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Loss Performance Modeling for Hierarchical Heterogeneous Wireless Networks with
Speed-Sensitive Call Admission Control

Qian Huang, Yue-Cai Huang, King-Tim Ko and Villy Bæk Iversen

Abstract—Hierarchical overlay structure is an alternative so-
lution to integrate the existing and future heterogeneous wireless
networks for providing subscribers with better mobile broadband
services. Traffic loss performance in such integrated heteroge-
neous networks is necessary for operator’s network dimensioning
and planning. This paper investigates the computationally effi-
cient loss performance modeling for multiservice in hierarchical
heterogeneous wireless networks. A speed-sensitive call admission
control scheme is considered in our model in order to assign
overflowed calls to the appropriate tiers. This approach avoids
unnecessary and frequent handoff between cells and reduces
signaling overheads. An approximation model with guaranteed
accuracy and low computational complexity is presented for the
loss performance of multiservice traffic. The accuracy of the
numerical results is validated by comparing the results from
the approximation with the simulations.

Index Terms—Hierarchical networks, heterogeneous wireless
networks, mobile traffic management, overflow, multiservice,
QoS, performance evaluation.

I. INTRODUCTION

With the rapid development of mobile broadband tech-
nologies such as femtocells, WiFi, WiMAX, 3G and LTE,
integration of various wireless networks has become necessary
to provide mobile users with seamless Internet access through
different technologies. A solution that integrates various wire-
less networks into a hierarchical overlay system based on hi-
erarchical cell structure has been considered [1]. This solution
has also been used for the deployment of femtocell networks
in 3G, WiMAX and LTE networks [2], [3], [4]. The advantage
of this solution is that mobile users in the systems can switch
between various wireless networks for more efficient use of
network resources. In a WiMAX/femtocell overlay system
presented in [2], mobile users can connect to Internet via
nearby femtocells, and the calls rejected by femtocell networks
due to lack of radio access can overflow to overlaying WiMAX
networks. Such kind of call overflow schemes has been used
in cellular overlay networks for reducing call blocking proba-
bility and improving bandwidth utilization [5], [6]. However,
allowing call overflow between the overlay networks results
in forced handoff and extra signaling overheads. Additionally,
frequent handoff can be incurred by mobile user’s movement
in those areas covered by small cells such as femtocells and
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leads to increased signaling overheads and operating costs. A
solution to this problem is to take into account user mobility
speed in call admission control (CAC) for mobility manage-
ment as in cellular overlay networks [7], [8], [9], [10], [11].
We refer to this CAC as speed-sensitive CAC. Its basic idea
is as follows. When calls are blocked due to cell capacity
limit, blocked calls from fast-speed users are redirected to
high-tier large cells, e.g. macro-cells; blocked calls from slow-
speed users are redirected to low-tier cells, e.g. microcells or
femtocells. This approach assigns mobile users to appropriate
cells so that frequent call handoff from fast-speed users in
small cells can be avoided and signaling overheads can be
reduced.

To provide acceptable quality of service (QoS) for mobile
users in hierarchical overlay networks, resource allocation
between the overlay networks must be carefully designed since
the overflow traffic from other networks will compete for
bandwidth with local users [12], [13], [14]. As an essential
problem to be addressed for optimal resource allocation,
computationally efficient methods for traffic loss performance
in hierarchical heterogeneous networks are necessary. To
obtain the loss performance, a key issue to be solved is
the overflow traffic modeling. There is a simple solution
that assumes the overflow traffic between the overlay cells
to be a Poisson process. This assumption has been used
in past loss models for single service (e.g. voice call) in
cellular overlay systems [5], [9], [10], [11] and also some
multiservice loss models [14], [15], [16]. This simple Poisson
assumption, however, ignores the fact that overflow traffic
is “bursty” in nature, and has been demonstrated that it
leads to erring performance evaluation in multiservice cellular
overlay networks [17]. To obtain the accurate performance
evaluation, more computationally complicated models have
been considered for overflow traffic loss analysis, such as the
Markov-modulated Poisson Process (MMPP) [17], [18] and its
special two-state case known as Interrupted Poisson Process
(IPP) [6]. The major concern with the MMPP model is the
high computation effort involved in solving multi-dimensional
equilibrium state equations. For a single-tier network with cell
capacity C and n traffic flows, the MMPP model has a Cn

order of complexity. This computation will become intractable
in hierarchical heterogeneous wireless networks with large
number of traffic flows and cell capacity.

Our previous work in [19] has developed a so-called
Multiservice Overflow Approximation (MOA) model to ob-
tain the multiservice loss performance in a homogeneous
micro/macrocell overlay system, where “homogeneous” is
defined as having the same offered traffic in each of the
microcells. Under this assumption, the loss performance of the
overflow traffic out of microcells in the overlaying macrocell
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can be obtained by using the multi-rate Hayward’s approxi-
mation [19]. This MOA model, however, is not available for
hierarchical heterogeneous wireless systems. In heterogeneous
scenarios, the networks located at the same or different tiers
can be differentiated in terms of transmission rate, capacity and
signal coverage range. These heterogeneous parameters have
significant effects on network performance modeling [20]. An
effect is the change on the statistical characteristics of channel
occupancy times of a traffic flow in different networks. This
factor leads to different considerations for traffic loss modeling
of heterogeneous overlay networks in this paper, which has not
been addressed in our previous work of [19] .

In our current work, we consider heterogeneous overlay
networks, where the overflow traffic from different networks
has different statistical moments (e.g. mean and variance)
which are related to the service time distributions in these
networks. In addition, the statistical moments of the overflow
traffic offered to a new network are redefined according to
the service time distribution in this new network. The latter
can be further elaborated by the following example. Consider
a two-tier overlay system with the single overflow traffic
from tier-1 to tier-2. The service times ts for a call are
determined by a distribution function F1(ts) in tier-1 and
another distribution function F2(ts) in tier-2. From the loss
analysis in tier-1, we obtain the mean (m1) and the variance
(v1) of the overflow traffic from tier-1 in terms of the service
time distribution F1(ts). For the loss analysis of this overflow
traffic in tier-2, we need to recalculate the mean (m′

1) and
variance (v′1) in terms of the service time distribution F2(ts).
As F1(ts) 6= F2(ts), here m′

1 6= m1 and v′1 6= v1.
In this paper, we present a recursive algorithm to derive

the moments of multi-class overflow traffic in hierarchical
heterogeneous overlay networks with different service time
distributions. With the obtained moments of overflow traffic,
we develop the multi-class traffic loss model for a hierarchical
heterogeneous overlay system with the speed-sensitive CAC
scheme performed on the inter-tier overflow calls. With the
proposed loss model, we obtain the numerical solutions of
call blocking and dropping probabilities for multi-class traffic
in the system. As for the multiservice and multi-QoS traf-
fic in broadband networks, e.g. UMTS, WiMAX, LTE, and
802.11e, a loss model based on bandwidth allocation in an
equivalent number of bandwidth units per call or connection
can be established. This method enables CAC to be applied
to an incoming call and connection. Hence, call blocking and
dropping probabilities are still important performance metric
of interest in broadband networks.

The remainder of this paper is organized as follows. The
system model is described in Section II. The proposed loss
model for multi-class traffic in hierarchical heterogeneous
overlay systems with the speed-sensitive CAC scheme is
presented in Section III. Model validation, numerical results,
and discussions are presented in Section IV. We draw our
conclusions in Section V.

II. HIERARCHICAL HETEROGENEOUS OVERLAY SYSTEM

Consider a two-tier overlay system with heterogeneous
wireless networks distinguished from each other in capacity,

signal coverage range, statistical characteristics of service time
distribution, user mobility, volume, and traffic behavior. The
high-tier networks are assumed to have greater signal coverage
than those at the low tier; each high-tier network overlays
several adjacent low-tier networks.

The aforementioned speed-sensitive CAC scheme is used to
manage the overflow traffic between the heterogeneous overlay
networks. Initially, if the new calls of fast-speed users in a low-
tier network are blocked due to capacity limitation, the blocked
new calls are overflowed to a high-tier network for possible
service. If the blocked new calls are from slow-speed users in
a high-tier network, they are overflowed to a low-tier network.
Similar control schemes are used to handle the handoff calls
between the neighboring networks at the same tier. If fast-
speed users in a low-tier network cannot be handed off to a
neighboring network, their handoff calls are overflowed to the
networks at the high tier. The failed handoff calls of slow-
speed users in the high-tier networks are overflowed to the
networks at the low tier. With this scheme, a call is finally
dropped when there is no bandwidth available for it in the
hierarchical system; call blocking and dropping probabilities
can thus be improved.

Additionally, we use the bandwidth reservation scheme [21]
to protect the handoff calls. A portion of capacity in each
tier network is reserved for handoff calls only; the remaining
bandwidth is shared by all arriving calls. For simplicity, the
bandwidth required by a class k call, denoted as dk, is
measured by the number of bandwidth units.

Assume that K classes of services are supported in the two-
tier system. Fig. 1 shows the traffic flows related to class k
service, 1 ≤ k ≤ K. The notations in Fig. 1 are defined
in Appendix I. The offered traffic from class k service to any
network s at tier-l (l = 1, 2) can be an aggregation of the three
types of traffic: local new call traffic, handoff call traffic from
adjacent networks at the same tier, and overflow call traffic
from the high/low tier networks. The local new call traffic to
each network can be assumed to have a Poisson arrival process.
The handoff traffic within the same tier can also be approx-
imated by a Poisson process as in [6], [9], [17], and [21].
However, the overflow traffic is non-Poisson. Therefore, the
aggregated traffic to each overlay network from each service
class is non-Poisson, and its statistics can be characterized by
the first two moments, the mean and the variance.

Define λ
(k,l,s)
n and λ

(k,l,s)
h,in as the local new call and handoff

call arrival rates of class k service to tier-l network s, respec-
tively, with l = 1, s = s1 and l = 2, s = s2. Define λ

(k,1,s1)
nu

and λ
(k,2,s2)
nd as the overflow call arrival rates from the blocked

class k new calls in tier-1 network s1 and tier-2 network s2 but
overflowed up to tier-2 and down to tier-1 networks, respec-
tively. Similarly define λ

(k,1,s1)
hu and λ

(k,2,s2)
hd as the overflow

call arrival rates from the blocked class k handoff calls in tier-
1 network s1 and tier-2 network s2 but overflowed up to tier-2
and down to tier-1 networks, respectively. Hereafter, we use
the subscript “n” in the notations to stand for any new call
traffic, and the subscript “h” to stand for any handoff traffic.

Suppose that each tier-2 network overlays N1 tier-1 net-
works. The aggregated class k traffic offered to tier-1 network
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s1 has the call arrival rates

Λ(k,1,s1)
n = λ(k,1,s1)

n + λ
(k,2,s2)
nd , (1)

Λ
(k,1,s1)
h = λ

(k,1,s1)
h,in + λ

(k,2,s2)
hd ; (2)

and the aggregated class k traffic to tier-2 network s2 has

Λ(k,2,s2)
n = λ(k,2,s2)

n +

N1∑
s1=1

λ(k,1,s1)
nu , (3)

Λ
(k,2,s2)
h = λ

(k,2,s2)
h,in +

N1∑
s1=1

λ
(k,1,s1)
hu . (4)

Let B
(k,l,s)
n and B

(k,l,s)
h denote the blocking probabilities

for class k new calls and handoff calls in tier l network s. The
class k handoff call arrival rate to tier l network s, denoted as
λ
(k,l,s)
h,in , is the summation of the class k handoff call departure

rates, denoted as λ
(k,l,s′)
h,out , from all neighboring networks s′ at

the same tier l when the system is in the equilibrium state, i.e.

λ
(k,l,s)
h,in =

∑
s′∈Ωl,s

q(s′, s)λ
(k,l,s′)
h,out , (5)

where Ωl,s denotes the set of the neighboring networks of tier
l network s, for l = 1, s = s1 and l = 2, s = s2; q(s′, s)
denotes the probability of a call in tier l network s′ making a
handoff to tier l network s, for s′ 6= s. In cellular systems with
hexagonal-shaped cells, where each cell is surrounded by six
neighboring cells and mobile users are uniformly distributed
in each cell, we have q(s′, s) = 1/6.

Let ν
(k,l,s)
n , ν

(k,l,s)
v and ν

(k,l,s)
h denote the probabilities

of an accepted new call (both local and overflowed), over-
flow handoff call and local handoff call in tier l network s
making a handoff out of its current network, respectively.
Here l = 1, s = s1 and l = 2, s = s2. These handoff
probabilities for different types of accepted calls in a network
can be derived from their service time distributions in the
given network. The service time of a call in a network is
jointly determined by the call’s holding time and sojourn time
in the network. Different types of accepted calls in the network
follow different service time distributions. For new calls (both
local and overflowed), the service time distribution is jointly
determined by the call holding time and the residual sojourn
time distributions in the given network. For local handoff calls,
it is jointly determined by the residual call holding time and
the sojourn time distributions. For overflowed handoff calls, it
is jointly determined by the residual call holding time and the
residual sojourn time distributions.

The departure rates λ
(k,l,s)
h,out for l = 1, s = s1 and l = 2, s =

s2 are derived as

λ
(k,1,s1)
h,out = Λ(k,1,s1)

n (1−B(k,1,s1)
n )ν(k,1,s1)n

+ λ
(k,1,s1)
h,in (1−B

(k,1,s1)
h )ν

(k,1,s1)
h

+ λ
(k,2,s2)
hd (1−B

(k,1,s1)
h )ν(k,1,s1)v , (6)

λ
(k,2,s2)
h,out = Λ(k,2,s2)

n (1−B(k,2,s2)
n )ν(k,2,s2)n

+ λ
(k,2,s2)
h,in (1−B

(k,2,s2)
h )ν

(k,2,s2)
h

+

N1∑
s1=1

λ
(k,1,s1,)
hu (1−B

(k,2,s2)
h )ν(k,2,s2)v . (7)

Assume there is no downward overflow traffic by letting
λ
(k,2,s2)
nd = λ

(k,2,s2)
hd = 0. Assume q(s′, s) = 1/6. The handoff

call arrival rates λ
(k,l,s)
h,in in Eqns. (2) and (4) can be resolved

by an iterative algorithm [21], [22] aiming to achieve Eqn. (5)
under the system equilibrium state. Exemplify tier 1 system.

1. Initially, let δ = 10−6; let λ′(k,1,s)
h,in = 1.0 and λ

(k,1,s)
h,out =

1.0 for all s and k in tier 1. Obtain the initial values of
λ
(k,1,s)
h,in from Eqn. (5).

2. Without downward overflows, Λ(k,1,s)
h = λ

(k,1,s)
h,in . It is

known that Z(k,1,s)
h = 1. From Eqn. (17) and Eqn. (18)

obtain B
(k,1,s)
n and B

(k,1,s)
h by the method described in

Section III-B.
3. Obtain λ

(k,1,s)
h,out from Eqn. (6); then obtain λ′(k,1,s)

h,in =∑
s′∈Ω1,s

λ
(k,1,s′)
h,out from Eqn. (5).

4. If |λ′(k,1,s)
h,in − λ

(k,1,s)
h,in | > δ, let λ(k,1,s)

h,in = λ′(k,1,s)
h,in , and

then repeat step 2 to step 4; else λ
(k,1,s)
h,in = λ′(k,1,s)

h,in .

Similar procedures are used to obtain λ
(k,2,s)
h,in .

The key point to solve the problem of loss performance
modeling in the overlay system is to determine the first
two moments of the aggregated traffic offered to the overlay
network, e.g. the call arrival rates Λ

(k,2,s2)
n and Λ

(k,2,s2)
h ,

and the peakedness1 Z
(k,2,s2)
n and Z

(k,2,s2)
h of the aggregated

new call and handoff call traffic to a tier-2 network s2. This
problem is addressed in the following contents.

III. THE PROPOSED OVERFLOW LOSS MODEL

With the speed-sensitive CAC scheme, bidirectional call
overflows, upward and downward, are supported in the hier-
archical heterogeneous overlay systems. Blocked calls from
fast-speed users are overflowed to the higher-tier networks
with larger coverage; blocked calls from slow-speed users are
overflowed to the lower-tier networks with smaller coverage.
For conciseness, we elaborate our model by assuming that
only upward overflow traffic from fast-speed users exists. The
same analysis method can be used for downward overflow
traffic from slow-speed users.

A. Input traffic modeling

Let (Λ
(k,l,s)
n , Z

(k,l,s)
n , dk) and (Λ

(k,l,s)
h , Z

(k,l,s)
h , dk)

represent the traffic from class k new calls and handoff calls
input to any network s at tier-l respectively, with the required
bandwidth dk for each class k call.

Using the idea of the multi-rate Hayward’s approximation,
the loss performance of any network s at tier l with the input
traffic (Λ

(k,l,s)
n , Z

(k,l,s)
n , dk) and (Λ

(k,l,s)
h , Z

(k,l,s)
h , dk) can

be approximated by the loss performance of an equivalent
trunk group with Poisson input

(
Λ(k,l,s)

n

Z
(k,l,s)
n

, 1, dkZ
(k,l,s)
n

)
and(

Λ
(k,l,s)

h

Z
(k,l,s)

h

, 1, dkZ
(k,l,s)
h

)
, if the equivalent trunk group has

the same service time distribution and the same mean service
rates µ

(k,l,s)
n and µ

(k,l,s)
h for class k new calls and handoff

calls as the original network s at tier l.

1Peakedness is defined as the ratio of variance to mean.
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To achieve this equivalent trunk group, the means and
variances of the multiservice overflow traffic from tier-1 to
tier-2 are required to know. Theoretically, the exact solution
of the means and variances of the multiservice overflow traffic
can be obtained from the state probability distribution of
the aforementioned infinite-server overflow group by solving
the related infinite-state Markov chain model. However, it is
impractical to solve a multidimensional Markov chain with an
infinite number of states. Existing methods solve this problem
by assuming a large enough finite-server overflow group in
computations [6], [16], [17]. The computations involved are
still very extensive for large networks. Here we propose a
decomposition method to obtain the mean and peakedness of
the multiservice overflow traffic.

We start from tier-1. As it is assumed that the new call
and handoff call traffic is Poisson and only upward overflow
traffic exists, we have the call arrival rates of the new call
and handoff call traffic to tier-1 network s1 determined by
Λ
(k,1,s1)
n = λ

(k,1,s1)
n and Λ

(k,1,s1)
h = λ

(k,1,s1)
h,in , respectively.

The offered traffic load intensities are defined as A
(k,1,s1)
n =

λ
(k,1,s1)
n /µ

(k,1,s1)
n and A

(k,1,s1)
h = λ

(k,1,s1)
h,in /µ

(k,1,s1)
h ; and the

peakedness are given by Z
(k,1,s1)
n = 1 and Z

(k,1,s1)
h = 1.

Our first step is to decompose the input traffic flows from
different classes of new calls and handoff calls to the equiva-
lent trunk group for tier-1 network s1, by redirecting the input
traffic flows to a set of hypothetical groups. This is shown in
Fig. 2. For each class of new call or handoff call traffic, there is
an independent hypothetical group to accommodate the calls.
The hypothetical groups are determined by two constraints.
(1) The service time for each class k call in the hypothetical
group is identical to that in the equivalent trunk group for tier-
1 network s1, and also identical to that in the original tier-1
network s1. This gives identical mean service rates µ

(k,1,s1)
n

and µ
(k,1,s1)
h in the original, the equivalent and the hypothetical

groups. (2) The blocking probabilities of class k calls in the
hypothetical groups, B̂(k,1,s1)

n and B̂
(k,1,s1)
h , are identical to

that in the equivalent trunk group, and also equivalent to that
in the original tier-1 network s1; that is, B̂(k,1,s1)

n ≈ B
(k,1,s1)
n

and B̂
(k,1,s1)
h ≈ B

(k,1,s1)
h .

The foregoing decomposition process allows us to approx-
imate the overflow traffic from the equivalent trunk group
for tier-1 network s1 by the overflow traffic from the cor-
responding hypothetical group. The moments of each over-
flow traffic from the original tier-1 network s1, m

(k,1,s1)
nu ,

z
(k,1,s1)
nu , m

(k,1,s1)
hu , and z

(k,1,s1)
hu are then derived from the

moments of the overflow traffic from the hypothetical group,
also the equivalent trunk group, m̂(k,1,s1)

nu , ẑ(k,1,s1)nu , m̂(k,1,s1)
hu

and ẑ
(k,1,s1)
hu , as the equivalent trunk group is a loss system

partially equivalent to the original tier-1 network s1 (see Ap-
pendix II) and their moments of overflow traffic are correlated
based on Eqn. (25) and Eqn. (26).

Next, the capacity of each hypothetical group shown in
Fig. 2 is to be determined. Denote β

(k,1,s1)
n and β

(k,1,s1)
h as

the capacity of the hypothetical groups that accommodate,
respectively, class k new calls and handoff calls offered to the
equivalent trunk group for tier-1 network s1. Denote B̂

(k,1,s1)
n

as the call blocking probability of class k new calls in the
hypothetical group; it is obtained by the Erlang-B formula

E(β(k,1,s1)
n ;A(k,1,s1)

n /Z(k,1,s1)
n , 1, dkZ

(k,1,s1)
n ). (8)

Similarly, we obtain the call blocking probability of class k

handoff calls in the hypothetical group, denoted as B̂(k,1,s1)
h . It

has the same derivation as Eqn. (8), except that all the notation
subscripts “n” in Eqn. (8) are replaced by “h” to identify
the handoff calls. For conciseness, in the following contents
we only present the equations of the loss model for the new
calls. The equations of the loss analysis for the handoff calls
are identified by replacing the notation subscripts “n” in the
equations for the new calls by “h”.

Based on the above constraint (2) on the hypothetical groups
B̂

(k,1,s1)
n ≈ B

(k,1,s1)
n , the value of β

(k,1,s1)
n is obtained by

solving the Erlang-B formula Eqn. (8) in an iterative manner.
The same approach is used to obtain the value of β(k,1,s1)

h .
The hypothetical group for class k new calls

(β
(k,1,s1)
n ; A

(k,1,s1)
n

Z
(k,1,s1)
n

, 1, dkZ
(k,1,s1)
n ) is completely equivalent

to a trunk group defined as ( β
(k,1,s1)
n

dkZ
(k,1,s1)
n

; A
(k,1,s1)
n

Z
(k,1,s1)
n

, 1, 1), with
the same call blocking probability and the same moments of
the overflow traffic. Thus, the mean m̂

(k,1,s1)
nu and peakedness

ẑ
(k,1,s1)
nu of the overflow traffic from hypothetical group
(β

(k,1,s1)
n ; A

(k,1,s1)
n

Z
(k,1,s1)
n

, 1, dkZ
(k,1,s1)
n ) can be obtained from

trunk group ( β
(k,1,s1)
n

dkZ
(k,1,s1)
n

; A
(k,1,s1)
n

Z
(k,1,s1)
n

, 1, 1); they are

m̂(k,1,s1)
nu = B̂(k,1,s1)

n · A
(k,1,s1)
n

Z
(k,1,s1)
n

, (9)

ẑ(k,1,s1)nu = 1− m̂(k,1,s1)
nu

+

A
(k,1,s1)
n

Z
(k,1,s1)
n

β
(k,1,s1)
n

dkZ
(k,1,s1)
n

+ 1− A
(k,1,s1)
n

Z
(k,1,s1)
n

+ m̂
(k,1,s1)
nu

. (10)

The peakedness in Eqn. (10) is derived from Rior-
dan’s equation [23]. The same approach is used to ob-
tain the mean m̂

(k,1,s1)
hu and the peakedness ẑ

(k,1,s1)
hu

of the overflow traffic from the hypothetical group

(β
(k,1,s1)
h ;

A
(k,1,s1)

h

Z
(k,1,s1)

h

, 1, dkZ
(k,1,s1)
h ) for class k handoff calls.

As the hypothetical groups give the same call blocking
probability as the equivalent trunk group obtained from the
multi-rate Hayward’s approximation, the means of class k new
call overflow traffic from the equivalent trunk group for tier-1
network s1 can be directly obtained by Eqn. (9). However,
the peakedness of class k new call overflow traffic from the
equivalent trunk group is approximated by Eqn. (10), because
the correlation between different overflow traffic from the
same equivalent trunk group is compromised by the foregoing
decomposition. Here we need to clarify that the mean and the
peakedness obtained by Eqn. (9) and Eqn. (10) for class k
new call overflow traffic from the hypothetical trunk groups
are related to the mean call service time 1/µ

(k,1,s1)
n for class

k new calls in tier-1 network s1.
In the considered heterogeneous overlay system, the net-

works located at either the same or different tiers can have dif-
ferent statistical characterizations, besides different capacities



5

and coverage. The service time for a mobile call in a network
is jointly determined by the call holding time and sojourn time
in the network. Due to user mobility (varying velocity, random
trajectory) and irregular cell coverage, a mobile call may have
different distributions of sojourn time in different networks or
the same distribution but different means. This will lead to
different distributions of call service times for a mobile call
in different networks, or the same distribution but different
mean call service times. For simplicity, we assume that mobile
calls from each service class have the same call holding time
distribution and the same sojourn time distribution but different
means in different networks; i.e. for a given class of calls, they
will have the same service time distribution but different mean
service times in different networks.

Assume that tier-2 network s2 covers N1 tier-1 networks.
By the foregoing analysis, we obtain the moments of the
overflow traffic from the tier-1 networks according to the mean
call service times 1/µ

(k,1,s1)
n for new calls and 1/µ

(k,1,s1)
h

for handoff calls in these tier-1 networks. As we further
consider the loss performance of these overflow calls in tier-
2 network s2, the moments of the overflow traffic offered to
tier-2 should be redefined according to the mean call service
times 1/µ

(k,2,s2)
n and 1/µ

(k,2,s2)
h for new calls and handoff

calls in tier-2 network s2. A similar problem was studied
in [24], where a recursive algorithm was used to derive the
approximate moments of single-service overflow traffic in
its primary and secondary trunk groups with different mean
service times. Here, we use the similar recursive algorithm
to derive the means and the variances of the multiservice
overflow traffic from tier-1 networks to tier-2, according to
the different mean call service times in tier-1 and tier-2.

Define ε
(k,s2,s1)
n as the ratio of mean call service time in

tier-1 network s1 to that in tier-2 network s2 for class k
new calls, i.e. ε(k,s2,s1)n = µ

(k,2,s2)
n /µ

(k,1,s1)
n . Similarly, define

ε
(k,s2,s1)
h = µ

(k,2,s2)
h /µ

(k,1,s1)
h for class k handoff calls.

Let m̃nu(µ
(k,2,s2)
n ) and ṽnu(µ

(k,2,s2)
n ) denote the redefined

mean and variance of the overflowed new call traffic from the
hypothetical group for tier-1 network s1 to tier-2 network s2
according to the mean call service time 1/µ

(k,2,s2)
n in tier-2

network s2. Using the recursive method shown in Appendix
III, m̃nu(µ

(k,2,s2)
n ) and ṽnu(µ

(k,2,s2)
n ) are derived by Eqn. (32)

and Eqn. (34); they are respectively equivalent to the mean and
the variance of class k overflowed new call traffic from the
equivalent trunk group for tier-1 network s1 shown in Fig. 2.

Let z̃nu(µ
(k,2,s2)
n ) denote the redefined peakedness of the

overflowed new call traffic from the equivalent trunk group
for tier-1 network s1 to tier-2 network s2, according to
the mean call service time 1/µ

(k,2,s2)
n in tier-2 network

s2, z̃nu(µ
(k,2,s2)
n ) = ṽnu(µ

(k,2,s2)
n )/m̃nu(µ

(k,2,s2)
n ). From

Eqn. (32) and Eqn. (34), z̃nu(µ
(k,2,s2)
n ) is obtained as

z̃nu(µ
(k,2,s2)
n ) = 1− m̃nu(µ

(k,2,s2)
n )

+

A
(k,1,s1)
n

Z
(k,1,s1)
n

·m′
n1(d

β
(k,1,s1)
n

dkZ
(k,1,s1)
n

e)

ε
(k,s2,s1)
n · m̃nu(µ

(k,2,s2)
n )

. (11)

The recursive method presented in Appendix III is also used
to derive the redefined mean, variance and peakedness of the

overflowed handoff call traffic from the equivalent trunk group
for tier-1 network s1 to tier-2 network s2, according to the
mean call service time 1/µ

(k,2,s2)
h in tier-2 network s2.

In particular, for homogeneous hierarchical networks where
ε
(k,s2,s1)
n = 1, Eqn. (11) is simplified to Eqn. (10), and

Eqn. (32) is simplified to Eqn. (9). This shows that the
statistical characterization of overflow traffic is consistent in
homogeneous hierarchical overlay networks.

Finally, from Eqn. (25), Eqn. (26), and Eqn. (11), the
peakedness of the overflow traffic offered to tier-2 network
s2 from class k overflowed new calls of tier-1 network s1,
denoted as z

(k,1,s1)
nu , is obtained as

z(k,1,s1)nu = z̃nu(µ
(k,2,s2)
n )Z(k,1,s1)

n . (12)

Based on Eqn. (25) and Eqn. (32), the mean of the overflow
traffic offered to tier-2 network s2 from class k overflowed new
calls of tier-1 network s1, denoted as m(k,1,s1)

nu , is obtained as:

m(k,1,s1)
nu = m̃nu(µ

(k,2,s2)
n )Z(k,1,s1)

n =
B̂

(k,1,s1)
n A

(k,1,s1)
n

ε
(k,s2,s1)
n

. (13)

The m
(k,1,s1)
nu obtained also represents the load intensity of

class k overflowed new call traffic from tier-1 network s1 to
tier-2 network s2. Then, the average call arrival rate of the
overflowed new calls from s1 to s2 can be obtained according
to the mean call service time in tier-2 network s2 as

λ(k,1,s1)
nu = m(k,1,s1)

nu µ(k,2,s2)
n . (14)

The overflow traffic flows from different tier-1 networks
are independent of each other; the upward overflow traffic
offered to tier-2 network s2 is therefore the superposition of
the overflow traffic from the covered N1 networks at tier-1.
The input traffic to tier-2 network s2 is the aggregation of
the local Poisson traffic (new and handoff call traffic) and the
aggregated overflow traffic from tier-1; it is non-Poisson. We
have the mean A

(k,2,s2)
n and the variance V

(k,2,s2)
n of the input

traffic to tier-2 network s2 from class k new calls obtained as

A(k,2,s2)
n =

λ
(k,2,s2)
n

µ
(k,2,s2)
n

+

Nl∑
s1=1

m(k,1,s1)
nu , (15)

V (k,2,s2)
n =

λ
(k,2,s2)
n

µ
(k,2,s2)
n

+

Nl∑
s1=1

m(k,1,s1)
nu z(k,1,s1)nu , (16)

and the peakedness obtained as Z
(k,2,s2)
n = V

(k,2,s2)
n

A
(k,2,s2)
n

.
By Eqn. (15) and Eqn. (16), we have determined the input

traffic model of the upward overflow traffic offered to a high
tier network. The characterizations for the input traffic, when
handoff call traffic and downward overflow traffic are involved,
can be derived by the same method.

B. Call-level loss performance analysis

Let (A(k,l,s)
n , Z

(k,l,s)
n , dk) represent the input new call traffic

of class k to tier l network s. The values of A(k,l,s)
n and Z

(k,l,s)
n

for l = 2 are derived by Eqn. (15) and Eqn. (16). The input
handoff call traffic of class k to tier l network s, represented
as (A

(k,l,s)
h , Z

(k,l,s)
h , dk) is determined by the same method.
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By the model proposed in Section III, we can simplify
the problem of non-Poisson traffic loss analysis in tier
l network s to a problem of Poisson traffic loss analy-
sis in the equivalent trunk group which is offered with
Poisson traffic

(
A(k,l,s)

n

Z
(k,l,s)
n

, 1, dkZ
(k,l,s)
n

)
from new calls and(

A
(k,l,s)

h

Z
(k,l,s)

h

, 1, dkZ
(k,l,s)
h

)
from handoff calls, for 1 ≤ k ≤ K,

under the condition that each call in the equivalent group
has the same service time as that in tier l network s. Here,
the mean service time is 1/µ

(k,l,s)
n for class k new calls and

1/µ
(k,l,s)
h for class k handoff calls.

The loss performance of the equivalent trunk group can be
obtained by existing loss calculation methods for multiservice
networks with Poisson traffic. In the case of multiservice
sharing in a network with no bandwidth reservation, the call
blocking probabilities can be derived from a product-form so-
lution of the multiservice link occupancy distribution obtained
by Kaufman-Roberts’ recursion [25], [26] or the convolution
algorithm [27]. Such a product-form solution is not obtainable
in multiservice networks with bandwidth reservation, where
the reversibility of the system state transition process is dis-
rupted by bandwidth reservation [28]. For a completely shared
multiservice link, the link occupancy distribution is derived
from a unique state space. However, for a multiservice link
with bandwidth reservation, multiple composite state spaces
are mapped to the same link occupancy distribution; the
different composite state spaces are determined by the arrival
order of different service classes at a given link occupancy
state. This point can be elaborated by the following example.
Assuming a link with four channels to accommodate two
classes of calls; each class 1 call occupies one channel, and
each class 2 call occupies two channels. Bandwidth reservation
is used to protect class 2 calls by reserving two channels in the
link for their use. In this example, there exist two composite
state spaces for the link occupancy distribution. Let n denote
the link occupancy state, which represents the number of
occupied channels in the link, n = 0, 1, 2, ..., 4. Let n1 and n2

denote the number of channels in the link occupied by class 1
and class 2 calls, respectively. At a given link occupancy state
n, n = 0, 1, 2, ..., 4, we have one composite state (n1, n2) for
the case that a class 1 call is already in this link when a class
2 call arrives, and the other composite state (n2, n1) for the
case that a class 2 call is already in this link when a class 1
call arrives; here n1 + n2 = n for n = 0, 1, 2, ..., 4. The state
space for the composite state (n1, n2) is defined as

(0, 0)︸ ︷︷ ︸
n=0

; (1, 0)︸ ︷︷ ︸
n=1

; (2, 0), (0, 2)︸ ︷︷ ︸
n=2

; (1, 2)︸ ︷︷ ︸
n=3

; (0, 4), (2, 2)︸ ︷︷ ︸
n=4

;

the state space for the composite state (n2, n1) is defined as

(0, 0)︸ ︷︷ ︸
n=0

; (0, 1)︸ ︷︷ ︸
n=1

; (0, 2), (2, 0)︸ ︷︷ ︸
n=2

; n/a︸︷︷︸
n=3

; (4, 0)︸ ︷︷ ︸
n=4

.

The difference between the composite state space of (n2, n1)
and that of (n1, n2) is due to the bandwidth reservation for
class 2 calls. As two channels are reserved for class 2 calls, a
class 1 call will be rejected when the occupied channels are
equal to or more than two channels. Hence, in the state space

of (n2, n1), the composition for n = 3 is not reachable (n/a),
and for n = 4 only the composition (4, 0) is reachable.

Now consider K service classes sharing a link with band-
width reservation. Based on the arrival order of different
service classes at a given link occupancy state, there exist
K! composite state spaces mapping to the link occupancy
distribution of the K service classes sharing the link. From
each composite state space, we can obtain a corresponding
link occupancy distribution for K service classes in the link
by using the convolution algorithm of [27]. The final link
occupancy distribution for K service classes in the link is
obtained with a weighted summation of all link occupancy
distributions obtained from the K! composite state spaces.
The weight for a given composite state space is determined
by the offered traffic load proportion from each service class
in the link at the given composite state [28]. That is, the
weight reflects the impact of a given composite state space
on the final link occupancy distribution. The approximate
blocking probability of each class of calls is then calculated
based on the approximate final link occupancy distribution that
has been obtained. We name this approximation method the
permutational convolution algorithm (PCA). The accuracy of
the PCA approximation is verified by extensive comparisons
with the exact solutions from the multi-dimensional Markov
chain. More details of the PCA are presented in [28].

Here we use PCA to calculate the call blocking probability
of each class of approximate Poisson traffic in the equivalent
trunk group for tier l network s. Let Cl,s denote the capacity
of tier l network s in bandwidth units (BUs). Let trk be the
reservation threshold in number of BUs reserved for class k
(1 ≤ k ≤ K) handoff calls (both local and overflowed) in
each tier network. The maximum number of BUs which can be
assigned to class k new calls in tier l network s is Cl,s − trk;
for class k handoff calls it is Cl,s.

The final link occupancy distribution for the K service
classes sharing tier l network s, denoted as Q

(l,s)
t , is obtained

as the weighted summation of the link occupancy distributions
obtained from different composite state spaces by PCA. Let
q
(l,s)
t (x), x = 0, 1, 2, ..., Cl,s, denote the element of Q

(l,s)
t ,

representing the probability in the link occupancy state that
there are x channels occupied in the link by the K classes of
calls. Then the call blocking probabilities for class k new and
handoff calls in tier l network s are calculated by

B(k,l,s)
n =

Cl,s∑
x=Cl,s−trk−dkZ

(k,l,s)
n +1

q
(l,s)
t (x), (17)

B
(k,l,s)
h =

Cl,s∑
x=Cl,s−dkZ

(k,l,s)

h
+1

q
(l,s)
t (x). (18)

The results for non-integer dkZ
(k,l,s)
n and dkZ

(k,l,s)
h are

obtained by interpolation algorithms.
Consider a L-tier hierarchical overlay system. Let sl denote

a network at tier-l, for 1 ≤ l ≤ L. For class k new calls of tier
l network s, the call blocking probability in the L-tier overlay
system is the probability that the calls are blocked by tier l
network s and also rejected when attempting to overflow to
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high tier networks, i.e. tier l′ network sl′ , tier l′ + 1 network
sl′+1,..., and tier L network sL. Thus, the final call blocking
probability B

(k,l,s)
c for class k new calls from tier l network

s in the L-tier hierarchical overlay system the is obtained as

B(k,l,s)
c =

L∏
l′=l

B(k,l′,sl′ )
n , (19)

where B
(k,l′,sl′ )
n denotes the call blocking probability of class

k service in tier l′ network sl′ .
The probability that a class k call accepted in tier l network

s is dropped during handoff due to a capacity limit is defined
as the call dropping probability of class k service; it is denoted
as P

(k,l,s)
d (1 ≤ l ≤ L). As the hierarchical heterogeneous

overlay system consists of networks with different statistical
characteristics at either the same or different tiers, it is hard to
obtain a close-form equation for the call dropping probability.
However, we can derive the call dropping probability from
the state transition diagram shown in Fig. 3. The derivation
method is described in Appendix IV. Suppose a two-tier
overlay system (L = 2). Assume that tier-1 network s is
covered by tier-2 network s′ and the overflow calls from tier-1
network s are offered to tier-2 network s′. The call dropping
probability for class k calls from tier-1 network s in the two-
tier overlay system is obtained as

P
(k,1,s)
d = p

(k,1)
f B

(k,2,s′)
h + p

(k,1)
f (1−B

(k,2,s′)
h )p

(k,2)
f . (20)

In Eqn. (20), p(k,l)f denotes the probability that a class k call
accepted in a network at tier l makes another handoff within
tier l but is rejected due to capacity limits in the neighboring
networks at tier l. For conciseness, we refer to p

(k,l)
f as the

intra-tier handoff failure probability of class k calls at tier l;
this is also derived from the state transition diagram shown in
Fig. 3. Also see Eqn. (35) in Appendix IV.

IV. MODEL VALIDATION AND NUMERICAL RESULTS

A. Parameter settings

We evaluate the performance of the proposed approximate
model in a two-tier heterogeneous mobile network based
on the hierarchical structure, where the networks of large
coverage overlay those with small coverage. Here we assume
two large cells at the top tier (tier-2) and each large cell
overlays two small cells at tier-1. Call handoffs are allowed
between cell-1 and cell-2, cell-3 and cell-4 at tier-1, and
also between the two tier-2 cells. Call overflow is allowed
between overlay networks. It is assumed that each network
has a circular coverage and that the capacity is measured in
number of BUs. The values of the radius R and the capacity
C of the networks are given in Table. I.

We consider two service classes with different bandwidth
requirements for each call. A call from a class 1 service is
allocated one BU and a call from a class 2 service is allocated
two BUs. Bandwidth reservation is used to protect handoff
calls. The reservation thresholds are chosen to equalize call
blocking probabilities for both classes of new calls. To achieve
this goal, two BUs are reserved in each network for handoff

calls of class 1 service, and one BU is reserved in each network
for handoff calls of class 2 service, i.e. tr1 = 2 and tr2 = 1.

For demonstration purpose, what is of more interest is the
distributions of the call holding time and the sojourn time in
a cell, rather than the users’ mobility pattern or trajectory.
Negative exponential distribution has been commonly used to
approximate call holding time and sojourn time distributions
in mobile cellular networks [17], [21]. Recent investigations
show that the negative exponential distribution for sojourn time
may lead to a slightly overestimated or underestimated call
loss performance when compared with the other specific distri-
butions [11], [16]. On the other hand, the negative exponential
distribution has been verified as a good approximation for call
duration time compared to other general distributions. In our
analytical model, we assume that both call holding time and
sojourn time follow the negative exponential distribution. The
limitation of this assumption has been evaluated by comparing
with the simulation results. In the simulation, we assume
that the call holding time follows the negative exponential
distribution and the sojourn time follows the generalized
Gamma distribution as in [29] and [30].

We choose the mean call holding time equal to 180 seconds
for both class 1 and class 2 new calls, and choose the mean
sojourn times denoted as τs for slow-speed users and τf for
fast-speed users in different tier cells as shown in Table I.

TABLE II
THE PROPORTION OF DIFFERENT SPEED CALLS IN DIFFERENT CLASS OF

SOURCE TRAFFIC.

Mixture Class 1 service (λ1) Class 2 service (λ2)
pattern slow call fast call slow call fast call
Case-1 0 100% 100% 0
Case-2 50% 50% 50% 50%
Case-3 100% 0 0 100%

To demonstrate the impact of mobility speed on traffic
overflow, we evaluate the loss performance under different
mixtures of slow-speed and fast-speed calls in one class of
source traffic. Let λ1 represent the new call arrival rate from
class 1 source traffic to a network. Table II shows the various
mixture patterns we consider, where the slow-speed new calls
in class 1 service are assigned a call arrival rate λ

(s)
1 equal

to 0%, 50%, 100% of λ1, and the fast-speed new calls in
class 1 service are assigned a call arrival rate λ

(f)
1 given by

λ
(f)
1 = λ1 − λ

(s)
1 .

We use the proposed analytical model to evaluate the call-
level loss performance of mobile users with different service
classes and at different speeds in the two-tier heterogeneous
overlay system. For verification, all of the analytical re-
sults obtained with our model are compared to the results
obtained with an overflow queuing model simulation using
OPNET [31]. In simulation, the confidence intervals for new
call blocking probabilities are kept within 2% of the simulation
results, and for call dropping probabilities are kept within 5%
of the simulation results, both obtained with a 95% level of
confidence based on Student’s t-distribution.
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TABLE I
PARAMETER SETTINGS OF THE SYSTEM MODEL.

Tier-2 Cell-1: R = 200m, C = 40 BUs Tier-2 Cell-2: R = 400m, C = 60 BUs
τs = 1130.97s, τf = 22.62s τs = 2261.95s, τf = 45.24s

Tier-1 Cell-1: Tier-1 Cell-2: Tier-1 Cell-3: Tier-1 Cell-4:
R = 100m, C = 15 BUs R = 50m, C = 10 BUs R = 250m, C = 12 BUs R = 100m, C = 12 BUs
τs = 565.5s, τf = 11.3s τs = 282.7s, τf = 5.65s τs = 1413.7s, τf = 28.3s τs = 565.5s, τf = 11.3s

B. Loss performance evaluation

The loss performance of the two service classes is evaluated
in three scenarios: the performance in tier-1, the performance
in tier-2 and the performance in the two-tier system. Based on
the particular reservation thresholds we have chosen, equalized
call blocking probability is obtained for both class 1 and class
2 services. For any class of calls originating in the tier-1 cells,
reduced call blocking probabilities are obtained in the two-
tier overlay system, because the blocked calls in tier-1 due to
capacity limit can overflow to tier-2 cells. The impact of users’
mobility speed on the loss performance is evaluated by the call
dropping probabilities of slow-speed and fast-speed calls with
respect to the three mixture patterns defined in Table II.

In Fig. 4 and Fig. 5, we present the call blocking proba-
bilities of the new calls originating in the tier-1 cells in the
considered system. In Fig. 6 and Fig. 7 we present the call
dropping probabilities of the two classes of calls originating
in tier-1 cell-1 and cell-2. All of the results obtained by the
proposed analytical model are verified by comparison with the
simulation results in the figures. Our analytical results match
very well the simulation results in most cases.

In Fig. 4, the call blocking probabilities of the new calls
originating in tier-1 cell-2 under the three scenarios, tier-1, tier-
2 and the two-tier overlay system, decrease as the proportion of
fast-speed new calls in class 1 service decreases from 100%
to zero. This trend is also observed in Fig. 5 for the new
calls originating in tier-1 cell-3. This observation is reasonable
because Table II shows that the decrease of fast-speed calls
in class 1 service corresponds to the decrease of the slow-
speed calls in class 2 service. In our example, slow-speed
calls of class 2 service not only demand more bandwidth than
class 1 calls, but also have longer sojourn times and bandwidth
occupancies than class 2 fast-speed calls. The decrease of the
slow-speed calls in class 2 service thus gives more available
bandwidth units to other calls. As for the increased fast-speed
calls in class 2 service, they are overflowed to tier-2 cells if
blocked by a capacity limit at tier-1.

A different phenomenon is observed in Fig. 5 for the call
blocking probabilities in tier-2 cell-2 (covering tier-1 cell-3
and cell-4) and the two-tier overlay. For small new call arrival
rates, the call blocking probability in these two scenarios
increases as the proportion of fast-speed calls in class 1 service
decreases from 100% to zero. The reason is also related to
the proportions of fast-speed calls in the two service classes.
Due to the speed-sensitive CAC scheme, blocked fast-speed
calls at the lower tier networks can overflow to the higher tier
networks for possible service. From Table II, the decrease of
fast-speed calls in class 1 service corresponds to the increases
of slow-speed calls in class 1 and fast-speed calls in class
2. Compared with the overflows from class 1 service, we

have more overflow calls to tier-2 cell-2 from fast-speed
calls of class 2. The overflowed fast-speed calls of class 2
compete bandwidth with the original calls in tier-2 cell-2.
As the proportion of fast-speed calls in class 2 increases,
there is increased bandwidth competition in tier-2 cell-2 and
increased call blocking probability. An alternative solution to
this problem is to reserve bandwidth for the original calls
in the higher tier networks to guarantee a required blocking
probability.

The speed-sensitive CAC scheme allows the blocked calls
of fast-speed users in the lower tier to be overflowed upward to
the higher tier and share the bandwidth resource with the local
new calls and handoff calls in the higher tier. The increase
of the overflow traffic from fast-speed calls leads to increased
call blocking and dropping probabilities in the higher tier. The
results shown in Fig. 6 and Fig. 7 demonstrate that fast-speed
users have a higher rate of handoff among the neighboring
networks, and thus experience a higher possibility of handoff
failure than slow-speed users. It is again demonstrated that
the decrease of slow-speed calls in class 2 increases the
bandwidth available for other calls, therefore the call dropping
probabilities for both slow-speed and fast-speed calls of class
2 shown in Fig. 7 are reduced as the proportion of slow-speed
calls in class 2 decreases.

Now we evaluate the limitation of the exponential distribu-
tion assumption for the sojourn time. In Fig. 8 to Fig. 10 we
present the simulation results of the call blocking and dropping
probabilities for the calls originating in tier-1 cell-1 in the
considered two-tier overlay system, under the assumptions that
the sojourn times follow the Gamma distributions with the
fixed mean sojourn time and the shape parameter equal to 2,
3, 4. Fig. 8 shows that the new call blocking probabilities
obtained by simulation under the three Gamma distribution
assumptions are similar to the analytical and simulated results
obtained under the exponential assumption. It shows that given
the mean sojourn time, the sojourn time distribution has slight
influence on the new call blocking probability. Fig. 9 and
Fig. 10 show that the sojourn time distribution has much more
influence on the call dropping probability of slow-speed users
than on the fast-speed users. This shows the limitation of
our analytical model using the exponential assumption on the
sojourn times for slow-speed users.

For validation of our analytical model, in Fig. 8 to Fig. 10
we present the performance obtained under the assumption
that the aggregated overflow traffic of the same service class
from tier-1 cells to tier-2 is Poisson traffic, and compare it
with the results obtained by our analytical model and by the
simulation. The comparison shows that significant underes-
timated performance evaluation is obtained by the Poisson
assumption. It demonstrates that in hierarchical heterogeneous
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overlay systems, the aggregated overflow traffic from one tier
to another cannot be modeled as a Poisson process since the
aggregated overflow call arrivals are not from a sufficiently
large number of independent overflow sources [32].

V. CONCLUSIONS

By taking the effects of user mobility, bandwidth reser-
vation, cell coverage and varying service time distributions
for cells at the same or different tiers into consideration,
we have proposed a comprehensive loss model to obtain
the numerical solution of multiservice loss performance in
hierarchical heterogeneous overlay networks. We have also
demonstrated that the use of speed-sensitive call admission
control scheme in hierarchical heterogeneous overlay networks
helps improve the call-level loss performance.
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APPENDIX I: NOTATIONS

λ
(k,l,s)
n , λ(k,l,s)

h : average call arrival rates of class k local
new calls and local handoff calls to tier l network s.
λ
(k,1,s1)
nu , λ(k,1,s1)

hu : average call arrival rates of class k new
and handoff call overflows from tier-1 network s1 to tier-2.
z
(k,1,s1)
nu , z(k,1,s1)hu : peakedness of class k overflow traffic of

new and handoff calls from tier-1 network s1 to tier-2.
λ
(k,2,s2)
nd , λ(k,2,s2)

hd : average call arrival rates of class k new
and handoff call overflows from tier-2 network s2 to tier-1.
z
(k,2,s2)
nd , z(k,2,s2)hd : peakedness of overflow traffic from class

k new and handoff calls in tier-2 network s2 to tier-1.
Λ
(k,l,s)
n , Λ

(k,l,s)
h : aggregated average call arrival rates of

class k new and handoff call traffic to tier l network s.
Z

(k,l,s)
n , Z(k,l,s)

h : peakedness of aggregated class k new call
and handoff call overflow traffic to tier l network s.
ν
(k,l,s)
n , ν

(k,l,s)
v , ν

(k,l,s)
h : probabilities of class k accepted

new calls (both local and overflowed), accepted overflow
handoff calls and accepted local handoff calls, respectively,
making a handoff out of tier l network s.
B

(k,l,s)
n , B(k,l,s)

h : blocking probability for class k new calls
and handoff calls in tier l network s.
1/µ

(k,l,s)
n , 1/µ

(k,l,s)
h : mean service times for class k new

call and handoff call in tier l network s, respectively.
dk: the number of BUs allocated to a class k call.
trk: reserved capacity for class k handoff calls in each tier

network in numbers of BUs.
Cl,s: capacity of tier l network s in numbers of BUs.

APPENDIX II: PARTIALLY EQUIVALENT LOSS SYSTEMS

The Hayward’s approximation [33] is derived under the
condition that the non-Poisson traffic with intensity A and
peakedness Z offered to a N -server trunk group system, i.e.
(N ;A,Z), is equivalent to a system comprising Z independent
and identical subgroups; each subgroup is assigned N/Z
servers and the calls from the non-Poisson source traffic
(A,Z) are evenly scheduled into each subgroup to ensure
that the traffic offered to each subgroup is Poisson with
intensity A/Z [33]. Let the resultant subgroup be represented
as (NZ ; A

Z , 1). The two systems, (N ;A,Z) and (NZ ; A
Z , 1) have

equivalent call blocking probabilities but different statistical
moments for their overflow traffic. We refer to these two
systems as partially equivalent loss systems.

The accurate moments of the overflow traffic from any
subgroup can be derived from the distribution of the number
of overflow calls accepted in a “fictitious” overflow group with
infinite number of servers. Let px(i, j) denote the probability
of the state in which there are i new calls accepted in subgroup
x and j overflow calls in its infinite-server overflow group,
for 0 ≤ i ≤ N/Z, 0 ≤ j ≤ ∞. As the subgroups are
identical and synchronized, and each of them is offered by
Poisson traffic with the same intensity A/Z, we have the same
state probability for any two subgroups denoted as x and x′,
1 ≤ x, x′ ≤ Z, that is

px(i, j) = px′(i, j). (21)

Let m and v denote the mean and the variance of the
overflow traffic from the subgroup x to its infinite-server
overflow group. They are determined as

m =

N/Z∑
i=0

∞∑
j=0

jpx(i, j), (22)

v =

N/Z∑
i=0

∞∑
j=0

j2px(i, j)−m2. (23)

The overflow traffic from the system (N ;A,Z) is the
superposition of the overflow traffic from all Z subgroups. Let
p(i′, j′) denote the state probability of the system (N ;A,Z)
that there are i′ new calls in the system (N ;A,Z) and j′

overflow calls in its infinite-server overflow group, 0 ≤ i′ ≤
N, 0 ≤ j′ ≤ ∞. As the calls from the non-Poisson source
traffic (A,Z) are evenly scheduled to each subgroup, the state
probability p(i′, j′) is as same as the state probability px(i, j)
for i′ = Z · i, j′ = Z · j, i.e.

px(i, j) = p(i′, j′) = p(Z · i, Z · j). (24)

Thus, the mean of the overflow traffic from the system
(N ;A,Z), denoted as Mo, is derived as

Mo =
N∑

i′=0

∞∑
j′=0

j′p(i′, j′) = Z

N/Z∑
i=0

∞∑
j=0

jpx(i, j) = Z ·m (25)

and the variance Vo is derived as

Vo =
N∑

i′=0

∞∑
j′=0

j′
2
p(i′, j′)−M2

o = Z2 · v. (26)
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Then the peakedness of the overflow traffic from the system
(N ;A,Z), denoted as Zo, is obtained by Zo = Vo

Mo
= Z · v

m .

APPENDIX III: DERIVATION OF MOMENTS OF OVERFLOW
TRAFFIC IN HETEROGENEOUS SCENARIOS

Let the new calls that cannot be admitted to the hypothetical
group for the new call traffic in tier-1 network s1 overflow to
a secondary trunk group with infinite number of servers. The
hypothetical group is shown in Fig. 2.

Let pn(x1, x2) denote the probability of the equilibrium
state that there are x1 class k new calls accepted in the
hypothetical group and x2 overflowed new calls accepted in
the infinite-server secondary trunk group, with 0 ≤ x1 ≤
d β

(k,1,s1)
n

dkZ
(k,1,s1)
n

e and x2 > 0. We have the r-th moment mnr

(r ≥ 0) and the conditional r-th moment m′
nr(x1) for the

following recursion, the overflowed new call traffic from the
hypothetical group defined as the probability distributions of
the number of overflow calls accepted in the infinite-server
secondary trunk group, that is

mnr =
∞∑

x2=0

d β
(k,1,s1)
n

dkZ
(k,1,s1)
n

e∑
x1=0

(x2)
r · pn(x1, x2), (27)

m′
nr(x1) =

∞∑
x2=0

(x2)
r · pn(x1, x2). (28)

As shown in [24], the conditional first moment m′
n1(x1) of

the overflowed new call traffic can be derived by

m′
n1(x1) =

1

x1

(
A

(k,1,s1)
n

Z
(k,1,s1)
n

− x1 − 1 + ε(k,s2,s1)n

)

·m′
n1(x1 − 1)−

A
(k,1,s1)
n ·m′

n1(x1 − 2)

Z
(k,1,s1)
n · x1

,

for 1 ≤ x1 ≤ d β
(k,1,s1)
n

dkZ
(k,1,s1)
n

e; (29)

and the second moment mn2 is derived as

mn2 =
1

ε
(k,s2,s1)
n

· A
(k,1,s1)
n

Z
(k,1,s1)
n

· (m′
n1(x1) +m′

n0(x1)) ,

for x1 = d β
(k,1,s1)
n

dkZ
(k,1,s1)
n

e. (30)

In Eqn. (30), m′
n0(x1) =

∑∞
x2=0 pn(x1, x2); for x1 =

d β
(k,1,s1)
n

dkZ
(k,1,s1)
n

e, m′
n0(x1) is just equal to the new call blocking

probability for class k service in its hypothetical group, i.e.
B̂

(k,1,s1)
n , and we have B̂

(k,1,s1)
n ≈ B

(k,1,s1)
n for class k service

in the equivalent trunk group for tier-1 network s1.
The variance of the new call overflow from the hypothetical

group for tier-1 network s1 to tier-2 network s2 is defined as

ṽnu(µ
(k,2,s2)
n ) = mn2 − (mn1)

2, (31)

Let m̃nu(µ
(k,2,s2)
n ) denote the redefined mean of the over-

flowed new call traffic from the hypothetical group for tier-1

network s1 to tier-2 network s2 according to the mean call
service time 1/µ

(k,2,s2)
n in tier-2 network s2. It is obtained as

m̃nu(µ
(k,2,s2)
n ) = B̂(k,1,s1)

n · A
(k,1,s1)
n

Z
(k,1,s1)
n

· 1

ε
(k,s2,s1)
n

. (32)

Based on the definition of mn1 in Eqn. (27), we have

mn1 = m̃nu(µ
(k,2,s2)
n ). (33)

From Eqn. (29), Eqn. (30), and Eqn. (31), we derive the
variance of the class k overflowed new call traffic from the
hypothetical group for tier-1 network s1 to tier-2 network s2,
according to the mean call service time 1/µ

(k,2,s2)
n :

ṽnu(µ
(k,2,s2)
n ) =

1

ε
(k,s2,s1)
n

· A
(k,1,s1)
n

Z
(k,1,s1)
n

·m′
n1(d

β
(k,1,s1)
n

dkZ
(k,1,s1)
n

e)

+m̃nu(µ
(k,2,s2)
n )−

(
m̃nu(µ

(k,2,s2)
n )

)2
.(34)

APPENDIX IV: DERIVATION OF CALL DROPPING
PROBABILITIES

For either fast or slow-speed calls admitted to tier l network
j in a L-tier hierarchical system, 1 ≤ l ≤ L, if their handoff
attempts to the neighbors of tier l network j are rejected, the
handoff calls can be overflowed to the overlaying tier l + 1
or overlaid tier l − 1 networks for possible services based
on the speed-sensitive CAC. If the overflowed handoff calls
are rejected again, further upward or downward overflow can
also be tried until all available tiers have been checked. An
on-going call is dropped in such systems only if it fails in
all handoff attempts. Here we exemplify the fast-speed calls
and derive their call dropping probabilities in the considered
hierarchical heterogeneous overlay system. Similar method is
also valid for the call dropping probability of slow-speed calls.

Fig. 3 shows our model for call dropping, in which we
consider all possible handoff failures for a new call accepted
in tier l network j, 1 ≤ l ≤ L. This accepted new call in tier l
network j makes its first handoff to its neighbor network j+1

in tier l with a probability ν
(k,l,j)
n . The first handoff is accepted

by tier l network j+1 with a probability 1−Bk,l,j+1
h . After this

successful handoff, this call may make another handoff out of
tier l network j+1 with a probability ν

(k,l,j+1)
h . On the other

hand, if the first handoff is rejected with a probability Bk,l,j+1
h ,

this handoff call is overflowed to its overlaying network at
tier l+ 1. If this overflowed handoff call is accepted in a tier
l+1 network j, with a probability 1−B

(k,l+1,j)
h , continuous

handoffs may occur between the neighboring networks at tier
l + 1. For a class k new call accepted to tier l network j,
let p(k,l)f denote the probability that this call fails in its tl-th
handoff at tier l due to a capacity limit and overflows to its
overlaying network at tier l + 1, p(k,l)f is derived as

p
(k,l)
f = ν(k,l,j)

n B
(k,l,j+1)
h +

ν(k,l,j)
n

∞∑
tl=2

tl−1∏
x=1

(1−B
(k,l,j+x)
h )ν

(k,l,j+x)
h B

(k,l,j+tl)
h , (35)

The first item in the right side of Eqn. (35) represents handoff
failure at the first handoff, the second item represents handoff
failures at the subsequent second, third,..., tl-th handoff, re-
spectively. Replace ν

(k,l,j)
n in Eqn. (35) with ν

(k,l,j)
v , we obtain



11

the probability that an overflowed handoff call accepted in tier
l network j fails in another handoff at tier l and overflows to
tier l + 1.

In particular, if all networks in the L-tier hierarchical system
are homogeneous and identical, Eqn. (35) can be written as

p
(k,l)
f =

ν
(k,l)
n B

(k,l)
h

1− (1−B
(k,l)
h )ν

(k,l)
h

. (36)

Moreover, if both call holding time and sojourn time follow
exponential distributions, ν(k,l,j)n , ν(k,l,j)v and ν

(k,l,j)
h are de-

rived as ν
(k,l,j)
n = ν

(k,l,j)
v = ν

(k,l,j)
h = η

(l)
k /(ξk + η

(l)
k ), here

1/ξk denotes mean call holding time and 1/η
(l)
k denotes mean

sojourn time of a class k call in a network at tier l.
Combining all possible handoff failures for a new call

accepted in tier l network j, the call dropping probability for
class k new calls accepted in tier l network j can be derived
from the state transition model shown in Fig. 3. It is very
tedious, but not impossible, to write out the full expression of
the call dropping probability for the accepted calls in a L-tier
hierarchical system. We here exemplify the case of L = 3.
The call dropping probability for class k new calls accepted
in tier l = 1 network is written as

P
(k,l,j)
d = p

(k,l)
f B

(k,l+1,j)
h B

(k,l+2,j)
h +

p
(k,l)
f (1−B

(k,l+1,j)
h )p

(k,l+1)
f B

(k,l+2,j)
h +

p
(k,l)
f B

(k,l+1,j)
h (1−B

(k,l+2,j)
h )p

(k,l+2)
f +

p
(k,l)
f (1−B

(k,l+1,j)
h )p

(k,l+1)
f (1−B

(k,l+2,j)
h )p

(k,l+2)
f . (37)
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Fig. 1. Class k traffic flows in a two-tier heterogeneous overlay system.
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