL

We consider a multipath fading channel model and assuming that there is only one primary

user in the cogitative radio network. Letx(t) be a continuous-time baseband received signal at

the secondary user’s receiver. Spectrum sensing can be formulated as a binary hypothesis test

between the following two hypotheses

H0 : x(t) = µ(t), (6)

H1 : x(t) =

∫ T

0

h(ℓ)s(t− ℓ)dℓ+ µ(t), (7)

wheres(t) denotes the signal transmitted by the primary user,h(t) is the continuous channel

response between the primary transmitter and the secondaryreceiver,µ(t) denotes the additive

white noise, the parameterT signifies the duration of the channel. The channel response is also

assumed to remain invariant during each observation. To obtain the discrete representation, we

assume that the received signal is sampled at ratefs which is equal to the reciprocal of the

baseband symbol durationT0. For notation simplicity, we definex(n) = x(nT0), s(n) = s(nT0)

andµ(n) = µ(nT0). Hence, the corresponding received signal samples under the two hypotheses

are described as:

H0 : x(n) = µ(n), (8)

H1 : x(n) =
L−1
∑

i=0

h(i)s(n− i) + µ(n), (9)

where h(i) (0 6 i 6 L − 1) denotes the discrete channel response ofh(t) and L denotes

the order of the discrete channel (L taps). Let each observation consist ofM received signal

samples. Then (8) and (9) can be rewritten in matrix form as:

H0 : xi = µi, (10)

H1 : xi = Hsi + µi, (11)

whereH is anM × (L+M − 1) circular channel matrix defined as

H =















h(L− 1) h(L− 2) . . . h(0)

h(L− 1) h(L− 2) . . . h(0)
. . . . . .

h(L− 1) h(L− 2) . . . h(0)















,
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xi, si, andµi are theM×1 observation vector,(L+M−1)×1 source signal vector andM×1

noise vector, respectively, and are defined as

xi = [x(iM −M + 1), x(iM −M + 2), . . . , x(iM)]T , (12)

si = [s(iM −M − L+ 2), s(iM −M − L+ 3), . . . , s(iM)]T , (13)

µi = [µ(iM −M + 1), µ(iM −M + 2), . . . , µ(iM)]T . (14)

Now, comparing (11) with the array signal processing model (1), we find that a major difference

is that theH in our considered system model is an under-determined matrix, i.e., the order

of column is larger than the order of row. Therefore, the information theoretic criteria are not

directly applicable here [29].

To construct an over-determined channel matrixH as in (1), one needs to enlarge the ob-

servation space. Obviously, simply increasing the observation windowM does not work. Here

we propose to expand the observation space using one of the following two methods. One is to

increase the spatial dimensionality by employing multiplereceive antennas at the secondary user

and the other is to increase the time dimensionality by over-sampling the received signals. It

turns out that the two methods are similar to each other. Hence we shall focus on the multiple-

antenna approach hereafter. The difference for over-sampling method will be discussed in the

end of this section. In specific, suppose that the detector atthe secondary user is equipped with

K antennas. Redefine (12) and (14) as

xi = [xi
1(1), x

i
2(1), . . . , x

i
K(1), x

i
1(2), . . . , x

i
K(2), . . . , x

i
1(M), . . . , xi

K(M)]T , (15)

µi = [µi
1(1), µ

i
2(1), . . . , µ

i
K(1), µ

i
1(2), . . . , µ

i
K(2), . . . , µ

i
1(M), . . . , µi

K(M)]T , (16)

where x
i
k = [xi

k(1), x
i
k(2), . . . , x

i
k(M)]T represents theM × 1 observation vector at thek-

th antenna at thei-th observation as in (12), andµi
k = [µi

k(1), µ
i
k(2), . . . , µ

i
k(M)]T is the

corresponding noise vector at thek-th antenna at thei-th observation as in (14). Then, the
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new channel matrixH becomes anMK × (M + L− 1) matrix:

H =



















































h1(L− 1) h1(L− 2) . . . h1(0)
...

...

hK(L− 1) hK(L− 2) . . . hK(0)

h1(L− 1) h1(L− 2) . . . h1(0)
...

...

hK(L− 1) hK(L− 2) . . . hK(0)
. . . . . .

h1(L− 1) h1(L− 2) . . . h1(0)
...

...

hK(L− 1) hK(L− 2) . . . hK(0)



















































.

(17)

Here, hk(i), for i = 0, . . . , L − 1, denotes thei-th channel tap observed atk-th antenna. To

ensure thatH is now an over-determined matrix (the order of row is larger than the order of

column), we need to have

K >
L+M − 1

M
, (18)

or, alternatively,

M >
L− 1

K − 1
. (19)

Furthermore, we assume the noise samples come form different antennas are independent with

zero mean andE(µiµ
H
i ) = σ2IMK . Then we can exactly ensure that the system mode under mul-

tiple antennas satisfies the over-determined condition specified in [29]. For ease of presentation,

we definep = MK andq = L+M − 1 in (11).

As mentioned earlier, the second approach to construct the over-determined channel model

is for the secondary user to over-sample the received signals. Suppose that the over-sampling

factor is given byK. That is, the received baseband signal is sampledK times in one symbol.

Then a similar system model as in (15), (16) and (17) can be obtained, except thatxi andµi

should be replaced with

xi = [x(iMK −MK + 1), x(iMK −MK + 2), . . . , x(iMK)]T , (20)

µi = [µ(iMK −MK + 1), µ(iMK −MK + 2), . . . , µ(iMK)]T , (21)
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andhk(i), for i = 0, . . . , L − 1, becomes thek-th over-sampling point of thei-th channel tap.

It can be verified thathk(i)’s are different for differentk [30]. The major difference between

the over-sampling approach and the multiple-antenna approach is that the over-sampled noise

samples in (21) are correlated, which contradicts the primary assumption of independent noise

samples. Nevertheless, the pre-whiting technique can be used to whiten the correlated noises

based on the known correlation matrix. The details can be referred to Appendix A.

Before leaving this section. it is noted that, though the proposed over-determined model is

based on the assumption that there is only one primary user inthe cognitive network, it is

also applicable the scenario where there exist multiple primary users. An alternative approach

to construct the over-determined model in the presence of multiple primary users is to use the

cooperative sensing technique as in [28] by using multiple detectors.

IV. SIMPLIFIED INFORMATION THEORETIC CRITERIA SENSING ALGORITHM AND

PERFORMANCE ANALYSIS

Since the binary hypothesis test in the spectrum sensing is equivalent to the special case of

source number estimation problem, the information theoretic criteria method can be directly

applied to conduct spectrum sensing as firstly proposed in [25]–[28]. The basic idea is when the

primary user is absent, the received signalxi is only the white noise samples. Therefore, the

estimated number of source signals via information theoretic criteria (AIC or MDL) should be

zero. Otherwise, when the primary user is present, the number of source signals must be larger

than zero. Hence, by comparing the estimated number of source signals with zero, the presence

of the primary user can be detected. It is noted that the estimation of the number of source by

using (4) and (5) needs very little prior information about the primary user. In particular, it does

not require the knowledge of channel state information, synchronization, nor pilot design and

modulation strategy. Moreover it does not need the estimation of noise power. Hence we argue

that information theoretic criteria method is a blind spectrum sensing similar to [10]–[12], and

it is robust and suitable for the practical applications.

However, it is known that signal detection is much easier than signal estimation. Therefore,

using the estimation method to conduct the detection as in [25]–[28] may lead to unnecessary

computational complexity overhead. In the mean time, it makes it difficult to carry out analytical

study on the detection performance. In this section, we propose a simplified ITC algorithm to
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conduct the spectrum sensing. It can significantly reduce the computational complexity while

having almost no performance loss as will be illustrated in Section V. It also enables a more

tractable analytical study on the detection performance.

A. Simplified ITC sensing algorithm

Before presenting the simplified ITC sensing algorithm in detail, we have the following lemma.

Lemma 1: If there is one valuêk(> 0) which minimizes the AIC metric in (2) (MDL metric

in (3)), thenAIC(0) > AIC(1) (MDL(0) > MDL(1)) with high probability.

Proof: Please refer to Appendix B

The outline of the proposed simplified sensing algorithm is as follows.

Algorithm 1: SITC sensing algorithm

Step 1. Compute the sampled covariance matrix of received signals, i.e.,Rx = 1
N

∑N
i=1 xixi

†,

wherexi’s are received vectors as described in (12) or (20) andN denotes the number of the

observations.

Step 2. Obtain the eigenvalues ofRx through eigenvalue decomposition technique, and

denote them as{l1, l2, . . . , lp} with l1 ≥ l2, . . . ,≥ lp.

Step 3. Calculate the decision valuesAIC(0) andAIC(1) (MDL(0) andMDL(1)) according

to (2)((3)). Then the detection decision metric is

TSITC−AIC(Lx) : AIC(0)
H1

≷
H0

AIC(1). (22)

if AIC is adopted, or

TSITC−MDL(Lx) : MDL(0)
H1

≷
H0

MDL(1). (23)

if MDL is adopted, whereLx denote the set of eigenvalues{li, i = 1, 2, . . . , p}

Note that in the OITC sensing algorithm [25], one needs to findthe exact value of̂k from

0 to p − 1 to minimize the AIC in (2) or MDL in (3). In the proposed SITC algorithm, only

two decision values atk = 0 and1 should be computed and compared. Thus, the computational

complexity is significantly reduced. In the next subsection, based on the proposed SITC algo-

rithm, we present the analytical results on the detection performance. Since from the Lemma 1,

the SITC algorithm almost obtains the same performance as OITC algorithm, we claim that our

analytical results are also applicable for evaluating the performance of OITC algorithm.
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B. Performance Analysis

Since spectrum sensing is actually a binary hypothesis test, the performance we focus on is

the probability of detectionPd (the probability for identifying the signal when the primary user

is present) and the probability of false alarmPf (the probability for identifying the signal when

the primary user is absent). As no threshold value is involved in the ITC sensing algorithm,

Pd is not directly related withPf . The two probabilities are presented separately. For ease of

presentation, we shall take the AIC criterion for example toillustrate the analysis throughout

this section. The extension to MDL criterion is straightforward if not mentioned otherwise.

1) Probability of false alarm:According to the sensing steps in Algorithm 1, the false alarm

occurs whenAIC(0) is larger thanAIC(1) at hypothesisH0. The probability of false alarm can

be expressed as

Pf−AIC = Pr
(

AIC(0) > AIC(1)|H0

)

. (24)

Since the primary user is absent, the received signalxi only contains the noises. The sampled

covariance matrixRx in Algorithm 1 thus turns toRµ defined as

Rµ =
1

N

N
∑

i=1

µiµi
†. (25)

Hence, the eigenvalues in (2) become the eigenvalues of the sampled noise covariance matrix

Rµ in (25), which is a Wishart random matrix [31]. By applying the recent advances on the

eigenvalue distribution for Wishart matrices, a closed-form expression for the probability of false

alarm can be obtained.

Proposition 1: The probability of false alarm of the proposed spectrum sensing algorihtm can

be approximated as:

Pf ≈ F2





pN − (
√
N +

√
p)2

(
√
N +

√
p)( 1√

N
+ 1√

p
)
1

3



− F2





(p− α1)N − (
√
N +

√
p)2

(
√
N +

√
p)( 1√

N
+ 1√

p
)
1

3





+F2





(p− α2)N − (
√
N +

√
p)2

(
√
N +

√
p)( 1√

N
+ 1√

p
)
1

3



− F2





−(
√
N +

√
p)2

(
√
N +

√
p)( 1√

N
+ 1√

p
)
1

3



, (26)

whereF2(·) is the cumulative distribution function (CDF) of Tracy-Widom distribution of order

two [31], α1 andα2 with α1 < α2 are the two real roots of the function in (32) if AIC is applied,

or (37) if MDL is applied.
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Proof: Recall the definition in (24), to compute the probability of false alarm is to compute

the probability

Pf−AIC = Pr(AIC(0)− AIC(1) > 0|H0). (27)

According to the cost function of AIC defined in (2), we have

AIC(0)− AIC(1) = −2 log

[

∏p
i=1 l

1/p
i

1
p

∑p
i=1 li

]pN

+2 log

[

∏p
i=2 l

1/p−1
i

1
p−1

∑p
i=2 li

](p−1)N

− (4p− 2).

Then we can rewrite (27) as

Pf−AIC = Pr

(

log

[

(1
p

∑p
i=1li)

p

( 1
p−1

∑p
i=2 li)

p−1l1

]

>
4p− 2

2N

∣

∣

∣

∣

H0

)

. (28)

Note here, the sum of eigenvalues of sampled covariance matrix, 1
p

∑p
i=1 li, is equivalent to

1
pN

Tr
(

∑N
i=1 xixi

†
)

. At hypothesisH0, where the received vector involves only the noise sam-

ples, 1
pN

Tr
(

∑N
i=1 xixi

†
)

is the un-biased estimation of the covariance of the white noise.

Therefore, whenN is sufficiently large, we have

1

p

p
∑

i=1

li ≈ σ2. (29)

Substituting (29) into (28) yields:

Pf−AIC ≈ Pr

[

(σ2)p

( p
p−1

σ2 − l1
p−1

)p−1l1
> exp

(

2p− 1

N

)∣

∣

∣

∣

H0

]

. (30)

From (30), it is seen that the probability of false alarm is only dependent on the largest eigenvalue

of the noise sampled covariance matrixRµ. SinceRµ is actually a Wishart random matrix , its

the largest eigenvaluel1 satisfies the Tracy-Widom distribution of order two [31]. Toapply this

result, we rewrite (30) as

Pf−AIC ≈ Pr

[

l1

σ2

(

p− l1

σ2

)p−1

<
(p− 1)p−1

exp
(

2p−1
N

)

∣

∣

∣

∣

H0

]

= Pr

[

xp − pxp−1 +
(p− 1)p−1

exp
(

2p−1
N

) > 0

∣

∣

∣

∣

H0

]

, (31)

wherex , p− l1
σ2 .

Define a function

f(x) , xp − pxp−1 +
(p− 1)p−1

exp
(

2p−1
N

) . (32)

We next find the real roots of this function.
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Taking the differentiation off(x) and equating it to zero, we obtain

df(x)

dx
= pxp−1 − p(p− 1)xp−2 = pxp−2[x− (p− 1)] = 0.

Clearly, f(x) has two stationary points, which arex = p− 1 andx = 0. In the following, two

scenarios with p being even or odd are considered respectively. Whenp is even, it is easily found

that the functionf(x) monotonically decreases over(−∞, p − 1) and monotonically increases

over (p− 1,∞). Simultaneously, we can verify that

f(p− 1) = (p− 1)p − p(p− 1)p−1 +
(p− 1)p−1

exp
(

2p−1
N

) < 0. (33)

and

f(0) = f(p) =
(p− 1)p−1

exp
(

2p−1
N

) > 0. (34)

So there must be two real real roots within(0, p) and aroundp − 1 for function f(x). Let α1

andα2, with α1 < α2, denote the two real roots, then (31) is converted into an equivalent form:

Pf−AIC ≈ Pr [x < α1|H0] + Pr [α2 < x|H0] . (35)

Whenp is odd, we can findf(x) decreases monotonically over(0, p−1), while it is the monotonic

increasing function over both(−∞, 0) and (p− 1,∞). According to the fact thatf(−∞) < 0,

f(0) > 0, f(p − 1) < 0 and f(p) > 0, we conclude thatf(x) have three real roots, which

are denoted asα0, α1 andα2, with α0 < 0 and 0 < α1 < α2, respectively. Then (31) can be

rewritten as:

Pf−AIC ≈ Pr [α0 < x < α1|H0] + Pr [α2 < x|H0] . (36)

However, it is noted that asN is large enough, the largest eigenvalue of the sampled noise

covariance matrix,l1, is just slightly larger than the true covariance of noiseσ2. Hence, from

the definition,x can be reasonably limited in(0, p). Therefore, both the probability of (35) and

(36) can be summarized as the following form

Pf−AIC ≈ Pr [0 < x < α1|H0] + Pr [α2 < x < p|H0] .

In other words,

Pf−AIC ≈ Pr

[

p− α1 <
l1

σ2
< p

∣

∣

∣

∣

H0

]

+

[

0 <
l1

σ2
< p− α2

∣

∣

∣

∣

H0

]

.
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Applying the distribution of the largest eigenvalue for Wishart matrix in random matrix theory

[31], the variableN l1
σ2 satisfies the distribution of Tracy-widom of order two, i.e.,

N l1
σ2 − (

√
N +

√
p)2

(
√
N +

√
p)
(

1√
N
+ 1√

p

)
1

3

∽ W2 ∽ F2.

Here,W2 andF2 denote the probability density function (PDF) and cumulative density function

(CDF) for distribution of Tracy-widom of order two respectively. Therefore, the probability of

false alarm of AIC can be concluded as (26).

Similar with the above derivation, when the MDL criterion isapplied, we only need to modify

the step in (31) as

Pf−MDL ≈ Pr



xp − pxp−1 +
(p− 1)p−1

exp
(

(p−0.5) logN
N

) > 0

∣

∣

∣

∣

H0



 .

and redefine the functionf(x) in (32) as

f(x) , xp − pxp−1 +
(p− 1)p−1

exp
( (p−0.5) logN

N

)
. (37)

From Proposition 1, it is found that the probability of falsealarm is independent with noise

covariancesσ2. Therefore, the proposed SITC sensing algorithm is robust in practical applica-

tions. It is also noted thatPf depends on the product ofM andK, i.e., p = MK, rather than

the individual values ofM andK.

2) Probability of detection:When the primary user is present, the event of detection also

occurs whenAIC(0) > AIC(1). The probability of detection is thus described as

Pd−AIC = Pr
(

AIC(0) > AIC(1)|H1

)

. (38)

Since atH1, the received vectorxi involves the signals transmitted by the primary user, the

sampled covariance matrixRx can be written as

Rx =
1

N

N
∑

i=1

(Hsi + µi)(Hsi + µi)
†. (39)

Note thatRx is no longer a Wishart matrix. The exact distribution of its eigenvalues is unknown

and difficult to find, and hence so is thePd. In the following, we resort to deriving a closed-form

expression for the conditional probability of detection given the channel matrixH. The average

probability of detection can then be obtained using a hybridanalytical-simulation approach.
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Proposition 2: Let Rs denote the covariance matrix ofsi given in (13) and{δ1, δ2, . . . , δp}
be the eigenvalues of matrixHRsH

† (with δ1 > δ2 > . . . > δp). Then there exists a value

of ρ, for δp 6 ρ 6 δ1, such that the probability of detection givenH can be approximated as

Pd|H ≈ Q(ρ), where the functionQ(·) is

Q(δ) = F2





pN − (
√
N +

√
p)2

(
√
N +

√
p)( 1√

N
+ 1√

p
)
1

3



− F2





( (p−π1)ǫ−δ
σ2

)N − (
√
N +

√
p)2

(
√
N +

√
p)( 1√

N
+ 1√

p
)
1

3





+F2





( (p−π2)ǫ−δ
σ2

)N − (
√
N +

√
p)2

(
√
N +

√
p)( 1√

N
+ 1√

p
)
1

3



− F2





−(
√
N +

√
p)2

(
√
N +

√
p)( 1√

N
+ 1√

p
)
1

3



, (40)

whereǫ = 1
p
Tr(HRsH

†) + σ2 andπ1, π2 (with π1 < π2) denote the two roots of the function

(46) for AIC or (49) for MDL. Furthermore, upper and lower bounds can be obtained asQ(δp) 6

Pd|H 6 Q(δ1).

Proof: Please refer to Appendix C.

From Proposition 2, we find thatPd is not only related toN andp, but also depends onǫ
σ2 ,

which is the ratio of the signal strength of primary user to the noise variance. The exact value

of ρ ∈ [δp, δ1] in Proposition 2 is difficult to determine in an analytical way, since it is related

to both the channel responseH and the covariance matrix of source signalRs. In practice, we

can simply chooseρAIC = 1
2
(δp + δ1) andρMDL = 3

4
(δp + δ1). It will be demonstrated later in

Section VI that the analyticalPd|H based on this choice ofρ can approximate the Monte Carlo

results very well in most of cases.

V. GENERALIZED INFORMATION THEORETIC CRITERIA SENSING ALGORITHM

As mentioned in the previous section, the probability of detection of and probability of false

alarm of the proposed simplified ITC sensing algorithm are not directly related to each other

as the algorithm does not involve any threshold (same for theoriginal ITC algorithm in [25]).

According to the analytical results given in (26) and (40), to satisfy different system requirements,

a proper set of values for the parametersM , K andN in model (11) should be chosen, which

is inconvenient for practical application. In this section, based on the analytical discussion in

Section IV, we propose a generalized information theoreticcriteria sensing algorithm which can

provide a flexible tradeoff betweenPd andPf according to different system design requirements.
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From the expression given in (28) and (44), we found that the sensing decision for SITC

algorithm is actually based on the decision variablelog

[

( 1
p

∑p
i=1

li)p

( 1

p−1

∑p
i=2

li)p−1l1

]

. Thus, we generalize

the decision rule as

TGITC(Lx) :
(1
p

∑p
i=1li)

p

( 1
p−1

∑p
i=2 li)

p−1l1

H1

≷
H0

γ, (41)

where γ is a pre-set threshold. It is seen that if we setγ = exp (2p−1
N

), the decision rule

given in (41) turns into the AIC based SITC sensing algorithmpresented in Algorithm 1. If

we fix γ = exp ( (p−0.5) logN
N

), the algorithm becomes the MDL-based SITC sensing algorithm.

Furthermore, it is easy to find that the analytical results obtained in Section IV are applicable

for the GITC sensing algorithm. The only change that needs tobe made is to replaceα1 and

α2 in (26) (or π1 andπ2 in (40)) by two real roots generated by the following equation.

f(x) , xp − pxp−1 +
(p− 1)p−1

γ
. (42)

Thus, the outline of the proposed GITC sensing algorithm canbe summarized as follows.

Algorithm 2: GITC sensing algorithm

Step 1 and Step 2: the same as Algorithm 1 in Section IV.

Step 3: According to the system requirement onPf , choose a proper thresholdγ based on

(26) and (42).

Step 4: Conduct the decision based on (41).

According to the decision variable presented in (41), we findthat the proposed GITC sensing

algorithm is actually also an eigenvalue-based method similar to [10]–[12]. The advantage of

the proposed GITC over the algorithms in [11], [12] is that itis able to analytically obtain

the explicit decision thresholdγ according to the system requirement onPf before the actual

deployment.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, we present some numerical examples to demonstrate the effectiveness of the

proposed sensing schemes and to confirm the theoretical analysis.
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A. Comparison between simulation and analytical results for both SITC and OITC

In our first set of examples, we compare the simulation results with analytical results given in

Proposition 1 and Proposition 2. The comparison between SITC and OITC are also presented.

In the simulation, the channel taps are random numbers with zero-mean complex Gaussian

distribution. All the results are averaged over 1000 Monte Carlo realizations. For each realization,

random channel, random noise and random BPSK modulated inputs are generated. We define

the SNR as the ratio of the average received signal power to the average noise power

SNR =
E [‖xi − µi‖2]

E [‖µi‖2]
. (43)

The comparison of simulation and analytical results forPf is demonstrated in TABLE I

and TABLE II. According to Proposition 1,Pf is independent with the noise variance, thus

remains constant over different SNR. Hence we average multiple values over different SNR as

the simulatedPf and compare it with the analyticalPf . From TABLE I, we first observe that

SITC and OITC perform almost the same. It is also seen that, for AIC, the analytical results

are slightly larger than the simulation results especiallywhenp = MK is small. Nevertheless,

the analytical approximation is accurate enough to evaluate the performance of the proposed

sensing scheme. It is also found thatPf−AIC gradually decreases asp = MK increases while

thePf−MDL remains zero in both simulation and analytical results. We conclude that the MDL

method has excellent false alarm performance. From TABLE II, we find that the probability of

false alarm increases very slowly asN increases. In fact, our simulation shows thatPf−AIC is

still below 0.1 even whenN = 1015 at M = 5 andK = 4.

Figs. 1-4 showPd at different system parameters. In Fig. 1, we first compare the detection

performance obtained by simulation between SITC and OITC. It is seen that the proposed SITC

sensing algorithm do not lead to any performance loss compared to OITC algorithm. Then,

comparing the semi-analytical results obtained from Proposition 2 with the simulation results,

one can observe a very good match between them, especially for MDL method. Thus, Proposition

2 is validated. Fig. 2, Fig. 3 and Fig. 4 present the simulation results ofPd for variableK (at

M = 5, N = 10000), M (at K = 4, N = 10000) andN (at K = 4,M = 5), respectively. It is

found that the performance is improved as any of these parameters increases.
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B. Comparison between SITC and other sensing algorithms

Thus far, a few efficient sensing algorithms have been proposed in the literature, with each

requirng distinct prior information. In this subsection, for fair comparison, we only choose

the eigenvalue-based methods proposed in [10]–[12] and theenergy detection method since

they both need little prior information. It should be mentioned that the proposed SITC-AIC

and SITC-MDL algorithms are equivalent to the GITC algorithm provided in Section V via

settingγAIC = exp ( (2p−1)
N

) andγMDL = exp ( (p−0.5) logN
N

). Therefore, we omit the performance

comparison with the GITC. In the simulation, we fix the order of channelL = 10 as in [10]

and chooseN = 10000, K = 4 and M = 5. Fig. 5 shows the comparison with the energy

detection (ED) method (with perfect estimation of noise covariance) and the four eigenvalue-

based methods, namely, the maximum minimum eigenvalue detection (EV-MME) and energy

with minimum eigenvalue detection (EV-EME) [10], the blindly combined energy detection (EV-

BCED) [11], and the arithmetic to geometric mean (EV-AGM) [12]. We see that, under almost

the samePf , energy detection performs the best, followed by the EV-AGMmethod, the proposed

SITC-AIC method and EV-BCED method, and then EV-MME and EV-EME methods. Among

the proposed SITC-AIC and four eigenvalue-based methods, the SITC-AIC almost obtains the

same performance with the EV-BCED method and they both outperform EV-MME and EV-

EME while being slightly inferior to the EV-AGM method. Though the proposed SITC-MDL

method performs the worst inPd, it is the best among all the considered schemes in terms of

Pf performance.

The comparison with energy detection with noise uncertainty is presented in Fig. 6, where

“ED-x dB” means that the noise uncertainty in energy detection is x-dB as defined in [10]. It is

observed that, although the proposed method performs worsethan the energy detection method

with accurate noise covariance estimation, it significantly outperforms in bothPd andPf when

there exists some noise uncertainty. This clearly demonstrates the robustness of information

theoretic criteria based blind sensing algorithm.

C. Performance of the GITC algorithm

Results for the GITC sensing algorithm at different threshold values are demonstrated in

Fig. 7. It is assumed that we should choose proper thresholdsto makePf = 0.1, Pf = 0.05 and

Pf = 0.01. According to the Proposition 1 and the discussion in Section V, we choose three
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thresholdsγ = 1.0372, γ = 1.0393 and γ = 1.0429 (note that since the analytical results are

slightly larger than the simulation results, the thresholds we choose should make theoreticPf

larger than requiredPf by about 0.02). From the plots, it is found that thePf requirements

are satisfied very well. One can also see that the probabilityof false alarm is very sensitive to

the threshold. Hence, the GITC sensing algorithm is flexiblefor system design with different

requirements.

VII. CONCLUSIONS

In this paper we have provided an intensive study on the information theoretic criteria based

blind spectrum sensing method. Based on the prior work on therelated study, we first proposed

the simplified ITC sensing algorithm. This algorithm significantly reduces the computational

complexity without losing any detection performance compared with the existing ITC based

sensing algorithm. Moreover, it enables a more trackable analytical study on the detection

performance. Thereafter, applying the recent advances in random matrix theory, we derive

closed-form expressions for both the probability of false alarm and probability of detection

which can tightly approximate the actual results in simulation. We further generalized the SITC

sensing algorithm to an eigenvalue based sensing algorithmwhich strike the balance between the

probabilities of detection and false alarm by involving an adjustable threshold. Simulation results

demonstrate that the proposed blind sensing algorithm outperforms the existing eigenvalue-based

sensing algorithms in certain scenarios.

APPENDIX A

WHITENING THE OVER-SAMPLED NOISES

At the secondary receiver, the received continuous signal is usually filtered by a low-pass

filter. Therefore, the noiseµ(t) in (6) and (7) should be correlated. We assume that the white

noise before the filter iŝµ(t) and the system function of the low-pass filter isg(t) which is

known at the secondary receiver. In the following, we only consider the real value case, since in

the communication system, the complex value signal is just the combination of two orthogonal

real value signals. As we have known,µ(t) can be described bŷµ(t) andg(t) as

µ(t) = g(t)⊗ µ̂(t) =

∫ tmax

0

g(ℓ)µ̂(t− ℓ)dℓ,
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where(0, tmax) represents the time span ofg(t) and⊗ denotes the convolution operator. Thus,

the auto-correlative function ofµ(t) denoted byφµ(τ) can be expressed as

φµ(τ) = φg(τ)⊗ φµ̂(τ),

whereφg(τ) and φµ̂(τ) are the auto-correlative functions ofg(t) and µ̂(t), respectively. Note

thatφµ̂(τ) should be equal toσ2δ(τ) sinceµ̂(t) is white (here the covariance ofµ̂(t) is assumed

to beσ2 ). Therefore, we derive that

φµ(τ) = σ2φg(τ) = σ2

∫ tmax

0

g(ℓ)g(τ − ℓ)dℓ, 0 ≤ τ ≤ 2tmax

Thus, if the received signal is over-sampled at rateKfs wherefs is the reciprocal of the baseband

symbol durationT0 andK is the over-sampling factor, the covariance matrix of the noise vector

µi given in (21) becomes

Rµ = σ2Q,

with Q having entriesqi,j = φg(|i−j|T0

K
). Note thatQ is a positive definite symmetric matrix. It

can be decomposed intoQ = Q̃2, whereQ̃ is also a positive definite symmetric matrix. Hence,

to obtain the independent noise samples in the over-sampling scheme, we can pre-whiten the

over-sampled noise samplesµi as

µ̃i = Q̃−1
µi.

Then, the covariance matrix of̃µi transforms into

Rµ̃i
= Q̃−1RµQ̃

−1 = σ2Ip.

Now, noise samplesµi are whitened. It is noted that̃Q is only related to the low-pass filter and

over-sampling factorK and is independent to the signal and noise. Therefore, the pre-whitening

process can be used blindly.

APPENDIX B

PROOF OFLEMMA 1

We prove the lemma from two aspects. Firstly, it has been shown in [32], [33] that most of

the estimation errors of AIC and MDL occur tightly around thetrue numbers. According to

this finding, at hypothesisH0 (the true number of source signal is zero), if there existsk̂ > 0

minimizing (2) or (3), then we havêk = 1 with high probability. Hence, Lemma 1 holds for
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the case of false alarm. Next, we prove that Lemma 1 succeeds at hypothesisH1. Since the

primary user is present, the eigenvaluesli of the sampled covariance matrix are distinct at least

for i = 1, 2, . . . , q (hereq is the true source number). Fori = q, q + 1, . . . , p, the eigenvalues

are actually the estimation of noise varianceσ2. They may be equal to each other whenN is

enough large. According to the expression of AIC and MDL, it is found that the second terms

in (2) and (3) are monotonically increasing functions ofk. To make the cost function in (2) or

(3) minimum atk̂ ∈ [1, p−1], we must have that the first terms in (2) and (3) are monotonically

decreasing fork = 0, 1, . . . , k̂. We next prove this statement.

We focus on the AIC criterion and the extension to MDL is straightforward. Supposingk′ ∈
[2, k̂] and

fAIC(k) = −2 log

(

∏p
i=k+1 l

1/(p−k)
i

1
p−k

∑p
i=k+1 li

)(p−k)N

,

we have

fAIC(k
′ − 1)− fAIC(k

′) = 2N log

(

1
p−k′+1

∑p
i=k′ li

)p−k′+1

(

1
p−k′

∑p
i=k′+1 li

)p−k′

l′k

.

Since
(

1

p− k′ + 1

p
∑

i=k′

li

)p−k′+1

=

(

1

p− k′
p− k′

p− k′ + 1

p
∑

i=k′+1

li +
1

p− k′ + 1
lk′

)p−k′+1

≥







(

1

p− k′

p
∑

i=k′+1

li

)
p−k′

p−k′+1

l
′ 1

p−k′+1

k

]p−k′+1

=

(

1

p− k′

p
∑

i=k′+1

li

)p−k′

l′k

(here, the arithmetic-mean geometric-mean inequalityxa1
1 + xa2

2 ≥ xa1
1 xa2

2 with a1 + a2 = 1 is

applied), we conclude that
(

1
p−k′+1

∑p
i=k′ li

)p−k′+1

(

1
p−k′

∑p
i=k′+1 li

)p−k′

l′k

≥ 1.

It further means

fAIC(k
′ − 1)− fAIC(k

′) > 0,
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i.e., fAIC(k) is a monotonic decreasing function. Hence, we have

lim
N→∞

AIC(0)−AIC(1)

N
= 2 log

(

1
p

∑p
i=1 li

)p

(

1
p−1

∑p
i=2 li

)p−1

l1

+ lim
N→∞

−4p + 2

N
> 0.

If N is finite but larger enough, we claim that Lemma 1 holds with high probability. The high

probability is also contributed by the fact that, due to the property of SVD decomposition

technique, the first eigenvaluel1 is always much larger than other eigenvalues. Therefore,

2N log
( 1

p

∑p
i=1

li)
p

( 1

p−1

∑p
i=2

li)
p−1

l1
is larger enough to make Lemma 1 succeed at hypothesisH1. Thus,

we complete the proof of Lemma 1.

APPENDIX C

PROOF OFPROPOSITION2

We firstly derive the derivation of the probability of misdetection Pm (the probability for

misdetecting the presence of primary user at hypothesisH1), then obtain the probability of

detectionPd through1 − Pm. Without loss of generality, the following derivation is also based

on AIC. According to (38), we have

Pm−AIC|H = Pr[AIC(0)− AIC(1) < 0|H1].

Similar to the process described in the proof of Proposition1, we can rewrittenPm−AIC|H as

Pm−AIC|H = Pr

(

log

[

(1
p

∑p
i=1li)

p

( 1
p−1

∑p
i=2 li)

p−1l1

]

<
4p− 2

2N

∣

∣

∣

∣

H1

)

. (44)

Where{l1, l2, . . . , lp} are the decreasing ordered eigenvalues of the sampled covariance matrix

Rx in (39). When the number of observationN is larger enough, we obtain the approximation

1

N

N
∑

i=1

xix
†
i ≈ E

(

xix
†
i

)

= HRsH
† + σ2Ip.

Thus
1

p

p
∑

i=1

li ≈
1

p
Tr
(

HRsH
†)+ σ2.

Hence, (44) turns to

Pm−AIC|H ≈ Pr

[

l1

ǫ

(

p− l1

ǫ

)p−1

>
(p− 1)p−1

exp
(

2p−1
N

)

∣

∣

∣

∣

H1

]

= Pr

[

yp − pyp−1 +
(p− 1)p−1

exp
(

2p−1
N

) < 0

∣

∣

∣

∣

H1

]

, (45)
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whereǫ = 1
p
Tr
(

HRsH
)

+ σ2 andy , p− l1
ǫ
.

Assumingπ1 andπ2 (with π1 < π2) are two real roots within(0, p) of the following function

g(y) = yp − pyp−1 +
(p− 1)p−1

exp
(

2p−1
N

) . (46)

As described in the proof of proposition 1, the probability of misdetection is concluded as

Pm−AIC|H ≈ Pr[π1 < y < π2|H1],

i.e.,

Pm−AIC|H ≈ Pr[(p− π2)ǫ < l1 < (p− π1)ǫ|H1]. (47)

Note that l1 is the largest eigenvalue of the sampled variance matrixRx. Given the channel

matrix, Rx can be approximated as

Rx ≈ 1

N

[

H

N
∑

i=1

sisi
†H†

]

+
1

N

N
∑

i=1

µiµi
† ≈ HRsH

† +
1

N

N
∑

i=1

µiµi
†,

whenN is larger enough.

Let {δ1, δ2, . . . , δp} and {χ1, χ2, . . . , χp} be the decreasing ordered eigenvalues ofHRsH
†

and 1
N

∑N
i=1µiµi

† respectively. Apply Weyl’s inequality theorem in [34], thelargest eigenvalue

of Rx, l1, satisfies

χ1 + δp 6 l1 6 χ1 + δ1,

Equivalentlyχ1 satisfies

l1 − δ1 6 χ1 6 l1 − δp. (48)

Therefore, there must exist a constantρ satisfyingδp 6 ρ 6 δ1 which makesl1 − ρ equal toχ1.

Then (47) is rewritten as

Pm−AIC|H ≈ Pr[(p− π2)ǫ− ρ < χ1 < (p− π1)ǫ− ρ|H1],

i.e.,

Pd−AIC|H ≈ Pr

[

(p− π1)ǫ− ρ

σ2
<

χ1

σ2
< p|H1

]

+ Pr

[

0 <
χ1

σ2
<

(p− π2)ǫ− ρ

σ2
|H1

]

,

where we use the similar constraint forχ1

σ2 as in the proof of Proposition 1. Sinceχ1 converges

to the Tracy-Widom distribution of order two, we conclude

Pd−AIC|H ≈ Q(ρ),
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whereQ(·) is defined in Proposition 2. Simultaneously, based on (47), the upper and lower

bounds forPm−AIC|H is

1−Q(δ1) 6 Pm−AIC|H 6 1−Q(δp).

Therefore, the upper and lower bound ofPd−AIC|H can be obtain straightforwardly as

Q(δp) 6 Pd−AIC|H 6 Q(δ1).

The proof for MDL criterion is the same, except that the function g(y) in (46) is redefined as

g(y) = yp − pyp−1 +
(p− 1)p−1

exp
(

(p−0.5) logN
N

)
. (49)

Proposition 2 is thus proved.
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TABLE I

PROBABILITY OF FALSE ALARM WITH DIFFERENT p = M ×K AT N = 10000

6 = 2× 3 12 = 3× 4 20 = 5× 4 24 = 4× 6 35 = 5× 7

Simulation results for SITC-AIC 0.0948 0.0770 0.0594 0.0541 0.0460

Simulation results for OITC-AIC 0.0972 0.0773 0.0597 0.0541 0.0470

Analytical results for SITC-AIC 0.1360 0.1036 0.0791 0.0711 0.0550

Simulation results for SITC-MDL 0 0 0 0 0

Simulation results for OITC-MDL 0 0 0 0 0

Analytical results for SITC-MDL 0 0 0 0 0

TABLE II

PROBABILITY OF FALSE ALARM WITH DIFFERENT N AT p = MK = 20

N = 1000 N = 5000 N = 10000

Simulation results for SITC-AIC 0.0421 0.0558 0.0594

Simulation results for OITC-AIC 0.0421 0.0561 0.0597

Analytical results for SITC-AIC 0.0581 0.0744 0.0791

Simulation results for SITC-MDL 0 0 0

Simulation results for OITC-MDL 0 0 0

Analytical results for SITC-MDL 0 0 0
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Fig. 1. Simulation and theoretic results about probabilityof detection at different(M,K,N) for both SITC and OITC.
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Fig. 2. Probability of detection for differentK at M = 5 andN = 10000.
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Fig. 3. Probability of detection for differentM at K = 4 andN = 10000.
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Fig. 4. Probability of detection for differentN at M = 5 andK = 4.
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Fig. 5. Comparison with the eigenvalue-based methods and the energy detection method atM = 5, K = 4 andN = 10000.
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Fig. 6. Comparison with energy detection with noise uncertainty at M = 5, K = 4 andN = 10000.
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Fig. 7. Simulation results for GITC algorithm for differentPf at M = 5, K = 4 andN = 1000.


	I Introduction
	II Preliminary on the Information Theoretic criteria
	III System Model
	IV Simplified Information Theoretic Criteria Sensing Algorithm and Performance analysis
	IV-A Simplified ITC sensing algorithm
	IV-B Performance Analysis
	IV-B1 Probability of false alarm
	IV-B2 Probability of detection


	V Generalized information theoretic criteria sensing algorithm
	VI Simulation results and discussions
	VI-A Comparison between simulation and analytical results for both SITC and OITC
	VI-B Comparison between SITC and other sensing algorithms
	VI-C Performance of the GITC algorithm

	VII Conclusions
	Appendix A: Whitening the over-sampled noises
	Appendix B: Proof of Lemma 1
	Appendix C: Proof of Proposition 2
	References

