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it is unfair for our protocol since the real-time capability of the
compared system is reduced. As shown in Fig. 2(b), the proposed
scheme with precoding selection can achieve a much higher diversity
order given the same multiplexing gain.

VI. CONCLUSION

In this paper, a new network-coding-based transmission protocol
for generalized MIMO Y channels has been proposed and studied.
By applying SSA-NC and interference nulling, the proposed protocol
is able to avoid cochannel interference among multiple destinations.
A simple mapping method is proposed to ensure low-complexity
demodulation at the relay. We have developed analytical results, such
as SER and diversity gain of the protocol. Precoding selection has
also been presented to further improve the reception reliability. Monte
Carlo simulation is provided to demonstrate the performance of the
proposed scheme.
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Abstract—Intercell cochannel interference (CCI) mitigation is investi-
gated in the context of cellular systems relying on dense frequency reuse
(FR). A distributed base-station (BS)-cooperation-aided soft reception
scheme using the probabilistic data association (PDA) algorithm and soft
combining (SC) is proposed for the uplink of multiuser multicell MIMO
systems. The realistic 19-cell hexagonal cellular model relying on unity
FR is considered, where both the BSs and the mobile stations (MSs)
are equipped with multiple antennas. Local-cooperation-based message
passing is used, instead of a global message passing chain for the sake
of reducing the backhaul traffic. The PDA algorithm is employed as a
low-complexity solution for producing soft information, which facilitates
the employment of SC at the individual BSs to generate the final soft
decision metric. Our simulations and analysis demonstrate that, despite its
low additional complexity and backhaul traffic, the proposed distributed
PDA-aided SC (DPDA-SC) reception scheme significantly outperforms the
conventional noncooperative benchmarkers. Furthermore, since only the
index of the possible discrete value of the quantized converged soft infor-
mation has to be exchanged for SC in practice, the proposed DPDA-SC
scheme is relatively robust to the quantization errors of the soft informa-
tion exchanged. As a beneficial result, the backhaul traffic is dramatically
reduced at negligible performance degradation.

Index Terms—Base station (BS) cooperation, cochannel interference
(CCI), distributed multiple-input–multiple-output (MIMO), message pass-
ing, multicell processing, probabilistic data association (PDA), soft
combining (SC).

I. INTRODUCTION

Spectrally efficient techniques, such as multiple-input–multiple-
output (MIMO) antennas and near-unity frequency reuse (FR) are ex-
pected to be employed in the next-generation cellular networks. In this
context, the achievable performance gain of multiuser multicell MIMO
systems is predominantly limited by the effect of intercell cochannel
interference (CCI) [1]. Recently, advanced receiver techniques using
base station (BS) cooperation for exploiting the potential capacity of
cellular systems were investigated [2]–[4]. The simplest conceptual
approach to BS cooperation is to assume that there is a controller,
or central processing unit (CPU), that coordinates the operation of
all BSs [2]. However, the CPU constitutes a single point of potential
failure; thus, the entire network is vulnerable. Additionally, since the
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complexity of multiuser detection (MUD) is dominated by the number
of users, having a CPU imposes a potentially excessive computational
burden and huge backhaul traffic, and thus may become less attractive.

A distributed implementation of the iterative interference cancel-
lation framework used in [2] was then developed for single-antenna-
aided multiuser systems in [3]. Although this scheme was shown
to strike an attractive compromise, it has an exponentially increased
computational complexity imposed by the computation of the soft
information using the max-log maximum a posteriori (MAP) algo-
rithm. Furthermore, the multiple rounds of iterative message exchange
operations between the cooperative BSs may still impose potentially
excessive backhaul traffic. The belief propagation (BP) algorithm was
also applied to the problem of distributed detection in the single-
antenna-aided 2-D Wyner model [4], which performs a chainlike
message passing between all the BSs and provides a globally near-
optimum solution. However, it relies on network-wide optimum infor-
mation exchange, which unfortunately results in potentially excessive
backhaul traffic and latency, especially for a starlike architecture
routinely used for interconnecting the BSs [3].

The probabilistic data association (PDA) method, which was orig-
inally proposed for target tracking [5], may also be developed into
a reduced-complexity design alternative for the MAP algorithm [6]–
[8]. The PDA technique may be regarded as a promising detection
technique, owing to its attractive properties. First, it may achieve a
near-optimal MUD performance, particularly in the context of code-
division multiple-access (CDMA) systems [6]. Second, it has poly-
nomial complexity, increasing no faster than O(L3), where L is the
number of transmit antennas in MIMO systems [8] or the number of
users in CDMA [6]. Furthermore, the higher the number of transmit
antennas or users, the better the attainable performance, provided that
the channel is not rank-deficient [10].

In this paper, we propose a simple but effective soft-combining
(SC) technique, and we develop the PDA algorithm into a distributed
multiuser multicell soft-reception scheme to mitigate the prohibitive
computational complexity and the huge amount of backhaul traffic
faced by multicell processing employing BS cooperation. A realistic
19-cell hexagonal cellular MIMO-aided network model relying on
either perfect or imperfect channel estimation is considered. In this
model, the entire channel consists of multiple matrix subchannels,
rather than of scalar/vector subchannels, as in [2]–[4]. SC is used at
each BS to generate the final soft-decision information, which indi-
cates that the fundamental philosophy of the proposed method is not
that of “interference cancellation” but “knowledge sharing and data
fusion.” Additionally, we investigate the impact of quantization on
both the backhaul traffic and the performance of the proposed scheme.
Since, in practice, only the index of the possible discrete value of
the converged soft information has to be exchanged for SC operation,
the proposed scheme is relatively robust to quantization errors of the
soft information exchanged, which dramatically reduces the backhaul
traffic at negligible performance degradation. We also considered the
challenging rank-deficient scenario, where the number of transmitters
is higher than that of the receivers. Despite its significant performance
gain over the conventional noncooperative MUD schemes, the pro-
posed distributed PDA-aided SC (DPDA-SC) approach imposes a
modest cubically increasing complexity as a function of the number
of streams processed while maintaining low backhaul traffic. Low
complexity is achieved as a benefit of the PDA’s rapid convergence
since only converged soft information is exchanged among the BSs of
the specific cooperative BS cluster, requiring a single action.

II. HEXAGONAL CELLULAR NETWORK MODEL

Consider a hexagonal cellular network model, where both the BSs
and MSs are equipped with multiple antennas. Therefore, instead of

Fig. 1. Example setup showing a 19-cell hexagonal cellular model with CCI
and unity FR.

having a conventional point-to-point channel impulse response (CIR)
between each BS and MS [3], [4], we have a CIR matrix, where the
interference imposed on each MS stems from not only other MSs
but also their own multiple antennas. A unity FR is employed for
all the cells, and an orthogonal multiple access technique may be ap-
plied. Therefore, the intracell interference is assumed to be negligible,
whereas the CCI imposed by MSs of the interfering cells is dominant.

Let us consider the topology shown in Fig. 1 as an example, which
constitutes a snapshot of the dynamic network at a specific scheduling
interval. Assume that there are Nb BSs and Nu MSs in this network
(for the sake of comparability with classic cellular networks, Nb is
set to 19 in Fig. 1), and Ki MSs in each cell, i = 1, 2, . . . , Nb. For
simplicity of analysis, we assume that each of them is equipped with
Mb and Mu antennas, respectively. The position of each network
entity is represented by its dynamically updated polar coordinates with
respect to the specific serving BS. This dynamic coordinate system
naturally lends itself to distributed processing. For example, if the
central cell (Cell0) of Fig. 1 is considered, the point at BS0 may be
defined as the origin and the BS in the upper right adjacent cell of
Cell0 may be described as BS1 = (R, π/6), where R is the distance
between two immediate neighbor BSs.

The available frequency band may be dynamically allocated to the
MSs according to their uplink channel quality information evaluated
by each BS. For simplicity of graphical illustration, the same frequency
slot is tentatively assigned to the MSs situated at the same relative
position in their corresponding home cell, as shown in Fig. 1. For
example, MS0, MS1, MS2, . . ., MS18 in the lower right corner of each
cell are all the cochannel users. Not all the cochannel users but only
those located within the detectable range (DR) of a specific BS are
considered to be interfering with the desired user. Hence, the number
of effective interferers with respect to each user may be different1. For
instance, when the signal of MS0 is expected to be detected by its home

1The strong interference that is decodable is explicitly considered here,
whereas the weak interference is implicitly treated as noise.
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BS, i.e., by BS0, only MS2, MS3, and MS4, which are emphasized
as bold, are the effective interferers. By contrast, the other cochannel
users such as MS1, MS5, and MS6 are not deemed to be effective
interferers since they are outside the disk centered at BS0 and having
a radius of R. More explicitly, they are outside the DR of BS0. For
MS7, MS10, and MS11, however, the number of interferers is two,
one, and zero, respectively, although they are all at the boundary of
the network. We emphasize that the interfering MSs contaminating the
reception of each MS may be different in the next scheduling interval,
owing to the dynamic nature of the network. On the other hand, the
signal of MS0 may also be adequately received at BS1, BS5, and BS6,
which therefore have the potential to act as the serving BSs of MS0.
Similarly, the number of adjacent BSs supporting each MS may be
different as well. We assume in general that, for each served MS, there
are Cu such effective cochannel MSs and Cb adjacent serving BSs,
respectively. Then, the four-tuple (Mb, Mu, Cb, Cu) may be used to
represent the cooperating BS cluster, which is dynamically changing
for the different served MSs.

III. COOPERATIVE DISTRIBUTED SOFT RECEPTION

A. Signal Model

Based on the hexagonal topology of Fig. 1, we consider an idealized
synchronous uplink where the signal received at BSk is modeled as

yk = Hk
kx

k +
∑
αi �=k

Hk
αi

xαi + nk = Hk
kx

k + Nk + nk (1)

where xαi is the length-Mu vector of symbols transmitted from
MSαi in Cellαi, and each symbol is from the modulation constella-
tion A = {a1, a2, . . . , aM} with cardinality M . Still referring to (1),
Hk

αi
is the (Mb × Mu)-element channel matrix between MSαi and

BSk, i = 1, 2, . . . , Cu, k = 1, 2, . . . , Nb, whereas nk is the length-
Mb complex-valued circular symmetric Gaussian noise vector2 with
zero mean and covariance matrix N0IMb

at BSk, where IMb
is an

(Mb × Mb)-element identity matrix.
Let us now define the interference intensity as the channel gain

ratio of the interfering users over that of the local desired user, i.e.,
as ρk

αi
= ‖Hk

αi
‖F /‖Hk

k‖F , 0 ≤ ρk
αi

≤ 1, where ‖ · ‖F represents the
Frobenius norm.

As opposed to conventional noncooperative detection, the distrib-
uted detection of xk carried out with the aid of BS cooperation detects
not only the desired user’s signal in the local cell but also all the
cochannel users’ signals overheard from the neighboring cells. More
explicitly, the cochannel users’ signals are no longer considered as
detrimental interference; we rather consider these cochannel users’
soft decision information as a useful source of further information to
be exploited by cooperative processing via message passing among the
BSs. To this end, the received signal model of (1) may be reformulated
as a virtual or distributed MIMO model, where the cooperating BSs
may be viewed as MIMO elements, yielding

yk = Gksk + nk (2)

where we have Gk = [Hk
k,Hk

α1
, . . . ,Hk

αCu
], sk = [(xk)T , (xα1)T ,

. . . , (xαCu )T ]T , and the elements of sk are denoted as sk
t , t =

1, 2, . . . , Mu (Cu + 1). For the sake of generality, Mu (Cu + 1) ≤
Mb is not assumed here.

2Note that the noise considered here consists of both ordinary channel noise
and weak interference that is not decodable. Treating the weak interference as
noise has been recently proved optimal in the weak interference regime [11].

In the case of imperfect channel knowledge, the estimated channel
matrices Ĥk

k and Ĥk
αi

are respectively associated with the channel-
estimation error matrices Ek and Eαi

, which may be deemed to obey
the standard Gaussian distribution of CN (0, 1). They can be written as

Ĥk
k =βkH

k
k +

√
1 − β2

kEk (3)

Ĥk
αi

=βαi
Hk

αi
+

√
1 − β2

αi
Eαi

(4)

respectively [12], where βk and βαi
indicate the channel estimation

quality and may be assumed to be close to 1 but not higher than 1.
Thus, the received signal models of (1) and (2) may be rewritten as

yk = Ĥk
kx

k +
∑
αi �=k

Ĥk
αi

xαi + nk (5)

yk = Ĝksk + nk (6)

respectively, where we have Ĝk = [Ĥk
k, Ĥk

α1
, . . . , Ĥk

αCu
], or Ĝk =

β̄kG
k +

√
1 − β̄2

kĒk, with β̄k and Ēk being the composite-channel
estimation error indicators. Note that, when we have βk = βαi

= 1,
the signal model under imperfect CSI transforms into that of perfect
CSI. Without loss of generality, here, we will continue by considering
perfect channel estimation while presenting the proposed DPDA-SC
scheme. The case of imperfect channel knowledge may be readily
considered by the substitution of the corresponding perfect channels
with the estimated channels.

B. Parallel Detection Using the PDA Algorithm

The first action of the DPDA-SC scheme is that the BSs perform
parallel detection, employing the PDA algorithm as a low-complexity
solution to estimate the a posteriori probability (APP) of each trans-
mitted symbol without carrying out an exhaustive search in the space
of all possible symbol combinations. Each BS jointly detects the
signals of multiple users, including both the local user and other cells’
users roaming close to this BS, which would be termed as interfering
users in conventional noncooperative systems. For ease of exposition,
we consider detection at BSk as an example and omit the BS index k
in our forthcoming exposition.

Case I: When we have Mu (Cu + 1) ≤ Mb, for the sake of com-
putational efficiency, the decorrelated signal model of [7] is adopted;
hence, (2) may be further formulated as

ỹ = s + ñ = stet +
∑
l �=t

slel + ñ
∆
= stet + vt (7)

where ỹ = (GHG)−1GHy, ñ is a colored Gaussian noise with zero
mean and covariance of N0 (GHG)−1, el is a column vector with 1 in
the lth position and 0 elsewhere, and vt denotes the interference plus
noise term for symbol st, for t, l = 1, 2, . . . , Mu (Cu + 1).

For each symbol st, we have a probability vector P(t) whose
mth element Pm(st|y) is the current estimate of the APP of having
st = am, where m = 1, 2, . . . , M , with am being the mth element
of the modulation constellation A. The key philosophy of the PDA
algorithm is to approximate vt obeying the multimodal Gaussian mix-
ture distribution as a single multivariate colored Gaussian distributed
random vector [6] with an updated mean of E(vt) =

∑
l �=t

s̄lel,

covariance of V(vt) =
∑

l �=t
V{sl}ele

T
l + N0(G

HG)−1, and

pseudocovariance [9] of U(vt) =
∑

l �=t
U{sl}ele

T
l , where

s̄l =

M∑
m=1

amPm(sl|y) (8)
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V{sl} =

M∑
m=1

(am − s̄l)(am − s̄l)
∗Pm(sl|y) (9)

U{sl} =

M∑
m=1

(am − s̄l)(am − s̄l)
T Pm(sl|y). (10)

Here, Pm(sl|y) is initialized as a uniform distribution and will be
replaced with an updated probability at each iteration of the PDA
algorithm.

Let

w(t)
m = ỹ − a(t)

m et −
∑
l �=t

s̄lel (11)

ϕm(st)
∆
= exp


−


�

(
w

(t)
m

)
�

(
w

(t)
m

)



T

Λ−1
t


�

(
w

(t)
m

)
�

(
w

(t)
m

)






(12)

where we have

Λt
∆
=

(
� (V(vt) + U(vt)) −� (V(vt) − U(vt))
� (V(vt) + U(vt)) � (V(vt) − U(vt))

)
(13)

and a
(t)
m indicates that am is assigned to st, and �(·) and �(·) repre-

sent the real and imaginary parts of a complex variable, respectively.
Since it is assumed that the transmitted symbols have equal a priori

probabilities, the APP of st is given as

Pm(st|y) =
pm(y|st)P (st = am)

M∑
m=1

pm(y|st)P (st = am)

≈ ϕm(st)
M∑

m=1

ϕm(st)

. (14)

In summary, the PDA algorithm proceeds as follows:

Step 1) Initialization: set the initial values of the symbol prob-
abilities Pm(st|y) using a uniform distribution for
∀t = 1, 2, . . . , Mu (Cu + 1), ∀m = 1, 2, . . . , M , i.e.,
Pm(st|y) = 1/M ; set the iteration counter to z = 1.

Step 2) Set the symbol index to t = 1.
Step 3) Based on the current values of {P(l)}l �=t, compute

Pm(st|y) via (8) –(14), which will replace the correspond-
ing elements of P(t).

Step 4) If t < Mu (Cu + 1), let t = t + 1, and go to step 3.
Otherwise, go to step 5.

Step 5) If P(t) has converged for ∀t or the iteration index has
reached its maximum, terminate the iteration. Otherwise,
let z = z + 1, and return to step 2.

Case 2: When we have Mu (Cu + 1) > Mb, the appropriately
modified version of the PDA method [13] may be applied to the
current problem. Alternatively, the nondecorrelated signal model of
[10] may be applied, which yields an equivalent performance to that
of the decorrelated-signal-model-based PDA [14] when Mu (Cu +
1) ≤ Mb. In the case of the nondecorrelated model, (2) may be
expanded as

y = gtst +
∑
l �=t

glsl + n
∆
= gtst + ut (15)

where gl is the lth column of Gk. Then, the PDA algorithm is obtained
using a similar derivation to that of its counterpart in Case 1, as
outlined throughout (8)–(14).

C. Parallel Message Exchange via UCS Mode

The effective neighboring BSs incorporated in the same cooperative
BS cluster will then exchange their soft decision information produced
by the PDA algorithm in parallel, assuming the presence of an ide-
alized optical fiber backbone. It is emphasized that each BS plays
the role of both client and server. In other words, each BS operates
in a unified-client-server (UCS) mode. As a server, it helps detect
the signals of all cochannel users at all the cooperating cells, and
then, the soft decision information is sent to each user’s home BS.
This message passing action substantially benefits the signal detection
process in neighboring cells. As a client, each BS receives multiple
copies of soft decision information for its own desired user’s signal.
The exchange of soft information is carried out with the aid of BS
cooperation. For example, BS0 estimates the APP of its own user MS0
and additionally forwards the APPs of MS2, MS3, and MS4 to the
corresponding sites of BS2, BS3, and BS4, respectively. On the other
hand, to aid the detection of MS0, the surrounding BS0, BS1, BS5,
and BS6 output Pm(s0

t |y0), Pm(s0
t |y1), Pm(s0

t |y5), and Pm(s0
t |y6),

respectively, and all these probabilities will be collected at BS0, i.e.,
the home BS of MS0. Therefore, BS0, BS1, BS5, and BS6 assist in the
detection of MS0.

D. SC and Final Decision

Based on the aggregated soft decision information, each BS individ-
ually performs the SC of all the copies of its own desired user’s soft
information according to

Pm(st|ycoop) = Pm(st|yk)

Cb∏
j=1

Pm(st|yβj ) (16)

where ycoop stands for the received signal used for BS cooperation,
i.e., yk and yβj , j = 1, . . . , Cb. Pm(st|ycoop) represents the
composite soft decision information3. Again, let us consider the
detection of MS0’s signal as an example, where the com-
posite soft decision information is Pm(s0

t |ycoop) = Pm(s0
t |y0) ×

Pm(s0
t |y1) Pm(s0

t |y5)Pm(s0
t |y6). Note that, for the sake of numeri-

cal stability, the soft information should be further normalized as

Pm(st|ycoop)norm =
Pm(st|ycoop)∑

m

Pm(st|ycoop)
. (17)

Finally, make a decision for each transmitted symbol st, yielding
ŝt = am′ at each corresponding BS, where

m′ = arg max
d=1,2,...,M

{Pd(st|ycoop)norm} . (18)

E. Complexity Analysis

The proposed DPDA-SC scheme has worst-case complexity at
each BS per iteration, which is on the order of O[(Mu (Cu + 1))3],
provided that the Sherman–Morrison–Woodbury formula is applied for
the computation of Λ−1

t [6]. No exhaustive network-wide information
exchange is applied since this would impose excessive complexity. As
a reduced-complexity alternative, the converged APPs are exchanged
among the adjacent BSs in the cooperative BS cluster only once,
i.e., after the PDA detection was completed at each of the partici-
pating BSs. Furthermore, SC requires only a few simple arithmetic
operations, as seen in (16). Hence, both the complexity and the
backhaul traffic imposed by the associated message exchange and SC

3Equation (16) may also be interpreted as the sum of bit log-likelihood rates,
where “multiplication” is converted to “addition” in the logarithmic domain.
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remain modest, as will be demonstrated by the numerical complexity
comparison results of Fig. 7 in Section IV. With respect to the backhaul
traffic, in the entire reception process of a symbol vector, only CuM
messages are passed from each cooperating BS to the others, and it
can be further reduced by transferring the index of the quantized soft
information, instead of the soft information itself. As will be shown in
Fig. 4 of Section IV, the uniform quantization using even just a single
bit imposes only a negligible performance loss.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, we characterize the achievable performance of
the proposed DPDA-SC approach using Monte Carlo simulations
in the hexagonal cellular network of Fig. 1 consisting of 19 cells.
We use the decorrelated-model-based DPDA-SC for the scenario of
Mu (Cu + 1) ≤ Mb and the nondecorrelated-model-aided DPDA-SC
for Mu (Cu + 1) > Mb. Quadrature phase-shift keying (QPSK) mod-
ulation is used, and the knowledge of the average equivalent SNR per

receive antenna formulated as SNR
∆
= 10 log10(E{‖Gs‖2/Mb}/N0)

is exploited at each BS. Flat Rayleigh-fading channels are considered,
i.e., the entries of each subchannel matrix between an MS and a BS
are chosen as independent and identically distributed (i.i.d.) zero-
mean unit-variance complex-valued Gaussian random variables. A
new realization of each channel matrix is drawn for each data burst
consisting of 1000 transmitted symbol vectors, and each element of
the noise vector nk is i.i.d. CN (0, N0). We set (Mu = 2, Mb = 8)
and (Mu = 4, Mb = 8) for the scenarios of Mu (Cu + 1) ≤ Mb

corresponding to Section IV-A–C, E and F, and Mu (Cu + 1) >
Mb corresponding to Section IV-D, respectively. For simplicity, we
consider MS0 in the following investigation, where Cu = 3, without
loss of generality. Since the PDA algorithm typically converges within
three to five 5 iterations [6], we set the maximum number of iterations
to I = 5.

A. Perfect CSI

In the case of perfect CSI, Fig. 2 compares the bit error ratio
(BER) performance of nine different setups, including the PDA and
the maximum-likelihood (ML) single-user bounds recorded at BS0
for MS0, where ρ represents the interference intensity ρk

αi
defined

in Section III. To be specific, each ρk
αi

value may be different, but
for simplicity, an identical interference intensity was assumed for
the interfering MSs. This is justified because all the MSs imposing
interference on each of the desired MSs are situated in the neighboring
cells and have similar distances from the desired MS’s home BS.

The “SCSU LZF” scheme refers to the linear zero-forcing (LZF)-
based single-cell single-user detection (SUD) invoked at each BS,
where the cochannel users’ signals arriving from the other cells are
simply treated as background noise. Naturally, this low-complexity
SUD leads to poor performance. The “MMSE-OSIC JD,” the
“PDA JD,” and the “ML JD” refer to the joint detection (JD) of
multiple cochannel MSs at each BS using the minimum-mean-square-
error-based successive interference cancellation with optimal ordering
(MMSE-OSIC), the PDA, and the ML approaches, respectively, where
again, no SC is invoked. The ML detector is implemented with the aid
of a reduced-complexity sphere decoder [15], where the sphere radius
is adaptively adjusted according to the prevalent SNR-level to avoid a
search failure. All the JD setups require knowledge of all the channel
matrices between the cochannel users and the local BS for mitigating
the CCI, but they do not share soft decision information with other
cells since no message exchange and no SC is used. Nonetheless, a
substantial BER improvement is shown in comparison to the SCSU
LZF, particularly when ρ is small.

Fig. 2. Performance comparison of DPDA-SC, ML JD, SCSU LZF, SU
ML bound, and SU PDA bound under perfect CSI and different interference
intensities ρ, using QPSK modulation.

The dashed curves represent the proposed DPDA-SC scheme oper-
ating under ρ = 0.5 and ρ = 0.8. Observe in Fig. 2 that a significant
further BER improvement is achieved, which is attributed to the spatial
diversity gain provided by joint cooperative BS processing. The PDA
and the ML single-user bounds, i.e., the “SU PDA bound” and “SU
ML bound,” are obtained by setting ρ = 0, which implies that the CCI
vanishes. This scenario is equivalent to a single-user (2 × 8)-element
spatial multiplexing MIMO system. It is observed in Fig. 2 that the
PDA bound is extremely close to the ML bound. The results recorded
in Fig. 2 for different ρ values characterize the impact of ρ on the
attainable reception performance. It may be concluded from Fig. 2 that
the interference intensity ρ is the key factor limiting the achievable
performance of cellular MIMO networks.

B. Imperfect CSI

When considering the more practical imperfect CSI scenario, Fig. 3
compares the performance of the proposed DPDA-SC scheme to the
MMSE-OSIC JD, the ML JD, and the PDA JD schemes at different
levels of channel estimation quality of β = 0.98 and β = 0.99, and a
given interference intensity of ρ = 0.8. It is observed in Fig. 3 that the
achievable performance of all the schemes considered is dramatically
degraded by the channel estimation error. Basically, different error
floors are observed for these schemes because the fixed level of
relatively strong interference plays a dominant role, when the SNR
is high. More specifically, in the imperfect CSI scenario of Fig. 3,
the PDA JD scheme only marginally outperforms the MMSE-OSIC
JD scheme, although it enjoys a notable advantage in the perfect CSI
scenario. In other words, the PDA JD scheme is more sensitive to the
channel estimation error than the MMSE-OSIC JD scheme. This is
because the MMSE-OSIC JD is a hard-decision method, whereas the
PDA JD vitally relies on an iterative soft information update process.
In general, the accuracy of the soft information is a key factor in deter-
mining the success of soft-information-based algorithms. Therefore,
we can further observe in Fig. 3 that the DPDA-SC scheme has a sub-
stantial performance advantage over that of the PDA JD because the
spatial diversity originating from BS cooperation using SC consid-
erably improves the accuracy of the soft information. Compared to
the ML JD, the DPDA-SC is remarkably superior in the moderate-
SNR region of practical interest, although its advantage erodes in the
high-SNR region of Fig. 3. This phenomenon is a consequence of
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Fig. 3. Performance comparison of different reception schemes under differ-
ent levels of channel estimation quality β = 0.98 and β = 0.99 and a given
interference intensity ρ = 0.8, using QPSK modulation.

the different sensitivities of soft- and hard-information-based meth-
ods. Therefore, we conclude that the BS-cooperation-aided DPDA-SC
scheme is capable of mitigating the effects of the error floor imposed
by imperfect CSI by exploiting that the strong interference becomes
a useful source of increased signal energy as a benefit of the more
sophisticated distributed processing. Note that. although the error floor
is not very obvious for the ML JD in the SNR range considered in
Fig. 3, it is expected to become more evident at higher SNRs.

C. Impact of Quantization on the Backhaul Traffic and Performance

It is of practical interest to investigate the cost of backhaul traffic
in the parallel message exchange stage using the UCS mode in the
proposed DPDA-SC scheme. Instead of transferring the quantized
probability value itself, the index of each probability value is trans-
ferred between the cooperative BSs, where a quantized probability
lookup table is prestored. When considering the perfect CSI scenario,
where the interference intensity is ρ = 0.8, Fig. 4 shows the perfor-
mance of the DPDA-SC employing uniform quantization, which is
performed on the converged probabilities before they are transferred
to the cooperative BSs. It is shown that the performance loss due to the
different quantization levels in uniform quantization is marginal in the
proposed DPDA-SC scheme. This performance loss diminishes as
the SNR increases and completely vanishes at high SNRs. This is
because the converged soft information has been individually obtained
using the PDA algorithm at each BS before the parallel message
exchange stage, and the SC-aided final decision relies on which
probability is the highest, rather than on the exact values of the proba-
bilities themselves. By comparison, the soft information is obtained via
multiple iterations between BSs in [3], where the performance is more
sensitive to the quantization loss. Based on our results, if the QL =
2 uniform quantization scheme is used, only M log2 QL = 4 bits will
be transferred from each BS to one of the cooperating BSs, when
QPSK is used.

D. Rank-Deficient Scenario

Fig. 5 shows the performance of the proposed DPDA-SC scheme in
the scenario of Mu(Cu + 1) > Mb, where Mu = 4, Mb = 8, Cu =
3. The nondecorrelated signal model is applied in both the PDA JD and
the DPDA-SC schemes. We observed in Fig. 5 that the DPDA-SC is

Fig. 4. Uniform quantization impact on the performance of DPDA-SC un-
der perfect CSI and a given interference intensity ρ = 0.8, using QPSK
modulation.

Fig. 5. Performance of DPDA-SC in rank-deficient scenario, Mb = 8, Mu =
4, Cu = 3, Cb = 3, with perfect CSI and a given interference intensity ρ =
0.8, using QPSK modulation.

still superior to the PDA-JD, although both of them suffered significant
performance loss due to the much stronger interlayer interference
compared to the scenario of Mu(Cu + 1) ≤ Mb.

E. Convergence Property

In Fig. 6, we characterize the convergence performance of the
proposed DPDA-SC scheme under both perfect and imperfect CSI
conditions. It may be observed in Fig. 6 that the DPDA-SC converges
within a few iterations, which is a contributing factor of the low
complexity of the DPDA-SC, as shown in Fig. 7.

F. Complexity Comparison

Finally, the complexity comparison between the DPDA-SC, the
PDA JD, the MMSE-OSIC JD, and the ML JD is provided in Fig. 7.
The complexity is quantified in terms of the number of equivalent
additions required for decoding a single bit. We may observe that,
as the number of concurrent transmissions increases, the complexity
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Fig. 6. Convergence property of DPDA-SC, SNR = 6 dB, QPSK, and ρ =
0.8.

Fig. 7. Complexity comparison of different reception schemes, measured in
terms of the number of equivalent additions per bit, SNR = 6 dB. QPSK, β =
0.98, and ρ = 0.8.

of ML JD rapidly increases, whereas the other three maintain a near-
constant normalized complexity. Furthermore, the complexity of the
proposed DPDA-SC is marginally higher (contributed by SC) than
that of the conventional PDA JD but significantly lower than that of
ML JD (about 1% when the number of concurrent transmissions is 8).
Although the relatively coarse complexity analysis using O(·) function
shows that the DPDA-SC approach enjoys the same O(L3) order of
complexity as the SIC-based algorithm, the numerical results show that
the DPDA-SC is about five times more complex than the MMSE-OSIC
JD scheme.

V. CONCLUSION

We have proposed a DPDA-SC scheme for BS cooperation in the
uplink of multiuser multicell MIMO systems. The realistic hexagonal

cellular model relying on unity FR has been considered. The DPDA-
SC scheme has been shown to converge in few iterations; hence, it
constitutes a low-complexity solution for jointly estimating the initial
soft-decision information at each BS. Each BS shares the MSs’ soft
information with the aid of their message exchange and generates the
final soft decision information with the aid of SC. The simulation
results, as well as our complexity analysis, demonstrate that the
proposed scheme significantly outperforms the conventional nonco-
operative schemes while imposing a modest additional complexity
and backhaul traffic. We have also investigated the performance of
the proposed DPDA-SC scheme in the more practical imperfect CSI
scenario and demonstrated that the DPDA-SC scheme succeeds in
mitigating the system’s error floor. The impact of quantization on both
the backhaul traffic and the achievable performance has also been
investigated, and it has been shown that, even when using single-bit
uniform quantization, the performance loss is trivial while leading to
low backhaul traffic.

REFERENCES

[1] H. Dai, A. F. Molisch, and H. V. Poor, “Downlink capacity of interference-
limited MIMO system with joint detection,” IEEE Trans. Wireless Com-
mun., vol. 3, no. 2, pp. 442–453, Mar. 2004.

[2] T. Mayer, H. Jenkac, and J. Hagenauer, “Turbo base-station cooperation
for intercell interference cancellation,” in Proc. IEEE ICC, Jun. 2006,
pp. 4977–4982.

[3] S. Khattak, W. Rave, and G. Fettweis (2008, Jan.). Distributed iterative
multiuser detection through base station cooperation. EURASIP J.
Wireless Commun. Netw. [Online]. 2008, pp. 1–15. Available:
http://dx.doi.org/10.1155/2008/390489

[4] E. Aktas, J. Evans, and S. Hanly, “Distributed decoding in a cellular
multiple-access channel,” IEEE Trans. Wireless Commun., vol. 7, no. 1,
pp. 241–250, Jan. 2008.

[5] Y. Bar-Shalon and X. R. Li, Estimation and Tracking: Principles, Tech-
niques and Software.. Norwood, MA: Artech House, 1993.

[6] J. Luo, K. R. Pattipati, P. K. Willett, and F. Hasegawa, “Near op-
timal multiuser detection in synchronous CDMA using probabilistic
data association,” IEEE Commun. Lett., vol. 5, no. 9, pp. 361–363,
Sep. 2001.

[7] Y. Jia, C. M. Vithanage, C. Andrieu, and R. J. Piechocki, “Probabilistic
data association for symbol detection in MIMO systems,” Electron. Lett.,
vol. 42, no. 1, pp. 38–40, Jan. 2006.

[8] S. Yang, T. Lv, R. G. Maunder, and L. Hanzo, “Unified bit-based prob-
abilistic data association aided MIMO detection for high-order QAM
constellations,” IEEE Trans. Veh. Technol., vol. 60, no. 3, pp. 981–991,
Mar. 2011.

[9] F. D. Neeser and J. L. Massey, “Proper complex random processes with
applications to information theory,” IEEE Trans. Inf. Theory, vol. 39,
no. 4, pp. 1293–1302, Jul. 1993.

[10] J. Fricke, M. Sandell, J. Mietzner, and P. Hoeher, “Impact of the Gaussian
approximation on the performance of the probabilistic data association
MIMO decoder,” EURASIP J. Wireless Commun. Netw., vol. 5, no. 5,
pp. 796–800, Oct. 2005.

[11] V. Annapureeddy and V. Veeravalli, “Gaussian interference networks:
Sum capacity in the low interference regime and new outer bounds on the
capacity region,” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3032–3050,
Jul. 2009.

[12] T. Weber, A. Sklavos, and M. Meurer, “Imperfect channel-state infor-
mation in MIMO transmission,” IEEE Trans. Commun., vol. 54, no. 3,
pp. 543–552, Mar. 2006.

[13] J. Luo, “Improved multiuser detection in code-division multiple access
systems,” Ph.D. dissertation, Univ. Connecticut, Storrs, CT, May, 2002.

[14] F. Cao, J. Li, and J. Yang, “On the relation between PDA and MMSE-
ISDIC,” IEEE Signal Process. Lett., vol. 14, no. 9, pp. 597–600,
Sep. 2007.

[15] E. Viterbo and J. Boutros, “A universal lattice code decoder for fad-
ing channels,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1639–1642,
Jul. 1999.


