
762 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 3, MARCH 2011

Extrinsic Information Transfer Analysis and Design
of Block-Based Intermediate Codes

Robert G. Maunder, Member, IEEE, and Lajos Hanzo, Fellow, IEEE

Abstract—Intermediate codes have been shown to facilitate it-
erative decoding convergence to the maximum-likelihood (ML)
error ratio performance in serially concatenated schemes. In this
paper, we propose a novel block-based intermediate code as an
alternative to classic convolutional intermediate codes. Because it
is block-based, our intermediate code facilitates practical imple-
mentations with reduced memory and processing requirements.
Furthermore, we demonstrate that it is simpler to analyze and
optimize the iterative decoding process when our block-based
intermediate code is employed, instead of a convolutional interme-
diate code. Finally, we demonstrate that the proposed block-based
intermediate code facilitates significantly reduced error ratios in
practical schemes when employing short transmission frames and
a limited decoding complexity.

Index Terms—Block codes, combined source channel coding,
iterative decoding, modulation coding, mutual information.

I. INTRODUCTION

I T HAS been shown [1] that it is a channel encoder’s distance
spectrum that dictates the error ratio performance that can

be achieved by the corresponding optimal maximum-likelihood
(ML) decoder but at a potentially excessive computational
complexity. However, at sufficiently high-channel signal-to-
noise ratios (SNRs), certain iterative decoders [2]–[4] can
approach the ML error ratio performance at a fraction of the
ML decoder’s complexity [5]. This condition is achieved when
the mutual information (MI) associated with the extrinsic loga-
rithmic likelihood ratios (LLRs) that are iteratively exchanged
by the receiver’s concatenated component decoders reaches the
maximum possible value of one [6].

However, to facilitate iterative decoding convergence toward
the maximal mutual information (MMI), the corresponding
extrinsic information transfer (EXIT) chart [6] is required to
exhibit an open tunnel. One sufficient condition for this case
to be created is satisfied if it is particularly supported by at
least two of the concatenated component decoders. Suitable
component decoders may be termed as being maximal mutual
information achieving (MMIA), because they generate extrinsic
LLRs with MMI when provided with MMI a priori LLRs.

Manuscript received July 23, 2010; revised November 9, 2010; accepted
January 10, 2011. Date of publication January 17, 2011; date of current version
March 21, 2011. This work was supported in part by Research Councils
U.K. through the India–U.K. Advanced Technology Centre and the China–UK
Science Bridge on Fourth-Generation Wireless Communications. The review
of this paper was coordinated by Prof. G. Bauch.

The authors are with the School of Electronics and Computer Science,
University of Southampton, SO17 1BJ Southampton, U.K. (e-mail: rm@ecs.
soton.ac.uk; lh@ecs.soton.ac.uk).

Digital Object Identifier 10.1109/TVT.2011.2106809

One condition for a decoder to be MMIA is if it satisfies the
following two requirements: 1) It exchanges extrinsic LLRs
that pertain to a sequence of bits with legitimate permutations
that are separated by Hamming distances of at least two,1 and
2) it is aware of this fact and therefore exploits it2 [7]. Al-
ternatively, a decoder satisfies the second sufficient condition3

of being MMIA if satisfies the following three requirements:
1) It exchanges extrinsic LLRs that pertain to the corresponding
encoder’s input bit sequence; 2) the corresponding encoder is
recursive; and 3) the corresponding encoder is terminated into
a known state [8], [9].

Conversely, iterative decoding convergence toward the ML
error ratio performance is prevented when less than two of
the concatenated component decoders are MMIA, which is the
case for iteratively decoded bit-interleaved coded modulation
(BICM-ID) [10], for example, which employs a serial concate-
nation [11], [12] of an outer decoder and an inner demodulator.
Although the first MMIA condition previously described is
typically satisfied by the outer decoder of the BICM-ID scheme,
its demodulator typically satisfies none of the aforementioned
MMIA conditions.4 Furthermore, this property is shared by
many other detectors, despreaders, and equalizers. In this case,
a recursive convolutional code can be employed as an interme-
diate code between the arbitrary pairing of outer decoder and
inner demodulator to exploit the second MMIA condition and,
hence, to facilitate iterative decoding convergence toward the
ML error ratio performance [4], [13]–[16].

However, a number of disadvantages are associated with
convolutional intermediate codes. First, convolutional interme-
diate decoding requires a significant amount of processing and
memory, because this approach is typically achieved by apply-
ing the relatively complex Bahl–Cocke–Jelinek–Raviv (BCJR)
algorithm [17]. Furthermore, due to the data dependencies and
recursive nature of BCJR, convolutional intermediate decoders

1Note that a parallel concatenation of two convolutional decoders exchanges
extrinsic LLRs that pertain to a sequence of uncoded bits, which has legitimate
permutations that are separated by Hamming distances of as low as one.
Therefore, these component decoders do not satisfy this sufficient condition.

2Note that a serial concatenation of two convolutional decoders exchanges
extrinsic LLRs that pertain to a sequence of encoded bits, which has legitimate
permutations that are separated by Hamming distances of at least two. However,
the inner decoder does not exploit this fact; therefore, it does not satisfy this
sufficient condition.

3This case is the sufficient condition that can be satisfied by parallel concate-
nated convolutional decoders and the inner one of two serially concatenated
convolutional decoders.

4Although the demodulator exchanges extrinsic LLRs that pertain to a
sequence of encoded bits, it does not exploit the fact that the legitimate
permutations are separated by Hamming distances of at least two.

0018-9545/$26.00 © 2011 IEEE

MAUNDER AND HANZO: EXIT ANALYSIS AND DESIGN OF BLOCK-BASED INTERMEDIATE CODES 763

are less amenable to parallel or pipelined implementations,5

which facilitate high-processing throughput. Furthermore, con-
volutional intermediate codes have long error events [20],
which are limited only by the length of the BCJR trellis. As
a result, it is challenging to design interleavers for directly
eliminating specific combinations of error events that yield a
poor distance spectrum and, hence, erode the ML decoding
performance [21]. Finally, the analysis of the iterative decoding
convergence of a three-stage serial concatenation that employs
a convolutional intermediate code requires the consideration of
two separate 3-D EXIT charts [4], one of which provides the
outer decoder’s EXIT function, whereas the inner decoder’s
EXIT function is plotted in the other chart. As a result, the
visualization and interpretation of the iterative decoding trajec-
tory is less intuitive than it is for two-stage concatenations [6].
This case obfuscates the optimization of irregular near-capacity
serial concatenations [22], for example.

Against this background, we extend the principles of sys-
tematic repeat accumulate (SRA) codes [23] to create a novel
block-based intermediate code in Section II. In contrast to con-
volutional intermediate codes, our design facilitates parallel-
processing- and pipelining-based implementations, as well
as having reduced memory requirements and computational
complexities. In addition, due to its block-based nature, the
proposed intermediate code results in short error patterns,
which simplifies the interleaver design process. As shown in
Section III, the iterative decoding process, which employs the
proposed block-based intermediate code, can be characterized
using a single 3-D EXIT chart. Hence, our approach facili-
tates simpler serial concatenated design and optimization while
providing a more intuitive visualization and interpretation of
the iterative decoding trajectory than classic convolutional in-
termediate codes. Furthermore, in Section IV, we demonstrate
that the proposed block-based intermediate code facilitates op-
eration at lower channel SNRs than convolutional intermediate
codes invoked in practical schemes, which employ short frames
and impose a limited decoding complexity. Finally, we offer our
conclusions in Section V.

II. BLOCK-BASED INTERMEDIATE CODE OPERATION

In this section, we detail our novel block-based intermediate
code. We begin by showing how this approach may serially
be concatenated with outer and inner codes in Section II-A.
Then, the operation of the block-based intermediate code in
the transmitter and receiver is detailed in Sections II-B and C,
respectively.

5Note that, rather than using the BCJR, a convolutional intermediate decoder
may be implemented using an iterative operation of suitably arranged variable
and check nodes [18]. Although this approach facilitates a high level of parallel
processing and pipelining, it has the disadvantage of significantly increasing the
decoder’s computational complexity. Similarly, the sliding-window algorithm
in [19] may be used to increase the achievable level of parallel processing and
pipelining. However, this approach also significantly increases the decoder’s
computational complexity and potentially reduces the achievable performance.
Because our intention is to reduce the complexity of intermediate codes, these
increased-complexity variations of convolutional intermediate codes are not
considered any further in this paper.

Fig. 1. Schematic of the proposed block-based intermediate code and its serial
concatenation with inner and outer codes

A. Schematic

The schematic in Fig. 1 illustrates the interactions that take
place within the proposed block-based intermediate code, as
well as its interactions with the inner and outer codes. Here, the
outer code is assumed to satisfy the first MMIA condition in the
Section I. By contrast, we assume that a non-MMIA inner code
is employed, such as a modulation, spreading, or equalization
scheme. Therefore, the MMIA block-based intermediate code
is required to facilitate iterative decoding convergence toward
the ML error ratio performance, without requiring the modifi-
cation of the arbitrary outer and inner codes.

In Fig. 1, multiplexing and demultiplexing are indicated by
the crossed blocks, whereas interleaving is performed by the
blocks that contain the symbol “π,” where the superscript “−1”
denotes deinterleaving, and the subscripts “o,” “c,” and “i”
indicate outer, check, and inner interleaving, respectively. In
the transmitter in Fig. 1, the bit sequences b, c, d, e, and f
are generated when transforming the source sequence a into
the sequence g, which is modulated and transmitted over the
channel. The channel introduces uncertainty about the trans-
mitted bit values, which is expressed using LLRs in the receiver
in Fig. 1. Here, the LLR sequence that pertains to a particular
sequence of bits is indicated by including a diacritical tilde in
the corresponding notation. Furthermore, the superscripts “a”
and “e” indicate a priori extrinsic information, respectively,
whereas the subscripts “o,” “c,” and “i” indicate their relevance
to the outer, check, and inner decoders, respectively.

In Fig. 1, the sequences {a,b, c,d, e, f ,g} (as well
as the corresponding LLR sequences) have lengths of
{Na, Nb, Nc, Nd, Ne, Nf , Ng}, which are related to each
other. More specifically, we have Ne = Nc + Nd = Nc/Rc,
where Nd is odd, and Rc is the coding rate of the block-based
intermediate code. In addition, because the interleavers πo and
πi merely rearrange the order of their input bit sequences, we
have Nc = Nb and Nf = Ne.

B. Transmitter

The check encoder in Fig. 1 decomposes the bit sequence
c into (Nd − 1)/2 similar-length subsequences, {cj}(Nd−1)/2

j=1

before generating the bit sequence d={di}Nd
i=1, as detailed in

the following discussion. Then, the multiplexer in Fig. 1 obtains

764 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 3, MARCH 2011

Fig. 2. Example composition of the bit sequence e from the sequences

d = {di}Nd
i=1 and c = {cj}(Nd−1)/2

j=1 for the case where d and c comprise
Nd = 9 and Nc ≥ 4 b, respectively. Braces are used to indicate for which bits
each receiver component can generate extrinsic information, where the boxed
equal and plus signs represent the check interleaver πc and the check decoder,
respectively.

the bit sequence e by interspersing the subsequences of c and
the bits of d in the order exemplified in Fig. 2, where we have
Nd = 9 and Nc ≥ 4.

Check encoding commences by setting the first bit d1 in
the sequence d to the modulo-two sum of all bits in the
subsequence c1. As a result, the concatenation of c1 and the
checksum bit d1 has an even Hamming weight. Next, the second
bit d2 in the sequence d is set to the value of the preceding bit,
i.e., to d1. The case that d1 and d2 have equal values is indicated
by the corresponding boxed equal sign in Fig. 2. Similar to the
first bit d1 in the sequence d, the third bit d3 is set equal to a
modulo-two sum, but in this case, the modulo-two sum of all
bits in c2 and the preceding bit d2 is employed. As a result, the
concatenation of d2, c2, and d3 has an even Hamming weight,
as indicated by the corresponding boxed plus sign in Fig. 2.

The aforementioned procedure for generating d2 and d3 is
also adopted for all but the final two of the remaining bits in d,
i.e., for {di}Nd−2

i=4 , where Nd is odd. More generally, the bits of
d with even indices i ∈ {2, 4, 6, . . . , Nd − 3} are set equal6 to
the preceding bit di−1, as indicated by the corresponding boxed
equal signs in Fig. 2. By contrast, the bits of d with odd indices
i ∈ {3, 5, 7, . . . , Nd − 2} are set equal to the modulo-two sum7

6It is necessary to repeat each bit in d so that the check interleaver πc of
Fig. 1 becomes MMIA, as discussed in Section II-C.

7Note that the encoding process in Fig. 2 is similar to a serial concatenation,
which comprises the outer code, an SRA code [23], and the inner code. Similar
to SRA codes, the proposed block-based intermediate code is systematic,
because the bits of c are directly contained by the intermediate encoder’s output
bit sequence e. Furthermore, the other bits in e are provided by the accumulated
checksums of d, as in SRA codes. However, in contrast with SRA codes, the
bits of c are not repetition encoded and interleaved before being accumulated.
Instead, these roles are fulfilled by the outer encoder and interleaver in the
encoding process in Fig. 2, therefore removing unnecessary components from
the scheme and reducing its complexity. As a result, the receiver in Fig. 1
requires the iterative operation of only three decoding components, none of
which are required to be convolutional, as will be detailed in Section II-C.
By contrast, the receiver for a serial concatenation of the outer, SRA, and
inner codes would require the iterative operation of the following five decoding
components: 1) the outer decoder; 2) the inner decoder; 3) the SRA repetition
decoder; 4) the SRA check decoder; and 5) the SRA convolutional decoder
[23]. Because our intention is to reduce the complexity of intermediate codes,
the use of SRA codes in this role is not considered any further in this paper.

of the preceding bit di−1 and all bits in c(i+1)/2. This approach
creates blocks with even Hamming weights, as indicated by the
corresponding boxed plus signs in Fig. 2.

In the transmitter in Fig. 1, check encoding is completed
by assigning the value of dNd−2 to the final two bits of d,
i.e., to dNd−1 and dNd

. The case that dNd−2, dNd−1 and dNd

have equal values is indicated by the corresponding boxed
equal sign in Fig. 2. Recall from the previous discussion that
the concatenation of c1 and d1 has an even Hamming weight.
Although it may be increased, this weight remains even valued
when additionally concatenating dNd−1 and dNd

, because they
have equal bit values.8 This condition is indicated by the
corresponding boxed plus sign in Fig. 2.

C. Receiver

The receiver in Fig. 1 employs an iterative exchange of
LLRs that pertain to the bit sequence e between three decoding
components, i.e., the outer, check, and inner components, as
shown in Fig. 1. For example, the inner component converts the
a priori LLR sequence ẽa

i into the extrinsic LLR sequence ẽe
i

in its normal manner.
Within the outer component, the check interleaver πc cooper-

ates with the outer decoder to convert the a priori LLR sequence
ẽa
o into the extrinsic LLR sequence ẽe

o, as shown in Fig. 1.
The MMIA outer decoder converts the subset c̃a of ẽa

o into the
extrinsic LLR sequence c̃e in its normal manner, whereas the
check interleaver πc converts the remaining a priori LLRs d̃a

into d̃e. This approach is achieved by swapping the position of
the a priori LLRs in d̃a, which corresponds to each pair of bits
that is identified by a boxed equal sign in Fig. 2. For example,
d̃e
3 = d̃a

4, and d̃e
4 = d̃a

3. Note that, for the triplet of bits dNd−2,
dNd−1, and dNd

that is identified by a boxed equal sign in
Fig. 2, each of the corresponding extrinsic LLRs is generated as
the sum of the other two a priori LLRs. For example, d̃e

Nd−1 =
d̃a

Nd−2 + d̃a
Nd

. Aside from these three additions, the check
interleaver πc has a negligible complexity, otherwise requiring
only LLR interleaving. Note that the check interleaver πc is
block based and satisfies the first MMIA condition provided in
Section I, because it obtains extrinsic information for blocks of
repeated bits in d by exploiting the case that their permutations
are separated by Hamming distances of at least two. Because
both the check interleaver πc and the outer decoder are MMIA,
the outer decoding component in Fig. 1 is MMIA.

Similarly, the check decoder can independently generate
extrinsic information for each block of bits in the sequence
e that is indicated by the boxed plus signs in Fig. 2. In
this block-based regime, the check decoder employs the
forward–backward algorithm [24] to consider the a priori LLRs
of ẽa

c and to generate the extrinsic LLR sequence ẽe
c, as shown

in Fig. 1. Note that the check decoder satisfies the first MMIA
condition, because it obtains extrinsic information for blocks
of repeated bits in e by exploiting the case that their permuta-
tions are separated by even Hamming distances, which must

8Note that, although dNd−1 and dNd
have no effect upon the checksum d1,

they affect the encoded bit sequence g, because they are interleaved into the
inner encoder’s input bit sequence f .

MAUNDER AND HANZO: EXIT ANALYSIS AND DESIGN OF BLOCK-BASED INTERMEDIATE CODES 765

be at least two. In the investigations that will be detailed in
Section IV, we found that the check decoder typically invokes
approximately 50% fewer add, compare, and select (ACS)
operations than even the simplest of convolutional intermediate
codes, which has a coding rate of unity and a single memory
element. In this comparison, all calculations invoked by the
forward–backward and BCJR algorithms were performed in
the logarithmic domain by using an eight-entry lookup table
to correct the Jacobian approximation [25].

Observe in Fig. 1 that the a priori LLR sequences provided
for each of the outer, check, and inner decoding components is
obtained as the sum of the extrinsic LLR sequences generated
by the other two components ẽa

o = ẽe
c + ẽe

i , ẽa
c = ẽe

o + ẽe
i , and

ẽa
i = ẽe

o + ẽe
c. As a result, the three components can iteratively

be operated using any component activation order, provided
that the same component is not activated twice in a row.
This way, the iterative decoding gradually obtains much more
extrinsic information until convergence is achieved, where-
upon it becomes impossible to glean any more information.
As described in the Section I, convergence toward the ML
error ratio performance is facilitated when the channel SNR is
sufficiently high, because two of the decoding components are
MMIA, i.e., the outer and check components. This convergence
is characterized in Section III.

III. ANALYSIS OF ITERATIVE DECODING CONVERGENCE

Let us now analyze the iterative decoding convergence of
the scheme introduced in Section III-A, which employs the
proposed block-based intermediate code in Fig. 1. Section III-B
shows that this analysis can be achieved using a single 3-D
EXIT chart rather than requiring two charts. As a result,
the design and optimization of irregular near-capacity serially
concatenated schemes, as well as the visualization and inter-
pretation of the iterative decoding trajectory, is more intuitive
when employing our proposed block-based intermediate code
instead of a convolutional intermediate code. Furthermore,
in Section III-C, we show that this 3-D EXIT chart can be
projected into two dimensions, offering some insight into the
proposed scheme’s ability to facilitate near-capacity operation.

A. Scenario

In this section, we introduce a typical scenario where the
employment of the proposed block-based intermediate code
is particularly motivated. More specifically, in the scenario
considered, the outer and inner codes cannot be replaced by a
pair of MMIA codes, because they are required to perform par-
ticular source coding and modulation functions, respectively.
Furthermore, both the outer and the inner code are block based,
motivating the employment of a block-based intermediate code.
Note, however, that the proposed block-based intermediate
code can readily be applied in other scenarios, employing
different outer and inner codes.

During our investigations, 16-ary symbols were employed
for the source sequence a = {ai}Na

i=1 in Fig. 1. We used
symbols with values of ai ∈ {0, 1, 2, . . . , 15} that occur
with unequal probabilities of {P (ai = k)}15

k=0 = {0.00818,

0.02445, 0.04272, 0.06047, 0.07615, 0.08872, 0.09743,0.1019,
0.1019, 0.09743, 0.08872, 0.07615, 0.06047, 0.04272,0.02445,
0.00818}. These probabilities of occurrence yield an entropy of
E = 3.77 b per 16-ary symbol and result from the Lloyd–Max
quantization [26] of Gaussian distributed source samples. Note
that, in the receiver, the unequal probabilities of occurrence
can be exploited to assist iterative decoding. This approach
motivates the use of a joint source/channel decoder for the
outer decoder of the iterative decoding process in Fig. 1 [27].

A fixed-length code (FLC) was selected for the outer joint
source/channel code. We elected to employ FLC codewords
with lengths of Lo = 5 b, which is sufficient for maintaining
Hamming distances of at least do = 2 and to satisfy the first
MMIA condition in the Section I. The FLC encoder maps the
16-ary source symbol values ai ∈ {0, 1, 2, . . . , 15} to binary
FLC codewords, which may be expressed in octal form as
{00, 35, 30, 05, 17, 14, 11, 12, 21, 22, 27, 24, 36, 03, 06,
33}. This mapping was designed by considering the source
symbol occurrence probabilities to maximize the Hamming
distance between the most likely codewords while allowing
lower distances between less likely codewords. Note that the
described FLC has a coding rate of Ro = E/Lo = 0.754.

Furthermore, we elected to employ set-partitioned Mi = 16-
ary quadrature amplitude modulation (16-QAM) [28] for the
inner code in Fig. 1. Because a 16-QAM demodulator is not
MMIA, the inclusion of the block-based intermediate code is
motivated to facilitate iterative decoding convergence toward
the ML symbol error ratio (SER) performance. A coding rate of
Rc = 5/6 was selected for our block-based intermediate code,
because this approach will facilitate a fair comparison with
a benchmarker that will employ a convolutional intermediate
code in Section IV. The effective throughput of the scheme
considered is therefore η = Ro · Rc · log2(Mi) = 2.51 b of
source information per channel use, which corresponds to
an uncorrelated narrowband Rayleigh fading channel capacity
Eb/N0 bound of 5.57 dB [29].

B. Three-Dimensional EXIT Charts

As described in Section II-C, the outer component in Fig. 1
comprises the outer decoder and the check interleaver πc, which
can jointly consider the a priori LLR sequence ẽa

o to generate
the extrinsic LLR sequence ẽe

o. As described in [6], the MIs
of these LLR sequences are related to each other by the EXIT
function I(ẽe

o; e) = fo[I(ẽa
o; e)], the inverse of which is shown

in Fig. 3(a). Similar to an irregular code [22], this relationship
depends on the individual EXIT functions of the outer decoder
and check interleaver πc, i.e., on I(c̃e; c) = fo1[I(c̃a; c)] and
I(d̃e;d) = fo2[I(d̃a;d)], respectively. More specifically, the
EXIT function of the outer component is given by the weighted
average of the outer decoder and of the check interleaver’s
EXIT functions according to

fo [I (ẽa
o; e)] = Rc · fo1 [I (ẽa

o; e)] + (1 − Rc) · fo2 [I (ẽa
o; e)] .

(1)

Note that, for the case where the a priori LLRs in the sequence
d̃a are Gaussian distributed, the EXIT function of the check

766 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 3, MARCH 2011

Fig. 3. Two-dimensional EXIT charts [4] for the block-based intermediate code scheme, which are projected in terms of (a) the outer component, (b) the check
component, and (c) the inner component. In each case, Eb/N0 values of 5.57, 8.57, and 11.57 dB are considered for the EXIT function to which the inner
component contributes, because its EXIT characteristics depend on the nature of the uncorrelated narrowband Rayleigh fading channel.

Fig. 4. Three-dimensional EXIT charts [4] for the block-based intermediate code scheme when communicating over an uncorrelated narrowband Rayleigh fading
channel with Eb/N0 values of (a) 5.57, (b) 8.57, and (c) 11.57 dB. Note that, in each case, the iterative decoding trajectory resides below the EXIT function of
the inner component and above the other two EXIT functions.

interleaver πc can analytically be obtained using an analogy to
[30, eqs. (4) and (14)]. More specifically, we have

fo2

[
I(d̃a;d)

]
=

Nd−3
Nd

I(d̃a;d)+
3

Nd
J

(√
2J−1

[
I(d̃a;d)

]2
)

(2)

where J(·) and J−1(·) are defined in [30].
Observe in Fig. 1 that the a priori LLR sequence ẽa

o is
obtained as a sum of the extrinsic LLR sequences ẽe

c and
ẽe
i . Hence, the outer component’s EXIT function I(ẽe

o; e) =
fo[I(ẽa

o; e)] may be expressed as a 3-D function of two argu-
ments, i.e., as I(ẽe

o; e) = fo[I(ẽe
c; e), I(ẽe

i ; e)]. Note that, for
the case where the extrinsic LLRs in the sequences ẽe

c and ẽe
i

are Gaussian distributed, the MI of the a priori LLR sequence
ẽa
o can analytically be obtained using an analogy to [30, eq. (4)],

yielding

I (ẽa
o; e) = J

(√
J−1 [I (ẽe

c; e)]2 + J−1 [I (ẽe
i ; e)]2

)
. (3)

This approach allows the 3-D EXIT function I(ẽe
o; e) =

fo[I(ẽe
c; e), I(ẽe

i ; e)] to be obtained from the 2-D EXIT func-

tion I(ẽe
o; e) = fo[I(ẽa

o; e)] using only a relatively low number
of simulations.

In a similar manner, the 3-D function I(ẽe
c; e)=fc[I(ẽe

o; e),
I(ẽe

i ; e)] can be used to express the check component’s EXIT
function I(ẽe

c; e) = fc[I(ẽa
c ; e)], the inverse of which is shown

in Fig. 3(b). Note that, for the case where the a priori LLRs in
the sequence ẽa

c are Gaussian distributed, the EXIT function
of the check component can analytically be obtained using
[30, eq. (9)]. Finally, the inner component’s EXIT function
I(ẽe

i ; e) = fi[I(ẽa
i ; e), Eb/N0] in Fig. 3(c) can be expressed

as I(ẽe
i ; e) = fi[I(ẽe

o; e), I(ẽe
c; e), Eb/N0]. Because all three

of the 3-D EXIT functions have arguments and values of
I(ẽe

o; e), I(ẽe
c; e) and I(ẽe

i ; e), they can all be plotted in a
single 3-D EXIT chart with axes labeled with these MIs. This
approach is shown in Fig. 4 for the scheme considered when
communicating over uncorrelated narrowband Rayleigh fading
channels with a range of SNRs per bit Eb/N0 above the channel
capacity bound of 5.57 dB.

As shown in Fig. 4, the MI I(ẽe
i ; e) of the extrinsic LLRs

generated by the inner component increases as the MIs I(ẽe
o; e)

and I(ẽe
c; e) of its a priori LLRs increase, as well as when

MAUNDER AND HANZO: EXIT ANALYSIS AND DESIGN OF BLOCK-BASED INTERMEDIATE CODES 767

the channel SNR increases, as usual. However, the inner
component cannot generate extrinsic LLRs with an MMI of
I(ẽe

i ; e) = 1, regardless of how high the a priori MIs and
the channel SNR are, demonstrating that it is not MMIA, as
described in Section I. However, Fig. 4 shows that the outer
and check components can generate extrinsic LLRs with MMIs
of I(ẽe

o; e) = 1 and I(ẽe
c; e) = 1, because they satisfy the first

MMIA condition in the Section I.
As a result, iterative decoding convergence toward the ML

SER performance is facilitated. The iterative decoding trajec-
tory [6] in Fig. 4(b) shows that this approach is facilitated
when the Eb/N0 value exceeds a threshold of approximately
8.57 dB, which happens to be 3 dB from the channel capacity
bound of 5.57 dB [29]. This result is evident, because the
trajectory reaches the specific vertical edge of the 3-D EXIT
chart, where we have I(ẽe

o; e) = 1 and I(ẽe
c; e) = 1. Note that

the trajectories in Fig. 4 correspond to a source sequence
length of Na = 2 × 106 and a component activation order
of {inner, outer, check; inner, outer, check; . . .}, where each of
these three decoding processes is associated with trajectory
segments with a different orthogonal direction. This decoder
activation order was selected, because it is the periodic order
that offers the greatest trajectory advancement at the com-
mencement of the iterative decoding process, as shown in
Fig. 4. Our future work will investigate adaptive nonperiodic
component activation orders to maximize the SER performance
that can be achieved at a limited computational complexity.
Intuitively, it seems that, at a particular stage in an iterative
decoding process, the best decoding component to activate is
the component that offers the greatest trajectory advancement,
relative to its computational complexity. Naturally, a different
component activation order would yield a trajectory that ad-
vances in a different sequence of directions.

C. Two-Dimensional EXIT Chart Projections

Note that the 3-D EXIT charts in Fig. 4 can be projected
into two dimensions [4], [13], as shown in Fig. 3. For example,
in addition to the EXIT function I(ẽe

o; e) = fo[I(ẽa
o; e)] of

the outer component, Fig. 3(a) also provides a second EXIT
function I(ẽa

o; e) = fci[I(ẽe
o; e), Eb/N0] for Eb/N0 values of

5.57, 8.57, and 11.57 dB. This EXIT function characterizes
the process in which the LLR sequence ẽe

o is provided for
the inner and check components. These components are
iteratively operated until convergence is achieved, and then,
they generate the LLR sequence ẽa

o, as shown in Fig. 1. As a
result, Fig. 3(a) characterizes a component activation order of
{inner,check,inner, check, . . . , inner, check, outer; inner, check,
inner, check, . . . , inner, check, outer; . . .}.

Similarly, Fig. 3(b) complements the check component’s
EXIT function I(ẽe

c; e) = fc[I(ẽa
c ; e)] with the EXIT function

I(ẽa
c ; e) = foi[I(ẽe

c; e), Eb/N0], which is provided for Eb/N0

values of 5.57, 8.57, and 11.57 dB. This EXIT function char-
acterizes the iterative operation of the outer and inner compo-
nents until convergence is achieved. Finally, the EXIT function
I(ẽa

i ; e) = foc[I(ẽe
i ; e)] in Fig. 3(c) characterizes the iterative

operation of the outer and check components until convergence
is achieved. Note that, because the inner component does not

contribute to this EXIT function, it is not parameterized by the
Eb/N0 value. Instead, it is the inner component’s EXIT func-
tion I(ẽe

i ; e) = fi[I(ẽa
i ; e), Eb/N0] in Fig. 3(c) that is provided

for Eb/N0 values of 5.57, 8.57, and 11.57 dB.
As shown in Fig. 3, the 2-D EXIT chart tunnels become

closed at Eb/N0 = 5.57 dB, similar to the 3-D EXIT chart
tunnel in Fig. 4(a). By contrast, in Fig. 3(a) and (b), open 2-D
EXIT chart tunnels are obtained for Eb/N0 values of 8.57
and 11.57 dB, similar to Fig. 4(b) and (c), respectively. Note
that, in the case of Fig. 3(c), iterative decoding convergence
toward the [I(ẽa

i ; e), I(ẽe
i ; e)] = [1, 0.87] point is facilitated at

Eb/N0 = 8.57 dB, whereas convergence toward the [1,0.93]
point is facilitated when Eb/N0 = 11.57 dB. Although MMI
is not achieved for the LLR sequence ẽe

i in these cases, we
consider the corresponding EXIT chart tunnels to be open,
because MMI is achieved for ẽa

i . As shown in Fig. 1, this
case implies that MMI is also achieved for ẽe

o and ẽe
c, which

is associated with achieving the ML SER performance, as
described in the Section I.

As detailed in [31], the area properties of 2-D EXIT charts
can be exploited to determine if an iteratively decoded scheme
suffers from capacity loss, which prevents near-capacity op-
eration. In Fig. 3(c), we are therefore interested in the area
Ai beneath the inner component’s EXIT function I(ẽe

i ; e) =
fi[I(ẽa

i ; e), Eb/N0] and the area Aoc beneath the inverse of the
other components’ EXIT function I(ẽa

i ; e) = foc[I(ẽe
i , e)]. As

expected in [31], it is shown that Ai · log2(Mi) ≈ C, where the
channel capacity C is 2.51, 3.04, and 3.43 b per channel use,
when Eb/N0 = 5.57, 8.57, and 11.57 dB, respectively. Further-
more, Aoc · log2(Mi) ≈ η, where the throughput of our scheme
is η = 2.51 b per channel use, as described in Section III-A.
This result shows that the proposed scheme does not suffer from
capacity loss [31]. Indeed, without changing the areas beneath
them, the EXIT functions in Fig. 3(c) could be reshaped to more
accurately match each other by using irregular coding [22].
Our future research will employ this technique to facilitate the
creation of open EXIT chart tunnels at Eb/N0 values that are
arbitrarily close to the channel capacity bound of 5.57 dB.

IV. SYMBOL ERROR RATIO PERFORMANCE

Let us now consider the SER performance of the scheme
introduced in Section III-A, which employs the schematic in
Fig. 1. Recall that this scheme comprises an Lo = 5-bit FLC,
an Rc = 5/6-rate block-based intermediate code, and an Mi =
16-QAM modulator, yielding an effective throughput of η =
2.51 b of source information per channel use. We will com-
pare the performance of this “block-based intermediate code”
scheme to the performance of two appropriate benchmarkers.

We refer to the first benchmarker as the “convolutional
intermediate code” scheme, because it replaces the block-
based intermediate code in Fig. 1 with an MMIA convolutional
intermediate code. Here, a convolutional intermediate code that
employs only a single memory element and a coding rate of
Rp = 1 was selected to minimize its decoding complexity.
Because the convolutional intermediate code has a coding rate
of Rp = 1, it is necessary to reduce the FLC coding rate Ro to
maintain an effective throughput of η = 2.51 and to allow fair

768 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 3, MARCH 2011

Fig. 5. SER versus uncorrelated narrowband Rayleigh fading channel Eb/N0 performance of the “no intermediate code,” “convolutional intermediate code,”
and “block-based intermediate code” schemes under various complexity constraints for the case where source sequence lengths Na of (a) 20, (b) 200, and
(c) 2000 are employed.

comparison with the “block-based intermediate code” scheme.
This approach may be achieved by employing an Lo = 6-bit
FLC with the 16 octal codewords {64, 70, 00, 51, 35, 45,
56, 14, 63, 21, 32, 42, 26, 77, 07, 13}. Again, this mapping
was designed considering the source symbol occurrence prob-
abilities to maximize the average Hamming distance between
codewords and, hence, to achieve the highest possible minimum
separation of do = 2.

To characterize the penalty associated with omitting an inter-
mediate code, we also consider a second benchmarker, which
we refer to as the “no intermediate code” scheme. In this
arrangement, the bit sequence e in Fig. 1 is directly provided
by c. It is therefore necessary to employ the Lo = 6-b FLC
of the “convolutional intermediate code” scheme to achieve an
effective throughput of η = 2.51 b of source information per
channel use.

The SER performance of the “no intermediate code,” “con-
volutional intermediate code,” and “block-based intermediate
code” schemes was investigated for transmission over uncor-
related narrowband Rayleigh fading channels with a range of
Eb/N0 values above the channel capacity bound of 5.57 dB.
Source sequences a that comprise Na = 20, 200, and 2000
randomly generated 16-ary symbols were employed, resulting
in encoded bit sequences e that comprise Ne = 120, 1200,
and 12000 b, respectively, for each of the schemes considered.
This range of relatively short encoded bit sequence lengths
was considered, because it is typical of the challenging audio,
speech, and wireless sensor networking (WSN) scenarios. Dur-
ing each of our simulations, we considered the transmission of
as many source sequences as necessary to observe a statistically
significant number of decoding errors. For simplicity and to
facilitate fair comparisons, the interleavers πo and πi in Fig. 1
employed different random designs for each source sequence.
The repercussions of this choice will be discussed as follows.

Because the decoding complexity that can be afforded in
audio, speech, and WSN applications is typically limited,
we recorded the SERs that can be achieved using a maxi-
mum complexity of 2 × 103, 4 × 103, 8 × 103, and 16 × 103

ACS operations per source symbol. In the “block-based in-
termediate code” scheme, these complexity limits were, re-

spectively, found to facilitate three, five, 10, and 20 iterations
of the component activation order described in Section III-B.
Similarly, two, four, seven, and 15 iterations of the com-
ponent activation sequence {inner, intermediate, outer; inner,
intermediate, outer; . . .} were facilitated in the “convolu-
tional intermediate code” scheme, respectively. Finally, the
aforementioned complexity limits facilitated three, five, 11,
and 22 iterations of the component activation sequence
{inner, outer; inner, outer; . . .} in the “no intermediate code”
scheme. The recorded SERs are plotted in Fig. 5.

Observe in Fig. 5 that the “no intermediate code” scheme
offers little interleaver or iteration gain, yielding similar SERs,
regardless of the affordable source sequence length Na and the
decoding complexity. By contrast, the “convolutional interme-
diate code” and the “block-based intermediate code” schemes
exhibit significant interleaver and iteration gains, offering
steeper and “nearer capacity” turbo cliffs as the source sequence
length Na and decoding complexity are increased, respectively.
At sufficiently high Eb/N0 values, intermediate coding facili-
tates iterative decoding convergence toward the ML SER per-
formance, as demonstrated by the error floors in Fig. 5, which
are reduced, as the source sequence length Na is increased.

Fig. 5 shows that, when the affordable decoding complexity
is low, the proposed “block-based intermediate code” scheme
facilitates operation at lower Eb/N0 values than the “convolu-
tional intermediate code” scheme. For example, Fig. 5(a) shows
that the “block-based intermediate code” arrangement achieves
an SER of 10−3 at a lower Eb/N0 value than the “convolutional
intermediate code” scheme when the affordable complexity is
2 × 103 or 4 × 103 ACS operations for each of the Na = 20
source symbols. Fig. 5(b) and (c) shows that similar gains of up
to 4.57 dB are offered when we have Na = 200 or 2000 and
the affordable complexity is 2 × 103, 4 × 103 or 8 × 103 ACS
operations per source symbol.

However, Fig. 5 shows that, when a higher decoding com-
plexity of 16 × 103 ACS operations per symbol is affordable,
the “convolutional intermediate code” benchmarker offers the
lowest SERs in the turbo cliff range of Eb/N0 values. This
range is 11–17 dB for the case of Na = 20, 8–13 dB for Na =
200, and 7–12 dB for Na = 2000, as shown in Fig. 5(a)–(c),

MAUNDER AND HANZO: EXIT ANALYSIS AND DESIGN OF BLOCK-BASED INTERMEDIATE CODES 769

respectively. This result may be attributed to the particular
choice of the inner and outer codes, which allows the “convolu-
tional intermediate code” scheme to maintain an open EXIT
chart tunnel at lower Eb/N0 values than the “block-based
intermediate code” scheme. As described in Section III-C, our
future research effort will consider the use of irregular inner
and outer codes [22], [32] to create open EXIT chart tunnels at
near-capacity Eb/N0 values.

Observe in Fig. 5 that the “block-based intermediate code”
scheme results in a more rapidly diminishing error floor than
the “convolutional intermediate code” scheme, achieving lower
SERs at high Eb/N0 values, even when a decoding complexity
of 16 × 103 ACS operations per symbol can be afforded. This
case may be attributed to the improved distance spectrum and
ML SER performance that is afforded by the block-based
intermediate code’s systematic design [1], which is described
in Section II-B. This case ensures that the legitimate permuta-
tions of the output bit sequence e in Fig. 1 are separated by
Hamming distances that are at least as high as the distances
that correspond to the block-based intermediate code’s input
bit sequence c. The legitimate permutations of this sequence
are separated by Hamming distances of at least two, because
it is obtained by interleaving the bit sequence b output by
the do = 2 FLC encoder, as described in Section III-A. By
contrast, the convolutional intermediate code is nonsystematic,
and hence, some permutations of its encoded bit sequence e
were separated by a Hamming distance of just one whenever the
interleaver πo was randomly allocated a deficient design during
our investigations.

Note, however, that the distance spectrum of the “convolu-
tional intermediate code” scheme can be improved by simply
employing S-random designs [33] for the interleaver πo rather
than random designs. However, it is also straightforward to
design improved interleavers for the “block-based intermediate
code” scheme, allowing it to achieve an even better distance
spectrum. This case is because the lengths of the block-based
intermediate code’s error events [20] are limited by the length
of its blocks, as depicted in Fig. 2. This condition will be the
topic of our future research.

V. CONCLUSION

In this paper, we have proposed the novel intermediate code
design, which facilitates iterative decoding convergence to the
ML error ratio performance in serially concatenated schemes.
Unlike conventional intermediate codes, our design is block
based rather than convolutional. As a result, our approach offers
a number of significant advantages when employed in practical
scenarios, where short frames are employed, and the affordable
complexity is limited.

First, due to its block-based nature, the proposed inter-
mediate code has low implementational complexity, requir-
ing reduced memory and allowing parallel processing, unlike
convolutional intermediate codes. Second, we showed that the
design and optimization of serially concatenated schemes, as
well as the analysis and visualization of iterative decoding con-
vergence, is more intuitive when employing block-based rather
than convolutional intermediate codes. Third, the lengths of our

block-based intermediate code’s error events are limited by its
block length, simplifying the task of designing interleavers to
improve the distance spectrum. Finally, the proposed block-
based intermediate code has lower decoding complexity than
the convolutional intermediate code, facilitating improved error
ratios in practical scenarios, where the affordable computa-
tional complexity is limited. In conclusion, the proposed design
procedure is applicable to arbitrary sources and for employment
between arbitrary inner and outer codes.

REFERENCES

[1] I. Sason and S. Shamai, “Performance analysis of linear codes un-
der maximum-likelihood decoding: A tutorial, foundation and trends,”
Found. Trends Commun. Inform. Theory, vol. 3, no. 1/2, pp. 1–225,
Jul. 2006.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-
correcting coding and decoding: Turbo codes (1),” in Proc. IEEE Int.
Conf. Commun., Geneva, Switzerland, May 1993, vol. 2, pp. 1064–1070.

[3] D. J. C. MacKay and R. M. Neal, “Near-Shannon-limit performance of
low-density parity check codes,” Electron. Lett., vol. 32, no. 18, pp. 1645–
1646, Aug. 1996.

[4] M. Tüchler, “Convergence prediction for iterative decoding of threefold
concatenated systems,” in Proc. IEEE Global Telecommun. Conf., Taipei,
Taiwan, Nov. 2002, vol. 2, pp. 1358–1362.

[5] D. Divsalar, H. Jin, and R. J. McEliece, “Coding theorems for ‘turbo-like’
codes,” in Proc. Allerton Conf. Commun., Control, Comput., Urbana, IL,
Sep. 1998, pp. 201–210.

[6] S. ten Brink, “Convergence of iterative decoding,” Electron. Lett., vol. 35,
no. 10, pp. 806–808, May 1999.

[7] J. Kliewer, N. Görtz, and A. Mertins, “Iterative source–channel decoding
with Markov random field source models,” IEEE Trans. Signal Process.,
vol. 54, no. 10, pp. 3688–3701, Oct. 2006.

[8] J. Kliewer, A. Huebner, and D. J. Costello, “On the achievable extrinsic
information of inner decoders in serial concatenation,” in Proc. IEEE Int.
Symp. Inf. Theory, Seattle, WA, Jul. 2006, pp. 2680–2684.

[9] R. G. Maunder and L. Hanzo, “Iterative decoding convergence and termi-
nation of serially concatenated codes,” IEEE Trans. Veh. Technol., vol. 59,
no. 1, pp. 216–224, Jan. 2010.

[10] X. Li and J. A. Ritcey, “Bit-interleaved coded modulation with iterative
decoding,” in Proc. IEEE Int. Conf. Commun., Vancouver, BC, Canada,
Jun. 1999, vol. 2, pp. 858–863.

[11] S. Benedetto and G. Montorsi, “Serial concatenation of block and convo-
lutional codes,” Electron. Lett., vol. 32, no. 10, pp. 887–888, May 1996.

[12] S. Benedetto and G. Montorsi, “Iterative decoding of serially concatenated
convolutional codes,” Electron. Lett., vol. 32, no. 13, pp. 1186–1188,
Jun. 1996.

[13] F. Brannstrom, L. K. Rasmussen, and A. J. Grant, “Convergence analysis
and optimal scheduling for multiple concatenated codes,” IEEE Trans. Inf.
Theory, vol. 51, no. 9, pp. 3354–3364, Sep. 2005.

[14] R. Y. Tee, R. G. Maunder, J. Wang, and L. Hanzo, “Near-capacity irregular
bit-interleaved coded modulation,” in Proc. IEEE Veh. Technol. Conf.,
Singapore, May 2008, pp. 549–553.

[15] N. S. Othman, M. El-Hajjar, A. Q. Pham, O. Alamri, S. X. Ng, and
L. Hanzo, “Over-complete source-mapping-aided AMR-WB MIMO
transceiver using three-stage iterative detection,” in Proc. IEEE Int. Conf.
Commun., Beijing, China, May 2008, pp. 751–755.

[16] S. X. Ng, J. Wang, and L. Hanzo, “Unveiling near-capacity code
design: The realization of Shannon’s communication theory for MIMO
channels,” in Proc. IEEE Int. Conf. Commun., Beijing, China, May 2008,
pp. 1415–1419.

[17] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate (Corresp.),” IEEE Trans. Inf.
Theory, vol. IT-20, no. 2, pp. 284–287, Mar. 1974.

[18] H.-A. Loeliger, “An introduction to factor graphs,” IEEE Signal Process.
Mag., vol. 21, no. 1, pp. 28–41, Jan. 2004.

[19] K. Kusume and G. Bauch, “A parallel APP decoding algorithm for ac-
celerating decoding throughput of turbo codes,” in Proc. IEEE Int. Symp.
Wireless Commun. Syst., Reykjavik, Iceland, Oct. 2008, pp. 528–532.

[20] B. Vucetic, Y. Li, L. C. Perez, and F. Jiang, “Recent advances in turbo
code design and theory,” Proc. IEEE, vol. 95, no. 6, pp. 1323–1344,
Jun. 2007.

770 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 3, MARCH 2011

[21] J. Sun and O. Y. Takeshita, “Interleavers for turbo codes using permutation
polynomials over integer rings,” IEEE Trans. Inf. Theory, vol. 51, no. 1,
pp. 101–119, Jan. 2005.

[22] M. Tüchler and J. Hagenauer, “EXIT charts of irregular codes,” in Proc.
Conf. Inf. Sci. Syst., Princeton, NJ, Mar. 2002, pp. 748–753.

[23] S. ten Brink and G. Kramer, “Design of repeat–accumulate codes for
iterative detection and decoding,” IEEE Trans. Signal Process., vol. 51,
no. 11, pp. 2764–2772, Nov. 2003.

[24] J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and X.-Y. Hu,
“Reduced-complexity decoding of LDPC codes,” IEEE Trans. Commun.,
vol. 53, no. 8, pp. 1288–1299, Aug. 2005.

[25] X.-Y. Hu, E. Eleftheriou, D.-M. Arnold, and A. Dholakia, “Efficient im-
plementations of the sum-product algorithm for decoding LDPC codes,”
in Proc. IEEE Global Telecommun. Conf., San Antonio, TX, Nov. 2001,
vol. 2, p. 1036.

[26] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory,
vol. IT-28, no. 2, pp. 129–137, Mar. 1982.

[27] J. Hagenauer and N. Görtz, “The turbo principle in joint source–channel
coding,” in Proc. IEEE Inf. Theory Workshop, Paris, France, Mar. 2003,
pp. 275–278.

[28] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE
Trans. Inf. Theory, vol. IT-28, no. 1, pp. 55–67, Jan. 1982.

[29] L. Hanzo, S. X. Ng, T. Keller, and W. Webb, Quadrature Amplitude
Modulation. Chichester, U.K.: Wiley, 2004.

[30] S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density
parity-check codes for modulation and detection,” IEEE Trans. Commun.,
vol. 52, no. 4, pp. 670–678, Apr. 2004.

[31] A. Ashikhmin, G. Kramer, and S. ten Brink, “Code rate and the area
under extrinsic information transfer curves,” in Proc. IEEE Int. Symp. Inf.
Theory, Lausanne, Switzerland, Jun. 2002, p. 115.

[32] R. G. Maunder and L. Hanzo, “Near-capacity irregular variable-length
coding and irregular unity rate coding,” IEEE Trans. Wireless Commun.,
vol. 8, no. 11, pp. 5500–5507, Nov. 2009.

[33] S. Dolinar and D. Divsalar, “Weight distributions for turbo codes using
random and nonrandom permutations,” Telecommun. Data Acquisition
Progr. Rep., vol. 122, pp. 56–65, Apr. 1995.

Robert G. Maunder (M’03) received the B.Eng.
(first-class honors) degree in electronic engineering
and the Ph.D. degree in wireless communications
from the University of Southampton, Southampton,
U.K., in July 2003 and December 2007, respectively.

Since December 2007, he has been a Lecturer with
the School of Electronics and Computer Science,
University of Southampton. His research interests
include joint source/channel coding, iterative decod-
ing, irregular coding, and modulation techniques, for
which he has published a number of IEEE papers.

Lajos Hanzo (F’04) received the degree in electron-
ics in 1976 and the doctorate degree in 1983. In 2009,
he received the honorary doctorate “Doctor Honaris
Causa” degree from the Technical University of
Budapest, Budapest, Hungary.

During his 35-year career in telecommunications,
he has held various research and academic posts in
Hungary, Germany and the U.K. Since 1986, he has
been with the School of Electronics and Computer
Science, University of Southampton, U.K., where
he holds the chair in telecommunications. He has

co-authored 20 John Wiley/IEEE Press books on mobile radio communi-
cations totalling in excess of 10 000 pages, published about 990 research
entries on IEEE Xplore, acted as Technical Program Committee Chair of
IEEE conferences, presented keynote lectures, and been awarded a number of
distinctions. Currently, he is directing an academic research team, working on
a range of research projects in the field of wireless multimedia communications
sponsored by industry, the Engineering and Physical Sciences Research Council
(EPSRC) U.K., the European IST Programme, and the Mobile Virtual Centre
of Excellence (VCE), U.K. He is an enthusiastic supporter of industrial and
academic liaison, and he offers a range of industrial courses. He is also a
Governor of the IEEE Vehicular Technology Society. Since 2008, he has been
the Editor-in-Chief of the IEEE Press and, since 2009, a Chaired Professor, also
at Tsinghua University, Beijing, China. For further information on research in
progress and associated publications, see http://www-mobile.ecs.soton.ac.uk.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

