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Abstract—This paper elaborates on the ergodic capacity of
fixed-gain amplify-and-forward (AF) dual-hop systems, which
have recently attracted considerable research and industry inter-
est. In particular, two novel capacity bounds that allow for fast
and efficient computation and apply for nonidentically distributed
hops are derived. More importantly, they are generic since they
apply to a wide range of popular fading channel models. Specifi-
cally, the proposed upper bound applies to Nakagami-m, Weibull,
and generalized-K fading channels, whereas the proposed lower
bound is more general and applies to Rician fading channels.
Moreover, it is explicitly demonstrated that the proposed lower
and upper bounds become asymptotically exact in the high signal-
to-noise ratio (SNR) regime. Based on our analytical expressions
and numerical results, we gain valuable insights into the impact
of model parameters on the capacity of fixed-gain AF dual-hop
relaying systems.

Index Terms—Amplify-and-forward (AF) relaying, dual-hop
transmission, ergodic capacity, fading channels.

I. INTRODUCTION

DUAL-HOP relaying systems, where an intermediate relay
node helps to forward the source signal to the intended

destination node, have received enormous interest due to their
ability to significantly improve the throughput and reliability of
communication systems, as well as to provide wider coverage
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to operators [1]–[3]. In this context, amplify-and-forward (AF)
relaying systems, where the relay node amplifies the received
signal and retransmits it to the destination, have low hardware
requirements and easy deployment and, therefore, are elegant
from a practical viewpoint. Generally, depending on the avail-
ability of channel state information (CSI) at the relay node,
AF dual-hop relaying systems can further be classified into two
categories, i.e., variable-gain relaying [2] and fixed-gain relay-
ing [3], with the latter being particularly useful for practical
applications thanks to their low implementation complexity.

Understanding the fundamental capacity limits of AF dual-
hop systems in various practical propagation environments has
been an active area of research. For Rayleigh fading chan-
nels, Farhadi and Beaulieu [4] proposed an ergodic capacity
upper bound for dual-hop systems with different relay gains
based on Jensen’s inequality. This approach was later extended
in [5] by deriving an additional upper bound, based on the
harmonic–geometric means inequality, assuming CSI is only
known at the destination. The main disadvantage of both
bounds is that they are not sufficiently tight, particularly when
the hops are not identically distributed. For this reason, the
authors in [5] also presented an exact alternative expression
[5, Eq. (17)], which, however, is based on an infinite series of
scalar integrals, and as such, its evaluation is tedious and not
amenable to further manipulations.

Recently, Waqar et al. [6] presented several tight bounds
for fixed-gain dual-hop systems based on Steffensen’s, Cheby-
shev’s, and Jensen’s inequalities. The presented analysis, how-
ever, is valid for Rayleigh fading, and an extension to other
types of fading does not seem straightforward. The seminal
work of [7] on fixed-gain dual-hop systems under Nakagami-
m fading and with partial relay selection provided a tight and
computationally efficient approximation to the ergodic capacity
using a Taylor series expansion; yet, this approximation is not
strictly greater or smaller than the exact capacity and, hence,
cannot serve as an upper/lower bound.

In parallel, Ikki and Ahmed [8] presented an ergodic capacity
upper bound, which originates from [9], for variable-gain dual-
hop systems in Weibull fading channels, whereas Wu et al.
[10] obtained an ergodic capacity upper bound for fixed-gain
dual-hop systems in generalized-K fading channels based on
Jensen’s inequality. Finally, Waqar et al. [11] proposed a gen-
eral framework for analyzing the ergodic capacity of variable-
gain multihop relaying systems, although the presented results
either apply for identically distributed fading distributions (e.g.,
Nakagami-m) or rely on the classical moment-based approach
of [12].
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While these prior works have significantly improved our
knowledge on the ergodic capacity characterization of dual-
hop relaying systems, a general capacity framework, which will
encompass the most important fading channels, seems to be
missing from the literature. In this light, we have tried to bridge
this gap by analytically investigating the ergodic capacity of
dual-hop systems for several fading models.

In particular, the contributions of this paper can now be
summarized as follows.

1) We first propose two novel bounding techniques for the
ergodic capacity of fixed-gain dual-hop systems. The
proposed capacity bounds (one lower and one upper
bound) are generally quite tight and become asymp-
totically exact in the high signal-to-noise ratio (SNR)
regime. We then particularize these general bounds to
the most popular and important fading models, namely,
Nakagami-m, Weibull, Rician, and generalized-K fading
channels. For these fading models, some new analytical
expressions are derived, which offer rather useful insights
into the implications of the model parameters on the
performance of dual-hop relaying systems. We note that
all the presented results can easily be evaluated and
efficiently programmed. More importantly, they are ap-
plicable for nonidentically distributed hops, with different
fading characteristics.

2) In addition, we devise a new relationship between the
ergodic capacity and the first negative moment of the
instantaneous SNR of each hop. Since the negative mo-
ment does not always exist, we establish a straightforward
condition for its existence that is only dependent on the
fading parameters.

The rest of this paper is organized as follows: Section II
introduces the system model that is used throughout this paper.
Section III presents the generic lower and upper bounds on
the ergodic capacity of the dual-hop relaying systems, which
are then particularized to specific fading channel models in
Section IV. Finally, Section V concludes this paper.

II. SYSTEM MODEL

Let us consider a dual-hop relaying system with one source,
relay, and destination node; in this case, the end-to-end input
and output relationship can succinctly be expressed as [2], [3]

y = h2G(h1x+ n1) + n2 (1)

where x denotes the source symbol with E{xx∗} = P1, whereas
(·)∗ and E{·} denote complex conjugate and expectation, re-
spectively. The term h1 represents the complex random fad-
ing coefficient of the source–relay link, whereas h2 is the
complex random fading coefficient of the relay–destination
link. In addition, n1 and n2 are the additive Gaussian noises
at the relay and destination nodes with power N1 and N2,
respectively. Note that the fixed relaying gain can be expressed
asG =

√
P2/(E{|h1|2}P1 +N1), where P2 is the power of the

transmitted signal at the output of the relay. Hence, the end-to-
end SNR becomes [3]

ρ =
ρ1ρ2

c+ ρ2
(2)

where ρ1 =P1|h1|2/N1, ρ2 =P2|h2|2/N2, and c=P2/G
2N1.

Having these definitions in hand, the ergodic capacity of the
system reads as

C =
1
2
E {log2(1 + ρ)} =

1
2
E

{
log2

(
1 +

ρ1ρ2

c+ ρ2

)}
(3)

where the factor 1/2 accounts for the fact that the entire
communication occupies two time slots. In general, a closed-
form evaluation of the ergodic capacity in (3) is a challenging
mathematical problem due to the presence of the nonlinear log
function. On this basis, we hereafter seek to lower and upper
bound (3) using some tractable statistical tools.

III. GENERIC CAPACITY BOUNDS

In this section, we propose two general and tight lower and
upper bounds on the ergodic capacity of fixed-gain AF dual-
hop systems in arbitrary fading channels. We start with the
following lower bound.

A. Lower Bound

Theorem 1: The ergodic capacity of fixed-gain AF dual-hop
systems is lower bounded by

Cl =
1
2

log2 (1 + exp (E{ln ρ1} + E{ln ρ2}−E {ln(c+ρ2)})) .
(4)

Proof: The proof follows by expressing the ergodic capac-
ity as (1/2)E{log2(1 + exp(ln(ρ1ρ2/c+ ρ2)))} and utilizing
the fact that log2(1 + a exp(x)) is convex in x for a > 0;
the desired result can be obtained with some simple algebraic
manipulations after applying Jensen’s inequality. �

B. Upper Bound

To obtain an ergodic capacity upper bound, one straightfor-
ward approach is to exploit the fact that log2 x is a concave
function with respect to x and, thereafter, apply Jensen’s in-
equality on (3). By doing so, we end up with the following
upper bound:

Cu1 =
1
2

log2

(
1 + E{ρ1}E

{
ρ2

c+ ρ2

})
. (5)

We note that, in the context of dual-hop relaying systems, this
bounding technique was initially used in [4] and later adopted in
[10] when studying the ergodic capacity of fixed-gain AF dual-
hop systems in Rayleigh and generalized-K fading channels,
respectively. However, the main disadvantage of such bound
is its inherently poor performance in the high SNR regime.
Motivated by this critical limitation and after a simple transfor-
mation, we derive a novel capacity upper bound that becomes
exact in the high SNR regime.

Theorem 2: The ergodic capacity of fixed-gain AF dual-hop
systems is upper bounded by

Cu2 =
1
2

log2

(
1 + cE

{
ρ1

−1
}
E
{
ρ2

−1
}

+ E
{
ρ1

−1
})

+
1
2
E {log2 ρ1 + log2 ρ2 − log2(c+ ρ2)} . (6)
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Proof: The ergodic capacity can alternatively be ex-
pressed as

C =
1
2
E

{
log2

(
1 +

c+ ρ2

ρ1ρ2

)}
+

1
2
E

{
log2

(
ρ1ρ2

c+ ρ2

)}
.

Then, applying the Jensen’s inequality on the first term yields
the desired result. �

From (6), it is evident that the evaluation of Cu2 requires the
existence of the first negative moment of a random variable. In
this sense, the following lemma will be particularly useful.

Lemma 1[13]: For a continuous random variable X with
probability density function (pdf) fX(x), its first negative mo-
ment E{x−1} does not exist if it has a positive mass at X = 0,
i.e., fX(0) > 0.

It is also worth mentioning that, in the asymptotically high
SNR regime, i.e., ρ1 and ρ2 are large, both lower and upper
bounds Cl and Cu2 become exact and equal to

C∞ = C∞
l = C∞

u2 =
1
2
E

{
log2

(
ρ1ρ2

c+ ρ2

)}
. (7)

IV. CAPACITY BOUNDS FOR FADING CHANNELS

In this section, we particularize the general capacity bounds
proposed in the previous section to the most important fading
channel models, including Nakagami-m, Weibull, Rician, and
generalized-K fading channels.

A. Nakagami-m Fading Channels

The Nakagami-m distribution [14] is a general fading model
that includes the one-sided Gaussian distribution (m = 1/2)
and the Rayleigh distribution (m = 1) as special cases, and it
can also accurately approximate the Nakagami-q (Hoyt) distrib-
ution. Most importantly, it often yields the best fit with real-time
data in various land-mobile [15] and indoor-mobile multipath
[16], [17] propagation environments. For Nakagami-m fading
channels, we assume that |h1| and |h2| are independent and
nonidentically distributed Nakagami-m random variables with
parameters m1, Ω1, and m2, Ω2, respectively. The pdf of
|hi|2 (i = 1, 2) is then given by

p(x)=
1

Γ(mi)

(
mi

Ωi

)mi

xmi−1 exp
(
−mi

Ωi
x

)
, mi≥0.5

where Γ(x) =
∫∞
0 tx−1 exp(−t)dt denotes the well-known

Gamma function [18, Eq. (8.310.1)]. It is also worth mentioning
that Ωi is the average power of the fading channels and is
defined as Ωi = E{|hi|2}, i = 1, 2.

We first present the following closed-form lower bound on
the ergodic capacity.

Proposition 1: The ergodic capacity of fixed-gain AF
dual-hop systems in Nakagami-m fading channels is lower
bounded by

Cl =
1
2

log2

(
1 +

P1P2Ω1Ω2

m1m2N1N2c
exp

(
ψ(m1) + ψ(m2)

− 1
Γ(m2)

G1,3
3,2

[
P2Ω2

N2cm2

∣∣∣∣ 1 −m2, 1, 1
1, 0

]))
(8)

where ψ(x) is the digamma function [18, Eq. (8.360.1)], and
Gm,n

p,q [x, |α1,...,αp

β1,...,βq
] denotes the Meijer’s G function [18, Eq.

(9.301)].
Proof: See Appendix A. �

Proposition 1 provides a general expression of the capacity
lower bound, which is valid for arbitrary fading parameters. For
the special case when m2 is an integer, we have the following
alternative expression.

Corollary 1: When m2 is a positive integer, (8) simplifies to

Cl =
1
2

log2

(
1 +

P1P2Ω1Ω2

m1m2N1N2c
exp

(
ψ(m1) + ψ(m2)

− exp
(
cm2N2

Ω2P2

) m2∑
k=1

Ek

(
cm2N2

Ω2P2

)))
(9)

where En(x) =
∫∞
1 (e−xt/tn)dt is the exponential integral

function of order n, for n = 0, 1, 2, . . ., and Re(x) > 0 [19, Eq.
(5.1.4)].

Proof: The result follows from [20, Eq. (47)]

E {ln(c+ ρi)} = ln c+ exp
(
cmiNi

ΩiPi

) mi∑
k=1

Ek

(
cmiNi

ΩiPi

)

and some basic algebraic manipulations. �
As a next step, we consider the upper bounds on the ergodic

capacity. For general noninteger m2, the first upper bound
can be obtained via the moment expression of the end-to-end
SNR [21, Eq. (10)]. Here, we present an alternative simplified
expression for the case of m2 being an integer.

Proposition 2: When m2 is a positive integer, the ergodic
capacity of fixed-gain AF dual-hop systems in Nakagami-m
fading channels is upper bounded by

Cu1 =
1
2

log2

(
1 +

P1Ω1m2

N1

× exp
(
m2N2c

P2Ω2

)
Em2+1

(
m2N2c

P2Ω2

))
. (10)

Proof: Since E{|hi|2} = Ωi, the key task is to evaluate
E{|hi|2/(|hi|2 + a)}, which is given by

E

{ |hi|2
|hi|2 + a

}
=

1
Γ(mi)

(
mi

Ωi

)mi

×
∞∫

0

xmi

x+ a
exp

(
−mi

Ωi
x

)
dx

︸ ︷︷ ︸
I1

. (11)

The integral I1 can be evaluated as

I1 = ami exp
(
mia

Ωi

)
Γ(mi+1)Γ

(
−mi,

mia

Ωi

)
(12)

= exp
(
mia

Ωi

)(
mi

Ωi

)−mi

Emi+1

(
mia

Ωi

)
Γ(mi+1) (13)
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where Γ(n, x) =
∫∞

x xn−1e−xdx is the upper incomplete
gamma function [18, Eq. (8.350.2)]. Note that (12) is obtained
with the aid of [18, Eq. (3.383.10)], whereas (13) follows
from the identity [19, Eq. (5.1.45)]. Substituting (13) into (11),
we have

E

{ |hi|2
|hi|2 + a

}
= mi exp

(
mia

Ωi

)
Emi+1

(
mia

Ωi

)
(14)

and this concludes the proof. �
On a similar basis, the second upper bound is analytically

given by the following proposition.
Proposition 3: The ergodic capacity of fixed-gain AF dual-

hop systems in Nakagami-m fading channels is upper bounded
by Cu2, as in (15), shown at the bottom of the page.

Proof: The key of the proof is to obtain the first negative
moment of |hi|2, which can be computed as

E

{
1

|hi|2
}

=
1

Γ(mi)

(
mi

Ωi

)mi
∞∫

0

xmi−2 exp
(
−mi

Ωi
x

)
dx

=
mi

(mi − 1)Ωi
(16)

where we have used [18, Eq. (3.381.5)] to solve the correspond-
ing integral. Substituting (16), (35), and (38) into (6), we can
obtain (15) after some basic algebra. �

Note that the upper bound (15) is valid for arbitrary m2. For
the special case where m2 is a positive integer, we have the
following alternative expression.

Corollary 2: When m2 is a positive integer, the ergodic
capacity upper bound (15) reduces to (17), shown at the bottom
of the page.

Proof: The proof follows easily by combining the results
presented in Corollary 1 and Proposition 3. �

It is also worth pointing out that, according to Lemma 1, the
first negative moment exists only if mi > 1, i = 1, 2; thus, Cu2

does not exist if at least one of the hops is Rayleigh faded.
Fig. 1 illustrates the performance of the derived upper

and lower bounds in Nakagami-m fading channels. We ob-
serve that, in general, the second upper bound Cu2 is tighter

Fig. 1. Ergodic capacity of fixed-gain AF dual-hop systems in Nakagami-
m fading channels: simulation results, analytical upper and lower bounds.
P1/N1 = P2/N2.

than the first upper bound Cu1 in the high SNR regime. More-
over, the tightness of the second upper bound Cu2 improves
when the channel conditions become better, i.e., the channel
gains Ωi or the fading parameters mi become large. On the
other hand, the lower bound Cl remains tight across the entire
SNR range; in fact, in the high SNR regime, it overlaps with
the second upper bound Cu2, thereby validating that these
two bounds are asymptotically exact at high SNRs. Generally
speaking, the effect of mi on the capacity becomes less pro-
nounced as mi gets larger (i.e., the relative difference between
the capacity curves gets smaller). This is consistent with the
results in [7] and [21].

B. Weibull Fading Channels

The Weibull fading model has recently attracted considerable
research interest thanks to its ability to yield good fit to ex-
perimental fading channel measurements for both indoor [22]
and outdoor environments [23]. In this case, we assume that
|h1| and |h2| are independent and nonidentically distributed

Cu2 =
1
2

log2

(
1 +

N1N2m1m2c

P1P2(m1 − 1)(m2 − 1)Ω1Ω2
+

N1m1

P1(m1 − 1)Ω1

)

+
1

2 ln 2

(
ln
(

P1P2Ω1Ω2

m1m2N1N2c

)
+ ψ(m1) + ψ(m2) − 1

Γ(m2)
G1,3

3,2

[
P2Ω2

N2cm2

∣∣∣∣ 1 −m2, 1, 1
1, 0

])
(15)

Cu2 =
1
2

log2

(
1 +

N1N2m1m2c

P1P2(m1 − 1)(m2 − 1)Ω1Ω2
+

N1m1

P1(m1 − 1)Ω1

)

+
1

2 ln 2

(
ln
(

P1P2Ω1Ω2

m1m2N1N2c

)
+ ψ(m1) + ψ(m2) − exp

(
cm2N2

Ω2P2

) m2∑
k=1

Ek

(
cm2N2

Ω2P2

))
(17)
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Weibull random variables with parametersm1, Ω1, andm2, Ω2,
respectively. Hence, the pdf of |hi|2 (i = 1, 2) is given by

p(x) =
mi

2Ωi
x

mi
2 −1 exp

(
− 1

Ωi
x

mi
2

)
. (18)

Proposition 4: The ergodic capacity of fixed-gain AF dual-
hop systems in Weibull fading channels is lower bounded by

Cl =
1
2

log2


1+

P1P2Ω
2

m1
1 Ω

2
m2
2

N1N2c
exp

(
− 2γ
m1

− 2γ
m2

−A1

)
where γ = 0.577216 is the Euler constant, and A1 is given by

A1 =
m2

√
k

2Ω2l(2π)l+ k
2− 3

2

(
P2

cN2

)−m2
2

× Gk+2l,l
2l,k+2l

(
(cN2)l

(kΩ2)kP l
2

∣∣∣∆(l,−m2
2 ),∆(l,1−m2

2 )

∆(k,0),∆(l,−m2
2 ),∆(l,−m2

2 )

)
(19)

where ∆(n, ε) ∆= (ε/n), (ε+ 1/n), . . . , (ε+ n− 1/n), with ε
as an arbitrary real value and n as a positive integer. Moreover,
(l/k) = (m2/2), where l and k are positive integers.

Proof: The term A1 = E{ln(1 + ρ2/c)} has already been
derived in [24, Eq. (17)]. As such, it suffices to compute
E{ln ρi}, which can be evaluated as follows:

E{ln ρi} = ln
Pi

Ni

+
mi

2Ωi

∞∫
0

x
mi
2 −1 exp

(
− 1

Ωi
x

mi
2

)
lnxdx

︸ ︷︷ ︸
I2

. (20)

Making a change of variable t = xmi/2, the integral can be
computed as

I2 =
(

2
mi

)2
∞∫

0

exp
(
− t

Ωi

)
ln tdt. (21)

Invoking the integration relationship [18, Eq. (4.352.1)]

E{ln ρi} = ln
Pi

Ni
− 2
m2

(γ − ln Ωi). (22)

Combining (22) with (4), we obtain the desired result. �
Proposition 5: The ergodic capacity of fixed-gain AF dual-

hop systems in Weibull fading channels is upper bounded by

Cu1 =
1
2

log2


1 +

√
kP1Ω

2
m1
1 Γ

(
2

m1

)
m2(cN2)

m2
2

N1m1P
m2
2

2 Ω2(2π)l+ k
2− 3

2

× Gk+l,l
l,k+l

(
(cN2)l

P l
2(kΩ2)k

∣∣∣∣∆(l,−m2
2 )

∆(k,0),∆(l,−m2
2 )

). (23)

Proof: See Appendix B. �
Proposition 6: The ergodic capacity of fixed-gain AF dual-

hop systems in Weibull fading channels is upper bounded by

Fig. 2. Ergodic capacity of fixed-gain AF dual-hop systems in Weibull fading
channels: simulation results, analytical upper and lower bounds. P1/N1 =
P2/N2.

Cu2 as

Cu2 =
1
2

log2

(
1 +

N1N2c

P1P2
Ω

− 2
m1

1 Γ
(

1 − 2
m1

)

× Ω
− 2

m2
2 Γ

(
1 − 2

m2

)
+
N1

P1
Ω

− 2
m1

1 Γ
(

1 − 2
m1

))

+
1

2 ln 2


ln


P1P2Ω

2
m1
1 Ω

2
m2
2

N1N2c


− 2γ

m1
− 2γ
m2

−A1


 .

(24)

Proof: The key of the proof is to obtain the first negative
moment of |hi|2, which can easily be computed as

E

{
1

|hi|2
}

=
mi

2Ωi

∞∫
0

x
mi
2 −2 exp

(
− 1

Ωi
x

mi
2

)
dx

= Ω
− 2

mi
i Γ

(
1 − 2

mi

)
(25)

where, once more, we have used [18, Eq. (3.381.5)] to solve the
corresponding integral. Substituting (22) and (25) into (6), we
can get (24) after factorization. �

The existence of the first negative moment in the Weibull
case requires mi > 2, i = 1, 2; this implies that Cu2 does not
exist if at least one of the hops is Rayleigh faded, reflecting
those observations that have also been made in the Nakagami-
m case.

Fig. 2 investigates the performance of the proposed upper
and lower bounds over asymmetric Weibull fading channels
with m1 = 3 and m2 = 6. Not surprisingly, we see that when
the average channel gain of either hop increases, the achievable
capacity also increases. Moreover, Fig. 2 demonstrates that the
achievable capacity for the Ω1 = 10, Ω2 = 1 case is larger
than that of the Ω1 = 1, Ω2 = 10 case, suggesting that the
average channel gain of the first hop has a greater impact on
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the system performance compared with the average channel
gain of the second hop. In addition, we see that the tightness of
the first upper bound Cu1 is relatively insensitive to the change
of channel gain Ωi, whereas the tightness of the second upper
bound Cu2 and lower bound Cl improves when Ωi increases.

C. Rician Fading Channels

The Rician fading model is suitable when a direct line-of-
sight or specular component is present in the wireless channel.
In particular, this type of fading is usually observed in the first
resolvable line-of-sight path of microcellular urban and sub-
urban land–mobile [25] and picocellular indoor environments
[26]. We recall that the Rician distribution spans the range from
Rayleigh fading K = 0 to no fading K = ∞, where K denotes
the Rician factor. In this case, we assume that |h1| and |h2|
are independent and nonidentically distributed Rician random
variables with parameters K1, Ω1, and K2, Ω2, respectively.
Hence, the pdf of |hi|2 (i = 1, 2) is given by

p(x) =
(1 +Ki)e−Ki

Ωi
exp

(
− (1 +Ki)x

Ωi

)

× I0


2

√
Ki(1 +Ki)x

Ωi


 (26)

where I0(x) is the zeroth-order modified Bessel function of
the first kind [18, Eq. (8.405.1)]. We point out that the case of
Rician fading is scarcely addressed in the literature due to the
presence of the Bessel function, which makes the mathematical
analysis tedious. In the following, we present closed-form lower
and upper bounds for fixed-gain AF dual-hop systems in Rician
fading channels.

Proposition 7: The ergodic capacity of fixed-gain AF dual-
hop systems in Rician fading channels is lower bounded by
Cl in (27), shown at the bottom of the page, where N is an
arbitrary positive integer, and γ(p, x) =

∫ x

0 t
p−1e−tdt is the

lower incomplete gamma function [18, Eq. (8.350.1)].

Proof: See Appendix C. �
Proposition 8: The ergodic capacity of dual-hop fixed-gain

relaying systems in Rician fading channels is upper bounded by
Cu1 in (28), shown at the bottom of the page.

Proof: See Appendix D. �
The choice of N will affect the tightness of the upper bound

Cu1 and lower bound Cl, and generally, a larger N produces
a tighter lower or upper bound. Moreover, we notice that the
value of K2 has a dominating effect on the convergence speed,
i.e., how large shouldN be, such that further increasingN does
not produce any perceptible improvement on the tightness of
the bound. In general, a smaller N is required for a smaller
K2, and from our simulations, we find out that, for K2 ≤ 10,
the improvement brought by further increasing N beyond 20
becomes negligible.

Proposition 9: For dual-hop fixed-gain relaying systems in
Rician fading channels, the upper bound Cu2 does not exist.

Proof: From (26), we can easily infer that the pdf mass
at x = 0 is given by p(0) = ((1 +Ki)e−Ki/Ωi) > 0. Thus,
according to Lemma 1, the first negative moment of ρi does
not exist, which, in turn, implies that Cu2 does not exist for the
Rician case. �

Fig. 3 examines the performance of the proposed upper and
lower bounds in Rician fading channels. As already mentioned,
the choice of N has a significant impact on the tightness of
the bounds. In the simulations, we have set N = 1, 10, 20 to
obtain the curves associated with K2 = 0.1, 1, 10, respectively
(we find out that further increasing N does not produce any
noticeable improvement of the bounds). We observe that the
ergodic capacity increases when Ki becomes large due to the
additional power that is captured by the destination node. In
addition, the tightness of both upper and lower bounds improves
when Ki and Ωi increase.

D. Generalized K Fading Channels

This is a generic composite model that emerges when small-
scale fading is modeled via the Nakagami-m distribution and
large-scale fading via the gamma distribution. This model has

Cl =
1
2

log2

(
1+

P1P2Ω1Ω2K1K2

(1+K1)(1+K2)N1N2c
exp

(
E1(K1)+E1(K2) − exp

(
c(1 +K2)N2

Ω2P2
−K2

)N−1∑
j=0

Kj
2

j!

×
j+1∑
k=1

Ek

(
c(1+K2)N2

Ω2P2

)
−exp

(
c(1 +K2)N2

Ω2P2

)
E1

(
(1+K2)N2

Ω2P2

)(
K2(N−1)γ(N−1,K2)+γ(N,K2)

Γ(N)

)))
(27)

Cu1 =
1
2

log2

(
1 + P1Ω1N1 exp

(
(1 +K2)N2c

P2Ω2
−K2

)(N−1∑
k=0

(k + 1)Kk
2

k!
Ek+2

(
(1 +K2)N2c

P2Ω2

)

+EN+2

(
(1 +K2)N2c

P2Ω2

)
exp(K2)

(
K2(N − 1)γ(N − 1,K2) + γ(N,K2)

Γ(N)

)))
(28)
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Fig. 3. Ergodic capacity of fixed-gain AF dual-hop systems in Rician fading
channels: simulation results, analytical upper and lower bounds. P1/N1 =
P2/N2.

been demonstrated to effectively approximate most of the fad-
ing and shadowing effects occurring in wireless channels and
also to be analytically friendlier than the classical Nakagami-
m/lognormal model [27]–[31]. In this case, we assume that
|h1| and |h2| are independent and nonidentically distributed
generalized K random variables with parameters m1, k1, Ω1,
and m2, k2, Ω2, respectively. Hence, the pdf of |hi|2 (i = 1, 2)
can be expressed as [28]

p(x) =
2x

ki+mi
2 −1

Γ(mi)Γ(ki)

(
mi

Ωi

) ki+mi
2

Kki−mi

(
2
√
mi

Ωi
x

)

whereKν(x) denotes the νth-order modified Bessel function of
the second kind [18, Eq. (8.407.1)].

Proposition 10: The ergodic capacity of fixed-gain AF
dual-hop systems in generalized-K fading channels is lower
bounded by Cl in (29), shown at the bottom of the page.

A2 = G4,1
2,4

(
m2N2c

Ω2P2

∣∣∣∣− k2+m2
2 ,1− k2+m2

2

k2−m22,
m2−k2

2 ,−k2+m22,− k2+m2
2

)
.

Proof: The term A2 = E{ln(1 + ρ2/c)} can directly be
obtained from [28, Eq. (7)]. As such, the key task is to evaluate
E{ln |hi|2} or

E
{
ln |hi|2

}
=

2
Γ(mi)Γ(ki)

(
mi

Ωi

) ki+mi
2

×
∞∫

0

x
ki+mi

2 −1Kki−mi

(
2
√
mi

Ωi
x

)
lnxdx. (30)

With the help of the integration relationship [32, Eq.
(2.16.20.1)], we have E{ln |hi|2} = ψ(ki) + ψ(mi) +
ln(Ωi/mi). �

Now, we turn our attention to the capacity upper bounds.
Since the first upper boundCu1 has already been derived in [10],
we elaborate on the second upper bound Cu2 and propose the
following key result, which, to the best of our knowledge, is new.

Proposition 11: The ergodic capacity of fixed-gain AF dual-
hop systems in generalizedK fading channels is upper bounded
by Cu2 in (31), shown at the bottom of the page.

Proof: The key issue is to obtain the first negative moment
of |hi|2, which can be computed as

E

{
1

|hi|2
}

=
2

Γ(mi)Γ(ki)

(
mi

Ωi

)ki+mi2

×
∞∫

0

x
ki+mi

2 −2Kki−mi

(
2
√
mi

Ωi
x

)
dx (32)

=
mi

(mi − 1)(ki − 1)Ωi
(33)

where from (32) to (33), we have used the integration relation-
ship [18, Eq. (6.561.16)]. Following a similar line of reasoning
as in Proposition 10, we can easily work out the desired result
in (31). �

Note that according to Lemma 1 and the condition for the
integration relationship [18, Eq. (6.561.16)] that we have used
to evaluate (32), the existence of the first negative moment
requires mi > 1 and ki > 1, i = 1, 2.

Fig. 4 compares the lower and upper bounds against the
simulation result in generalized K fading channels. Note that
the first capacity upper bound Cu1 was first presented in [10,
Eq. (11)]. Again, we see that the second upper bound Cu2 is
much tighter than the first upper bound Cu1 for moderate/high

Cl =
1
2

log2

(
1 +

P1P2Ω1Ω2

N1N2m1m2c
exp

(
ψ(k1) + ψ(k2) + ψ(m1) + ψ(m2) − A2

Γ(k2)Γ(m2)

(
m2N2c

Ω2P2

) k2+m2
2

))
(29)

Cu2 =
1
2

log2

(
1 +

N1N2m1m2c

P1P2(m1 − 1)(k1 − 1)Ω1(m2 − 1)(k2 − 1)Ω2
+

N1m1

P1(m1 − 1)(k1 − 1)Ω1

)

+
1

2 ln 2

(
ln

P1P2Ω1Ω2

N1N2m1m2c
+ ψ(k1) + ψ(k2) + ψ(m1) + ψ(m2) − A2

Γ(k2)Γ(m2)

(
m2N2c

Ω2P2

) k2+m2
2

)
(31)
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Fig. 4. Ergodic capacity of fixed-gain AF dual-hop systems in generalized-
K fading channels: simulation results, analytical upper and lower bounds.
P1/N1 = P2/N2.

SNR values, whereas it is in general looser than Cu1 in the
low SNR regime. This phenomenon is actually quite intuitive
from the bounding technique used in these two bounds and the
property of Jensen’s inequality (i.e., Jensen’s inequality is tight
if the variance of the random variable is small). In fact, the
upper bounds Cu1 and Cu2 are complementary to each other,
i.e., Cu1 is tight in the low SNR regime, whereas Cu2 is tight
in the high SNR regime. Hence, we can potentially construct
another upper bound as min(Cu1, Cu2), which will be tight
across the entire SNR range.

V. CONCLUSION

The main focus of this paper has been on the ergodic capacity
of fixed-gain dual-hop systems that have been in the forefront of
cooperative communications over the past years. Specifically,
we have proposed two novel and generic techniques for bound-
ing the ergodic capacity of these systems. The proposed bounds
were also particularized to several fading models of interest,
namely, Nakagami-m, Weibull, Rician, and generalized-K fad-
ing channels, with nonidentically distributed hops, whereas the
derived closed-form expressions allow for fast and efficient
computation. Moreover, our numerical results demonstrated
that the proposed bounds work well under different fading
parameters. In fact, in the high SNR regime, they become
asymptotically exact.

As a final remark, we highlight the fact that these bounding
techniques can easily be extended to the case where the two hop
channels experience different types of fading, i.e., asymmetric
dual-hop systems [33], as well as to the case with partial relay
selection [7].

APPENDIX A
PROOF OF PROPOSITION 1

To evaluate the lower bound in (4), we need closed-form
expressions for E{ln ρi} and E{ln(c+ ρi)}. To this end, the first

term can be computed as

E{ln ρi} = ln
Pi

Ni
+

1
Γ(mi)

(
mi

Ωi

)mi

×
∞∫

0

xmi−1 exp
(
−mi

Ωi
x

)
lnxdx. (34)

With the help of the integration relationship [18, Eq. (4.352.1)]
and some simple algebraic manipulations, we get

E{ln ρi} = ψ(mi) + ln
PiΩi

miNi
. (35)

Additionally, the second term can be computed as

E {ln(c+ ρi)} = ln c+
1

Γ(mi)

(
mi

Ωi

)mi

×
∞∫

0

ln
(

1 +
Pi

cNi
x

)
xmi−1 exp

(
−mi

Ωi
x

)
dx. (36)

To this end, we express the logarithmic term ln(1 + αx) in
terms of Meijer’s G function according to [34, Eq. (8.4.6.5)],
and we can rewrite (36) according to

E {ln(c+ ρi)}

= ln c+
1

Γ(mi)

(
mi

Ωi

)mi

×
∞∫

0

G1,2
2,2

[
Pi

Nic
x

∣∣∣∣ 1, 11, 0

]
xmi−1

× exp
(
−mi

Ωi
x

)
dx (37)

= ln c+
1

Γ(mi)
G1,3

3,2

[
PiΩi

Nicmi

∣∣∣∣ 1 −mi, 1, 1
1, 0

]
(38)

where we have used the integral identity [18, Eq. (7.813.1)].
Hence, the desired result follows immediately by substituting
(35) and (38) into (4).

APPENDIX B
PROOF OF PROPOSITION 5

From (5), it is clear that we have to evaluate E{|hi|2} and
E{|hi|2/(|hi|2 + a)}. The first term can be computed via [18,
Eq. (3.381.5)]

E
{|hi|2

}
=
mi

2Ωi

∞∫
0

x
mi
2 exp

(
− 1

Ωi
x

mi
2

)
dx

=
2
mi

Ω
2

mi
i Γ

(
2
mi

)
. (39)

The second term can be rewritten in integral form as

E

{ |hi|2
|hi|2 + a

}
=

mi

2Ωi

∞∫
0

x
mi
2

x+ a
exp

(
− 1

Ωi
x

mi
2

)
dx.
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Next, we express both xmi/2/(x+ a) and exp(−(1/Ωi)xmi/2)
in terms of Meijer’sG functions. From [35, p. 54], we have that

x
mi
2

x+ a
= a

mi
2 −1G1,1

1,1

(x
a

∣∣∣mi
2

mi
2

)
(40)

whereas through [36, Eq. (11)], we get

exp
(
− 1

Ωi
x

mi
2

)
= G1,0

0,1

(
x

mi
2

Ωi

∣∣−
0

)
. (41)

Then, using [36, Eq. (14)], the integral can be solved in closed
form as follows:

E

{ |hi|2
|hi|2 + a

}
=

mi

2aΩi
a

mi
2

√
ka

(2π)l+ k
2− 3

2

× Gk+l,l
l,k+l

(
al

(kΩi)k

∣∣∣∣∆(l,−mi
2 )

∆(k,0),∆(l,−mi
2 )

)
. (42)

Combining (39) and (42) with (5), we can readily obtain (23).

APPENDIX C
PROOF OF PROPOSITION 7

The key task is to compute E{ln |hi|2} and E{ln(c+ ρ2)}.
The first term can be evaluated after some simple manipulations
with the aid of [37, Eq. (404)] as

E
{
ln |hi|2

}
= E1(Ki) + ln

KiΩi

1 +Ki
. (43)

The second term can be reformulated as follows:

E {ln(c+ ρ2)} = ln c+
(1 +K2)e−K2

Ω2

∞∑
j=0

(K2(1 +K2))
j

Ωj
2(j!)2

×
∞∫

0

ln
(

1 +
P2

cN2
x

)
exp

(
−1 +K2

Ω2
x

)
xjdx

where we have used the infinite series representation of the
modified Bessel function of the first kind I0(x) [18, Eq.
(8.447.1)]. The integral in the foregoing equation can be solved
with a result from [20, Eq. (47)]

E {ln(c+ ρ2)} = ln c+ exp
(
c(1 +K2)N2

Ω2P2
−K2

)
I3

where

I3
∆=

∞∑
j=0

Kj
2

j!

j+1∑
k=1

Ek

(
c(1 +K2)N2

Ω2P2

)
. (44)

Partitioning I3 into two parts, we can bound I3 as

I3 <

N−1∑
j=0

Kj
2

j!

j+1∑
k=1

Ek

(
c(1 +K2)N2

Ω2P2

)
+ I4 (45)

where

I4
∆= E1

(
c(1 +K2)N2

Ω2P2

) ∞∑
j=N

Kj
2(j + 1)
j!

. (46)

Note that the inequality in (45) stems from the fact that En(x)
is a monotonically decreasing function of n. Now, I4 can
explicitly be computed as

I4 = E1

(
c(1 +K2)N2

Ω2P2

)
exp(K2)

×
(
K2(N − 1)γ(N − 1,K2) + γ(N,K2)

Γ(N)

)
. (47)

We note that (47) stems from the power series expansion of
γ(p, x) [19, Eq. (6.5.29)]. The final observation is that log2(1 +
a exp(x)) is an increasing function of x for a > 0.

APPENDIX D
PROOF OF PROPOSITION 8

The key task is to compute E{|hi|2} and E{|hi|2/(|hi|2 +
a)}. The first term can trivially be obtained from the definition
of the Rician pdf according to

E
{|hi|2

}
= Ωi. (48)

The second term can be evaluated as

E

{ |hi|2
|hi|2+a

}
=

(1+Ki)
ΩieKi

∞∑
k=0

1
(k!)2

(
Ki(Ki+1)

Ωi

)k

I5 (49)

where

I5
∆=

∞∫
0

xk+1

x+ a
exp

(
− (1 +Ki)x

Ωi

)
dx (50)

which can explicitly be evaluated as

I5 = exp
(

(1 +Ki)a
Ωi

)(
1 +Ki

Ωi

)−k−1

× Ek+2

(
(1 +Ki)a

Ωi

)
Γ(k + 2). (51)

Now, substituting (51) into (49), we have

E

{ |hi|2
|hi|2 + a

}
= exp

(
(1 +Ki)a

Ωi
−Ki

)
I6 (52)

where

I6
∆=

∞∑
k=0

(k + 1)Kk
i

k!
Ek+2

(
(1 +Ki)a

Ωi

)
. (53)

Splitting the infinity summation into two parts, we can bound
I6 as

I6 <
N−1∑
k=0

(k + 1)Kk
i

k!
Ek+2

(
(1 +Ki)a

Ωi

)

+ EN+2

(
(1 +Ki)a

Ωi

) ∞∑
k=N

(k + 1)Kk
i

k!
. (54)

Utilizing the series representation of γ(p, x), (54) can be solved
in closed form. The desired result then follows from the fact
that log2(1 + ax) is an increasing function with respect to x
for a > 0.
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