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Abstract—We present a prediction-based resource allocation algorithm
(RA) for orthogonal frequency-division multiple-access (OFDMA) down-
link, where inaccuracies in the wireless channel predictions are accounted
for in the problem formulation. As the prediction quality significantly
degrades with the prediction horizon, we propose a solution based on
the histogram of the prediction error. This characterization also enables
different mobile stations (MSs) to use different channel predictors as it
does not rely on a specific prediction scheme. Using this characterization
of the prediction error and based on classical resource allocation strategies,
we derive an algorithm that incorporates imperfect channel prediction in-
formation of future time slots. We evaluate the proposed algorithm using a
practical low-complexity channel predictor suitable for implementation at
the MSs. Simulation results show that the proposed algorithm outperforms
previous prediction-based RA strategies without the characterization of
the prediction error, and the system throughput is comparable with the
case with perfect channel state information in the transmitter (CSIT).

Index Terms—Channel state information, histograms, orthogonal
frequency-division multiple-access (OFDMA), prediction algorithm,
scheduling algorithm, time-varying channels, wireless communications.

I. INTRODUCTION

Orthogonal frequency-division multiple-access (OFDMA) is a
multiple-access technique capable of exploiting multiuser diversity
in a frequency-selective fading scenario. Because of its orthogonal
structure, OFDMA allows multiple users to simultaneously transmit
on the different subcarriers of one orthogonal frequency-division-
multiplexing (OFDM) symbol. Considering time-varying environ-
ments, the problem of allocating specific subcarriers to users over
successive time slots, taking into account overall data throughput as
well as fairness constraints, has received a lot of attention over the past
few years [1]–[8].

Predicted channel state information in the transmitter (CSIT) plays
an important role on the efficient sharing of channel resources in
time-varying wireless channels. For example, in long-term evolution
(LTE) downlink [9], the physical layer scheduler allocates channel
resources between mobile stations (MSs) in 1-ms resolution. The
resource allocation algorithm (RA) is based on achievable rate values
reported by the MSs through a feedback channel. In this context,
channel prediction has already been considered for compensating
feedback latency in rapidly varying scenarios; see, e.g., [1] and [2].
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However, the use of channel predictors to improve RA algorithms has
not been fully explored yet.

With the development of long-range channel predictors [10]–[14], it
becomes feasible to include information about the channel state on fu-
ture time slots in the RA algorithm. However, to exploit this new infor-
mation, prediction accuracy has to be taken into account. Specifically,
in high-mobility scenarios, channel prediction appreciably degrades as
the prediction horizon increases [10], and the assumptions of perfect
CSIT or constant prediction error are no longer valid. Several RA
algorithms for OFDMA downlink considering imperfect CSIT have
recently been proposed [1]–[4]. A modification of the proportional
fair scheduler (PFS) is proposed in [4] to predict the allocation for
several time slots. This method is shown to improve fairness among
users when compared with the case without prediction. However, in
high-mobility scenarios and with practical implementation of channel
predictors, two main issues related to prediction-based RA in rapidly
varying channels can be identified: 1) the tradeoff between prediction
horizon and prediction accuracy and 2) characterization of the predic-
tion error to improve system performance.

In this paper, we propose a prediction-based RA algorithm for high-
mobility scenarios. The main concern is to characterize the prediction
error associated with practical channel predictors. Imperfect CSIT due
to prediction error has an important impact on the overall system
performance as the achievable rates of MSs are computed from CSIT
by evaluating the channel power on each subchannel.

The main contributions of this paper are the following: 1) the
derivation of a prediction-based RA algorithm, which is aware of
prediction error and capable of providing close to perfect CSIT system
throughput at the system bit error rate (BER) constraint, and 2) a
statistical description of the prediction error that does not assume
a specific error model (usually associated with a specific prediction
technique) and is thus feasible to be applied to general long-range
channel predictors. To the best of our knowledge, general theoretical
models for long-range predictors have yet to be developed.

Specifically, it is shown that based on the typical parameters of
practical OFDMA systems, a set of histograms can be calculated and
updated periodically to approximate the statistics of the prediction
error. To corroborate the effectiveness of the proposed algorithm in
practical OFDMA systems, we consider realistic system parameters as
well as a realistic channel model for each MS. In addition, as OFDMA
downlink channel prediction is performed at the MSs, we consider
in this paper a computationally inexpensive channel predictor that is
practical for implementation at the MSs [10].

The outline of this paper is as follows: In Section II, we define
the system model, introduce the notation, review the prediction-based
RA literature, and describe a long-range channel predictor suitable
for application on prediction-based RA schemes. The error-aware
prediction-based RA is derived in Section III, where the effect of im-
perfect predicted CSIT is analyzed, and an empirical characterization
is proposed to compensate the prediction error. An analysis of the com-
putational cost associated with the proposed scheme is presented in
Section IV, and the performance of the proposed prediction correction
scheme is evaluated in Section V. Finally, Section VI provides our
conclusions.

II. PROBLEM STATEMENT

A. System Model

We consider an OFDMA downlink transmission where resources
are allocated on subcarrier basis. On the other hand, in LTE and
mobile WiMAX, resource blocks consist of several subcarriers, either
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contiguous or distributed within the OFDMA band, and the signaling
of rate values corresponding to the resource blocks is vendor specific.
Nevertheless, we chose to minimize the system assumptions and study
a generic case where a resource block consists of one subcarrier.
However, the concept can be adapted to other types of resource blocks
as well.

The system under consideration has N available subchannels and K
active MSs, and the resources are allocated on a time slot basis, where a
time slot consists of M consecutive OFDM symbols. For each time slot
s, the base station (BS) scheduler decides which MS is assigned to a
particular subchannel n. More than one subchannel might be assigned
to an MS, depending on its rate requirement or channel state.

Pt symbols carrying pilot subcarriers are evenly distributed over a
time slot, and Pf pilot subcarriers are evenly distributed in frequency
over subcarriers on the pilot symbols to aid channel estimation and
prediction at the MSs. Pilot symbols are quaternary phase-shift keying,
whereas data symbols can be taken from a set of available quadratic-
amplitude modulation (QAM) constellations [β1, . . . , βK]. Further-
more, convolutional coding of the data symbols is used to allow a finer
grid of possible bit rates. The BS transmits on each subchannel using
one of the modulation and coding schemes subject to the system BER
constraint. The MSs are assumed to experience independent channel
fading with the same statistics. Regarding the time selectivity of the
channel, we assume that the channel varies significantly from one time
slot to the next. As the RA is performed on a time slot basis, we assume
that the channel variation over a time slot can be neglected. Thus, the
channel frequency response for time slot s is given by

Hk(s, n) ≈
L∑

l=1

hk(s, l)e−j 2πln
N (1)

which is a complex Gaussian random variable with zero mean and σ2
Hk

variance. For l = 1, . . . , L, hk(s, l) denotes the lth channel tap for
user k over time slot s, with L being the length of the channel impulse
response. CSIT is estimated for the current time slot and predicted for
the following W time slots. There are two alternatives to acquire CSIT
at the BS. The prediction can be performed in either BS or MSs. The
latter case requires a larger overhead in the feedback channel as W
estimates are fed back for each slot. In the former case, the overhead
is less at the expense of a high computational load at the BS. The first
alternative is implemented in this paper, whereas the derivations apply
in both cases. In the following, the transmitted power is assumed to be
the same in all subchannels to emphasize the bit loading. We denote
the rate achieved by user k on time slot s by Rk(s), which is given
as the sum rate over all subchannels assigned to user k as Rk(s) =
M

∑
n∈Ik

rk(m, n), where Ik is the index set for the subchannels
assigned to user k, and rk(m, n) is the rate for user k at symbol time
m on subchannel n. This way, the overall system throughput for time
slot s is given by

R(s) =

K∑
k=1

Rk(s). (2)

The design goal is to maximize the system throughput defined in
(2) with constraints on total transmit power, system BER, and fairness
among users.

B. Prediction-Based RA

A fair and efficient sharing of radio resources among users is an
important design factor in wireless networks. PFS is a popular solution
to provide a fair distribution of resources among users when CSIT
is available. Denoting the kth MS average data rate by R̄k, based

on a fairness reasoning, it aims to maximize MSs R̄k over time
based on allocations on previous time slots. That is, U(s + 1) =

arg maxU
∑K

k=1
log(R̄k(s)), where U(s + 1) is the utility function

to be maximized for allocating time slot s + 1 using information up to
time slot s, and U is the set of all possible allocations for the considered
time slot. The algorithm keeps track of the average throughput R̄k(s)
of each MS in an exponentially weighted window of length τ .

The performance of this scheduling algorithm can be improved
if channel predictions from MSs are available for future time slots.
However, long-range channel predictors have not been fully ex-
ploited within RA algorithms. An extension of the PFS to include
CSIT prediction has been derived in [4]. This prediction-based PFS
(P-PFS) calculates the achievable rates in a prediction window from
slot s + 1 to s + W , and the average rates at the end of this window are
maximized to allocate time slot s + 1. The prediction-based allocation
scheme can be expressed as

U(s + W ) = arg max
U

K∑
k=1

log
(
R̄W

k

)
(3)

where R̄W
k denotes the average rate of user k at the end of the next W

time slots and is computed as

R̄W
k =

(
1− 1

τ

)W

R̄k(s) +
1

τ

W∑
w=1

(
1− 1

τ

)W−w

Řk(s + w) (4)

where Řk indicates a “virtual” allocated rate, as time slots s + 2 to
s + W have yet to be allocated. A practical algorithm to implement
(3) is also given in [4], which will be used in this paper.

C. Channel Prediction

To be able to use information on future time slots, the achievable
rates must be estimated within the prediction window. In what follows,
we briefly describe a low-complexity channel predictor [10] that will
be used both as a motivating example and for testing the proposed
prediction-based RA scheme.

To simplify the notation, we focus in this section on only one MS
and drop MS index k. It is shown in [10] that the time variation
over M̄ (several times larger than M ) OFDM symbols of the channel
coefficient corresponding to one subcarrier can be well described in
terms of a size M̄ discrete cosine transform (DCT) truncated to its first
G � M̄ basis functions. The basis dimension G is determined from
the maximum expected channel Doppler shift and the DCT energy
compression characteristics. By interpreting the DCT basis functions
as the impulse responses of ideal bandpass filters centered at the cosine
frequencies, it is also shown that an approximation Ĥ(FB)(m, n) of
H(m,n) for m = 1, . . . , M̄ can be obtained by recursive filtering
of H(m, n) with a second-order infinite impulse response filter bank
based on a normalized all-pass lattice realization, whose frequency
response is given by

HFB(ejω) =
0.5(1 − s20)(1 + e−j2ω)

1 − s20e−j2ω

+

G−1∑
i=1

0.5(1 − s2i)(1 − e−j2ω)

1 + (s2i + 1)s1ie−jω + s2ie−j2ω
(5)

where s1i = − cos(πi/M̄) is the lattice parameter defining the fil-
ter central frequencies, and s2i(0 < s2i < 1) is related to the 3-dB
bandwidth of each narrowband filter. By defining xi(m, n), 0 ≤ i ≤
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G − 1, the state vector for each passband filter on subcarrier n, the
filter bank structure of (5) can be expressed in state space form as

xi(m + 1, n) =Aixi(m,n) + biH(m,n)

Ĥ(FB)i(m, n) = cixi(m, n) + diH(m,n)

Ĥ(FB)(m, n) =

G−1∑
i=0

Ĥ(FB)i(m, n) (6)

where Ai, bi, ci, and di are the state space descriptions of the filters
in (5). Using (6), the optimum algorithm for estimating H(m, n) in
additive white Gaussian noise is a set of G scalar Kalman filters
for the filter bank of (6). Further, as the DCT basis functions are
fixed for the whole transmission, the Kalman gains have a steady-
state solution resulting in a low-complexity limiting Kalman filter.
Having the Kalman estimate Ĥ(m, n) as input, a long-range channel
predictor can be obtained by decimating on T (determined accord-
ing to the maximum channel Doppler shift such that the decimated
channel is sampled above the Nyquist frequency) the input esti-
mates, scaling up in frequency the passband filters by the same
factor T , and using L step extrapolation on the limiting Kalman
filter. In this manner, the following limiting Kalman predictor can be
obtained as

ep(m + �, n) = Ĥ(m + � − T, n)

− Ĥp(m + � − T, n)

xp
i�(m + �, n) = (Ap

i )L xp
i�(m + � − TL, n)

+ kp
i ep(m + �, n)

Ĥp
i (m + �, n) = cp

i x
p
i�(m + �, n)

Ĥp (m + � + T (L − 1), n) =

G−1∑
i=0

Ĥp
i (m + �, n) (7)

where � = 0, . . . , (T × L) − 1 are the state vector samples used at
each iteration, xp

i� is the predictor state vector, Ap
i and cp

i are the
transition matrix and output vector of the passband filters scaled up in
frequency by T , and kp

i ’s are the corresponding steady-state Kalman
gains. Finally, to obtain the predicted channel over all subcarriers, one
limiting Kalman filter predictor is run over each of the Pf available
pilot subcarriers and interpolated for all the other subcarriers using
DCT interpolation in frequency.

III. ERROR-AWARE PREDICTION-BASED RESOURCE

ALLOCATION ALGORITHM

In this section, we evaluate achievable rates r̃k(s + w,n) for future
time slots (input to the P-PFS of Section II-B) when imperfect CSIT
due to prediction errors is available. When perfect CSIT is available,
extending [17] for coded modulation, the instantaneous BER for
subchannel n in symbol time m can be approximated by

Pe(s, n) ≈ c1 exp

{
−c2γδ(s, n) |H(s, n)|2

2β(s,n) − 1

}
(8)

where c1 = 0.2, c2 = 1.6, β(s, n) is the number of bits per symbol
of the QAM constellation used for a subchannel and time slot, and
δ(s, n) is the coding gain, with respect to the uncoded case, for
the corresponding QAM constellation. The SNR value γ accounts
for the path loss, whereas the small-scale fading effects are rep-
resented by H(s, n). By evaluating (8) for the possible pairs of
β(s, n) and δ(s, n), the one that satisfies the system BER constraint

is selected and determines the number of bits per symbol r̃(s, n) for
transmission.

In a practical scenario, it is impossible to have perfect CSIT,
and the determination of r̃(s, n) is based on an estimate Ĥ(s, n)
of H(s, n). In this case, the use of (8) no longer guarantees that
the BER constraint is satisfied. In the case of imperfect CSIT [17],
an average BER P̄e(s, n) = E|H(s,n)||Ĥ(s,n)

{Pe(s, n)} is considered
instead of the instantaneous BER of (8), where the expectation is
evaluated over |H(s, n)||Ĥ(s,n). By defining the random variable α =
|H(s, n)||Ĥ(s,n), it results in

P̄e(s, n) =

∞∫
0

Pe(s, n)f(α)dα

=

∞∫
0

c1 exp

{
−c2γδ(s, n)α2

2β(s,n) − 1

}
f(α) dα (9)

where f(α) is the probability density function (pdf) of
|H(s, n)||Ĥ(s,n). When Ĥ(s, n) is an estimate or a slightly delayed
estimate of the true channel coefficient H(s, n), several assumptions
hold regarding f(α) [2], [17], [18], and closed-form solutions can be
derived to evaluate (9).

Unfortunately, for the prediction-based RA application considered
here, Ĥ(s, n) is a prediction of H(s, n) based on significantly older
CSIT, and a derivation of f(α), besides being complex to obtain,
depends on the characteristics of the channel predictor used to obtain
Ĥ(s, n). In the following paragraphs, we reformulate (9) in terms
of the prediction error instead of α, as the former is the available
observation in the case of the prediction-based RA.

For a prediction-based RA algorithm considering CSIT up to W
time slots in the future, W different pdfs should be evaluated. Let
us define for each considered prediction horizon the random variables
ew = (αw − |Ĥ(s + w, n)||H(s,n))/σ2

H such that the pdfs of αw and
ew are related by

fαw (αw) =
1

σ2
H

few (ew). (10)

Replacing (10) in (9), the estimated BER for each prediction horizon
can be evaluated in terms of the defined normalized prediction error ew

using

Pew (s + w,n) = P̂ew (s + w, n) × ρw(n) (11)

where P̂ew (s + w,n) denotes the evaluation of (8) for the available
predicted value of the channel coefficient

P̂ew (s + w,n)

= c1 exp




−c2γδ(s + w,n)
∣∣Ĥ(s + w,n)

∣∣2
|H(s,n)

2β(s+w,n) − 1


 (12)

and ρw(n) is the correction factor compensating the imperfect CSIT
through the normalized prediction error

ρw(n) =
1

σ2
H

∞∫
−∞

exp

{
−c2γδ(s + w,n)θ(s + w,n)

2β(s+w,n) − 1

}
few (ew) dew

(13)

where θ(s + w,n) = 2σ2
H |Ĥ(s + w,n)||H(s,n)ew + σ4

He2
w. It is

clear that for perfect CSIT, ρw(n) = 1. We derive next an estimator
of few (ew) in (13) to evaluate this correction factor.
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Assuming that the prediction error ew is identically distributed over
the system subchannels and is independent of H(s, n), the number Q
of prediction error samples for the different subchannels can be used
to construct a histogram to estimate few (ew). Following [19, Ch. 5.5],
to find f̂ew (ew), we use the empirical pdf. We expect that as Q → ∞,
f̂ε(ew) approaches the true density few (ew).

To derive the estimator, let the ith histogram interval be centered
on εi, and let ω be its width. Hence, the ith interval will be denoted
by ∆i = {ew : εi − (ω/2) < ew ≤ εi + (ω/2)} so that the histogram
f̂ε(ew) is defined by

f̂εi
(ew) =

Qi

Qω
, for ew ∈ ∆i (14)

with Qi being the number of observations for which ew ∈ ∆i. The in-
terval width ω, together with the setting of a maximum error threshold
εQ, determine the number of probability mass points of the estimator.
The bias of f̂ε(ew) as an estimator of few (ew) can be shown for
each interval to be b(f̂εi

(ew)) ≈ f ′′
ew

(εi)(ω
2/24), where f ′′

ew
(εi) is

the second derivative of few (εi), and the normalized standard error σε

to estimate few (εi) is σε =
√

1 − ωfew (εi)/Qωfew (εi). It can be
noted that the effect of the cell width ω on σε is opposite to that on the
bias such that an appropriate choice of ω is to set ω ∝ 1/

√
Q [19].

Using the estimated pdf for the prediction error, (13) can be rewrit-
ten in terms of (14) as

ρ̂w(n) =
1

σ2
H

εQ∑
−εQ

exp

{
−c2γδ(s + w,n)θ̃(s + w,n)

2β(s+w,n) − 1

}
f̂εi

(εi)

(15)

where θ̃(s + w,n) = 2σ2
H |Ĥ(s + w,n)||H(s,n)εi + σ4

Hε2i . This last
expression is then inserted into (11), replacing ρw(n), and used to
evaluate Pew (s + w,n) on each subchannel such that

Pew (s + w,n) = P̂ew (s + w,n) × ρ̂w(n). (16)

The pair β∗(s + w,n), δ∗(s + w,n) satisfying (16) determines the
achievable rate r̃(s + w, n) on subchannel n. It is worth noting that
as the number of subcarriers in typical OFDMA systems is usually
large (above 512 subcarriers), the bias and standard error will be small,
and the W histograms built for each MS will describe the statistics of
the prediction error accurately. Further, the histograms for estimating
few (εi) are constructed assuming perfect CSIT at the MS for current
time slot. In a practical implementation, Hk(s, n) is estimated at
the MS for symbol detection. Assuming that the estimation error is
much lower than the prediction error in the prediction range, which
is a reasonable assumption for practical estimators/predictors (as will
be shown in Section V), the former can be used as a reference for
the characterization of the latter without affecting much the resulting
f̂εi

(εi). In addition, if we further assume that the statistics of ew are
slowly time variant, then the histograms can periodically be improved
with the incorporation of new data points. That is

f̂ (s)
εi

(εi) = ξf̂ (s)
εi

(εi) + (1 − ξ)f̂ (s−W )
εi

(εi) (17)

where 0.5 ≤ ξ ≤ 1 is a tuning parameter selected to compensate for
the possibly time-varying statistics of ew. Finally, the resulting values
of r̃k(s + w,n) corresponding to each MS are fed to the prediction-
based RA algorithm.

IV. COMPLEXITY ANALYSIS

The proposed prediction error characterization/compensation
scheme involves an additional computational cost when compared

with the baseline scenario of uncompensated imperfect CSIT. For the
uncompensated case, the computational cost for the bit loading is given
by the evaluation of (8) for the possible pairs of β and δ. Using the
binary search algorithm to this end, the average number of required
evaluations of (8) for this search is log2(K̃) − 1 and at most log2(K̃)
probes in the worst case, where K̃ is the number of available β−δ
pairs, which is a small number for practical systems. On the other
hand, for the proposed scheme, the computational cost involved in the
histogram construction of (14) and in the evaluation of the correction
factor ρ̂w(n) of (15) should be considered besides the evaluation of
P̂ew , similar to (8).

The constructed histograms have 2εQ + 1 bins (probability mass
points). The value of Qi in (14) for each probability mass point
can also be evaluated using the binary search algorithm requiring on
average log2(2εQ + 1) trials for each sample. Thus, the computa-
tional cost associated with W histogram construction is evaluated as
O(WQ log2(2εQ + 1)), and assuming that the histograms are updated
every W time slots, it reduces to O(Q log2(2εQ + 1)). Regarding
the computation of the correction factor ρ̂w(n) of (15), it must be
evaluated for all possible pairs of β and δ to be then inserted into
(16). The evaluation of (15) involves O(2εQ + 1) complex operations,
which leads to a computational cost of O(K̃(2εQ + 1)) complex
operations.

Summarizing the discussion from the previous paragraphs, the
additional computational cost of the proposed scheme, when compared
with the baseline of the uncompensated case, is O(Q log2(2εQ + 1) +
K̃(2εQ + 1)). Thus, in practice, the complexity is dominated by the
number of error samples Q, which is much larger than the number of
available modulation/coding pairs K̃.

V. NUMERICAL EVALUATION

In this section, we evaluate the impact of the prediction error
aware bit loading presented in Section III to the performance of
the prediction-based RA algorithm in [4]. We seek to quantify the
performance improvement achieved with the proposed empirical char-
acterization of the prediction error.

We consider the downlink of an OFDMA system based on the 3rd
Generation Partnership Project specification [9] operating at a carrier
frequency fC = 2 GHz with 10-MHz bandwidth, 15-kHz subcarrier
spacing, and 5-µs cyclic prefix. The fast Fourier transform size is 1024,
and N = 600 subcarriers are in use, occupying 90% of the bandwidth.
The length of the time slot is M = 15 OFDMA symbols, which is
equivalent to 1 ms, and the system uses 5% pilot ratio. 4-, 16-, and
64-QAM constellations are available for data transmission. In addition,
the system employs convolutional coding for data transmission using
the (133,171) rate 1/2 code with puncturing to obtain 2/3 and 3/4 code
rates. A bit loading function similar to [8] is used corresponding to a
system target BER of 10−3. All the simulation results are obtained by
averaging over time to average the channel fading statistics.

Based on the derivations in Section III, the parameters for the
construction of the histograms are chosen as Q = 600 (all system
subchannels used), ω = 0.078, and the limits for the histogram set
to ±0.8. Finally, the parameter ξ for updating of the histograms is
set to ξ = 0.7. To evaluate a realistic propagation environment, we
consider independent wireless fading channel for each MS following
the ITU-Vehicular A model, which results in a 27-tap frequency-
selective channel for the given system parameters. Each channel tap
varies in time according to Jakes Doppler spectrum, and we employ
the practical channel estimator/predictor structure of [10]. Following
[10], the parameters for this channel predictor are M̄ = 12 M such
that s1i = − cos(πi/M̄). It is shown in [10] that the performance is
robust to the typical values of the selectivity parameter s2i such that
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Fig. 1. Average bit loading per subcarrier without prediction and for w =
1, 2, and 3 time slot predictions for a single MS. Results are averaged over
2000 time slots, as well as over MSs and system subchannels. Mobile speed is
set to 50 km/h, SNR is 25 dB, and the system target BER is 10e−3.

its value is set to 0.998. In addition, for the MS speeds of interest, a
value of G = 8 results for the basis expansion dimension. Finally, the
extrapolation factor for the Kalman predictor is fixed to L = 3 and the
decimation factor T adjusted to meet the different prediction horizons.

Before addressing the performance of P-PFS, Fig. 1 illustrates the
virtual rates Řk(s + w) in (4) (input to P-PFS) when imperfect CSIT
is available. The figure shows the average computed Řk(s + w) for a
single MS over three successive time slots based on the predicted CSIT
with an SNR of 25 dB. The input to the P-PFS of (3) is the average rate
R̄W

k in (4) of user k at the end of the W = 3 time slots considered
computed based on these virtual rates Řk(s + w). In general, it
noticed that imperfect CSIT degrades the virtual rates. However, even
with imperfect CSIT, the prediction increases the system throughput,
as will be seen later on. The proposed bit loading based on (16)
is compared against the uncompensated case (8), and the case of
perfect CSIT is also shown for reference. As expected, the average bit
loading is independent on the prediction horizon when perfect CSIT
is available. Two bars for imperfect CSIT are shown for the proposed
bit loading when the true channel (Perf. Ref.) and channel estimates
(Est. Ref.) are employed for the histogram construction. It can be
noted that the proposed scheme effectively reduces the loading gap
between the perfect and imperfect cases, obtaining a reduction from
0.35, 0.75, and 1.1 to 0.1, 0.35, and 0.6 bits/subchannel for w = 1, 2,
and 3 time slot prediction, respectively. Although not used by P-PFS,
bit loading without prediction (w = 0) is also plotted for reference.

Fig. 2 shows, for a ten MSs, 50 km/h, and 25-dB SNR scenario,
the improvement in system throughput obtained by the P-PFS as the
prediction window increases (0 stands for the conventional PFS). It
can be noted that for all prediction window lengths, the performance is
significantly improved using the proposed scheme (16), whereas the
improvement by the corrected CSIT is larger for shorter prediction
windows as the associated prediction error is smaller. This figure
clearly shows the capabilities of the prediction-based approach. At the
same time, the impact of the degraded virtual rates due to imperfect
CSIT Řk(s + w) (illustrated in Fig. 1) on the performance of P-PFS
is evident.

In Fig. 3, system throughput is evaluated for a prediction window of
length W = 3 and up to 20 MSs moving at 25 km/h in high and low
SNR scenarios. The channel power for MSs is uniformly distributed
between −3 and 0 dB. The 25- and 10-dB SNR settings result in

Fig. 2. System throughput versus prediction window length for P-PFS. Re-
sults are averaged over 1000 time slots, as well as over MSs and system
subchannels to obtain system level results. Mobile speed is set to 50 km/h,
SNR is 25 dB, and the system target BER is 10e−3.

Fig. 3. System throughput versus the number of MSs for W = 3 P-PFS.
Results are averaged over 500 time slots, as well as over MSs and system
subchannels to obtain system level results and are shown for the case where
the predicted CSIT is error free (circle marker), the predicted CSIT is corrected
(square marker) as proposed in (16), and for uncompensated predicted CSIT
using (8) (diamond marker). Mobile speed is set to 25 km/h, and the system
target BER is 10e−3.

channel estimate references with MSE of −60.15 and −33.64 dB,
respectively, for the construction of the histograms. In both scenarios,
the results for perfect CSIT are plotted as a best performance bound.
As the RA for the next time slot is based on the computation of the
average rates achieved by MSs at the end of the prediction window,
if the computed achievable rates for future time slots differ too much
from the true achievable rates, the prediction-based RA performance
will degrade in terms of system throughput or in terms of the system
BER constraint. P-PFS with imperfect CSIT is not able to exploit
the available resources to full extent, and the system throughput is
reduced, in particular for the case of few MSs. On the other hand, it
can be seen that the proposed correction scheme gives close to perfect
CSIT performance, which demonstrates its effectiveness. This happens
because, as the histograms constructed in (14) are not restricted to
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Fig. 4. System throughput versus the number of MSs for W = 3 P-PFS and
different prediction schemes. Results are averaged over 500 time slots, as well
as over MSs and system subchannels to obtain system-level results. Mobile
speed is set to 25 km/h, SNR is 25 dB, and the system target BER is 10e−3.

have zero mean, the correction factor of (15) has the capability to
compensate a bias on the predicted CSIT. As expected, in this low
SNR regime, system throughput is reduced as the channel quality for
the MSs is degraded. However, the proposed error correction scheme
still effectively reduces the throughput gap for both references used in
the histogram construction. It is worth noting that the performance im-
provement obtained with the proposed scheme is larger in this last case
as the uncompensated bit loading cannot approach the perfect CSIT
case, even for a large number of users (where the probability of having
a user with good channel state at each time slot increases). This latter
conclusion justifies the added complexity of the proposed scheme.

Fig. 4 shows again the system throughput for the high SNR setting
in Fig. 3, this time evaluated for a linear predictor [12] and a sum of
sinusoid predictor [11], which we refer to as minimum mean square
error (MMSE) predictor and estimation of signal parameters via ro-
tational invariance (ESPRIT) based predictor, respectively. It is worth
noting that the computational cost of these predictors is significantly
larger than that of the predictor of [10] so that their implementation
at the MSs may not be feasible. It is observed for both predictors that
the proposed scheme also gives close to perfect CSIT performance,
showing that it can be applied to different prediction schemes as the
characterization of the prediction error is independent of the channel
prediction scheme.

Regarding BER behavior using the proposed error correction
scheme, Fig. 5 shows the BER results for the high SNR setting in
Fig. 3 and all channel predictors tested. As the bit loading function
used is discrete, all the curves are below the BER constraint, as
expected, and thus, the perfect CSIT case is used as a reference for
performance comparison. When the channel power is underestimated,
the uncompensated bit loading algorithm assigns modulation/coding
schemes that meet the BER constraint for this underestimated power.
If the channel state is in reality better, then the BER attained with
the assigned more robust modulation/coding pair will be lower, in-
dicating that the system resources are not fully exploited. On the
other hand, if the channel power is overestimated, then the assigned
modulation/coding scheme will not be supported by the real channel
state, thus leading to a higher BER, indicating a loss in transmission
reliability. It is easy to see in Fig. 5 that while the recursive basis
expansion model predictor in Section II-C underestimates the channel
power, the MMSE and ESPRIT predictors overestimate the channel

Fig. 5. System BER versus the number of MSs for W = 3 P-PFS using
different prediction schemes. Mobile speed is set to 25 km/h, SNR is 25 dB,
and the system target BER is 10e−3.

Fig. 6. System throughput for W = 3 prediction-based RA. Results are
averaged over 2000 time slots, as well as over MSs and system subchannels
to obtain system level results. There are ten MSs moving at speeds ranging
from 50 to 200 km/h and an SNR of 25 dB.

power. However, in all cases, the proposed compensation scheme
effectively reduces the BER gap relative to the perfect CSIT case.
As observed in Fig. 3, the constructed histograms take into account
a possible under/overestimation of the channel power and, thus, can
compensate this effect in bit loading. In the high SNR scenarios of
Figs. 3 and 4, for a large number of users, all the schemes converge to
the same total system throughput. This happens because as the number
of users increases, the probability of having a user with good channel
conditions at all time slots increases, as does the system throughput.
However, the achievable rates computed by the different schemes are
not necessarily the same. Thus, the MSs scheduled by P-PFS might
not be the same in all cases, leading to different BER performances
for each scheme. This figure shows that the proposed technique ap-
proaches the perfect CSIT case for all channel predictors used, demon-
strating that it does not rely on a specific prediction structure.

A last simulation setting is shown in Fig. 6, where we further
investigate the performance dependence on the MS speed. We consider
again a prediction window of W = 3 time slots and ten MSs moving at
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speeds from 50 to 200 km/h with 25-dB SNR. This figure shows how
the bit loading gap increases for higher speeds (the prediction error
increases for fixed prediction range), resulting in a throughput loss for
high MS speeds. In all cases, the proposed scheme reduces this loss
significantly, compared with the uncompensated case.

VI. CONCLUSION

We have proposed a characterization of the prediction error for
prediction-based resource allocation for OFDMA downlink over mo-
bile wireless channel when imperfect channel state information is
available. Based on the large amount of frequency data samples avail-
able in a typical OFDMA system, we derived an empirical approach
based on histograms for the characterization of the prediction error for
the different prediction horizons considered in the prediction window.

We evaluated the proposed scheme under realistic channel condi-
tions, system parameters, and a practical channel predictor that is
feasible for implementation at MSs. Simulation results indicate that
the proposed scheme outperforms similar prediction-based resource
RAs that disregard the prediction error.
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Achieving the Outage Capacity of the Diamond Relay
Network to Within One Bit and Even Less

Chi Wan Sung, Member, IEEE, Mingjun Dai, and Ping Hu

Abstract—A new forwarding strategy is proposed for the wireless dia-
mond relay network under slow fading. The key feature is that it can adap-
tively switch between decode–forward and compress–forward according to
the instantaneous received signal strength. It has four control parameters,
which can be optimized by an alternating optimization procedure. Its
outage performance is compared with two lower bounds. Analytically, it
is proven to achieve the outage capacity to within 1 bit and within 50%
for any signal-to-noise ratio (SNR). Empirically, it is shown to be nearly
optimal for some fading scenarios.

Index Terms—Alamouti code, diamond relay network, outage capacity.

I. INTRODUCTION

The parallel relay network, in which a pair of source–destination
nodes is connected by a number of parallel relay nodes, was proposed
in [1]. Due to its potential application to mobile cellular systems, it
has attracted much attention [2]–[6]. The particular case where there
are two relays is called the diamond relay network, as the topology
looks like a diamond, as shown in Fig. 1. This model was first studied
in [7] and later investigated in [8]–[11]. Its channel capacity, however,
remains unknown, even for the nonfading case with only additive white
Gaussian noise (AWGN).

In a slow-fading environment with channel state information (CSI)
available at receivers but not at transmitters, full diversity of the
parallel relay network can be achieved by using distributed space-
time code, together with the decode-and-forward (DF) method [2].
For the diamond relay network, one can adopt the Alamouti code,
and this particular scheme is called ACDF [11]. The full-diversity
result ensures that the outage probability curve of ACDF can be
made the steepest possible at high signal-to-noise ratio (SNR). On the
other hand, it does not rule out the possibility that the curve can be
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