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Coding Assisted Blind MIMO Separation and
Decoding

Xu Zhao, Mike Davies, Member, IEEE

Abstract—Despite the widespread use of forward-error correct-
ing coding (FEC), most multiple input multiple output (MIMO)
blind channel estimation techniques ignore its presence, and
instead make the simplifying assumption that the transmitted
symbols are uncoded. However, FEC induces code structure
in the transmitted sequence that can be exploited to improve
blind MIMO channel estimates. In this paper, we exploit the
iterative channel estimation based on a posteriori information
for blind MIMO separation and decoding. Experiments show
the improvements achievable by exploiting the existence of coding
structures and that it can approach the performance of a BCJR
equalizer with perfect channel information in a reasonable SNR
range. Also, through splitting the FEC codeword over multiple
blocks, the impact in performance of a bad-conditioned channel
matrix can be kept at a reasonable level.

Index Terms—Blind Separation, blind channel estimation,
independent component analysis, turbo equalization, expectation
maximization (EM) channel estimation.

I. INTRODUCTION

IN wireless MIMO systems, all practical receivers are
designed based on the requirements of acquiring channel

state information (CSI) and the channel needs to be estimated
in advance before decoding operations. However, obtaining an
accurate estimate can be problematic in some environments.
For example, if the channel response varies rapidly with time,
if the channel is very singular or the signal to noise ratio (SNR)
is low. Moreover, with the ever-growing demands of increasing
data rate and the requirements of saving the limited bandwidth,
several blind or semi-blind systems have been studied in
the last decade. The typical subspace method described in
[1][2] utilizes the orthogonality between the channel matrix
and the noise subspace in order to compensate for extra
degrees of freedom provided by the noise subspace. The main
drawback of subspace-based MIMO channel estimation is that
it needs the number of received antennas to be larger than
the number of transmit antennas, otherwise, it requires pre-
coding preprocessing. Other schemes [3] using singular value
decomposition (SVD) employ a simple block pre-coding struc-
ture. The advantage is that the CSI can be recovered without
ambiguity when applying a proper modulation. Nevertheless,
this advantage is obtained at the cost of decreasing the spatial
diversity.
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The most popular equalizers use Godard’s method [4] or
the constant modulus algorithm (CMA) [5]. While in the
MIMO setting these do not require more receive antennas
than transmit ones, such methods essentially estimate a linear
equalization operator and encounter difficulties if the channel
matrix is not well conditioned. In this case the maximum
likelihood (ML) channel estimate receiver is generally much
more robust.

On the other hand, FEC coding, which restricts the trans-
mitted sequence to a limited coding space so as to increase the
minimum distance, can correct the potentially wrong decoding
due to noise contamination. Using the FEC code, the decoder
at the receiver can feedback a posteriori information to the
equalizer. The practical challenge, nonetheless, is the tremen-
dous complexity demanded by this joint optimal ML decoding.
To solve this problem, the iterative soft decoder has been
studied and has been found to approach the optimal ML decod-
ing performance at a practical and reasonable computational
burden [6]. Furthermore, with powerful digital processors
in the last decade, contributions of FEC to decoding with
affordable complexity were explored in [7][8]. Looking from
a broader angle, we can take blind equalization as part of the
decoding process. Thus, we can try to find a blind equalization
and channel correcting scheme that together approximate the
Shannon bound. Such methods combine the blind iterative
channel estimation and turbo equalization. As illustrated in
left block diagram of Figure 1 in the next page, the equalizer
uses the channel estimates to compute soft information of the
transmitted symbols. The channel estimator then applies these
soft symbols to improve the channel estimates, which in turn
yields better symbol estimates, and so forth. In contrast, the
FEC aware channel estimator based on soft symbol, a priori
information, feeds this information into the decoder in order
to get more reliable soft bit information. Next, this posterior
information is fed back to the channel estimator, and so on, as
illustrated in right block diagram of Figure 1. Such a scheme
utilizes FEC information in blind equalization. Nevertheless,
there has been little work relating FEC to MIMO channel
estimation. Although the independent, identically distributed
(i.i.d.) assumption usually made in MIMO blind separation
[9][10] no longer holds (due to the FEC coding), it has been
shown that FEC does not impair the performance of some
blind equalization techniques [11].

Some previous research has explored the FEC property on
blind channel estimation. For example, [8] combined blind
channel identification and turbo equalization. They used the
Expectation Maximization (EM) algorithm to update channel
state information. The covariance matrix is computed as a
sample average in which the likelihood of the received sym-
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Fig. 1: Joint channel estimation and symbol detection: Un-
coded diagram vs. FEC diagram

bols weights the data. In contrast, in this work, pairwise joint
probabilities are used to measure expectations in the E-step.

In another work [12] exploited the turbo equalization of
unknown ISI channels using a trellis to represent the channel.
This develops a hidden Markov model (HMM) [13] for the
noisy channel output, and the Baum Welch algorithm, a
specific instance of the EM algorithm, is applied to estimate
the HMM parameters including the observations before adding
noise. This approach need not estimate an explicit channel
directly but can be calculated using the estimated symbols.
In this paper, the soft-output BCJR equalizer depends on
a channel estimate that is obtained from the EM algorithm
iteratively.

In [14] [15] a blind iterative channel estimator is used that is
also based on an EM algorithm. They applied a turbo equalizer
loop with a decision feedback equalizer. Such schemes enjoy
a low complexity. In the development of the EM channel
estimator, they used a sample average to replace the ensemble
average. In our work, the marginal and joint probabilities of
each symbol are used to evaluate ensemble averages and this
computation generates more accurate information.

In [16] [17], Gunther and co-workers presented a general-
ized BCJR and LDPC algorithm to compute joint posteriori
probabilities of symbols given noisy observations to suppress
intersymbol interference (ISI) at the output of channels. These
pair-wise joint posterior probabilities are applied in the EM
channel estimator. Both schemes are suitable for a single
channel with a small number of channel taps since, in such a
case, the surface of likelihood function is simple and smooth
enough to allow the EM algorithm to converge to a desirable
point, otherwise, the generalized BCJR may not converge to
the correct state. In [17], for a single channel, 30 EM iterations
were used to evaluate the system performance. This number
of operations introduces a considerable computational burden.

Per-Survivor Processing (PSP) [18] is a seminal work
in joint channel estimation and symbol detection. The PSP
method embeds the data-aided channel estimation into the
Viterbi algorithm. Each state has a separate channel estimate
which is based on the survivor path leading to that state.
PSP performs an ML estimation of the channel parameters.
Then it estimated the candidate channel by applying a LMS
algorithm or a Kalman filter to each survivor path. This kind
of method was subsequently developed as an approximate

minimum variance channel estimator. A similar but simplified
approach was proposed by [19], where the author maximizes
the data log likelihood by weighting a quadratic function
associated with each survivor path by the path probability.
The authors then used an EM algorithm to update the channel
estimate iteratively. To avoid the initialization problem, they
enumerated many initializations for the EM and select the
most probable one in terms of the likelihood. Without an
efficient proposal for initialization of the EM, this scheme is
not feasible for multi-dimensional dimensional systems with
large constellations.

The methods described above were employed in single
input single output channels and small constellations and
these techniques do not simply extend to the multi-dimension
(MIMO) and large constellation QAM systems. In these cases,
the increased dimensionality of the MIMO channel can make
the convergence problematic.

To tackle the MIMO, large constellation scenario, an ef-
ficient hybrid system for blind equalization was proposed in
[20], in which the sphere decoder (SD) algorithm is integrated
into the EM algorithm for the large multi-dimensional channel
estimate. The initialization of the EM is provided by a fast
and simple nonlinear independent component analysis (ICA)
method which is specifically designed for QAM modula-
tion. Such an efficient combination makes this feasible for
a real time communication system. The numerical simulations
demonstrate the effectiveness of this combined technique.
However, it still suffered a loss of performance when the
channel was close to singular or the noise level was high.

Other work on semi-blind channel estimation appears in
[21], where the authors used a pilot sequence and a Wiener
filter to initialize and update the channel respectively. This
Minimum Mean Square Error (MMSE) based iterative channel
estimator uses soft information from the output of the decoder
to improve the mean square error of the channel estimates.
However, taking the mean values of the data symbols calcu-
lated by the posteriori probabilities, is not an accurate way to
improve the channel estimates.

A similar idea using the a posteriori probabilities computed
by a soft iterative decoder to improve the ML channel esti-
mator computed via the EM channel estimation is presented
in [22][23]. In [22] the authors use of List Sphere Detection
for reduced computational complexity. Both methods require
training symbols to gain a sufficiently good initial channel
estimate to allow the subsequent application of the EM al-
gorithm to correctly converge. Both methods also used the
EM algorithm with a strong code, such as turbo codes and
LDPC codes in the feedback loop. This further adds to the
computational burden. In contrast to this, the scheme we
propose here works without using a strong code.Consequently,
much computation can be avoided.

In this paper, a blind MIMO receiver that combines soft
channel estimation and a soft MIMO equalizer and decoder
is proposed. In this hybrid design, we improve the receiver’s
performance through efficiently incorporating the soft bit
information from the decoder into the EM channel estimator.
This system uses an efficient independent component analysis
method suitable for QAM modulation to gain good initial
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Fig. 2: Receiver architecture of the proposed coding assisted system.

estimates for the EM algorithm, a selective sphere decoder
process that computes the likelihood values (soft information)
and a simple error correcting operation. This scheme has
low complexity and improved convergence, being more likely
to converge to the desirable stationary point. Moreover, by
sending the bit interleaved coded modulation (BICM) bits on
differently fading channels, we can further make use of the
temporal diversity. Combining this with the spatial diversity
due to the statistical independence of transmitted sequences,
blind estimate and adjustment of the channel matrix can be
performed simultaneously. Such splitting the FEC codeword
over multiple blocks is shown to help avoid singular channels.
Empirically this provides us with outstanding performance
of MIMO blind equalization and decoding at a reasonable
computational cost. This idea can also be easily extended to an
MIMO-OFDM system, especially for the fast fading channel
acquisition and tracking.

We consider the M×M MIMO narrow band system model,

Y = HS + N, (1)

where Y ∈ CM×T is the matrix containing observed signals
from the receiver antennas, and S ∈ CM×T is the complex
discrete source signal matrix. N ∈ CM×T is the noise matrix
with covariance, Σ, which is assumed to be uncorrelated
with the source signals and T is the sampled points of
observations. H ∈ CM×M , the Rayleigh channel, is the
unknown linear square channel matrix whose elements are
assumed to be drawn independently from a complex Gaussian
distribution and we assume that it is invertible. Note that, H
is instantaneous but we do not guarantee it is orthogonal.
This square channel matrix can be expanded into the non-
square overdetermined MIMO systems where the number of
received antennas is greater than the number of transmitted
antennas via principal components analysis (PCA) [24] or
singular value decomposition (SVD) [25] techniques. For the
transmission of a frame of Kb bits, the transmitter encodes
the Ku information bits using a convolutional code of rate
r, where Ku = Kb × r. The coded bits are interleaved
and mapped into QAM symbols, forming a sequence of
Ks = Kb/ log2 P symbols, where P is the number of possible
symbols in the QAM constellation. Then the QAM sequence
of symbols is split into M substreams corresponding to one

Rayleigh fading channel, and is transmitted in parallel from
each one of the M antennas. The problem above arises not only
in MIMO systems, but also in multiuser DS/CDMA systems
[26]. It further reduces to SIMO blind equalization when
there is only one source signal or when fractionally spaced
equalization is employed in single antenna communication
systems.

The paper is organized as follows. Section II illustrates
the architecture of the proposed blind MIMO separation and
decoding scheme and each part is introduced in detail. Section
III discusses the multiple blocks FEC method for the singular
channel matrix scenario. Simulations are shown in Section IV
and conclusions are given in Section V.

II. THE PROPOSED CODING ASSISTED BLIND MIMO
SEPARATION AND DECODING

In this work, a blind MIMO channel equalization algorithm
is designed in which the BCJR and EM algorithms are
iterated. Figure 2 shows the receiver structure using iterative
equalization, whereby a soft equalizer interacts with a soft-
input-soft-output error control decoder. Given initial estimates
Hini from the efficient nonlinear ICA method [20], the SD-
BCJR algorithm computes the signal a posteriori probabilities
p(sk|Y,Hi) by utilizing the code structure and then feeds
these to the EM algorithm. The EM algorithm uses these a
posteriori probabilities to evaluate the conditional expectations
in (7) and (8) as we will introduce next. Thus we update
the new channel state information by (9) and pass this back
to the SD-BCJR algorithm again. As the iterations proceed,
estimates become more accurate and the a posteriori symbol
probabilities become more precise.

A. Soft MIMO Equalizer and The BCJR Decoder

The optimal ML receiver has exponential complexity with
the signal modulation size and number of transmit antennas,
thus limiting its real time application. The sphere decoder, on
the other hand, is capable of achieving near ML performance
[27] and can be designed to provide the soft (likelihood) output
information [28]. Thus, we propose a blind soft equalizer
and decoder architecture combining the SD decoder and a
simple error correcting operator with low complexity. The low-
complexity may enable iterative equalization for fast wireless
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Rayleigh channels. An important requirement for the proposed
blind MIMO equalization is the calculation of soft information
both for the channel estimation and the soft MIMO detector
and decoder.

Channel coding has been extensively researched in the liter-
ature. Here we introduce the techniques used in this paper. The
well known Bahl−Cocke−Jelinek−Raviv (BCJR) algorithm
[29] is used to compute a posteriori probabilities (APP) of
inputs to a finite state machine for the received signals. It
provides the exact a posteriori probabilities for convolutional
codes and has also been applied to other error correcting codes
such as turbo code [30]. While a full complexity BCJR soft
decoder is used in this work, an efficient sliding window
type scheme [31] can be applied in practical applications,
which leads to suboptimal performance with a much lower
complexity.

For a BPSK modulation scheme, the log-likelihood ratio
(LLR) takes the form:

L(bk) = ln
p(bk = 1|Y, H̃)
p(bk = 0|Y, H̃)

, (2)

where H̃ is the channel estimate. This LLR value shows the
reliability of the information bit. Given a convolutional code at
the transmitter, the BCJR algorithm calculates the APP exactly
if we know the true channel state information.

B. Soft Mapper and Demapper

The BCJR algorithm is designed for a convolutional bit se-
quence. In a large constellation QAM modulation, soft symbol
information needs to be transferred to bit information for the
following BCJR operations. In this section, a description of the
QAM soft mapper and demapper employed in our proposed
decoding scheme is given. Thanks to the bit interleaver in
both the transmitters and receivers, the marginal posteriori
probabilities of the coded symbols can be expressed as the
product of the bit a posteriori probabilities.

The soft demapper and mapper take the following three
steps to compute the output symbol-wise APP to be fed back
to the EM channel estimator.

1) Demapping with a priori probabilities.
Define a coded symbol s, with m bits, as s =
{b0, . . . , bm}. The demapper extracts a soft value of each
coded bit for subsequent decoding. The following gives
a description of this demapper. For a number of m coded
bits, the L-value of bit bj is given as

L(bj) = La(bj) ln

∑
sk∈Sm

1
p(y|sk)eL(sk)

∑
sk∈Sm

0
p(y|sk)eL(sk)

, (3)

where Sm
1 and Sm

0 define the subsets of S in which
the bit bm takes the values 1 and 0, respectively, st is
the mapping symbol with the bit bm taking the values
1 and 0, and L(sk) is the likelihood of symbol sk at
time index k. The probability of each mapping symbol
st is computed from the equalizer output. The soft
demapper given by equation (3) calculates the marginal
probabilities and ignores bit dependencies within the
codeword.

2) The BCJR algorithm (or other FEC algorithms). This
calculates bit-wise a posteriori probabilities based on the
marginal probabilities obtained in step 1.

3) Mapping bit APPs to symbol APPs. For each symbol
sk, the channel joint symbol-wise posterior p(s) can be
approximated by the product of the input marginal bit-
wise posterior p(bj). It is given as:

p(sk) =
m∏

j=1

p(bj), (4)

where

p(bj) =
eL(bj)

1 + eL(bj)
, (5)

denotes the input bit-wise priors offered by the channel
decoder in step 2. Generally, LLR clipping techniques
[32][33] can be applied to reduce complexity. Here, we
fix the LLR clipping level Lclip = 3 as used in [34].

Note that, a Gray mapping was employed in this work and
the optimized symbol mappings for BICM with interleaved
decoding were researched in high order constellations, the in-
terested reader is refered to [35]. The soft mapper used in step
3 may lose some information since the joint symbol probability
is set equal to the product of marginal bit probability. This
assumption is only exact if the bit stream probabilities are
strictly independent.

C. EM Channel Estimation with a Posteriori Probability

Most prior work in blind iterative channel identification can
be tied to the EM algorithm [36]. It is a general methodology
for maximum likelihood or maximum a posteriori estimation.
The first use of EM with soft symbol estimates was proposed
in [37]. An adaptive version of EM was applied in the identi-
fication problem in [38] and some modified EM algorithms
were proposed in [39][40]. The EM algorithm updates are
analytically simple and numerically stable for distributions that
belong to the exponential family. Here we explore EM channel
estimation that exploits a posteriori information.

Considering the system model, equation (1), the EM al-
gorithm estimates the channel H based on received signals
Y = {yk}T

1 . It maximizes the log likelihood, log P (Y |H)
with an initial channel Hini, by iteratively calculating,

Hi+1 = argmin
H

E{− log P (Y |Hi, Si)|P (Si|Y, Hi)}, (6)

where Hi is the ith estimate of the channel and Si is the ith
estimate of the symbols. As we know, the EM iteration in (6)
only guarantees convergence to a local maximum of P (Y |H)
[41].

The update of the equation (6) can be written in a closed-
form solution [42] as follows,

ri =
T∑

k=1

ykE{si
k|Y, Hk} (7)

Ri =
T∑

k=1

E{si
k(si

k)∗|Y,Hi} (8)
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Hi+1 = (Ri)−1ri (9)

Equations (7) and (8) depend on first-order statistics and
the second-order statistics of the symbols respectively. Note
that the computation of (7) and (8) also require the a poste-
riori probabilities P (sk|Y, H) and P (sks∗k|Y, H), which are
approximated in equation (4). We emphasize that the EM
algorithm can make full use of the soft a priori information of
the coded bits from the BCJR decoder and these posterior
probabilities allow us to exploit the coding structure and
thereby provide more accurate channel estimates.

An important problem in the performance of the EM al-
gorithm is the appropriate selection of the initial estimate.
In the case of low order constellation modulations and small
number of received antennas, the EM algorithm may converge
to the desirable point after several re-initializations of the
iterative procedure [43]. However, if the likelihood surface is
complicated, which happens in high order modulation and with
a large number of received antennas, the EM is liable to con-
verge to a local minimum rather than global minimum. Such
convergent behaviour has been studied by many researchers,
see for example [44] and the references therein.

In [45] we have shown that the EM algorithm locally has
a Newton-like convergence in digital communication systems.
This makes the EM algorithm suitable for real time applica-
tions in wireless communications. However, there is still the
important but unsolved problem of whether the EM algorithm
can converge to the correct solution, i.e., the consistent solu-
tion of the true channel parameters. Our iterative joint channel
estimation and symbol decoder with coding assist can partly
solve such difficulty, as we will see.

D. Iterative Procedure

In MIMO channels, this soft decoding strategy for blind
equalization consists of four stages:
1) Blindly estimate the channel state information from the
statistics of the received signals. Here, we use an efficient
nonlinear ICA approach to get the initial channel state infor-
mation estimate as in [20].
2) Estimate the soft bits, i.e., the LLR of each transmitted bit,
using the list version of the sphere decoder or its variants and
the current channel state information estimate.
3) Make the soft bit information more reliable through a simple
BCJR soft decoder.
4) Update the channel state information by the EM algorithm
with the soft bit information input and iteratively feed it
back to re-estimate the soft bits in step 2 again for further
improvement.

Note that, this hybrid architecture does not calculate the full
symbol probabilities in order to reduce the system complexity.
It uses a number of approximations during the iterative pro-
cedure, i.e. in the list sphere decoder, the soft mapping and
de-mapping.

III. CODEWORDS OVER MULTIPLE BLOCKS

In blind MIMO separation, poor channel estimates prin-
cipally occur when the SNR is low or when the channel

is singular [20]. The latter is related to the channel matrix
condition number, γ, which is the ratio of the largest singular
value over the smallest singular value. It is a measure of how
ill-conditioned the matrix is at receiver. When the channel is
very singular, a precise blind estimate may be problematic.
However, with a well-conditioned channel matrix, blind sep-
aration can usually provide good estimates. Here we utilize
this reliable information to rescue the information in singular
channel. Typically, as we will see, singular channel matrices
occur with low probability. Hence the information received
from neighboring good channels can be used to correct the
bad information from singular channels.

One potential problem is that a long codeword will effect
the system complexity and the decoding delay. Thus the next
question is how many blocks are needed to form a codeword.
Roughly speaking, this is a function of many parameters,
such as: the SNR, the performance of blind separations and
the frequency of occurrence and the condition number of the
singular channels.

The number of poorly conditioned channel matrices ob-
served will depend on the statistics of the propagation medium.
Let us assume that we have an M ×M MIMO system with
a Rayleigh block-fading channel. That is we assume that
for each block the channel elements Hi,j , are independently
and identically distributed as Hi,j ∼ CN (0, 1). In this case
the probability density of the normalized condition number,
γ̃ = γ/M , can be written in closed form [46] as:

pγ̃(x) =
8
x3

exp(− 4
x2

). (10)

With this equation, we can calculate the probability that the
condition number will be greater than a specific value, γ1 as:

P{x > γ1} =
∫ ∞

γ1

8
x3

exp(− 4
x2

)dx (11)

which by the change of variable y = 4/x2 can be simplified
to:

P{x > γ1} =
∫ 0

4/γ2
1

− exp(−y)dy

= 1− exp(− 4
γ2
1

)
(12)

This can help us to find a reasonable block length within a
codeword. For example, in a 4×4 MIMO system, if the blind
separation algorithm can not provide satisfactory performance
when the channel condition number γ1 > 20 under practical
SNRs, we can calculate its probability by

P{x > 20} = 1− exp(− 4
(20/4)2

) ≈ 0.15 (13)

If we assume that the channel matrices for each block are inde-
pendent, then, the expected frequency of a singular channel is
0.15 and a code length of 7 blocks would typically encounter
a single singular channel.

This illustrates that a long codeword spanning different
fading factors can exploit the temporal diversity to increase
the error correction capability. Such an advance is applied to
the blind channel estimation iteratively and, as we will see in
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the next section, improves the final performance both in the
channel estimate and the BER significantly.

IV. SIMULATIONS

We consider MIMO systems with 4×4 or 8×8 transmitters
and receivers and QAM16 modulation is used throughout.
The channel H is therefore an 4 × 4 or 8 × 8 complex
instantaneous matrix, which is constant for each block interval
(256 symbols) and follows a Rayleigh fading distribution.
N follows the complex additive white Gaussian distribution.
The results have been obtained for transmitting blocks of
Kb = 4096 bits in a 4×4 system and Kb = 812 bits in a 8×8
system. For the error correcting system, a rate of r = 1/2
parallel concatenated convolutional code of memory 3 with
two nonsystematic convolutional (NSC) code has been used.
The generator polynomials are G1(D) = 1 + D + D3 + D4,
G2(D) = 1 + D3 + D4 and the interleaver is set to pseudo
random.

A SD [47] is employed in the detector to provide the soft
symbol information. The SD computes the symbol likelihood
based on 16 constellation points in each dimension. This
calculation could be simplified by a list SD [32] or list-
fixed-complexity SD [48] but with a potential performance
degradation.

The SD output is then conveyed to the BCJR and EM
algorithms respectively. As the EM algorithm exhibits very fast
convergence only two iterations of the EM channel estimation
updates are employed in these simulations (with the exception
of those in the final subsection).

To explore the error correcting code correctly, the permu-
tation problem of ICA must be overcome. Here a channel
re-ordering technique is used. Given initial estimates HICA,
we estimate the channel permutation matrix, P , by making the
H−1

ICAH = DP ≈ I as close to the identity as possible, where
D is a diagonal matrix. The channel estimates Hini = HICAP
are then ordered with P . This operation is called ordered ICA
in Figure 2. In practice, a small pilot can be inserted into the
data block to indicate the correct permutation or in CDMA
systems, distinct unique codes (spread code) can be applied to
the transmitted data steam in each antenna so that the correct
permutation can be identified at the receivers.

A. Channel estimation performance

In comparison with other effective methods of blind MIMO
separation, such as the Split Threshold nonlinear function
and the SD-EM approach [20], our scheme shows promising
performance for this type of problem. The former used an
efficient score function which is specified for QAM signals
to obtain a good separability. The latter proposed an efficient
hybrid blind MIMO equalization and decoding scheme using
soft information in the EM channel update but ignoring any
additional FEC information. Figure 3 and 4 illustrate the
separability improvements with the aid of a channel code
in the 4×4 and 8×8 MIMO systems. The performance is
evaluated in terms of the Inter-Component Interference (ICI)
which measures the distance between the estimated channel
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Fig. 4: Channel separability of the split threshold nonlinear
ICA, the SD-EM and the coding assisted SD-EM algorithm
with a rate r = 1/2 convolutional code over different SNR in
8×8 MIMO systems.

and the true value. It is defined as:

ICI(P ) =
1
n

∑

i

∑

j

[( |Pij |
max|Pij |

)2 − 1
]
, (14)

where P = H̃−1Hreal and Hreal and H̃ are the true channel
and estimated channel respectively.

B. BER performance

In digital communications, the ultimate goal is to obtain
the optimum BER performance. BER performance results are
shown in Figures 5 and 6 for the 4×4 and 8×8 MIMO systems
respectively. Comparisons are made with: a zero forcing
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Fig. 5: BER performance of the ZF scheme, the split threshold
nonlinear ICA, the SD-EM, the pilot assisted EM method, the
coding assisted SD-EM algorithm and known CSI SD with a
rate r = 1/2 convolutional code in 4×4 MIMO systems.

(ZF) scheme assuming known CSI, the two blind methods
mentioned above and training sequence schemes using Least
Squares initial estimation [23] with 5 pilot symbols and 8 pilot
symbols, respectively.

In order to illustrate the benefits from the channel improve-
ment rather than the FEC, the BER is measured before the
error correcting operations. The figures show that the coding
assisted iterative structure improves the system performance
significantly compared with the other blind schemes and it is
generally better than using the pilot sequences to provide the
initial channel estimates. The gains also appear to be more
substantial in the larger MIMO system.

Although, the BER performance is improved, there is still
a clear performance gap between the SD-BCJR-EM algorithm
and the optimal (with known CSI) SD solution in both figures.
We believe such a phenomenon is introduced by a small
proportion of very singular channel estimates in which the
amplitudes of one or two channels are so weak that the
blind estimation can not identify them accurately in noisy
environments. We will see below that this problem can be
mitigated by allowing the codewords to span over multiple
blocks.

C. Performance for codewords spanning multiple blocks

For a setup similar to the system above but which provides
an increased time diversity, we applied a codeword to 2, 4
and 8 channel realizations in which the channel realizations
are independent. The BER performance is measured after
the BCJR algorithm. Figures 7, 8 and 10 show that the
performance is also improved by the time diversity. This
enables, through the interleaving operation, poorly initialized
(singular) channel estimates to be re-estimated using higher
quality information from the well conditioned channel blocks.
In the case of 2 blocks forming a codeword, the gap between
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Fig. 6: BER performance of the ZF scheme, the split threshold
nonlinear ICA, the SD-EM, the pilot assisted EM method, the
coding assisted SD-EM algorithm and known CSI SD with a
rate r = 1/2 convolutional code in 8×8 MIMO systems.
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Fig. 7: BER improvements by utilizing time diversity and
channel coding. Triangle line is the performance of the SD-EM
algorithm following the BCJR algorithm and the square line
is the performance of the coding assisted SD-EM algorithm.
2 blocks form a codeword

our scheme and the optimum solution with perfect CSI is still
large. However, the performance improvement is most striking
when the code extends over 4 or 8 blocks. When the code
spans 4 blocks the BER is within a small factor from the
performance with perfect CSI, whereas when the code spans 8
blocks their performances are virtually indistinguishable above
12dB SNR.

D. Convergence over a singular channel

Our final simulations indicates the iterative gain of the
coded soft channel estimation measured over 20, 000 Monte
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Fig. 9: Iterative BER improvements of the coding assisted SD-
EM algorithm in a 4× 4 system with 16-QAM modulation, 8
iterations are used.

Carlo runs. Similar to the setup above with 4 fixed channel
realizations. One channel matrix is constrained to be very
singular with a condition number over 25 so that it is difficult
to obtain a good initial estimate of the channel matrix. The
other channels have good condition numbers. In this scenario
it is reasonable to expect that more iterations of the EM
algorithm might be necessary in order to obtain a good channel
estimates for the singular channel matrix. Here we see that the
convergence of the algorithm is still quite reasonable.

The BER performance is evaluated for different number
of iterations of the EM channel estimation. Eight iterations
are studied. Clearly, from Figure 9, we can see that the
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Fig. 10: BER improvements by utilizing time diversity and
channel coding. Triangle line is the performance of the SD-EM
algorithm following the BCJR algorithm and the square line
is the performance of the coding assisted SD-EM algorithm.
8 blocks form a codeword
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Fig. 11: Iterative channel improvements of the coding assisted
SD-EM algorithm in a 4×4 system with 16-QAM modulation.

performance progresses towards the optimal curve with CSI
known at the receiver and the most significant improvements
in BER occur in the first 5 iterations. While there is still a
gap between our scheme’s performance and that with perfect
CSI we speculate that the gap will further decrease if the
block length is increased (though with the inevitable increase
in decoding latency).

The quality of the singular channel matrix estimate is
illustrated in Figure 11 where the ICI is calculated for each
iteration over a range of SNR. Here, again, it can be seen that
the EM algorithm has effectively converged (this time in terms
of the channel estimate) in about 5 iterations.
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The convergence rate of the EM algorithm appears to be
slower in the presence of singular channels. Thus to gain
full advantage of the coding assisted channel estimation we
could monitor the singularity of the estimated channels and
use one or two iterations when the channel condition appears
good while increasing the number of iterations when a sin-
gular channel is observed. A trade-off can therefore be made
between the performance and the complexity of the estimator.

V. CONCLUSION

A coding assisted MIMO blind separation and decoding
scheme is proposed. Three techniques of separation, diversity
and channel coding are used to improve fading link per-
formance (BER). By utilizing a posteriori information, our
scheme provides substantial gain over the uncoded system.
The existence of coding structures partly solves the problems
of EM getting trapped in a local minimum when the channel
is close to singular or the SNR is low. This happens frequently
when the number of receiver antennas, the size and the dimen-
sion of the data are large. The new scheme appears to avoid
local minima and converges to the global minimum or at least
a good approximation of it. Moreover, this system extends
FEC to the multiple blocks in order to form a large codeword
and then exploits the temporal diversity. This extension also
improved system performance.
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