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Optimal Generation of Space-Time Trellis Codes

via the Coset Partitioning
Pierre Viland, Gheorghe Zaharia, Member, IEEE and Jean-François Hélard, Senior Member, IEEE

Abstract—Criteria to design good space-time trellis

codes (STTCs) have been already developed in previous

publications. However, the computation of the best STTCs

is time-consuming because a long exhaustive or systematic

computing search is required, especially for a high number

of states and/or transmit antennas. In order to reduce

the search time, an efficient method must be employed to

generate the STTCs with the best performance. In this

paper, a technique called coset partitioning is proposed to

design easily and efficiently optimal 2n-PSK STTCs with

any number of transmit antennas. The coset partitioning

is an improved extension to multiple input multiple output

(MIMO) systems of the set partitioning proposed by

Ungerboeck. This extension is based on the lattice and

coset Calderbank’s approach. With this method, optimal

blocks of the generator matrix are obtained for 4-PSK and

8-PSK codes. These optimal blocks lead to the generation

of the STTCs with the best Euclidean distances between

the codewords. Thus, new codes are proposed with 3 to 6

transmit antennas for 4-PSK modulation and with 3 and 4

transmit antennas for 8-PSK modulation. These new codes

outperform the corresponding best known codes. Besides,

the first 4-PSK STTCs with 7 and 8 transmit antennas and

the first 8-PSK STTCs with 5 and 6 transmit antennas are

given and their performance is evaluated by simulation.

Index Terms—Space-time trellis coding, MIMO system,

coset.

I. INTRODUCTION

Trellis-coded modulations (TCMs) combine modula-

tion and coding to obtain a high time-diversity scheme

to improve the performance or the data rate of wireless

systems. Ungerboeck proposed a method called set par-

titioning to design TCMs for single input single output

(SISO) systems in [1], [2], [3]. An alternative of the

set partitioning is given by Calderbank et al. in [4].

With their method, the symbols are divided into cosets

instead of sets, as the set partitioning does. This coset

approach is simpler than the set partitioning for large

constellations.

In 1998, Tarokh et al. introduced the concept of space-

time trellis codes (STTCs) [5]. STTCs achieve both

diversity and coding gain on multiple input multiple

output (MIMO) fading channels by coding over multiple

transmit antennas.

In [5], the first criteria called the rank and the deter-

minant criteria are presented to govern the performance

of STTCs over slow Rayleigh fading channels. In the

case of fast Rayleigh fading channels, criteria based

on the Hamming distance and the distance product

are also proposed. For slow and fast Rayleigh fading

channels, when the product between the number of

transmit antennas and the number of receive antennas is

important, Chen et al. in [6] and Yuan et al. [7] showed

that the minimum Euclidean distance (ED) between two

codewords governs the code performance. This criterion

called ED criterion (or trace criterion) is also advocated

by Ionescu in [8] and [9]. Biglieri et al. in [10], [11] also

showed that the performance of STTCs is determined

by the ED criterion when the number of transmit and

receive antennas is large. This configuration corresponds

to a great number of independent sub-channels.

The main difficulty to generate the best codes is

the long search duration. An exhaustive search can be

employed for a small number of transmit antennas. Thus,

many 4-PSK STTCs with 2 transmit antennas have been

proposed via an exhaustive search in [12], [13]. In the

case of 3 and 4 transmit antennas, Chen et al. used a

suboptimal method in [6], [14], [15]. In [16], Bernier et

al. used a random search to find the best STTCs. In order

to reduce the search time of the STTCs with the best

performance, Yan and Blum in [17] described a method

to compute efficiently the coding gain and proposed new

2-PSK and 4-PSK STTCs. Abdool-Rassool et al. gave

the first 4-PSK STTCs with 5 and 6 transmit antennas,

via a systematic search [18], [19].

In order to reduce the search time, an efficient method

to generate the best STTCs must be employed. For

example, with an exhaustive search, 4 billions of 4-

state 4-PSK STTCs with 4 transmit antennas must be

analyzed. The number of codes increases drastically with

the number of states, the modulation complexity and

the number of transmit antennas. For example, if one

antenna is added to the previous example, the number

of 4-state 4-PSK STTCs with 5 transmit antennas is ap-

proximatively 1012. Hence, this paper proposes a general

method called coset partitioning to generate the best 2n-

PSK STTCs without the time-consuming exhaustive and
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systematic search. This method is based on the lattice

and coset Calderbank’s approach and can be seen as

an important extension to MIMO systems of the set

partitioning proposed by Ungerboeck.

This paper is organized as follows. In section II,

the representations of STTCs are reminded. Section III

describes the existing code design criteria. In section IV,

the coset partitioning is presented and design examples

are given. Section V gives new 4-PSK STTCs with 3

to 8 transmit antennas and 8-PSK STTCs with 3 to 6

transmit antennas, designed via the coset partitioning.

Section VII provides simulation results and shows that

the new codes outperform the best known corresponding

codes.

II. SPACE-TIME TRELLIS CODES

We consider a 2n-PSK space-time trellis encoder with

nT transmit antennas and nR receive antennas. For n =
2, the encoder is shown in Fig. 1.
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Fig. 1. Space-time trellis encoder for 4-PSK and nT transmit

antennas.

In the general case, the encoder is composed of one

input block of n bits and ν memory blocks of n bits. At

each time t ∈ Z, all the bits of a block are replaced by the

n bits of the previous block. For each block i = 1, ν + 1
i.e. i takes all values : 1, 2, · · · , ν + 1, the jth bit is

associated to nT coefficients gij,k ∈ Z2n , with j = 1, n

and k = 1, nT .

With these nT × n(ν + 1) coefficients, the generator

matrix G with nT lines and ν + 1 blocks of n columns

is given by

G =
[

G
1|G2| · · · |Gν+1

]

(1)

= [G1
1 · · ·G

1
n|G

2
1 · · ·G

2
n| · · · |G

ν+1
1 · · ·Gν+1

n ],(2)

where G
i =

[

Gi
1 · · ·G

i
n

]

is the ith block of G and

Gi
j = [gij,1 · · · g

i
j,nT

]T ∈ Z
nT

2n (i.e. each column is a

MIMO symbol) 1. The set Z
nT

2n is the set of column

vectors constituted by nT elements that belong to the set

of integers modulo 2n. In this paper, [·]T is the transpose

of the matrix [·].
A state is defined by the binary values of the nν mem-

ory cells corresponding to the no-null columns of G. The

coefficients of a no-null column are not all null. At each

time t, the MIMO symbols Y t =
[

yt1y
t
2 · · · y

t
nT

]T
∈ Z

nT

2n

at the encoder output are given by the function Ψ defined

by

Ψ : Z
n(ν+1)
2 → Z

nT

2n (3)

Y t = Ψ(Xt) = GXt, (4)

where Xt = [xt1 · · ·x
t
n · · ·x

t−ν
1 · · ·xt−ν

n ]T is the

extended-state at time t of the Lr = n(ν+1) length shift

register realized by the input block and the ν memory

blocks.

An encoder can also be represented by a trellis, as

shown in Fig. 2 for a 4-state 4-PSK STTC corresponding

to the generator matrix

G = [Y1Y2|Y4Y8] . (5)

STATES: [xt−1
1 xt−1

2 ] [xt
1x

t
2]

time t time t+ 1

Y1 Y5 Y9 Y13

Y2 Y6 Y10 Y14

Y3 Y7 Y11 Y15

Y4 Y5 Y6 Y7

Y0 Y1 Y2 Y3

Y8 Y9 Y10 Y11

Y12 Y13 Y14 Y15

Y0 Y4 Y8 Y12

Fig. 2. 4-state 4-PSK STTC.

In the trellis, the states are described by the points

and the transitions between the states by the lines. Each

transition corresponds to an extended-state. The vector

Yi ∈ Z
nT

4 represents the MIMO symbol associated to an

extended-state. The index i is computed as the decimal

value of the extended-state with xt1 the least significant

bit.

In the general case, for a 2n-PSK STTC, there are 2n

transitions originating from each state or merging into

each state. Each MIMO symbol Y t belongs to Z
nT

2n .

Each MIMO symbol Y t is mapped onto a 2n-PSK

MIMO signal St = Φ(Y t) given by the mapping

1The matrix G is the transpose of the generator matrix given in

[20]. In this manner, G is directly given by the representation of the

encoder given in Fig. 1.
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function

Φ : Z
nT

2n → C
nT (6)

Φ(Y t) =













exp(j π

2n−1
yt

1
)

...
exp(j π

2n−1
yt

k
)

...
exp(j π

2n−1
yt

nT
)













, (7)

where j2 = −1. Each output signal stk is sent to the kth

transmit antenna. At each time t, the symbols transmitted

simultaneously over the fading MIMO channel are given

by St =
[

st1 · · · s
t
nT

]T
. The vector of the signals received

by the nR receive antennas Rt = [rt1 · · · r
t
nR

]T can be

written as

Rt = H
tSt +N t, (8)

where N t = [nt
1 · · ·n

t
nR

]T is the vector of complex

additive white gaussian noises (AWGN) at time t. The

nR×nT matrix H
t representing the complex path gains

of the MIMO channel between the transmit and receive

antennas at time t is given by

H
t =







ht1,1 . . . ht1,nT

...
. . .

...

htnR,1 . . . htnR,nT






. (9)

In this paper, Rayleigh fading channels are considered. In

that case, the path gain htl,k of the SISO channel between

the kth transmit antenna and lth receive antenna follows

a Rayleigh distribution, i.e. the real and the imaginary

parts of htl,k are zero-mean Gaussian random variables

with the same variance. Two types of Rayleigh fading

channels can be considered:

• Slow Rayleigh fading channels: the complex path

gains of the channels do not change during the

transmission of the symbols of the same codeword.

• Fast Rayleigh fading channels: the complex path

gains of the channels change independently at each

time t.

III. DESIGN CRITERIA

The main goal of this design is to reduce the pairwise

error probability (PEP) which is the probability that

the decoder selects an erroneous codeword E while a

different codeword S was transmitted. It is possible to

represent a codeword of L MIMO signals starting at

t = 1 by a nT × L matrix S = [S1S2...SL] where

St ∈ CnT is the tth MIMO signal of the codeword S. An

error occurs if the decoder decides that another codeword

E = [E1E2..EL] is transmitted where Et ∈ CnT is the

tth MIMO signal of the codeword E. Let us define the

nT × L difference matrix

B = E− S =







e11 − s11 . . . eL1 − sL1
...

. . .
...

e1nT
− s1nT

. . . eLnT
− sLnT






. (10)

The nT ×nT product matrix A = BB
H is introduced,

where B
H denotes the hermitian of B. The minimum

rank of A, r = min{rank(A)} is defined, where A is

computed for all pairs of codewords (E,S). The design

criteria depend on the value of the product rnR.

First case: rnR ≤ 3:

In this case, for a slow Rayleigh fading channel, two

criteria have been proposed [5], [12] to reduce the PEP,

as follows:

• A has to be a full rank matrix for any pair (E, S).
Since the maximal value of r is nT , the achievable

spatial diversity order is nTnR.

• The coding gain is related to the inverse of η =
∑

d

N(d)d−nR , where N(d) is defined as the average

number of error events (E, S) with the determinant

of A equal to

d = det(A) =

nT
∏

k=1

λk

=

nT
∏

k=1

(

L
∑

t=1

∣

∣etk − stk
∣

∣

2

)

.

(11)

The codes with the best performance must have the

minimum value of η.

In the case of a fast Rayleigh fading channel, different

criteria have been obtained in [5]. Tarokh et al. defined

the Hamming distance dH(E,S) between two codewords

E and S as the number of time intervals for which |Et−
St| 6= 0. For a given code, dH(E,S) is computed for

each pair (E,S) with E 6= S. Each code has one value

min{dH(E,S)}. The best codes must have the largest

minimal value of dH(E,S).
In this case, the achieved spatial diversity order is

equal to min{dH(E,S)}nR. In the same way, Tarokh

et al. introduced the product distance d2p(E,S) which is

the product of squared Euclidean distances of two MIMO

signals at each time t of two different codewords. Thus,

d2p(E,S) is given by

d2p(E,S) =

L
∏

t=1
Et 6=St

d2E(E
t, St), (12)

where d2E(E
t, St) =

nT
∑

k=1

∣

∣etk − stk
∣

∣

2
is the ED between

the MIMO signals Et and St at time t. For a given code,
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d2p(E,S) is computed for each pair (E,S) with E 6= S.

Each code has one value min
{

d2p(E,S)
}

. The best codes

must have the largest minimal value of d2p(E,S).

Second case: rnR ≥ 4:

In [6] and [7], it is shown that for a large value of rnR

which corresponds to a large number of independent

SISO channels, the PEP is minimized if the sum of all

the eigenvalues of the matrices A is maximized. Since

A is a square matrix, the sum of all the eigenvalues is

equal to its trace

tr(A) =

nT
∑

k=1

λk =

L
∑

t=1

d2E(E
t, St). (13)

For a given code, tr (A) is computed for each

pair (E,S) with E 6= S. Each code has one value

min{tr(A)}. The best codes must have the largest min-

imal value of tr(A). The concept of ED for STTCs has

been previously introduced in [8] and [9]. In [12], it is

also stated that to minimize the frame error rate (FER),

the number of error events with minimum ED between

codewords has to be minimized. Besides, it has been

shown in [9] that the maximization of the ED between

two codewords is equivalent to the maximization of the

product distance.

In this paper, we consider only the case rnR ≥ 4
which is obtained when r ≥ 2 and there are at least 2

receive antennas.

IV. COSET PARTITIONING

The main goal of coset partitioning is to generate

quickly and easily STTCs which achieve the best per-

formance. If an exhaustive search is used to find the

best 2nν-state 2n-PSK STTCs with nT transmit antennas,

the previous criteria are tested for 2nTn2(ν+1) possible

generator matrices G. The exhaustive search requires

a huge computing time, especially when nT , n and ν
increase. The coset partitioning generates a small set of

codes containing the optimal codes. So, the time to find

the best codes is drastically reduced.

A. Preliminary

Each MIMO symbol belongs to the additive abelian

group Z
nT

2n . Let us assume the subgroup

C0 = 2n−1
Z
nT

2 (14)

of Z
nT

2n such as V = −V , ∀V ∈ C0. As presented later,

the choice of this specific subgroup C0 is useful to create

subgroups of ZnT

2n .

It is possible to partition the group Z
nT

2n into 2nT (n−1)

cosets as

Z
nT

2n =
⋃

P∈Z
nT

2n−1

CP , (15)

where P is a representative of the coset CP = P + C0,

as stated in [21].

Using these cosets, it is possible to make a new

partition of ZnT

2n given by

Z
nT

2n =

n−1
⋃

k=0

Ek, (16)

where E0 = C0. For k = 1, n− 1, the other sets Ek are

defined by

Ek =
⋃

Pk

(Pk + C0) =
⋃

Pk

CPk
, (17)

where Pk ∈ 2n−k−1Z
nT

2k \ 2n−kZ
nT

2k−1 . The difference of

two sets is A \ B = {x ∈ A and x /∈ B}. The set ZnT

1

contains only the null element of ZnT

2n .

Definition 1: We consider a subgroup Λs of Z
nT

2n

such as card(Λs) ≤ 2nTn−1. A coset CP = P + Λs

with P ∈ Z
nT

2n is called relative to Q ∈ Λs if and only

if 2P = Q. Thus, if we consider the subgroup C0 and

the partition into n sets of elements formed by unions of

cosets, for k = 2, n− 1, each coset CPk
⊂ Ek is ’relative

to’ Q = 2Pk ∈ Ek−1.

For example, for 8-PSK STTCs with 2 transmit an-

tennas, the MIMO symbols belong to Z2
8. This group is

divided into 3 subsets. In this case, the first set is

E0 = C0 = {[ 00 ] , [
0
4 ] , [

4
0 ] , [

4
4 ]} . (18)

The second set is

E1 = C[ 02 ]
∪ C[ 20 ]

∪ C[ 22 ]
, (19)

where

• C[ 02 ]
= {[ 02 ] , [

0
6 ] , [

4
2 ] , [

4
6 ]} is relative to [ 04 ] ∈ C0.

• C[ 20 ]
= {[ 20 ] , [

2
4 ] , [

6
0 ] , [

6
4 ]} is relative to [ 40 ] ∈ C0.

• C[ 22 ]
= {[ 22 ] , [

2
6 ] , [

6
2 ] , [

6
6 ]} is relative to [ 44 ] ∈ C0.

The last set is

E2 =C[ 01 ]
∪ C[ 03 ]

∪ C[ 21 ]
∪ C[ 23 ]

∪

C[ 10 ]
∪ C[ 12 ]

∪ C[ 30 ]
∪ C[ 32 ]

∪

C[ 11 ]
∪ C[ 13 ]

∪ C[ 31 ]
∪ C[ 33 ]

,

(20)

where

C[ 01 ]
= {[ 01 ] , [

0
5 ] , [

4
1 ] , [

4
5 ]}

C[ 03 ]
= {[ 03 ] , [

0
7 ] , [

4
3 ] , [

4
7 ]}

C[ 21 ]
= {[ 21 ] , [

2
5 ] , [

6
1 ] , [

6
5 ]}

C[ 23 ]
= {[ 23 ] , [

2
7 ] , [

6
3 ] , [

6
7 ]} .
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These cosets are relative to the symbols [ 02 ], [
0
6 ], [

4
2 ]

and [ 46 ] respectively which form C[ 02 ]
.

C[ 10 ]
= {[ 10 ] , [

1
4 ] , [

5
0 ] , [

5
4 ]}

C[ 12 ]
= {[ 12 ] , [

1
6 ] , [

5
2 ] , [

5
6 ]}

C[ 30 ]
= {[ 30 ] , [

3
4 ] , [

7
0 ] , [

7
4 ]}

C[ 32 ]
= {[ 32 ] , [

3
6 ] , [

7
2 ] , [

7
6 ]}

These cosets are relative to the symbols [ 20 ], [
2
4 ], [

6
0 ]

and [ 64 ] respectively which form the coset C[ 20 ]
.

C[ 11 ]
= {[ 11 ] , [

1
5 ] , [

5
1 ] , [

5
5 ]}

C[ 13 ]
= {[ 13 ] , [

1
7 ] , [

5
3 ] , [

5
7 ]}

C[ 31 ]
= {[ 31 ] , [

3
5 ] , [

7
1 ] , [

7
5 ]}

C[ 33 ]
= {[ 33 ] , [

3
7 ] , [

7
3 ] , [

7
7 ]}

These cosets are relative to the symbols [ 22 ], [
2
6 ], [

6
2 ] and

[ 66 ] respectively which form the coset C[ 22 ]
.

The following propositions are used to create sub-

groups of ZnT

2n .

Proposition 1: If Λl is a subgroup of ZnT

2n given by

Λl =

{

l
∑

m=1

xmVm mod 2n/xm ∈ {0, 1}

}

, (21)

with Vm ∈ Z
nT

2n , l = 1, nnT where nnT is the minimal

number of vectors which generate the group Z
nT

2n and

card(Λl) = 2l, then there is at least one element Vm

which belongs to C∗

0 = C0 \ [0 · · · 0]
T
.

Proof: See Appendix A

Proposition 2: To generate a subgroup Λl =
{

l
∑

m=1
xmVm mod 2n/xm ∈ {0, 1}

}

with Vm ∈ Z
nT

2n ,

l = 1, nnT and card(Λl) = 2l, the Vm elements must

be selected as follows:

• The first element V1 must belong to C∗

0 .

• If m − 1 elements with m ∈ {2, · · · , l}
have been previous selected, the mth

column Vm must not belong to Λm−1 =
{

m−1
∑

m′=1
xm′Vm′ mod 2n/xm′ ∈ {0, 1}

}

and must

belong to C∗

0 or to the cosets relative to an element

of Λm−1.

Proof: See Appendix B

B. Euclidian distances decomposition

In the next sections, the ED between two codewords

is notified by ’Cumulated ED’ (CED), in opposition

with the ED between two MIMO signals. Thus, if two

codewords E = [E1E2..EL] and S = [S1S2..SL] of L
MIMO symbols are considered, the CED between E et

S is
L
∑

t=1

d2E
(

Et, St
)

. (22)

For a 2n-PSK 2nν-state STTC with nT transmit an-

tennas, two different input binary sequences of n(L−ν)
bits, as shown in Fig. 1, are considered:

• Xe = [x1e,1 · · ·x
1
e,n|x

2
e,1 · · ·x

2
e,n| · · · |x

L−ν
e,1 · · ·xL−ν

e,n ]

• Xs = [x1s,1 · · ·x
1
s,n|x

2
s,1 · · ·x

2
s,n| · · · |x

L−ν
s,1 · · ·xL−ν

s,n ]

These two sequences generate two codewords E and S

of length L. These sequences correspond to two different

paths in the trellis.

The initial extended-states of the encoder are equal to

X0
e = X0

s = [0 · · · 0| · · · |0 · · · 0]. (23)

At each time t = 1, L, the two binary sequences

xte,1 · · ·x
t
e,n and xts,1 · · ·x

t
s,n are fed into the input en-

coder. Thus, the extended-states at time t = 1 are

X1
e = [x1e,1 · · ·x

1
e,n|0 · · · 0|...|0 · · · 0] (24)

X1
s = [x1s,1 · · ·x

1
s,n|0 · · · 0|...|0 · · · 0]. (25)

The extended-states at time t = 2 are

X2
e = [x2e,1 · · ·x

2
e,n|x

1
e,1 · · ·x

1
e,n|...|0 · · · 0] (26)

X2
s = [x2s,1 · · ·x

2
s,n|x

1
s,1 · · ·x

1
s,n|...|0 · · · 0]. (27)

At each time t, the values of the extended-states

are Xt
e = [xte,1 · · ·x

t
e,n| · · · |x

t−ν
e,1 · · ·xt−ν

e,n ]T and Xt
s =

[xts,1 · · ·x
t
s,n| · · · |x

t−ν
s,1 · · ·xt−ν

s,n ]T.

Because the final extended-states of the encoder must

be equal to XL+1
e = XL+1

s = [0 · · · 0| · · · |0 · · · 0], the

last extended-states are

XL
e = [0 · · · 0|...|0 · · · 0|xL−ν

e,1 · · ·xL−ν
e,n ] (28)

XL
s = [0 · · · 0|...|0 · · · 0|xL−ν

s,1 · · ·xL−ν
s,n ]. (29)

At each time t, two MIMO signals

Et = [et1 · · · e
t
nT

]T = Φ(GXt
e) (30)

and

St = [st1 · · · s
t
nT

]T = Φ(GXt
s) (31)

are generated.

The ED between two MIMO signals at time t is

given by d2E(E
t, St) =

nT
∑

k=1

∣

∣etk − stk
∣

∣

2
. It is possible
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to compute this ED thanks to the two corresponding

extended-states Xt
e and Xt

s and the generator matrix G

via the function DE defined as

DE : Z
n(ν+1)
2n × Z

n(ν+1)
2n → R

+

DE

(

Xt
e, X

t
s

)

= d2E
(

Φ(GXt
e),Φ(GXt

s)
)

. (32)

Thus, each CED is given by

CED(Xe, Xs) =

L
∑

t=1

DE(X
t
e, X

t
s). (33)

It is easy to show that for m ≤ ν + 1 the mth and the

(L−m+ 1)th last term of CEDs depend of the m first

blocks and the m last blocks of G respectively.

Let us consider the case of 2nν-state 2n-PSK STTCs.

We define

αM = ⌊
ν + 1

2
⌋. (34)

To ensure that the CEDs of STTCs are maximized,

the minimum result of the sum of the first α = 1, αM

terms of the CED

α
∑

t=1

DE(X
t
e, X

t
s) (35)

must be maximized for all pairs (Xe, Xs) via the selec-

tion of the first αM blocks.

In the same way and independently of the sum of the

first α = 1, αM terms, the minimum result of the sum

of the last αM terms of the CED

L
∑

t=L−α+1

DE(X
t
e, X

t
s) (36)

must be maximized for all pairs (Xe, Xs) via the selec-

tion of the last αM blocks. If ν is even, the (αM +1)th

term must be selected to generate a subgroup and to

maximize the CED.

The set of the first αM blocks is denoted

BF =
{

G
1, · · · ,GαM

}

(37)

=
{[

G1
1 · · ·G

1
n

]

, · · · , [GαM

1 · · ·GαM

n ]
}

(38)

and the set of the last αM blocks is denoted

BL =
{

G
ν+2−αM ),Gν+3−αM , · · · ,Gν+1

}

(39)

= {
[

Gν+2−αM

1 · · ·Gν+2−αM

n

]

,
[

Gν+3−αM

1 · · ·Gν+3−αM

n

]

,

,
[

Gν+1
1 · · ·Gν+1

n

]

}. (40)

No block of G belongs to both BF and BL i.e.

BF

⋂

BL = ∅. (41)

Thus, the first αM blocks and the last αM blocks of the

CED are totally independent.

If ν is even, the (αM + 1)th first block creates the

dependance between the first αM terms and the last αM

terms in order to maximize the minimal value of the

CED computed for all pairs of different codewords (E,

S).

C. Coset partitioning description

In [1], [2], [3], Ungerboeck proposed the set par-

titioning to design TCMs for SISO systems. The set

partitioning can be stated by the following rules:

Rule 1: Each point of the constellation has the same

number of occurrences.

Rule 2: In the trellis, transitions originating from a

same state or merging into a same state should be

assigned subsets which contain signal points separated

by the largest EDs.

Rule 3: Parallel paths should be assigned signal

points separated by the largest EDs.

Calderbank et al. gave an alternative to the set partition-

ing but only for SISO systems [4]: the constellation must

be a subgroup of an abelian group which is divided into

cosets. At each time t, the encoder selects one coset,

then one element within the selected coset.

The coset partitioning proposed in this paper is an

extension to MIMO systems of the set partitioning using

the Calderbank’s approach. In the case of coset parti-

tioning, the MIMO symbols are separated into cosets

(not just into sets, as in the case of the set partitioning)

which contain MIMO symbols separated by the largest

EDs. Thus, the number of possibilities to design optimal

STTCs is reduced, compared to the number of set

partitioning possibilities.

The coset partitioning can be stated by the following

properties:

Property 1: the used MIMO symbols are equally

probable.

Property 2: the MIMO symbols originating from or

merging to a same state belong to the same coset.

Property 3: the elements of each coset must be sep-

arated by the largest EDs.

For a 2nν-state 2n-PSK STTC, the generator matrix

has ν+1 blocks of nT lines and n columns. In order that

a STTC fulfils the 3 properties of the coset partitioning,

the n columns of each block G
i = [Gi

1 · · ·G
i
n] with

i = 1, ν + 1 of its generator matrix G must generate a

subgroup

Λi =







n
∑

j=1

xjG
i
j mod 2n/xj ∈ {0, 1}







(42)
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of ZnT

2n , with card(Λi) = 2n.

In order to obtain a subgroup, the selection of the n
columns of each block must respect the proposition 2,

i.e. the n columns of each block i with i = 1, ν + 1,

must be selected as follows:

• The first column Gi
1 must belong to C∗

0 .

• If j − 1 columns have been previously se-

lected with j ∈ {2, · · ·n}, the column Gi
j

must not belong to the subgroup Λj−1 =
{

j−1
∑

l=1

xilG
i
l mod 2n/xil ∈ {0, 1}

}

and must belong

to C∗

0 or to a coset relative to an element of Λj−1.

Thus, the columns of each block generate a subgroup

and the elements originating from or merging to the same

state belong to the same coset.

Besides, to ensure that the CED is maximized, the

minimum result of the sum of first α = 1, αM terms

α
∑

t=1

DE(X
t
e, X

t
s) (43)

must be maximized for all pairs of different binary

sequences (Xe, Xs). In order to maximize the previous

expression, we define the optimal blocks.

Definition 2: An optimal block generates a subgroup

of ZnT

2n containing the MIMO symbols separated by the

largest minimal ED.

Therefore, the first αM blocks must be selected as

follows:

• The first block used to compute the first term

DE(X
1
e , X

1
s ) must be an optimal block. Thereby,

the property 3 of the coset partitioning is fulfilled.

• If the first i − 1 blocks have been already se-

lected with i ∈ {2, · · · , αM}, the ith block must

be selected to maximize the minimum value of
i
∑

t=1
DE(X

t
e, X

t
s) computed for all pairs of different

binary sequences (Xe, Xs).

In the same way, the minimum result of the sum of

the last α = 1, αM terms

L
∑

t=L−α+1

DE(X
t
e, X

t
s) (44)

must be maximized for all pairs (Xe, Xs) with Xe 6=
Xs. Therefore, the last αM blocks must be selected as

follows:

• The last block used to compute the last term

DE(X
L
e , X

L
s ) must be an optimal block.

• If the last i − 1 blocks have been already selected

with i ∈ {2, · · · , αM}, the last ith block must

be selected to maximize the minimum value of

L
∑

t=L−i+1

DE(X
t
e, X

t
s) computed for all pairs of dif-

ferent binary sequences (Xe, Xs).

Further on, if ν is even, the (αM + 1)th block G
αm+1

must generate a subgroup and maximize the CED.

Besides, the property 1 of the coset partitioning is

fulfilled because these STTCs designed via the coset

partitioning are balanced codes [22], [23].

Definition 3: A STTC is balanced if and only if the

generated MIMO symbols Y have the same number

of occurrences n(Y ) = card
{

X ∈ Z
n(ν+1)
2 /Y = GX

}

,

∀Y ∈ Ψ(Z
n(ν+1)
2 ). In this case, if the input data are sent

by a binary memoryless source with equally probable

symbols, the generated MIMO symbols are also equally

probable.

If the columns of G generate a subgroup of ZnT

2n , then the

STTC is balanced [23]. For a STTC designed with the

coset partitioning, the set Λ of generated MIMO symbols

is a subgroup of ZnT

2n given by

Λ =

ν+1
∑

i=1

Λi, (45)

where Λi is the subgroup generated by the n columns

of the block i of G. Thus, for these codes, the first rule

of set partitioning is fulfilled.

Remark: The STTCs designed with the coset par-

titioning respect also the rules of the set partitioning,

excepting the third rule, because there are no parallel

paths in the case of STTCs. The main advantage of the

coset partitioning compared to the set partitioning is the

reduced number of possible codes. In fact, the selection

of cosets is more restrictive than the selection of sets.

Multidimensional space-time trellis codes (MSTTCs)

have been proposed by Jafarkhani et al. in [24] named

super-orthogonal space-time trellis codes (SO-STTCs)

and by Ionescu in [9]. Similarly to the proposed method,

Ionescu divides the multidimensional space-time constel-

lation into cosets. In this manner, as proved in [25], the

created codes are geometrically uniform codes. A code

is geometrically uniform if the sets of CEDs computed

between any codeword and all other codewords are

all the same. One of the advantages of geometrically

uniform codes is the efficiency to compute the min-

imal CED between each pair of different codewords.

In order to create a STTC via the coset partitioning

which is geometrically uniform, it is sufficient that all

the blocks of G have the same structure. The blocks

G
i =

[

Gi
1 · · ·G

i
n

]

with i = 1, ν + 1 have the same

structure if and only if G1
j , G

2
j , · · · , G

ν+1
j ∈ El with

j = 1, n and l ∈ {0, · · ·n− 1}.
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D. Design examples for 2n-state (ν = 1) 2n-PSK STTCs

The MIMO symbols belong to Z
nT

2n . The generator

matrix G has 2 blocks of n columns: Gi = [Gi
1, ..., G

i
n],

with i = 1, 2.

To create the best 2n-PSK codes, the generator matrix

is divided into 2 sets of blocks BF and BL constituted

by one block, G
1 and G

2 respectively. These blocks

generate the subgroups Λ1 and Λ2 respectively. The

subgroup Λ1 is denoted by ΛF
1 because it is used to

generate the MIMO symbols originating From a same

state. In the same way, the subgroup Λ2 is denoted by

ΛM
1 because it is used to generate the MIMO symbols

Merging to a same state. If Λ is the set of the generated

MIMO symbols, then each coset of the quotient group

Λ/ΛF
1 [26] contains the MIMO symbols originating from

a same state. Moreover, each coset of the quotient group

Λ/ΛM
1 contains the MIMO symbols merging into a

same state. As stated by the property 3 of the coset

partitioning, the EDs between the elements of each coset

of Λ/ΛF
1 and Λ/ΛM

1 must be maximized. Thus, ΛF
1 and

ΛM
1 must be optimal blocks.

For example, a 8-state 8-PSK STTC with nT trans-

mit antennas is analysed. The generator matrix is

given by G = [Y1Y2Y4|Y8Y16Y32]. This code is rep-

resented in Fig. 3 where Yi + ΛF
1 and Yi′ + ΛM

1 are

cosets of Z
nT

8 with i ∈ {0, 1, 2, 3, 4, 5, 6, 7} and i′ ∈
{0, 8, 16, 24, 32, 40, 48, 56}. In the case of 8-PSK mod-

ulation, to respect property 3 of the coset partitioning,

the EDs between the elements of each subgroup ΛM
1 and

ΛF
1 must be maximized i.e. the first and the last blocks

are optimal.

ΛF
1 = {Y0, Y1, Y2, Y3,

Y4, Y5, Y6, Y7}

ΛF
1 + Y16

ΛF
1 + Y24

ΛF
1 + Y32

ΛF
1 + Y40

ΛF
1 + Y48

ΛF
1 + Y56

ΛF
1 + Y8 ΛM

1 + Y1

ΛM
1 + Y2

ΛM
1 + Y3

ΛM
1 + Y4

ΛM
1 + Y5

ΛM
1 + Y6

ΛM
1 + Y7

ΛM
1 = {Y0, Y8, Y16, Y24,

Y32, Y40, Y48, Y56}

STATES: [xt−1
1 xt−1

2 xt−1
3 ] [xt

1x
t
2x

t
3]

time t time t+ 1

Fig. 3. 8-state 8-PSK STTC.

The sets of optimal blocks are found after an ex-

haustive search. The optimal 4-PSK blocks contain one

element of C∗

0 and one element of a coset relative to

the first element. Thus, the optimal blocks are based on

the permutation of the lines and/or the columns of the

following blocks:

• For 2 transmit antennas:
[

0 2
2 1/3

]T

.

• For 3 transmit antennas:
[

0 2 2
2 1/3 1/3

]T

.

• For 4 transmit antennas:
[

0 0 2 2
0 2 1/3 1/3

]T

.

• For 5 transmit antennas:
[

0 0 2 2 2
2 2 1/3 1/3 1/3

]T

.

• For 6 transmit antennas:
[

0 0 2 2 2 2
2 2 1/3 1/3 1/3 1/3

]T

.

• For 7 transmit antennas:
[

0 0 2 2 2 2 2
2 2 1/3 1/3 1/3 1/3 1/3

]T

.

• For 8 transmit antennas:
[

0 0 2 2 2 2 2 2
2 2 1/3 1/3 1/3 1/3 1/3 1/3

]T

.

The notation ”1/3” must be read ”1 or 3”.

Let us consider the distance spectrum of a block

of G, i.e. the repartition of EDs between 2 different

MIMO symbols generated by the block. The distance

spectrum of each proposed block is optimal and given

in Figs. 4 and 5. In Fig. 4, the black, gray and white

bars correspond to the optimal blocks obtained for 2,

3 and 4 transmit antennas respectively. In Fig. 5, the

black, dark gray, light gray and white bars correspond

to the optimal blocks obtained for 5, 6, 7 and 8 transmit

antennas respectively.
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N
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d
E2

 

 

 2 transmit antennas

 3 transmit antennas

 4 transmit antennas

Fig. 4. Distance spectra of the 4-PSK optimal blocks for 2, 3 and

4 transmit antennas.

In the same way, the optimal blocks for 8-PSK modu-

lation and for 2 to 6 transmit antennas are found after an

exhaustive search. Thus, the optimal blocks are based on

the permutation of the lines and/or the columns of the

following blocks:

• For 2 transmit antennas:
[

0 4 2/6
4 2/6 1/3/5/7

]

.

• For 3 transmit antennas:

[

0 4 2/6
4 g1 g2
4 g1 g2+4 mod 8

]

with

g1 ∈ {2, 6} and g2 ∈ {1, 5} or
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Fig. 5. Distance spectra of the 4-PSK optimal blocks for 5, 6, 7

and 8 transmit antennas.

[

0 4 2/6
4 g1 g2
4 g1+4 mod 8 g3

]

with g1 ∈ {2, 6} and (g2, g3) ∈

{(1, 3), (3, 1), (5, 7), (7, 5)}.

• For 4 transmit antennas:

[

0 0 4
0 4 6/2
4 g1 g2
4 g1 g3

]

with g1 ∈

{2, 6} and (g2, g3) ∈ {(1, 5), (5, 1), (7, 3), (7, 3)} or
[

0 0 4
0 4 6/2
4 g1 g2
4 g1+4 mod 8 g3

]

with g1 ∈ {2, 6} and (g2, g3) ∈

{(1, 3), (3, 1), (5, 7), (7, 5)}.

• For 5 transmit antennas: the number of blocks is

equal to 192. They are based on some combi-

nations [V0V1V2] with V0 = [ 0 0 4 4 4 ]T ∈ C0,

V1 = [ 0 4 v1

1
v1

2
v1

3 ]
T ∈ E1 with v1i ∈ {2, 4} and

V2 = [ 4 2/6 v2

1
v2

2
v2

3 ]
T ∈ E2 with v2i ∈ {1, 3, 5, 7}.

• For 6 transmit antennas: the number of blocks is

equal to 384. They are based on some combinations

[V0V1V2] with V0 = [ 0 0 0 4 4 4 ]T ∈ C0, V1 =
[ 0 4 4 v1

1
v1

2
v1

3 ]
T ∈ E1 with v1i ∈ {2, 4} and V2 =

[ 4 2/6 2/6 v2

1
v2

2
v2

3 ]
T ∈ E2 with v2i ∈ {1, 3, 5, 7}.

The distance spectra generated by each proposed block

are optimal and given in Figs. 6 and 7. In Fig. 6, the

black, gray and white bars correspond to the blocks

obtained for 2, 3 and 4 transmit antennas respectively. In

Fig. 7, the black and white bars correspond to the blocks

obtained for 5 and 6 transmit antennas respectively.
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Fig. 6. Distance spectra of the 8-PSK optimal blocks for 2, 3 and

4 transmit antennas.

In order to obtain the best 2n-state 2n-PSK codes,

each combination of optimal blocks G
1 and G

2 must

9 10 11 12 13 14 15 16
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Fig. 7. Distance spectra of the 8-PSK optimal blocks for 5 and 6

transmit antennas.

be analyzed. Between the obtained codes, those with the

best CEDs have the best performance.

E. Design example for 16-state 4-PSK STTCs

This section explains the design of 16-state 4-PSK

STTCs with nT transmit antennas. The MIMO symbols

belong to Z
nT

4 . This group can be divided into 2 sets:

E0 = C0 and E1 =
⋃

(P + C0) with P ∈ Z
nT

2 \ [0...0]T.

The matrix G has 3 blocks of 2 columns: Gi = [Gi
1, G

i
2]

where Gi
j ∈ Z

nT

4 with i = 1, 3 and j = 1, 2. Hence, the

generator matrix is G = [G1
1G

1
2|G

2
1G

2
2|G

3
1G

3
2].

The first and the last blocks must be optimal blocks.

The second block must generate a subgroup and max-

imize the minimal value of the CED computed for all

pairs of different codewords (E,S).

In the case of a 16-state 4-PSK STTC designed with

the coset partitioning, the trellis can be represented as

shown by Fig. 8. On the left and right sides of the

trellis, the cosets of the MIMO symbols Yi with i = 0, 63
respectively originating from and merging into a same

state are represented.

In this case, the generator matrix is G =
[Y1Y2|Y4Y8|Y16Y32]. To obtain the best G, there are two

steps:

• The selection of G
1 and G

3 is identical to the

previous section. Thus, G1 and G
3 correspond to

one of the optimal blocks proposed in the previous

section after permutation of lines and columns.

• The second step is the selection of the block G
2.

Its columns must be selected via the previous stated

properties of the coset partitioning in order to obtain

a subgroup and increase the minimal value of the

CED computed for all pairs of different codewords

(E,S).

In order to obtain the best codes, each combination

of the blocks G
1, G

2 and G
3 selected as shown in

this paragraph must be analyzed. Between the obtained

codes, those with the best CEDs have the best perfor-

mance.
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ΛM
1 = {Y0 Y1 Y2 Y3}

ΛF
1 + Y4

ΛF
1 + Y8

ΛF
1 + Y16

ΛF
1 + Y16

ΛF
1 + Y20

ΛF
1 + Y24

ΛF
1 + Y28

ΛF
1 + Y32

ΛF
1 + Y36

ΛF
1 + Y40

ΛF
1 + Y44

ΛF
1 + Y48

ΛF
1 + Y52

ΛF
1 + Y56

ΛF
1 + Y60

ΛM
1 = {Y0 Y16 Y32 Y48}

ΛM
1 + Y1

ΛM
1 + Y2

ΛM
1 + Y3

Y8 + ΛM
1

Y9 + ΛM
1

Y10 + ΛM
1

Y11 + ΛM
1

Y12 + ΛM
1

Y13 + ΛM
1

Y14 + ΛM
1

Y15 + ΛM
1

Y17 + ΛM
1

Y18 + ΛM
1

Y19 + ΛM
1

Y16 + ΛM
1

STATES: time t time t+ 1

[xt−1
1 xt−1

2 xt−2
1 xt−2

2 ] [xt
1x

t
2x

t−1
1 xt−1

2 ]

Fig. 8. 16-state 4-PSK STTC.

Remark: Some codes may have null vectors for the

first i null columns in the (ν + 1)th block with 0 < i <
n as the Chen’s 8-state 4-PSK STTCs with 3 transmit

antennas given by

G =
[

2 2 2 1 0 0
2 0 1 2 0 2
2 3 1 0 0 2

]

. (46)

In this case, the number of states is 2nν−i. The columns

which generate the subgroup ΛM
1 (containing the MIMO

symbols which merge into the same state) are the first i
columns of the νth block and the last (n − i) columns

of the (ν + 1)th block.

F. Example of computing-time reduction for 4-PSK

STTCs

To emphasize the usefulness of the coset partitioning,

this section shows the reduction of the computing-time

obtained by using the new coset partitioning method. To

find the best codes, the minimal CED must be computed.

To reduce the search time, the objective is to limit the

analysis to the smallest set containing the best codes.

Tables I and II show the number of codes generated

with the exhaustive search and the coset partitioning. The

percentage of codes generated by the coset partitioning

for 4-state 4-PSK STTCs with 2 to 6 transmit antennas

and for 16-state 4-PSK STTCs with 2 to 5 transmit

antennas is also given in these tables.

The total time to find the best STTCs is reduced to

3.4 × 10−3 % of the search time in the case of an

exhaustive search. This computing-time can be further

reduced when the number of transmit antennas and the

number of states increases.

TABLE I

NUMBER OF 4-STATE 4-PSK STTCS

nT Number of codes Percentage of

Exhaustive search Coset partitioning computed codes

2 4
8

= 65,536 64 9.77 × 10
−2 %

3 4
12

= 16,777,216 576 3.4 × 10
−3 %

4 4
16

= 4.295 × 10
09 4,096 9.536 × 10

−5 %

5 4
20

= 1.099 × 10
12 14,400 2.328 × 10

−6 %

6 4
24

= 2.814 × 10
14 230,400 8.185 × 10

−8 %

TABLE II

NUMBER OF 16-STATE 4-PSK STTCS

nT Number of codes Percentage of

Exhaustive search Coset partitioning computed codes

2 4
12

= 65,536 2,688 2.6 × 10
−3 %

3 4
18

= 6.871 × 10
10 120,960 1.760 × 10

−4 %

4 4
24

= 2.814 × 10
14 1,904,640 6.766 × 10

−7 %

5 4
30

= 1.152 × 10
18 54.925 × 10

9
4.339 × 10

−9 %

Several methods have been proposed to design STTCs.

In [15], Chen et al. have given a suboptimal method

which consists in making an exhaustive search to find

the best STTCs with 2 transmit antennas. To search

the codes with nT ≥ 3 transmit antennas, they keep

the lines containing the coefficients corresponding to the

transmit antennas of the best STTCs with nT−1 transmit

antennas. An exhaustive search has been performed only

for the coefficients of the nT
th transmit antenna. For

instance, in the case of 4-state 4-PSK STTCs with 3

transmit antennas, the percentage of codes generated

by Chen is 0.39% of all possible codes. The number

of STTCs is consequently reduced but this method is

suboptimal. Thus, it is possible to find STTCs with better

performance.

Abdool-Rassool et al. have also proposed a method

to generate 4-PSK codes [18] exploiting the symmetry

of PSK constellations and the permutations of the lines

of G. For the 4-state 4-PSK STTCs with 3 transmit

antennas, the number of generated codes corresponds to

8.33 % of all possible codes.

In [22] and [23], the class of balanced codes is used

to search the best STTCs, but the duration to compute

these codes is longer than using the coset partitioning

method presented in this paper.
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V. NEW CODES

In this section, examples of 4-PSK and 8-PSK STTCs

are presented. For each code, the minimal rank r and

the minimal CED d2E
min

computed for all pairs of dif-

ferent codewords are given. Tables III and IV show

new codes and Chen’s codes with 3 transmit antennas

and 4 transmit antennas respectively. The Chen’s codes

denoted by ∗ can be designed with the coset partitioning.

The performance of these codes is identical to the new

corresponding codes. Tables V and VI show new codes

and Rassool’s codes with 5 and 6 transmit antennas

respectively.

TABLE III

NEW 4-PSK CODES BASED ON THE EUCLIDEAN DISTANCE

CRITERION WITH 3 TRANSMIT ANTENNAS

Number

of

states

Code G r d2
E

min

4
Chen et al.∗





0 2 1 2

2 3 2 0

2 3 3 2



 2 16

New 1





0 2 2 1

2 1 0 2

2 1 2 3



 2 16

8
Chen et al.





2 2 2 1 0 0

2 0 1 2 0 2

2 3 1 0 0 2



 2 20

New 2





0 2 2 3 0 3

2 1 2 3 0 3

2 3 2 1 0 3



 2 20

16
Chen et al.∗





1 2 1 2 3 2

2 0 3 2 2 0

1 2 2 0 1 2



 2 24

New 3





0 2 1 2 2 0

2 1 2 0 3 2

2 1 3 2 1 2



 2 24

32
Chen et al.





0 2 2 1 1 2 0 2

2 2 3 2 2 3 0 0

2 0 3 2 2 1 0 0



 2 24

New 4





2 1 2 3 0 2 0 2

2 1 2 1 2 3 0 3

0 2 2 1 2 1 0 3



 3 24

64
Chen et al.





0 2 3 2 3 0 3 2

2 2 1 2 3 0 2 0

2 0 0 2 2 3 1 1



 2 28

New 5





2 3 2 3 2 1 2 1

0 2 0 2 2 3 0 2

2 1 0 2 2 3 2 1



 3 32

New 4-PSK codes with 7 and 8 transmit antennas are

proposed in Table VII. Table VIII shows Chen’s 8-PSK

codes with 3 and 4 transmit antennas and new 8-PSK

codes with 3 to 6 transmit antennas. In the literature,

neither 4-PSK STTC with more than 6 transmit antennas

nor 8-PSK STTC with more than 4 transmit antennas

have been proposed.

For each new proposed code, the minimal rank com-

puted for all pairs of different codewords is 2. Thus,

the performance is governed by the trace criterion if the

number of transmit antennas is 2 or more.

The traces of some proposed codes are equal to the

trace of the corresponding Chen’s or Rassool’s codes.

TABLE IV

NEW 4-PSK CODES BASED ON THE EUCLIDEAN DISTANCE

CRITERION WITH 4 TRANSMIT ANTENNAS

Number

of

states

Code G r d2
E

min

4
Chen et al.









0 2 1 2

2 3 2 0

2 3 3 2

0 2 2 1









2 20

New 6









0 2 1 2

2 1 3 2

2 1 1 2

2 3 2 0









2 20

8
Chen et al.∗









2 2 2 1 0 0

2 0 1 2 0 2

2 3 1 0 0 2

2 1 2 3 0 1









2 26

New 7









2 1 2 1 0 3

0 2 2 1 0 1

2 1 2 3 0 3

2 1 2 1 0 1









2 26

16
Chen et al.2









1 2 1 2 3 2

2 0 3 2 2 0

1 2 2 0 1 2

1 2 2 0 3 2









2 32

New 8









1 2 2 0 3 2

3 2 3 2 1 2

2 0 3 2 1 2

1 2 2 0 2 0









2 32

32
Chen et al.









0 2 2 1 1 2 0 2

2 2 3 2 2 3 0 0

2 0 3 2 2 1 0

2 1 2 0 1 0 0 2









3 36

New 9









2 1 2 1 2 3 0 3

0 2 2 3 2 3 0 1

2 3 2 1 0 2 0 2

2 3 2 1 0 2 0 2









3 36

64
Chen et al.









0 2 3 2 3 0 3 2

2 2 1 2 3 0 2 0

2 0 0 2 2 3 1 1

1 2 2 0 2 1 3 2









2 38

New 10









2 3 2 1 2 3 0 2

2 3 0 2 2 3 2 3

0 2 2 1 2 3 2 1

2 1 2 1 0 2 2 3









4 40

However, for the new codes, the minimum ED between

the elements generated by the first and the last blocks

is greater than the minimum ED between the elements

generated by the first and the last blocks of the corre-

sponding Chen’s or Rassool’s codes. For example, three

cases are analyzed:

• Chen’s 4-state 4-PSK STTCs with 4 transmit an-

tennas. The distance spectra of the first and the last

blocks noted respectively G
1 and G

2 are shown in

Fig. 9. The distance spectra of the first and the last

blocks of the corresponding new code are presented

in Fig. 4 by the white bars.

• Rassool’s 16-state 4-PSK STTCs with 5 transmit

antennas. The distance spectra of the first and the

last blocks noted respectively G
1 and G

3 are shown

in Fig. 10. The distance spectra of the first and

the last blocks of the corresponding new code are

presented in Fig. 5 by the black bars.

• Chen’s 8-state 8-PSK STTCs with 4 transmit an-

tennas. The distance spectra of the first and the last
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TABLE V

4-PSK STTCS BASED ON THE EUCLIDEAN DISTANCE CRITERION

WITH 5 TRANSMIT ANTENNAS

Number

of

states

Code G r d2
E

min

4
Rassool et al.











2 3 2 0

0 2 3 2

3 2 2 3

2 3 2 1

0 2 3 2











2 26

New 11











2 1 3 2

0 2 3 2

2 1 2 0

2 3 1 2

0 2 2 0











2 26

16
Rassool et al.











2 0 1 2 2 0

1 2 3 2 1 2

3 2 2 0 1 2

2 1 0 2 2 3

1 2 2 0 3 2











2 40

New 12











2 3 2 1 2 1

2 1 2 1 2 1

0 2 2 1 0 2

0 2 0 2 2 3

2 3 2 1 0 2











3 40

32
Rassool et al.











2 1 2 3 0 3 0 1

2 3 2 0 1 0 0 2

2 2 1 2 2 1 0 0

2 0 1 2 2 3 0 0

0 2 2 3 3 2 0 2











3 44

New 13











2 1 2 3 0 3 0 1

2 3 2 0 1 0 0 2

2 2 1 2 2 1 0 0

2 0 1 2 2 3 0 0

0 2 2 3 3 2 0 2











3 44

64 New 14











0 2 1 2 2 3 0 2

2 1 2 0 2 3 2 1

0 2 2 0 0 2 0 2

2 3 1 2 2 1 2 1

2 1 1 2 0 2 2 1











3 50

blocks noted respectively G
1 and G

2 are shown in

Fig. 11. The distance spectra of the first and the last

blocks of the corresponding new code are presented

in Fig. 6 by the white bar.

The elements generated by the first and the last blocks

of generator matrices are the MIMO signals originating

from and merging to a same state. As stated by rule 2 of

set partitioning proposed by Ungerboeck (and property 3

of coset partitioning), for the new codes, these elements

are separated by the largest ED. Besides, the minimum

CED of the published codes is equal to or smaller than

the minimum CED of the new corresponding codes.
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Fig. 9. Distance spectra of the blocks of the Chen’s 4-state 4-PSK

STTC with 4 transmit antennas.
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Fig. 10. Distance spectra of the blocks of the Rassool’s 16-state

4-PSK STTC with 6 transmit antennas.

VI. CODES PERFORMANCE

The performance of each code is evaluated by sim-

ulation over Rayleigh fading channel. The channel fad-

ing coefficients are independent samples of a complex

Gaussian process with zero mean and variance 0.5 per

dimension. These channel coefficients are assumed to be

known by the decoder. Each input binary frame consists

of 130 × n bits. For the simulation, there are 2 receive

antennas. The decoding is performed by the Viterbi’s

TABLE VI

4-PSK STTCS BASED ON THE EUCLIDEAN DISTANCE CRITERION

WITH 6 TRANSMIT ANTENNAS

Number

of

states

Code G r d2
E

min

4
Rassool et al.















0 2 1 2

1 2 2 0

0 2 1 2

2 1 2 0

1 2 2 1

2 1 2 3















2 32

New 15















2 3 1 2

0 2 3 2

0 2 2 0

2 1 2 0

2 1 1 2

2 3 1 2















2 32

16
Rassool et al.















1 2 2 0 3 2

3 2 3 2 1 2

2 0 1 2 2 0

1 2 2 0 1 2

2 1 0 2 2 3

2 3 0 2 2 1















2 48

New 16















2 3 0 2 0 2

0 2 2 1 0 2

2 1 2 1 2 1

0 2 2 1 2 3

2 1 0 2 2 3

2 3 2 1 2 1















3 48

32
Rassool et al.















1 2 3 1 2 0 0 3

2 2 3 2 2 3 0 0

0 2 2 1 1 2 0 2

2 0 3 2 2 1 0 0

2 3 2 1 0 1 0 3

2 1 2 0 3 0 0 2















3 52

New 17















0 2 2 1 0 2 0 2

0 2 2 1 2 3 0 1

2 1 2 3 0 0 0 2

2 1 0 2 2 3 0 1

2 3 2 1 2 1 0 3

2 1 2 1 2 1 0 1















3 52

64 New 18















0 2 2 1 2 1 2 1

0 2 0 2 2 3 2 3

2 1 0 2 2 1 0 2

2 1 2 1 2 3 2 1

2 3 0 2 0 2 2 3

2 1 2 3 2 1 0 2















4 64
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TABLE VII

NEW 4-PSK STTCS BASED ON THE EUCLIDEAN DISTANCE

CRITERION WITH 7 AND 8 TRANSMIT ANTENNAS

nT

Number

of

states

Code G r d2
E

min

7 16 New 19



















0 2 2 1 2 1

0 2 0 2 2 1

2 3 0 2 2 3

2 1 2 3 2 3

2 1 2 3 2 1

2 3 0 2 0 2

2 3 2 1 0 2



















3 56

8 16 New 20























0 2 2 3 2 3

0 2 2 1 2 3

0 2 0 2 2 3

2 1 2 1 2 3

2 1 2 3 2 1

2 1 0 2 0 2

2 1 2 1 0 2

2 1 2 3 0 2























3 64

TABLE VIII

NEW 8-PSK CODE BASED ON THE EUCLIDEAN DISTANCE

CRITERION

nT

Number

of

states

Code G r d2
E

min

3 8
Chen

[

2 4 0 3 2 4
1 6 4 4 0 0
3 2 4 0 4 2

]

2 12

New 21

[

0 4 2 4 6 1
4 6 1 4 2 3
4 2 3 0 4 2

]

2 12

4 8
Chen





2 4 0 3 2 4
1 6 4 4 0 0
3 2 4 0 4 2
7 2 4 5 4 0



 2 16.58

New 22





4 2 1 0 0 4
4 6 3 0 4 2
0 4 2 4 2 3
0 0 4 4 6 7



 2 16

5 8 New 23







0 0 4 4 0 0
0 4 2 5 4 6
4 2 1 1 4 6
4 2 1 1 4 6
4 2 5 1 4 6






2 20.58

6 8 New 24









4 6 5 4 0 0
4 6 5 5 4 6
4 6 1 2 0 4
0 4 6 2 0 4
0 4 2 7 4 2
0 0 4 5 4 2









2 25.17
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Fig. 11. Distance spectra of the blocks of the Chen’s 8-state 8-PSK

STTC with 4 transmit antennas.

algorithm. In the next figures, the SNR is computed as

the ratio between the average received power by each

antenna and the average power of the white noise.

In Figs. 12, 13, 14, 15, 16 and 17, the slow Rayleigh

fading channels are considered. Figs. 12 and 13 show

the performance of the 8/32/64-state 4-PSK codes for

3 transmit antennas presented in Table III and the

performance of the 4/8/32/64-state 4-PSK codes for 4

transmit antennas presented in Table IV respectively.

The performance of new codes and Rassool’s codes

with 5 and 6 transmit antennas of Table V and VI

is shown in Figs. 14 and 15. The performance of the

new codes presented in Table VII is shown in Fig. 16.

Finally, Fig. 17 gives the performance of some 8-PSK

codes presented in Table VIII. The codes with a large

number of antennas and states can not be compared

to published codes because no corresponding code is

available in the literature. The other new STTCs slightly

outperform the corresponding Chen’s or Rassool’s codes.

However, the time to find the new STTCs using the coset

partitioning is considerably reduced compared to the

corresponding Chen’s or Rassool’s codes. In [9], Ionescu

shows that the performance over slow and fast fading

channels is closely related due to the relation between

the ED distances and the product distances between two

codewords. To emphasize this idea, the performance of

the Rassool’s codes with 5 and 6 transmit antennas and

the new corresponding codes in the case of fast Rayleigh

fading channels is compared for 2 receive antennas. Figs.

18 and 19 show that the performance improvement of the

new STTCs for respectively 5 and 6 transmit antennas

is similar to the one observed over slow Rayleigh fading

channel.
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Fig. 12. Performance of 8/32/64-state 4-PSK STTCs with 3 transmit

antennas over a slow Rayleigh fading channel.

VII. CONCLUSION

In this paper, a general method called coset partition-

ing to generate optimal 2n-PSK STTCs for any number

of transmit antennas and any number of states has been

presented. This new method can be used to design

easily and efficiently the optimal STTCs based on the



14

0 5 10 15
10

−3

10
−2

10
−1

10
0

SNR (dB)

F
E

R

 

 

Chen (4 states)

New 6 (4 states)

Chen (8 states)

New 7 (8 states)

Chen (32 states)

New 9 (32 states)

Chen (64 states)

New 10 (64 states)

Fig. 13. Performance of 4/8/32/64-state 4-PSK STTCs with 4

transmit antennas over a slow Rayleigh fading channel.

0 2 4 6 8 10 12

10
−3

10
−2

10
−1

10
0

SNR (dB)

F
E

R

 

 

Rassol (4 states)

New 11 (4 states)

Rassol (16 states)

New 12 (16 states)

Rassool (32 states)

New 13 (32 states)

New 14 (64 states)

Fig. 14. Performance of 4/16/32/64-state 4-PSK STTCs with 5

transmit antennas over a slow Rayleigh fading channel.

ED criterion, avoiding the time-consuming exhaustive

search. This method based on the Calderbank’s approach

is an extension to MIMO systems of the set partitioning

proposed by Ungerboeck. The coset partitioning is sim-

pler than the set partitioning because the MIMO symbols

are separated into cosets, not into simple sets. Thereby,

the number of STTCs to analyze is drastically reduced

compared to the exhaustive search and the previous

published methods, especially for large numbers of trans-

mit antennas and states. Therefore, the time to generate

optimal STTCs for any number of transmit antennas is

considerably lowered. New optimal 4-PSK with 3 to 6

transmit antennas and 8-PSK STTCs with 3 to 4 trans-

mit antennas designed via coset partitioning have also
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Fig. 15. Performance of 4/16/32/64-state 4-PSK STTCs with 6

transmit antennas over a slow Rayleigh fading channel.
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Fig. 16. Performance of 16-state 4-PSK STTCs with 7 and 8 transmit

antennas over a slow Rayleigh fading channel.

been proposed. These new codes slightly outperform all

corresponding published codes. Finally, the first 4-PSK

STTC with 7 and 8 transmit antennas and 8-PSK STTCs

with 5 and 6 transmit antennas have been presented and

their performance evaluated by simulation.
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APPENDIX

A. Proof of proposition 1

The Lagrange’s theorem states that for a finite group

Λ, the order of each subgroup Λl of Λ divides the order

of Λ. In the case of 2n-PSK, card(Λ) = card(ZnT

2n ) =
2nnT , then card(Λl) = 2m. Hence, card(Λl) is an even

number. The null element belongs to Λl and the opposite

of each element is included in Λl. Thus, in order to

obtain an even number for card(Λl), there are at least

one element Vm 6= 0 which respects Vm = −Vm. The

elements of only C0 respect Vm = −Vm. Therefore, there

is at least one element Vm ∈ C∗

0 .

B. Proof of proposition 2

As shown by property 1, there is at least one element

which belongs to C∗

0 . Thus, if V1 ∈ C∗

0 , Λ1 = {0, V1} is

a subgroup.

We consider that m − 1 elements have been selected

to generate a subgroup Λm−1 with m = 2, nnT .

If we select Vm ∈ Z
nT

2n \ Λm−1 such as 2Vm = Q ∈
Λm−1, a set Λm is defined by

Λm = Λm−1

⋃

CVm
(47)

where CVm
is a coset defined by

CVm
= Vm + Λm−1. (48)

In order to show that Λm is a subgroup of Z
nT

2n , the

following propositions must be proved:

1) 0 ∈ Λm.

Proof: As Λm = Λm−1
⋃

(Λm−1 + Vm) and 0 ∈
Λm−1, we have 0 ∈ Λm.

2) ∀V1, V2 ∈ Λm, V1 + V2 ∈ Λm.

Three cases are analyzed.

1st case: ∀V1, V2 ∈ CVm
, V1 = Vm +Q1 and V2 =

Vm + Q2 with Q1, Q2 ∈ Λm−1. Thus, V1 + V2 =
2Vm +Q1 +Q2. As 2Vm ∈ Λm−1 and Λm−1 is a

subgroup, V1 + V2 ∈ Λm−1 ⊂ Λm.

2nd case: ∀V1 = Vm+Q1 ∈ CVm
with Q1 ∈ Λm−1

and ∀V2 ∈ Λm−1, V1 + V2 = Vm + Q1 + V2. As

Λm−1 is a subgroup, Q1+V2 ∈ Λm−1. Therefore,

V1 + V2 ∈ CVm
⊂ Λm.

3rd case: ∀V1, V2 ∈ Λm−1. As Λm−1 is a subgroup

V1 + V2 ∈ Λm−1 ⊂ Λm.

Thus, Λm is closed under addition.

3) ∀V ∈ Λm, ∃−V ∈ Λm such as V + (−V ) ∈ Λm.

Proof: as Λm−1 is a subgroup, −Q = −Vm +
(−Vm) = −2Vm ∈ Λm−1 with Vm + (−Vm) = 0
and Q+ (−Q) = 0. So, we have

−Vm = Vm + (−2Vm) ∈ CVm
⊂ Λm. (49)

Therefore, using (48): −Vm = Vm + Q′ ∈ CVm

with Q′ ∈ Λm−1. ∀V1 ∈ Cm−1, V1 = Vm + Q1

with Q1 ∈ Λm−1. Because Λm−1 is a subgroup,

−Q1 ∈ Λm−1. So, −V1 = −Vm +(−Q1) = Vm +
Q′ + (−Q1) ∈ Cm ⊂ Λm because Q′ + (−Q1) ∈
Λm−1.

Therefore, the opposite of each element of Λm

belongs to Λm.

Thus, if each element is selected within a coset relative

to a generated element, the created set Λm is also a

subgroup.


