
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 1

The Feasibility of Interference Alignment Over
Measured MIMO-OFDM Channels

Omar El Ayach, Student Member, IEEE, Steven Peters, Student Member, IEEE,
and Robert W. Heath, Jr., Senior Member, IEEE,

Abstract—Interference alignment (IA) has been shown to
achieve the maximum achievable degrees of freedom in the
interference channel. This results in sum rate scaling linearly
with the number of users in the high signal-to-noise-ratio (SNR)
regime. Linear scaling is achieved by precoding transmitted
signals to align interference subspaces at the receivers, given
channel knowledge of all transmit-receive pairs, effectively reduc-
ing the number of discernible interferers. The theory of IA was
derived under assumptions about the richness of scattering in the
propagation channel; practical channels do not guarantee such
ideal characteristics. This paper presents the first experimental
study of IA in measured multiple-input multiple-output orthogo-
nal frequency-division multiplexing (MIMO-OFDM) interference
channels. Our measurement campaign includes a variety of
indoor and outdoor measurement scenarios at The University
of Texas at Austin. We show that IA achieves the claimed scaling
factors, or degrees of freedom, in several measured channel
settings for a 3 user, 2 antennas per node setup. In addition to
verifying the claimed performance, we characterize the effect of
Kronecker spatial correlation on sum rate and present two other
correlation measures, which we show are more tightly related to
the achieved sum rate.

Index Terms—Channel measurements, interference alignment,
multiple-inputmultiple- output (MIMO),software defined radio.

I. INTRODUCTION

INTERFERENCE alignment (IA) is a transmission strategy
for the interference channel that results in sum capacities

that scale linearly, at high signal-to-noise ratio (SNR), with
the number of users in the system [1]. Interference align-
ment cooperatively aligns interfering signals over the time,
space, or frequency dimensions. In multiple-input multiple-
output (MIMO) interference channels, IA aligns signals in the
spatial dimension by choosing transmit precoders such that
interference at each receiver spans only a subspace of the
receive space. To achieve alignment and the maximum gains,
however, certain dimensionality constraints need to be satis-
fied; alignment is only possible for a certain number of users
if given a sufficient number of transmit and receive antennas.
Moreover, guaranteeing the maximum degrees of freedom via
precoding requires coding over infinitely many dimensions,
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made possible by using time or frequency extensions [1],
which are not considered in this paper.

MIMO interference alignment, as well as alignment in other
dimensions, was first studied in [1]–[3]. Since then, IA has
been examined further from several angles. After deriving
the high SNR sum rate scaling of IA, distributed iterative
algorithms for constructing MIMO IA precoders were pre-
sented in [4] and [5] with varying assumptions on reciprocity
and channel knowledge. Other solutions were developed for
symmetric networks [6], cellular networks [7], single-input
single-output (SISO) networks [8], and SISO networks with
limited feedback [9]. More recent work addresses the feasi-
bility of IA in terms of network structure and channel state
information requirements [10]–[12]. For example, [10] gives
feasibility conditions on the number of antennas needed per
node, while [11] examines the possibility of applying IA to
a two user network with no channel state information at the
transmitter. Extending the IA concept to larger networks, [13]
applies IA to large scale networks to derive new bounds on
sum capacity. The work in [4]- [13] has helped theoretically
quantify the gains of IA, however, feasibility and performance
in real channels remains an open question.

The theoretical results in [4]- [13] were derived using
baseband models with channels drawn independently from a
continuous distribution; this represents scattering too rich to
be observed in practical systems. As a result, performance
may be overestimated. Moreover, there are no comprehen-
sive interference channel measurements suitable for studying
IA in practice. The only comparable results on multiuser
MIMO channel measurements, not directly related to IA,
target broadcast channels consisting of a single base station
and several receivers, and thus do not provide the required
data on measured interference channels [14], [15]. Work
done in [16], for example, presents multiuser measurements
formed by concatenating separate single user measurements,
claiming that the static measurement environment ensures the
validity of the results. Related work on demonstrating IA
in practice is limited to [17], which tested a hybrid version
of IA coupled with interference cancelation and successive
decoding in a single carrier narrowband MIMO wireless local
area network. The work in [17] does not provide insight
into the performance of the original MIMO IA solutions
in realistic wideband channels. Moreover, [17] downplays
the importance of synchronization and other physical layer
concepts in the interference channel due to its narrowband
nature. Consequently, the viability of IA in measured channels
has not yet been evaluated.
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In this paper, we establish the feasibility of MIMO IA in
slowly time varying real world channels, with no frequency
or time extensions. To acquire suitable channel measurements,
we implemented a MIMO-OFDM measurement testbed for the
3-user 2 × 2 MIMO interference channel, using a software
defined radio platform [18]. We gave special attention to
the proper implementation of a synchronized MIMO-OFDM
physical layer, a consideration that was not emphasized in [14],
[16], [17], to guarantee the validity of our measurements. We
augment the system we implemented in [18] to accommodate
measurement setups over large outdoor areas. We make chan-
nel measurements for a variety of indoor and outdoor static
node deployments and therefore extend the preliminary indoor
results derived in [18]1. We summarize the data collected and
use it to establish the true performance of IA in measured
wideband channels. We examine the average sum rate achieved
versus signal-to-noise ratio and show that, as predicted in
theory, IA outperforms time division multiple access (TDMA)
as well as other MIMO techniques. We also show that IA
achieves the maximum degrees of freedom in our setup. We
characterize the effect of non-ideal propagation channel char-
acteristics, such as Kronecker spatial correlation, on achieved
sum rate. Finally, we introduce two other correlation measures,
matrix collinearity and subspace distance, and show that they
are more tightly related to the achieved sum rate.

In this paper we use the following notation: A is a matrix,
and a is a scalar; A∗ denotes the conjugate transpose of A,
‖A‖F is its Frobenius norm, trace(A) is its trace, span(A)
is its column space, and null(A) its nullspace; ν(A) is any
eigenvector of A and νmax(A) is the dominant eigenvector
when eigenvalues are real; IN is the N ×N identity matrix;
CN is the N -dimensional complex space.

This paper is organized as follows. Section II briefly
presents the MIMO-OFDM signal model in the presence of
interference, Section III summarizes the basic idea of IA and
introduces several IA solutions as well as the algorithms used
for comparison. Section IV details both the hardware and
software used in our measurement testbed. Sections V-A and
V-B present and discuss the results obtained from our setup
in indoor and outdoor environments respectively. We conclude
with Section VI.

II. MIMO INTERFERENCE SIGNAL MODEL

Consider the K-user interference channel shown in Fig. 1
with Mk transmit antennas at transmitter k and Nm receive
antennas at receiver m. All users send Ns streams of data using
orthogonal frequency division multiplexing (OFDM) with N
subcarriers [19]. This is known as MIMO-OFDM, a widely de-
ployed transmission technique in commercial wireless systems
such as IEEE 802.11n and 802.16e [20]. In the interference
channel in Fig. 1, each transmitter k communicates with
its corresponding receiver k and interferes with all other
receivers m 6= k. In this section we explain the MIMO-OFDM
interference signal model in this general case, though in the

1We also obtain larger data sets, in more indoor and outdoor antenna and
node configurations. The performance analysis is also extended to include
various other interference channel algorithms.
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Fig. 1. Simplified hardware block diagram.

remainder of this paper we specialize to the K = 3 user 2×2
channel in which each user sends Ns = 1 stream of data.

The received signal at node k and subcarrier n for a
sufficiently slow fading channel is given by

yk[n] = Hk,k[n]Fk[n]sk[n]+
∑
m 6=k

Hk,m[n]Fm[n]sm[n]+vk[n],

(1)
where yk is the Nk × 1 received signal vector, Hk,m is the
Nk×Mm channel matrix from transmitter m to receiver k with
elements drawn i.i.d. from an arbitrary continuous distribution,
Fk is the Mk × Ns precoding matrix used at transmitter k,
sk is the Ns × 1 transmitted symbol vector at transmitter k,
and vk is a complex vector of i.i.d. circularly symmetric white
Gaussian noise with covariance matrix E[vkv

∗
k] = σ2INk

∀k.
In this signal model, we assume perfect functioning of the
carrier recovery and symbol timing synchronization modules.
We also assume that the impulse response of all the channels
is shorter than the cyclic prefix used, thus allowing us to write
the received signal as in (1). For simplicity, the transmit power
is assumed to be normalized to 1, and the effects of large scale
fading are neglected.

Since the capacity region of the interference channel re-
mains unknown, the performance of IA cannot be compared
to capacity until the latter has been established. We therefore
evaluate the performance of IA in comparison to other pre-
coder designs by studying the achieved sum rate in bits/s/Hz
averaged over all subcarriers with uniform power allocation
[21]. Network sum capacity is a point in the capacity region,
and, more importantly, a metric that defines the total through-
put of the network. The sum rate achieved by an optimal
receiver, assuming ideal decoding for all precoder designs, is
calculated as

Rsum =
1

N

N∑
n=1

K∑
k=1

log2

∣∣∣INk
+
(
σ2INk

+ Rk[n]
)−1

(Hkk[n]Fk[n]Fk[n]∗Hkk[n]∗)| , (2)

where

Rk[n] =
∑
m 6=k

Hk,m[n]Fm[n]Fm[n]∗Hk,m[n]∗

is the per-subcarrier interference covariance matrix [22]. SNR
is emulated, in simulation, by varying the noise power while
keeping the normalized channels constant. This normalization
of the measured channels when calculating sum rate is de-
scribed in Section IV-C.
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III. INTERFERENCE ALIGNMENT AND OTHER TRANSMIT
TECHNIQUES

In this section we summarize several transmission strate-
gies for the interference channel. The algorithms are run
offline using the measured channel data to demonstrate the
expected performance in practice. We start with the closed-
form solution for interference alignment, which is valid only
for the three user system model when each user sends a
number of streams equal to half the number of transmit and
receive antennas. Then we summarize iterative interference
alignment and a signal-to-interference-plus-noise-ratio (SINR)
maximizing solution. We also review TDMA and greedy
interference avoidance, which will be used for performance
comparison. While IA is optimal in terms of sum rate scaling,
and while SINR maximization outperforms IA in the low SNR
regime by considering SINR in the subspace chosen for the
desired signal, none of these strategies is yet proven to be sum
rate optimal.

A. Closed Form Interference Alignment

IA, using enough antennas per node [5], aims at choosing
the set of precoding matrices {Fk} to force the received
interference at each of the K receivers to lie within a lower
dimensional subspace. Specifically, if receiver k intends on
decoding Ns independent data streams with no interference, it
must restrict interference to an Nk−Ns dimensional subspace
of the receive signal space, CNk .

Let Wk[n] be the Nk×Ns matrix describing the orthonor-
mal basis for the interference free subspace used at node k and
subcarrier n. Prior to decoding, node k first projects on the
basis of the interference free subspace. Ignoring the AWGN
noise term, this yields

Wk[n]∗yk[n] = Wk[n]∗ (Hk,k[n]Fk[n]sk[n]+∑
m6=k

Hk,m[n]Fm[n]sm[n]

 . (3)

For alignment, the received interference must lie in the Nk −
Ns dimensional nullspace of Wk[n]∗, which gives

span(Hk,m[n]Fm[n]) ⊆ null(Wk[n]∗), ∀m 6= k. (4)

In addition to satisfying (4), the interference alignment solu-
tion must satisfy

rank(Wk[n]∗Hk,k[n]Fk[n]) = Ns (5)

to successfully decode all Ns streams with a linear receiver.
This spatial alignment approach uses a finite number of

dimensions and is only proven to achieve the maximum
degrees of freedom for the 3 user channel with Ns equal to
half the number of antennas per node [1], which is the case
we consider. We focus on Mk = Nm = 2, ∀k,m and Ns = 1.
In this case, the conditions for interference alignment given in
(4) and (5) are satisfied by choosing the precoding matrices
as

F1[n] = ν
(
(H3,1[n])−1H3,2[n](H1,2[n])−1

H1,3[n](H2,3[n])−1H2,1[n]
)
, (6)

F2[n] = (H3,2[n])−1H3,1[n]F1[n], (7)

F3[n] = (H2,3[n])−1H2,1[n]F1[n]. (8)

The solution presented in (6), (7), and (8) is not unique. In
fact, any IA solution can be rotated inside its subspace without
destroying alignment. Non-uniqueness can also be seen by
the ability to choose any eigenvector in (6), each resulting
in different precoders and sum rate. Since the number of IA
solutions, and a method to finding the sum rate maximizing
one, remains unknown, the solution space must be further
investigated and non-uniqueness exploited to increase sum
rate. While optimality is neither proven nor claimed, [23] is an
example of exploiting non-uniqueness to provide a modified
IA algorithm that yields better sum rate performance than in
[1], [4], [5]. Finally, such closed form solutions do not yet
exist for networks with more than three users, except in the
case of symmetric channels and Ns = 1 presented in [6].

B. Iterative Interference Alignment

In [5], alignment in a K-user network is formulated in a
general alternating minimization framework, alternating be-
tween solving for the K precoders and the K interference
subspaces. The alignment problem is viewed as minimizing
the “leakage” interference power over the set of precoders
{Fk[n]} and interference subspaces {Ck[n]}. This minimiza-
tion problem is written as

min
Fm[n]∗Fm[n]=INs ,∀m

Ck[n]∗Ck[n]=INk−Ns ,∀k

K∑
k=1

∑
m=1
m6=k

‖Hk,m[n]Fm[n]−

Ck[n]Ck[n]∗Hk,m[n]Fm[n]‖2F . (9)

The precoders {Fm[n]} are iteratively refined while keeping
{Ck[n]} fixed, and vice versa. As a result, the pseudo code
for such a minimization is

1) Choose the set {Fm[n]} randomly.
2) Choose the columns of Ck[n] to be the Nk − Ns

dominant eigenvectors of∑
m6=kHk,m[n]Fm[n]Fm[n]∗Hk,m[n]∗, ∀k.

3) Choose the columns of Fm[n] to be the Ns least
dominant eigenvectors of∑
k 6=mHk,m[n]∗ (INk

−Ck[n]Ck[n]∗)Hk,m[n], ∀m.
4) Repeat steps 2 and 3 until convergence.

In summary, the algorithm first finds the subspaces Ck[n]
which are “closest” to the received interference, and then
calculates the precoders Fm[n] to align interference as close
as possible to the found subspaces. To cancel interference
using a linear receiver, for example, receiver k multiplies
its received signal by the orthonormal basis of Wk[n] =
INk
−Ck[n]Ck[n]∗.
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Convergence is guaranteed by the fact that steps 2 and 3
can only decrease the non-negative objective function. The
non-convexity of (9), however, implies the potential presence
of multiple local optima. Thus, convergence to the global
optimum is not guaranteed. To increase sum rate, this iterative
algorithm, and the maximum SINR algorithm of Section III-C,
can be improved by performing several random initializations
and choosing the one that results in the highest sum rate [24].

C. Maximum SINR Algorithm
Interference alignment does not target maximizing sum

rate directly. It instead focuses on making the signal-to-
interference ratio infinite at the output of the linear filters
Wk; it does not attack other performance measures like the
post-processing signal-to-interference-plus-noise ratio. As a
result, perfect alignment often comes at the cost of lower post-
alignment SNR or sum rate, the metric we are actually inter-
ested in maximizing. We can thus consider another precoder
design that maximizes other metrics, perhaps without aligning
interference perfectly. One such precoder design maximizes
the total SINR of the network, given by

S({Fk[n]}) =
K∑

k=1

‖Wk[n]Hk,k[n]Fk[n]‖2F

K∑
k=1

( ∑
m 6=k

‖Wk[n]Hk,m[n]Fm[n]‖2F + σ2‖Wk[n]‖2
) , (10)

where Wk[n] is now the combiner used at receiver k [24].
Instead of optimizing the sum rate or the sum SINR, which

is not quite tractable, this algorithm optimizes the sum signal
power over the sum interference-plus-noise power. Since the
sets {Fk[n]} and {Wk[n]} are not independent, a closed-form
solution for this objective function is unlikely, however, it can
be solved via alternating minimization. For tractability, the
precoders are constrained to have columns of equal norm, thus
satisfying Fk[n]∗Fk[n] = 1

Ns
INs ,∀k [24]. By fixing all Fm[n]

we can solve for Wk[n] as

Wk[n] = νmax

∑
m 6=k

Hk,m[n]Fm[n]Fm[n]∗Hk,m[n]∗

+σ2INk

)−1
Hk,k[n]Fk[n]Fk[n]∗Hk,k[n]∗

)
. (11)

Conversely, by fixing all Wk[n], we can solve for the pre-
coders as

Fm[n] = νmax

∑
k 6=m

Hk,m[n]∗Wk[n]
∗Wk[n]Hk,m[n]

−1

Hm,m[n]∗Wm[n]∗Wm[n]Hm,m[n]) . (12)

This results in an algorithm pseudo-code given by
1) Choose the set {Fm[n]} randomly.
2) Choose the columns of Wk[n] as given by (11).
3) Choose the columns of Fm[n] as given by (12).
4) Repeat steps 2 and 3 until convergence.

Maximum SINR can be generalized to multiple streams in
bigger networks [4], where the system must be solved for each
column of each matrix, resulting in non-orthogonal solutions.

D. Other Transmit Strategies

For comparison, we consider other transmission schemes,
such as TDMA and greedy interference avoidance. In a
network employing TDMA, transmissions from different users
are orthogonal in time, meaning that only one user transmits
in any given time slot. TDMA systems can take advantage of
multiuser diversity by scheduling, in every time slot, the user
with the most favorable channel, in terms of instantaneous
rate. This requires channel information to be known at the
transmitter, to make the selection process possible, and thus is
a fair comparison to IA which also requires this knowledge.
Note that TDMA is conceptually equivalent to other orthog-
onal resource allocation techniques such as FDMA, where
orthogonality is in the frequency domain.

We also consider greedy interference avoidance, a beam-
forming strategy for the interference channel [25]. In SVD
beamforming for the point-to-point channel [26], beamforming
vectors are chosen as Fk = νmax (Hk,k), neglecting the
interference covariance matrix. In the presence of interference
as in (1), however, the rate achieved by each user depends
on the matrix

(
σ2INk

+ Rk[n]
)−1/2

(Hk,k[n]). In greedy
interference avoidance [25], users align their signals along
the most dominant eigenmode of this matrix, thus sending
in the direction they receive the least interference in. Since
in this approach the choice of a user’s precoder affects the
interference subspaces observed in the network, this precoder
selection is done for many iterations, in hope of reaching a
fixed point, but the algorithm does not always converge [27].

IV. SYSTEM IMPLEMENTATION AND TECHNICAL
APPROACH

In this section, we present the main software and hardware
parts of the measurement testbed developed. We discuss the
main concepts in our MIMO-OFDM system implementation
such as training, channel estimation, and carrier recovery. We
also introduce the system parameters used to collect channel
measurements. We then discuss the main tools and metrics
used in our performance analysis, as well as introduce the
preliminary calculations such as the normalization needed
before further processing the acquired data.

A. Software Implementation

Our MIMO-OFDM testbed software, implemented in Na-
tional Instruments’ LabVIEW [28], uses the parameter values
indicated in Table I for all communicating users in the net-
work. We use OFDM modulation with an FFT size of 256
and a 64 sample guard interval. The total signal bandwidth
used in our measurement setup is 16 MHz, which results in
an effective OFDM symbol time of 20µs. Communication
is done at a carrier frequency of 2.4 GHz in the industrial,
scientific, and medical (ISM) band. Data on each subcarrier
can be modulated using BPSK or M-QAM.

To faithfully predict the performance of interference align-
ment at high SNR, we pay special attention to our pilot
structure and channel estimation implementation. Users se-
quentially send two OFDM symbols of frequency domain
pilots [19] that are known to all receivers. This makes training
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Fig. 2. Picture of the measurement testbed implemented showing the
antennas, RF front end equipment, as well as a sample of the software
interface.
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from each user orthogonal in time. During each user’s training
phase, the first symbol contains pilots from the first antenna
on even subcarriers only, and the second antenna on odd
ones. In the second OFDM training symbol this subcarrier
assignment is reversed as shown in Fig. 3. The use of equally
spaced pilots that are orthogonal across antennas is proven
to be optimal in [29]. We use each user’s OFDM training
symbols to estimate the wideband time domain channel exactly
as in [29] assuming proper functioning of our frequency and
time synchronization modules. We also assume that the cyclic
prefix length is greater than the number of channel taps in
all channels. After obtaining these estimates, the optional
“payload data” sent after each user’s training is equalized
using a frequency domain equalizer, similar to narrowband
equalizers [26]. Payload data is used to verify correct reception
and estimation. For brevity, we omit the details of the channel
estimation implementation in this paper and refer the reader
to [29] and the references therein.

We briefly discuss, however, the resulting mean square error
(MSE) of our estimates, as this is a critical issue when predict-
ing performance at SNR levels higher than our measurements’
raw SNR. In a preliminary measurement campaign, we notice
that our measured channels have a maximum length L = 5
channel taps. With Mk = 2 transmit antennas ∀k and L = 5

TABLE I
MIMO-OFDM SYSTEM PARAMETERS

Carrier Freq. 2.4 GHz
Transmit Power 6 dBm

Bandwidth 16 MHz
FFT Size 256

Subcarrier Spacing 6.25 kHz
Guard Interval 64 samples

Total Symbol Duration 20µs

taps, a minimum of LMk = 10 pilot subcarriers are needed
to estimate the channel. For the pilot structure in [29], it
was shown that the resulting MSE = σ2

P where P is the
total power spent on training. In this case, this is the power
per subcarrier multiplied by the number of pilot subcarriers.
This implies that, with enough training, channel estimates can
be made arbitrarily accurate. We now note that our system
sends two full OFDM training symbols, instead of the needed
LMk = 10 in practice. Therefore, after discounting null tones,
we get 400 pilot subcarriers, which is forty times the needed
training. This results in a channel estimate MSE which is
16dB lower than in practical systems, which often use close
to minimal training. This makes the quality of our channel
estimates that of a practical system functioning at a 16dB
higher SNR. As a result, over training our channels by a factor
of 40, allows us to faithfully predict IA performance at SNR
levels 16dB higher than the measurement’s raw SNR. Further
details on optimal pilot structure, estimation, and mean square
error can be found in [29].

Since we are mostly interested in measuring the channel,
we send two pilot symbols for every OFDM payload data
symbol. This puts minimum payload data in between the pilots
from different users, thus keeping the measurement time in the
microsecond range. Sending and equalizing payload data in
the measurement exercise is recommended to verify correct
reception and decoding, which ensures that the recorded
channel measurements correspond to successful transmissions.

Pilot symbols are used to estimate frequency offsets between
each transmit-receive pair. For proper MIMO communication,
the transmit chains corresponding to the 2 transmit antennas
per user are synchronized to justify the assumption of a single
frequency offset per transmit-receive pair. For the sake of our
channel measurements, however, and since we want to test
the performance of IA in the absence of such impairments,
we synchronize all users’ transmit chains. Our measurements
show that the use of the onboard high precision oscillators
to synchronize all transmit RF chains results in frequency
offsets within a 100 Hz of each other which are estimated
and further corrected in software via MIMO-OFDM synchro-
nization techniques presented in [30]. Software correction is
done in stages starting with a coarse time synchronization,
fractional frequency offset estimation, integral frequency offset
estimation and finally fine time synchronization [30].

B. Hardware Description

Our hardware setup consists of five National Instruments
PXI-1045 chassis connected to 3 PCs [31]. The first PC
controls 2 PXI chassis, containing the three users’ transmit
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chains. The remaining three PXI-1045 chassis each house the
receive chains of one of the users, two of which are connected
to the same PC to make the testbed more mobile. In addition to
the RF hardware installed, each PXI-1045 chassis holds a NI
PXI-6653 module for timing and synchronization. A simplified
hardware block diagram is shown in Fig. 1.

Each transmitter, or RF signal generator, named PXI-5670,
consists of two physical units, an arbitrary waveform gener-
ator, NI PXI-5421, and an upconverter, NI PXI-5610 [32].
The arbitrary waveform generator produces an intermediate
frequency signal which is later modulated to RF via the
upconverter. Each receiver, or RF signal analyzer, named NI
PXI-5660, constitutes a downconverter, NI PXI-5600, and a
digitizer, NI PXI-5620 [33]. On the receive side, the down-
converter downconverts the signal to an intermediate frequency
after which the digitizer takes over and samples the waveform
which is then sent to the PC for processing using the LabVIEW
software blocks. Note that each user consists of two transmit
and two receive chains, totaling six transmit chains and six
receive chains for our overall network setup.

Similar software defined setups have been used in papers
such as [34] to implement single user MIMO communication.
Our system, however, is significantly more complex to support
multiple users whose hardware components are housed in
different chassis and controlled by different PCs. Moreover,
software implementation differs greatly in the methods used
for training and channel estimation as well as carrier recovery.

To support the cross chassis synchronization needed for
this multi-user prototype, we install NI PXI-6653 timing and
synchronization modules in each PXI-1045 chassis [35]. This
module has a high stability reference oven-controlled-crystal-
oscillator (OCXO) which can be exported to other chassis,
thus enabling synchronization. Locking all the transmitters’
phase locked loops to this high precision OCXO helps ensure
minimal carrier frequency offsets between transmitters. Al-
though frequency offset correction is implemented in software,
synchronizing the transmitters in hardware further strengthens
the validity of the obtained measurements. Note that due to
hardware limitations, the PXI-6653 and PXI-5610 will only
allow us to synchronize the intermediate frequency signal,
and therefore the RF local oscillators remain independent.
Our measurements indicate that the difference in frequency
offsets between transmitters, when locked into the IF reference
signal from the PXI-6653, is below 100 Hz at a carrier of 2.4
GHz. This remaining frequency offset is then estimated and
corrected in software [30] and the MIMO links perform as
expected.

In addition to synchronizing clocks, the PXI-6653 allows
us to export the trigger generated when the master user begins
signal generation. This digital signal is then used to trigger
generation at the other transmitters. While digitally triggered
acquisition, by connecting the receivers to the transmitters’
PXI-6653, is possible in small-scale indoor setups such as
those presented in [18], our outdoor measurement setup
stretches over distances of about 250ft, making digital trig-
gering impossible. Therefore, the receivers are not connected
to this reference trigger signal. To accommodate these outdoor
setups, acquisition is triggered via analog edge triggers. Under

this type of triggering, the receiver starts recording samples
whenever the received signal level exceeds a predefined thresh-
old. We discard any measurement that has been corrupted
by the ambient interference in the 2.4 GHz ISM band and
thus retain only valid interference free measurements. This
is done by automatically checking the known payload data
for errors and discarding any transmission with a very high
bit error rate since they correspond to frames in which
the synchronization and estimation blocks malfunctioned due
to interference. Therefore, only measurements coming from
transmissions that have been correctly received by all receivers
are automatically recorded. Triggered acquisition and clock
synchronization ensure that our measurements include only
channel effects, and are thus free of any timing impairments.

C. Technical Approach
We now introduce three tools that will be essential for the

performance analysis that follows in Section V. We first dis-
cuss how channels are normalized and sum rate is calculated
for our measurement scenarios. We then discuss how Kro-
necker spatial correlation is calculated for our measurements, a
concept which we will link to the performance of IA in Section
V-A. We then introduce two correlation metrics which we later
show are more tightly related to IA and signal subspaces.

1) Calculating Sum Rate: Before evaluating the sum rate
performance of interference alignment over measured chan-
nels, we must first obtain normalized channel matrices, H̃.
We normalize the measured channels over the full data set, i.e.
no time windowing is applied. For fair comparison with the
simulated Rayleigh channels, we normalize our measurements
to have elements of unit variance and, thus, an average
Frobenius norm of four [36],

H̃k,m(ω) = 2
Hk,m(ω)√

1
|Ω|
∑
ω′∈Ω ||Hk,m(ω′)||2F

, (13)

where Ω is the set of all measurements collected in the scenario
considered, i.e. when normalizing a matrix obtained when
d = 1λ, Ω would be the set of all channel measurements
obtained in that configuration (in our measurements |Ω| = 50
as indicated in Table II).

2) Kronecker Spatial Correlation: The channel’s spatial
correlation, calculated according to the Kronecker model, is
given by

RRX =
1

|Ω|
∑
ω∈Ω

H(ω)H(ω)∗, (14)

RTX =
1

|Ω|
∑
ω∈Ω

H(ω)∗H(ω), (15)

where Ω is the set of all measurements, H(ω), taken in the
considered configuration. When calculating correlation, the
channel matrices H(ω) are individually normalized to have
unit Frobenius norm, H(ω)/ ||H(ω)||F . For our multiuser
case, when calculating receive correlation for user k, for exam-
ple, we average over the channels Hk,` ∀` which should have
similar receive Kronecker correlation due to the separability
of the model. Similarly, for the transmit correlation of user `,
we consider the channels Hk,` ∀k.
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Fig. 4. Schematic of an example indoor measurement configuration. Antennas
are placed at varying distance d apart. Also note that not only are the
nodes placed at fixed positions, but all objects in this room remain in their
fixed locations throughout the duration of the measurement campaign. Indoor
measurement details are further summarized in Table II.

3) Matrix Collinearity and Subspace Distance: IA perfor-
mance can be closely linked to the signal spaces in the network
which the Kronecker model does not fully capture. Therefore,
we propose two other distance metrics that we show in Section
V-B can be used to predict performance.

Channel matrix collinearity is a typical correlation measure
considered in practice [37]. The collinearity between two
matrices A and B is defined as [38]

c(A,B) =
|trace (AB∗)|
‖A‖F ‖B‖F

. (16)

To adopt a simple correlation measure, inspired by traditional
minimum distance metrics, we define maximum collinearity
between cross channels as

cmax({H}) = max
(k,`) 6=(m,n)

c(Hk,`,Hm,n). (17)

Considering maximum collinearity captures the worst case,
most aligned, channels that negatively affect the IA solution
the most.

While maximum matrix collinearity is a practical correlation
measure that can be linked to the performance of IA, it is
sensitive to the ordering of the channels’ columns. Sum rate,
however, is directly linked to the SNR after projection onto
the interference free space and, thus, to the distance between
the subspaces spanned by the effective channels Hk,mFm,
which collinearity does not directly measure. To show this
relationship in Section V-B, we must first define the projection
F-norm distance [39] between two subspaces with orthonormal
basis U and V as

dpF (U,V) =
1√
2
||UU∗ −VV∗||F . (18)

To incorporate the distances between all channels, as well
as signal and interference subspaces present in the network,
we define two projection F-norm based distances, namely

TX 2
TX 3

d
RX 2

RX 3

RX 1

TX 1

d

d

dd

d

Fig. 5. Schematic of an example indoor measurement configuration. Transmit
antennas are all placed in the middle to model a system with co-located
transmitters such as a group of access points or base stations. The receivers
are then placed as shown.

the average subspace distance between the set of effective
channels Hk,mFm as

d ({HF}) =

√√√√√ ∑
k 6=m

dpF (Ψ(Hk,kFk),Ψ(Hk,mFm))
2

(
K
K−1

) ,

(19)
and the average column space distance between the set of
channels Hk,m

d ({H}) =

√√√√√ ∑
k 6=m

dpF (Ψ(Hk,k),Ψ(Hk,m))
2

(
K
K−1

) , (20)

where Ψ (A) is the operator that extracts the orthonormal
basis for the column space of A. In the special case of (19),
where Hk,mFm are vectors, Ψ (Hk,mFm) simply normalizes
Hk,mFm.

V. RESULTS

In this section we present the main results on the perfor-
mance of IA over measured channels. We divide the section
into two subsections corresponding to our two measurement
campaigns, indoor and outdoor.

A. Indoor Results

We made measurements in the Wireless Communication
Lab in the Engineering Science Building at The University
of Texas at Austin. Transmitter-receiver pairs were placed at
distances ranging from 1 to 6 meters apart. With a wavelength
of 12.5cm, all node placements are, therefore, in the far field
of the other nodes’ antennas [40]. The measurement campaign
details are summarized in Figs. 4 and 5, and Table II. All
omnidirectional antennas are placed in the same horizontal
plane with the antenna arrays placed parallel to each other as
shown in the figures. SNR is kept above 25dB allowing us to
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Fig. 6. The temporal evolution of ‖H2,1‖ in our static indoor environment.
H21 exhibits very limited time selectivity due to the static placement of the
nodes and limited motion in the environment.

predict performance up to 41dB as discussed in Section IV.
Fig. 6 shows an example temporal evolution of the channel
‖H2,1‖ over 20 packet transmissions. Fig. 6 shows two char-
acteristics of indoor channels: limited frequency selectivity and
high temporal correlation. Our measurements indicate that the
channel correlation after 200 ms remains above 97%.

Interference alignment relies on the assumption that ele-
ments of channel matrices are drawn independently at random
from a continuous distribution. This assumption, however, is
not likely to be satisfied in real channels that exhibit spatial
correlation, thus introducing dependence in the matrix ele-
ments. While (4) and (5) will still be almost surely satisfiable
with correlated channels, thus not influencing the feasibil-
ity of alignment, SNR after alignment may be significantly
decreased due to aligned signal spaces. Our measurement
results, therefore, give insight into the performance of this
theoretically attractive transmit strategy in realistic channels
with complexities that are not entirely captured by the simple
i.i.d. models used in proving theoretical results.

To systematically study performance and link it to spa-
tial correlation, we arrange nodes as shown in Fig. 4
in which all antennas and users are placed a distance d
apart. We make measurements for variable values of d ∈
{λ/2, λ, 2λ, 3λ, 4λ, 5λ} to study the effect of spatial cor-
relation. Fig. 7 shows the magnitude of the off-diagonal
elements of RRX and RTX for the configuration in Fig. 4. We
also conduct measurements with co-located transmitters and
receivers placed on the vertices of a triangle, as shown in Fig.
5. In this arrangement, we position node pairs at a distance 1m
apart, and antennas of the same node at a distance of λ/2, 1λ,
and 3λ, yielding a receive correlation for user 2, for example,
of 0.267, 0.117, and 0.034 respectively.

Given our measured data and the results on spatial corre-
lation, we now turn to characterizing the performance of IA
and verifying its ability to provide the maximum achievable
degrees of freedom in our three user interference channel. By

TABLE II
INDOOR MEASUREMENT DETAILS

Tx-Rx Spacing ∼ 6m
Antenna Type 2.4 GHz omnidirectional

Antenna Spacing d ∈ {0.5λ, 1λ, 2λ, · · · , 5λ}
Configurations 1. Equidistant nodes & antennas

2. Triangle configuration
# of Measurements 50 for each configuration

& antenna spacing
Measurement Duration 180µs

Time Between Measurements ∼ 45s
Receive SNR > 25dB

Mobility Fixed nodes & environment
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Fig. 7. Channel’s spatial correlation vs. antenna spacing in the indoor wireless
environment.

doing so, we will have verified the optimality of interference
alignment in the high SNR regime. To that end, Fig. 8 and
9 plot the average sum rate, as defined in (2), achieved in
our three user network for closed form IA and the transmit
strategies presented in Section III-D.

The indoor performance results summarized in Fig. 8, are
generated in the antenna configuration shown in Fig. 4. Fig. 9,
is generated using a configuration with co-located transmitters,
as shown in Fig. 5, which may model systems having base
stations or access points in a given location. As anticipated
from theory, Fig. 8 and 9 verify that IA outperforms greedy
interference avoidance, TDMA, and its equivalent transmission
schemes. Iterative IA performs identically and, therefore, is not
shown. Moreover, we note that the throughput gain from IA is
largest in the high SNR regime, which is the case of claimed
optimality. Comparing the rate at which network throughput
increases with SNR, we observe that IA benefits more from
a marginal increase of SNR, thus achieving more degrees
of freedom than TDMA. The slope of the curves, relative
to log2(SNR), is approximately 1.8 in TDMA and 2.8 for
IA, thus confirming that IA provides the maximum achievable
degrees of freedom, which in this case is 3.

Fig. 8 and 9 show constant differences between the various
measurement scenarios at high SNR. This is due, primarily,
to varying degrees of spatial correlation. Measurements with
closely spaced antennas, such as the case of d = 0.5λ in
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Fig. 8. Network sum rate vs. SNR for the configuration in Fig. 4 with several
antenna spacings in an indoor environment. This confirms that IA outperforms
TDMA and other transmit strategies, and achieves the predicted 3 degrees of
freedom for this 3 user network. We only plot a subset of scenarios since the
other values of distance d perform as expected and lie close to the curves
of d = 2λ and d = 5λ. Note: The transmission scheme for each line is
annotated directly on the figure. The different measurement scenarios applied
to each scheme can be identified by the markers as shown in the legend.

both node configurations, exhibit significantly more spatial
correlation across antennas, as shown in Fig. 7. This results
in more aligned channels than the simulated i.i.d. Rayleigh
channels, which decreases SNR after alignment. The ordering
of curves in Fig. 8 reveals that IA benefits from increased
antenna and user spacing with diminishing returns as users
become more widely spread. This trend is consistent with the
decreasing correlation shown in Fig. 7. This is also reflected
in Fig. 9 which shows the performance of IA with co-located
transmitters where d = 3λ outperforms d = 1λ and d = 0.5λ.

Though the trend of increasing sum rate with antenna
spacing is noticeable, this is less evident at low levels of
correlation. For example, in Fig. 8, d = 5λ outperforms
d = 2λ, though the latter has lower Kronecker correlation.
In reality, the performance of IA, is more tightly related to
the distances between the signal and interference subspaces
in the system. The direct link subspaces and IA performance
makes antenna spacing and traditional correlation measures
only a crude tool for comparison. We also note the difference
in performance between the configurations of Fig. 4 and 5
when antenna spacing is fixed at 0.5λ. As a result, the relative
importance of antenna vs. user spacing requires further study.
We later discuss other correlation measures that are shown, by
simulation and measurement, to be more closely related to the
performance of IA and can help us characterize the relative
importance of both antenna and user spacing.

In addition to confirming interference alignment’s theoret-
ical achievements, our measurements give insight into the
feasibility of adopting iterative algorithms in static indoor
deployments. Though these algorithms may require many
iterations to converge, static channels allow the precoding ma-
trices to be used over many successive packet transmissions.
This fact minimizes the relative overhead incurred by using
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Fig. 9. Network sum rate for IA and TDMA Vs. SNR for the configuration
with co-located transmitters shown in Fig. 5 in an indoor environment. Note:
The transmission scheme for each line is annotated directly on the figure. The
different measurement scenarios applied to each scheme can be identified by
the markers as shown in the legend.

Fig. 10. Area surrounding the Engineering Science Building where the out-
door measurements were taken. The TX/RX hexagons outline the approximate
areas in which the 6 transceivers were placed in different configurations and
do not imply actual co-location (i.e. antennas were placed around that region
with sufficient antenna and user spacing).

iterative algorithms.

B. Outdoor Results

We conduct our outdoor experiments in the area surrounding
the Engineering Science Building2 shown in Fig. 10. The
environment contains several buildings of steel reinforced
concrete, two aluminum annexes, as well as other impeding
and reflective objects normally present in a typical outdoor
environment making it a good representative area to study the
performance of IA in.

Transmitters and receivers are placed approximately 200ft
apart in both line-of-sight and non-line-of-sight arrangements.
To support this long range transmission we use 500mW power
amplifiers to maintain a receive SNR of 25dB, which allows
us to predict performance up to an SNR of 41dB as shown
in Section IV. Fig. 11 shows an example frequency plot of

2The image is taken from Google Earth ( c©2009 Tele Atlas).
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Fig. 11. A sample magnitude plot of an element H1,1 in an outdoor NLOS
arrangement. This plot shows significantly more selectivity than the channel
of Fig. 6.
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Fig. 12. Network Sum Rate versus SNR for IA, TDMA, and interference
avoidance in our outdoor measurement scenarios. Note: The transmission
scheme for each line is annotated directly on the figure. The different
measurement scenarios applied to each scheme can be identified by the
markers as shown in the legend.

the first element of H1,1 and verifies that the outdoor channel
indeed exhibits more multipath than the indoor one. Examining
the power delay profile reveals the presence of 5 channel taps,
resulting in a wideband channel with a coherence bandwidth
of 3.2 MHz.

Fig. 12 confirms all conclusions drawn from the previous
indoor results. Observing the curves in Fig. 12, we again notice
that lower correlation yields better sum rates. The NLOS
scenarios, with a receive correlation coefficient for user 2,
for example, of 0.105, performs significantly better than the
LOS scenarios with antenna separations of 1λ and 4λ, which
show receive correlations of 0.166 and 0.138 respectively.
Moreover, due to an increased reliance on multipath, NLOS
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Fig. 13. Sum rate Vs. SNR plots for interference alignment and the MAX
SINR Algorithm. While both algorithms converge at high SNR, MAX SINR
outperforms IA at low SNR when noise is a significant limiting factor in the
network.

channels vary more in space, resulting in lower correlation
across users. The dependence of sum rate on correlation across
users makes the Kronecker correlation coefficients not the best
tool for comparison since they say very little about the distance
between the signal of interest and the interference subspaces.
We later show that matrix collinearity and subspace distance
are more tightly related to the performance of IA and, thus,
can be used to better characterize IA’s performance.

Fig. 12 also confirms that IA outperforms TDMA and
achieves the maximum degrees of freedom in the three user
interference channel and is optimal in the high SNR regime.
In addition to outperforming orthogonal techniques such as
TDMA, Fig. 12 shows that when interference power is equal to
the received signal power, IA outperforms greedy interference
avoidance [25]. In many realistic ad hoc network deployments,
however, communicating nodes are likely to be positioned
close to one another, thus receiving different signal and inter-
ference powers. This fact makes the comparison of IA, which
does not benefit from low interference power, to interference
avoidance, which clearly benefits from lower interference, in a
setup where all channel gains are equal, an unfair comparison.
For example, one can show that at an SIR level of about 10dB,
IA only outperforms interference avoidance at SNR values
higher than 20dB. Therefore, depending on the received SIR
levels, a network may choose to align or avoid interference.
When the network is noise limited, interference is insignificant
and can be avoided, but as SNR increases, communication
becomes interference limited and IA dominates. IA’s subopti-
mality at low SNR also motivates the MAX SINR algorithm
described in Section III-C.

Fig. 13 plots the sum rates achieved by the SINR maximiz-
ing algorithm in selected indoor and outdoor scenarios. As
expected, the SINR maximizing algorithm outperforms inter-
ference alignment, which is oblivious to the signal power in
the interference free space. Also as expected, this performance
gap is most noticeable in the low-to-medium SNR regime and
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outperforms closed form IA increases superlinearly. We note, however, that
our measurements indicate that Rayleigh simulations may overestimate the
number of iterations needed to outperform IA by as much as a factor 3.

decays as we transition to increasingly higher SNR. In addition
to smaller improvement at high SNR, the cost of this algorithm
in this regime increases as well. Fig. 14 clearly shows the
increasing number of iterations needed for MAX SINR to
start outperforming closed form IA. The same can be said
about absolute convergence: as SNR increases, the number
of iterations needed for convergence increases. While these
observations can be seen without measurements, Figs. 13 and
14 show more.

From Fig. 13, we see that highly correlated channels such as
the case of d = 0.5λ exhibit a bigger increase in sum rate by
using the MAX SINR algorithm instead of IA. This further
highlights the suboptimality of IA when the i.i.d. channel
assumption is farther from reality. Moreover, Fig. 14 indicates
that not only does MAX SINR outperform IA more in corre-
lated channels, but it also does so faster. While an average of
about 150 iterations are needed till MAX SINR outperforms
IA in simulated Rayleigh channels at SNR=40dB, only 55 are
needed when channels are highly correlated, approximately a
3 fold difference. As a result, the performance of MAX SINR
is underestimated in simulation. The convergence analysis of
MAX SINR and the reason why it appears to be faster and
better in correlated channels is an open problem.

After presenting the immediate conclusions that can be
drawn from our measurements, we return to the effect of
channel correlation on sum rate. While a general trend of
increasing performance with lower Kronecker correlation was
observed in Fig. 8, 9 and 12, this is common to most MIMO
techniques. IA, however, in addition to being affected by the
condition of each user’s channel, relies on cross channels
for alignment. Therefore, correlation across users is likely to
affect IA’s performance even more. We study the effect of two
proposed channel “correlation” measures which are shown, via
measurement and simulation, to more closely influence the
performance of IA: channel matrix collinearity and subspace
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Fig. 15. The effect of channel collinearity on IA performance (SNR =
40dB). As collinearity increases, column spaces are more aligned, which in
turn reduces SNR after alignment. Our measurements indicate that as users
get closer, channel collinearity increases and sum rate decreases.

distance.
Fig. 15 shows the performance of IA versus channel

collinearity. It can be seen that all our measurements, indoor
and outdoor exhibit decreasing performance with collinearity.
To confirm this relationship, and since our measurements
cannot span the entire range of channel collinearity, we also
plot the performance over simulated Rayleigh channels with
varying levels of collinearity. The match between our mea-
surements and the simulated trend makes channel collinearity
a simple feature that can be used to predict performance.
Moreover, smaller values of the user spacing, d, result in
higher collinearity and thus lower sum rate. Comparing the
results for d = 0.5λ, we notice that the configuration of
Fig. 5 outperforms that of Fig. 4. In this configuration the
receivers remain separated, exhibiting lower collinearity. The
relationship between sum rate and collinearity is not without
reason. The factor directly controlling the achieved sum rate
is SNR after alignment, which is a function of the distance
between the chosen signal and interference subspaces. While
collinearity is affected by the ordering of the columns of ma-
trices, it is a measure of the similarity of column spaces. High
collinearity translates into highly aligned signal subspaces
and, consequently, lower SNR after alignment. For example,
considering the worst case of perfectly aligned channels, we
see that the precoders in (6), (7), and (8) yield signals that
all lie in the same subspace, which drastically decreases the
achieved sum rate.

As stated earlier, collinearity is sensitive to matrix column
ordering and does not directly measure subspace distance.
This motivates the use of the distances defined in (19) and
(20). Fig. 16 plots the average sum rate achieved by IA over
measured channels vs. the distances defined in eqs. (19) and
(20). Again, to demonstrate the validity of this relationship,
we plot the performance of simulated Rayleigh channels with
varying subspace distance. We see that as the signal and
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Fig. 16. The effect of the average channel and effective channel distance as
defined in (20) and (19) respectively, on IA performance. Our measurements
indicate that as users come closer, so do the channel subspaces. As a result,
both SNR after alignment and sum rate decrease.

interference subspaces become farther apart, IA’s performance
increases. This can be explained by considering a linear IA
receiver, which projects onto the basis of the interference free
space to decode. The more aligned the signal and interference
spaces are, the smaller the signal component in the interference
free subspace will be, diminishing post-projection SNR and
sum rate.

A similar monotonic relationship between sum rate and the
distance between the subspaces of the channels themselves,
defined in (20), confirms the intuition that closer aligned chan-
nels result in closer aligned signal and interference subspaces.
The metrics used in Fig. 16, though more complicated, are
better estimators of the performance than matrix collinearity.
This can be seen by noting that the curves in Fig. 16,
have a well behaved derivative over a larger subset of their
domain, i.e. have a less pronounced cut off behavior for highly
correlated channels. As a result, slight changes in subspace
distance, even close to zero, can more accurately estimate
incremental changes in sum rate. We end by saying that
in summary we have showed that “cross-user correlation”
influences sum rate more directly. Therefore, IA is expected
to perform better when minimizing cross-correlation between
channels takes priority over the typical antenna separation.
Although the connection between user spacing and collinearity
or subspace distance is not in the scope of this paper, our
results indicate that users positioned close to each other, in
general, result in worse channels, from an IA perspective.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented the first MIMO interference
channel testbed programmed using a flexible software defined
radio base. We have presented indoor and outdoor network
channel measurements collected in our university environment,
and then processed them to evaluate the performance gains
of IA. We showed that the observed gains are in agreement

with those found through theory and simulation. We also
characterized the effect of channel imperfections on the sum
rate achieved by IA. In subsequent work we will extend the
measurement setup beyond three users as well as implement
a real time closed loop IA system. This effort will be a
major step in transforming IA from a theoretical concept, to
a solution for large scale ad hoc networks.
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