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Abstract—In this paper, we derive a maximum likelihood
(ML) decoder of the differential data in a decode-and-forward
(DF) based cooperative communication system utilizinguncoded
transmissions. This decoder is applicable to complex-valued
unitary and non-unitary constellations suitable for differential
modulation. The ML decoder helps in improving the diversity of
the DF based differential cooperative system using an erroneous
relaying node. We also derive a piecewise linear (PL) decoder of
the differential data transmitted in the DF based cooperative
system. The proposed PL decoder significantly reduces the
decoding complexity as compared to the proposed ML decoder
without any significant degradation in the receiver performance.
Existing ML and PL decoders of the differentially modulated
uncoded data in the DF based cooperative communication system
are only applicable to binary modulated signals like binaryphase
shift keying (BPSK) and binary frequency shift keying (BFSK),
whereas, the proposed decoders are applicable to complex-valued
unitary and non-unitary constellations suitable for differential
modulation under uncoded transmissions. We derive a closed-
form expression of the uncoded average symbol error rate (SER)
of the proposed PL decoder with M -PSK constellation in a
cooperative communication system with a single relay and one
source-destination pair. An approximate average SER by ignoring
higher order noise terms is also derived for this set-up. It
is analytically shown on the basis of the derived approximate
SER that the proposed PL decoder provides full diversity of
second order. In addition, we also derive approximate SER of
the differential DF system with multiple relays at asymptotically
high signal-to-noise ratio of the source-relay links. It isshown
by simulations that the proposed PL decoder in the differential
DF cooperative system with more than one relay also achieves
the maximum possible diversity.

I. I NTRODUCTION

Multiple-input multiple-output (MIMO) technology, pro-
posed approximately a decade ago, revolutionized researchin
the field of wireless communications. By installing multiple
antennas at the transmitter, benefits like diversity gain and
spatial multiplexing can be achieved as compared to the single-
input single-output (SISO) system [1], [2]. It is proposed in
literature [3], [4] that a relaying node can cooperate with a
source node in order to support the transmissions of the source
node to the destination. Therefore, the cooperative system
utilizes distributed antennas to realize a virtual MIMO system
which can provide benefits of a collocated MIMO system [5].

There are two main protocols, namely amplify-and-forward
(AF) and decode-and-forward (DF), proposed for the coop-
erative communication systems [6]. In the AF protocol, the
relaying node scales the received data before transmittingit to
the destination node in order to satisfy a power constraint over
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the total transmit power. The destination requires knowledge
of the channel coefficients of all links involved in cooperation
for decoding the data of the source. Whereas, in the DF
protocol, the relay first decodes the data transmitted by the
source and then retransmits the decoded data to the destination.
The destination requires knowledge of the channel gains of
the source-destination and relay-destination links for decoding
the data of the source. Since the relaycannot decode the data
perfectly, therefore, erroneous relaying causes significant error
floor in the performance of the destination receiver. This is
the primary reason why the AF based cooperation has been
explored in much more detail as compared to the DF based
system [7]–[9].

Differential modulation is useful for the cooperative system
as it enables the destination to decode the data of the source
without any channel knowledge of the links involved in the co-
operation. Therefore, the differential modulation is helpful in
improving the spectral efficiency of the cooperative communi-
cation system [10]–[15]. Differential modulation for a symbol-
wise DF based cooperative system utilizing uncoded trans-
missions with one source-destination pair, a single relay,and
binary phase shift keying (BPSK) constellation is proposedfor
Rayleigh fading channels in [10], [12] and Nakagami-m chan-
nels in [16], [17]. A maximum-likelihood (ML) decoder for
differentially modulatedbinary frequency shift keying (BFSK)
signal transmitted through multiple orthogonal regenerative
relays using the symbol-wise DF protocol in the uncoded
cooperative communication system is found in [14]. This ML
decoder considers the possibility of erroneous transmission
from the relay terminal and maximizes the probability density
function (p.d.f.) of the received data in the destination terminal.
In this way, it improves the diversity order of the DF based
differential cooperative system [14]. A low complexity sub-
optimal piecewise linear (PL) decoder of thebinary data is
also obtained in [14], which performs close to the ML decoder.
Unfortunately, the ML and PL decoders of the differential DF
cooperative system obtained in [14] are not applicable to the
higher order complex-valued unitary and non-unitary constel-
lations which are required for increasing the data rate of the
wireless communication system. In literature [18], differential
modulation is also used in bidirectional relaying usingM -PSK
constellation, however, no ML orlow complexity PL decoders
are obtained for this set-up.

In this paper, we consider a cooperative system with one
source-destination pair and a singleunidirectional relay for
simplicity. Our main contributions are as follows. 1) We
derive an ML decoder for the DF based differential coopera-
tive system utilizingcomplex-valued unitary and non-unitary
constellations, and uncoded transmissions. 2) In order to
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significantly reduce the computational complexity in decoding
of the differential data, we derive a PL decoder for complex-
valued unitary and non-unitary constellations. 3) We derive
a closed-form expression of approximate uncoded symbol
error rate (SER) of the proposed PL decoder withM -PSK
constellation. 4) It is analytically proved that the proposed
PL decoder in the differential DF cooperative system with
one source-destination pair and a single relay achieves second
order diversity. 5) An expression of the approximate uncoded
SER of the differential DF cooperative system withmultiple
relays under asymptotic condition of error-free source-relay
links is derived and it is shown by simulation that the proposed
PL decoder achieves the maximum possible diversity.

The rest of this paper is organized as follows: In Section II,
the system model is introduced. Section III derives optimal
and low-complexity sub-optimal decoders of the differentially
modulated unitary and non-unitary constellations in the DF
based uncoded cooperative system with a single relay. In
Section IV, analytical performance analysis of the DF based
differential cooperative system with a single relay andM -
PSK constellation is performed. Differential modulation for
the DF cooperative system with multiple relays is studied in
Section V. The simulation and analytical results are discussed
in Section VI. Section VII concludes the article. The article
contains one appendix.

II. SYSTEM MODEL

Let us consider a cooperative system containing one source,
one destination, and a single relay as shown in Fig. 1. Each
node contains one antenna and it can either transmit or receive
the data at a time. The transmission from the source to the
destination is performed in two orthogonal phases. In the first
phase, the source broadcastsuncoded data to the relay and the
destination. The relay demodulates the data of the source in
symbol-wise manner and transmits the demodulated symbols
to the destination in next phase. The source remains silent in
the second phase in order to maintain orthogonality between
the transmissions [6]. The destination decodes the data of
the source by utilizing an ML decoder in the second phase.
We assume a differential cooperative system, where the relay
and the destination do not require knowledge of the channel
coefficients of the source-relay, relay-destination, and source-
destination links for decoding of the data transmitted by the
source.

Let in then-th time interval, the source needs to transmit
a symbolx[n] ∈ A, whereA is a unit-norm M -PSK constel-
lation containing the following points:{x1, x2, x3, ..., xM}.
Before transmission ofx[n], the source performs the following
differential encoding:

v[n] = v[n− 1]x[n], n = 1, 2, 3, ..., (1)
wherev[0] = 1 is an initialization symbol. As|x[n]|2 = 1,
therefore,|v[n]|2 = 1. The data received in the destination
during the first phase in then-th time interval will be

ys,d[n] = hs,dv[n] + es,d[n], (2)
wherehs,d represents the circular complex Gaussian channel
gain of the source-destination link with zero mean andσ2

s,d

variance, andes,d[n] is the signal-independent complex-valued
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Fig. 1. Cooperative system with a single relay.

additive white Gaussian noise (AWGN) with zero mean and
Ns,d variance. During the first phase, the data received in the
relay in then-th time interval can be written as

ys,r[n] = hs,rv[n] + es,r[n], (3)
wherehs,r denotes the circular complex Gaussian channel gain
of the source-relay link with zero mean andσ2

s,r variance, and
es,r[n] is the AWGN noise with zero mean andNs,r variance.
It is assumed that the channelshs,d andhs,r remain constant
over at least two consecutive time-intervalsn− 1 andn.

From (1) and (3), we have

ys,r[n] = ys,r[n− 1]x[n] + e′s,r[n], (4)

where e′s,r[n] = es,r[n] − es,r[n − 1]x[n] ∼ CN (0, 2Ns,r)
is the AWGN noise andCN (µ, η) denotes the complex
Normal distribution withµ mean andη variance. It can be
seen from (4) that for givenys,r[n − 1] and x[n], ys,r[n] ∼
CN (ys,r[n− 1]x[n], 2Ns,r). By maximizing the conditional
p.d.f. of ys,r[n] given thatys,r[n− 1] andx[n] are known in
the relay, the ML decoder in the relay can be obtained as

xr[n] = arg max
x∈A

Re
{

y∗s,r[n]ys,r[n− 1]x
}

, (5)

wherexr[n] ∈ A and |xr[n]|2 = 1. In the second phase, the
relay differentially encodesxr[n] into vr[n] by using (1) and
transmits it to the destination.

III. O PTIMAL AND SUBOPTIMAL DECODERS IN THE

DESTINATION

In this section, we will derive the ML and PL decoders of
unitary and non-unitary constellations in the differential DF
cooperative system.

A. ML Decoder of M -PSK Data in the Destination

The data received at the destination from the relay in the
n-th time interval will be

yr,d[n] = hr,dvr[n] + er,d[n], (6)

wherehr,d ∼ CN
(

0, σ2
r,d

)

is the channel gain of the relay-

destination link ander,d[n] ∼ CN (0, Nr,d) is the AWGN
noise. It is assumed thathr,d remains constant over at least
two consecutive time intervalsn− 1 andn. From (1) and (6),
we have

yr,d[n] = yr,d[n− 1]xr[n] + e′r,d[n], (7)
wheree′r,d[n] = er,d[n] − er,d[n − 1]xr[n] is the zero mean
AWGN noise with2Nr,d variance. Depending upon the erro-
neous demodulation of the data of the source in the relay, the
conditional p.d.f. ofyr,d[n] can be written as
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pyr,d[n] (y|yr,d[n− 1], x[n])

= (1− ǫ) pyr,d[n] (y|yr,d[n− 1], xr[n] = x[n])

+ ǫpyr,d[n] (y|yr,d[n− 1], xr[n] 6= x[n]) , (8)
where ǫ is the average probability of error
of the source-relay link. It can be noticed
from (7) that pyr,d[n] (y|yr,d[n− 1], xr[n] = x[n]) ∼
CN (yr,d[n− 1]x[n], 2Nr,d). From (7) and [19, Section III], it
can be seen thatpyr,d[n] (y|yr,d[n− 1], xr[n] 6= x[n]) denotes
the p.d.f. of a Gaussian mixture random variable. With this
observation we have
pyr,d[n] (y|yr,d[n− 1], xr[n] 6= x[n])

=
1

2πNr,d(M − 1)

M
∑

i=1,i6=p

e
− 1

2Nr,d
|yr,d[n]−yr,d[n−1]xi|

2

, (9)

where it is assumed thatx[n] = xp, p ∈ {1, 2, ...,M},
xp ∈ A, is the symbol transmitted by the source. By noticing
that ys,d[n] ∼ CN (ys,d[n− 1]x[n], 2Ns,d) and owing to
independence ofys,d[n] and yr,d[n], an ML decoder can be
obtained by maximizing the joint conditional p.d.f. ofys,d[n]
andyr,d[n] as follows:

x̂[n] = arg max
x∈A

{

1

Ns,d
Re
{

y∗s,d[n]ys,d[n− 1]x
}

+ln

(

(1 − ǫ)e
1

Nr,d
Re{y∗

r,d[n]yr,d[n−1]x}

+
ǫ

M − 1

M
∑

i=1,xi 6=x

e
1

Nr,d
Re{y∗

r,d[n]yr,d[n−1]xi}










. (10)

It can be seen from (10) that the proposed decoder requires
the destination to possess knowledge of the average probability
of error of the source-relay linkǫ which is a function of the
average signal-to-noise ratio (SNR) of the source-relay link.
The relay can estimate the average SNR of the source-relay
link and feed forward it to the destination. The destination
can calculate the value ofǫ by using the average SNR of the
source-relay link and use it for the ML decoding. Since statis-
tics of a channel vary slowly as compared to the instantaneous
channel values, the destination requires less frequent updating
of the average SNR value of the source-relay link. Further, (10)
is applicable to theM -PSK constellation, whereas, the existing
decoders of the differential cooperative system [12], [14]are
applicable to binary signaling only. ForM = 2, (10) reduces
to the existing ML decoder of the binary data [12], [14].
However, the proposed decoder is computationally complex.
Therefore, it is desired to have a low complexity decoder of the
DF based differential cooperative system, which can provide
maximum possible diversity.

B. PL Decoder of M -PSK Data in the Destination

Let ys,d[n] = 0, ∀n, i.e., direct link between the source and
the destination is absent, then a log-likelihood ratio (LLR)
basedsymbol-wise decoder can be obtained from (8) and (9)
as follows:

Λc
p,q = ln

(

a+ g1
a+ g2

)

, (11)

where p, q = 1, 2, ...,M, xp, xq ∈ A, xp 6= xq,

TABLE I
VALUES OFT FOR DIFFERENT VALUES OFǫ USED IN FIG. 2.

ǫ 10
−1

10
−2

10
−3

10
−4

10
−5

10
−6

T ±4.9053±7.3032±9.6148±11.9183±14.2210 ±16.5236
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Fig. 2. Plots of f(t) versus t for different values ofǫ and 16-PSK
constellation.

a = ǫ
M−1

∑M
i=1

i6=p,q
e

1
Nr,d

Re{y∗
r,d[n]yr,d[n−1]xi}, g1 = (1 −

ǫ)e
1

Nr,d
Re{y∗

r,d[n]yr,d[n−1]xp}
+ ǫ

M−1e
1

Nr,d
Re{y∗

r,d[n]yr,d[n−1]xq},

andg2 = (1 − ǫ)e
1

Nr,d
Re{y∗

r,d[n]yr,d[n−1]xq}
+ ǫ

M−1

× e
1

Nr,d
Re{y∗

r,d[n]yr,d[n−1]xp}. The LLR decoder of (11) is

used as follows to decide aboutxp or xq: Λc
p,q

xp

≷
xq

0. Since

a, g1, g2 ≥ 0, it can be shown after some simple algebra that

the decision ruleln
(

a+g1
a+g2

) xp

≷
xq

0 is the same asln
(

g1
g2

) xp

≷
xq

0.

Hence, we have the following LLR decoder from (11):

Λc
p,q = f(t) = ln

(

(1− ǫ)et + ǫ
M−1

(1− ǫ) + ǫ
M−1e

t

)

, (12)

where t = 1
Nr,d

Re
{

y∗r,d[n]yr,d[n− 1] (xp − xq)
}

. It

can be seen from (12) thatf(t) clipps to T =
±ln ((M − 1)(1− ǫ)/ǫ) for very large and very small values
of t. Further, it is shown in Table I and Fig. 2 for 16-PSK
constellation that we can approximatef(t) by a piecewise
linear function as follows:

f(t) ≈ fPL(t) ,







−T, if t < −T,
t, if −T ≤ t ≤ T,
T, if t > T.

(13)

From (10) and (13), we get the followingsuboptimal PL
decoder in the destination if the direct link between the source
and destination is present:

Λp,q ≈ t0 + fPL(t), (14)

wheret0 = 1
Ns,d

Re
{

y∗s,d[n]ys,d[n− 1] (xp − xq)
}

. The pro-
posed PL decoder is applied in a pair-wise manner to the con-
stellation points for taking a decision of the symbol transmitted
by the source. For example, for QPSK constellation containing
the following four signal points:x1, x2, x3, x4, the proposed
PL decoder decides thatxk, k = 1, 2, 3, 4, is the transmitted
symbol if Λk,l > 0, ∀l ∈ {1, 2, 3, 4} , k 6= l, whereΛk,l is
calculated from (14).

The total number of the real additions and real multipli-
cations required by the proposed ML decoder (10) and the
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Fig. 3. Plots of the total number of real additions and real multiplications
required by the proposed ML and PL decoders for differentM -PSK constel-
lations.

proposed PL decoder (14) for decoding a symbol belonging to
theM -PSK,M ≥ 2, constellation can be obtained after some
manipulations as15M2 + 20M and33(M − 1), respectively.
We have plotted the decoding complexity (the total number of
the real additions and real multiplications) of the proposed ML
and PL decoders for differentM -PSK constellations in Fig. 3.
It can be seen from Fig. 3 that the decoding complexity of the
proposed PL decoder increases linearly, whereas, the decoding
complexity of the proposed ML decoder increases exponen-
tially with the size of theM -PSK constellation. Moreover, the
proposed PL decoder significantly reduces the computational
effort as compared to the proposed ML decoder forM ≥ 4.

C. ML and PL Decoders for Non-Unitary Constellations

The non-unitary constellations likeM -QAM are useful for
increasing the data rate and coding gain as compared to the
M -PSK constellation in communication systems. Therefore,
treatment of the differential modulation based cooperative
communication system with non-unitary constellation is im-
perative. For non-unitary constellation likeM -QAM, |x[n]|2 is
not necessarily equal to unity, therefore, we need to modify(1)
to satisfy the average power constraint as

v[n] = v[n− 1]
x[n]

|x[n− 1]| , (15)

where |·| denotes the absolute value. From (3) and (15), we
have

ys,r[n] = ys,r[n− 1]
x[n]

|x[n− 1]| + e′s,r[n], (16)

where e′s,r[n] = es,r[n] − es,r[n − 1] x[n]
|x[n−1]| ∼

CN
(

0, (1 + |x[n]|2

|x[n−1]|2
)Ns,r

)

. As ys,r[n] ∼
CN
(

ys,r[n− 1] x[n]
|x[n−1]| , (1+

|x[n]|2

|x[n−1]|2
)Ns,r

)

, therefore,

the relay demodulatesx[n] as

xr[n] = arg min
x∈χ







ln

(

1 +
|x|2

|x[n− 1]|2

)

+
1/Ns,r

1 + |x|2

|x[n−1]|2

×
∣

∣

∣

∣

ys,r[n]− ys,r[n− 1]
x

|x[n− 1]|

∣

∣

∣

∣

2
}

, (17)

whereχ is anM -QAM constellation. It can be seen from (17)
that the differential decoder assumes thatx[n− 1] is perfectly

known to the receiver. Since it is not possible for the receiver
to have perfect knowledge ofx[n−1], the differential decoder
of (17) can utilize an estimate ofx[n− 1].

From (2), (6), and (15), we can write

ys,d[n] = ys,d[n− 1]
x[n]

|x[n− 1]| + e′s,d[n],

yr,d[n] = yr,d[n− 1]
xr[n]

|xr[n− 1]| + e′r,d[n], (18)

where e′s,d[n] = es,d[n] − es,d[n − 1] x[n]
|x[n−1]| ∼

CN
(

0, (1 + |x[n]|2/ |x[n− 1]|2)Ns,d

)

and

e′r,d[n] = er,d[n] − er,d[n − 1] xr[n]
|xr[n−1]| ∼

CN
(

0, (1 + |xr[n]|2/ |xr[n− 1]|2)Nr,d

)

. The joint

conditional p.d.f. ofys,d[n] andyr,d[n] can be maximized to
obtain the following ML decoder of the differentialM -QAM
data:

x̂[n] = arg max
x∈χ

{

−ln

(

1 +
|x|2

|x[n− 1]|2

)

−

∣

∣

∣ys,d[n]− ys,d[n− 1] x
|x[n−1]|

∣

∣

∣

2

(

1 + |x|2

|x[n−1]|2

)

Ns,d

+ln









(1− ǫ)

1 + |x|2

|xr [n−1]|2

e

−
|yr,d[n]−yr,d[n−1] x

|xr [n−1]| |2
(

1+
|x|2

|xr [n−1]|2

)

Nr,d +
ǫ

M − 1

×
M
∑

i=1
xi 6=x

1

1 + |xi|2

|xr[n−1]|2

e

−
|yr,d[n]−yr,d[n−1]

xi
|xr [n−1]| |2

(

1+
|xi|

2

|xr [n−1]|2

)

Nr,d























.

(19)

Since the destination does not have perfect knowledge ofx[n−
1] andxr[n−1], it can utilize the estimated values ofx[n−1]
andxr[n − 1] in (19) for decoding the currently transmitted
data of the source. The estimate ofxr[n−1] in the destination
can be obtained by using the following differential decoder:

x̂r[n− 1] = arg min
x∈χ











∣

∣

∣yr,d[n− 1]− yr,d[n− 2] x
|xr[n−2]|

∣

∣

∣

2

(

1 + |x|2

|xr[n−2]|2

)

Nr,d

+ln

(

1+
|x|2

|xr[n− 2]|2

)}

. (20)

It will be shown in Subsection VI-A through Fig. 6 that use
of the estimated value ofx[n− 1] in the relays and estimated
values ofx[n − 1] andxr[n − 1] in the destination does not
lead to error propagation in the performance of the destination
receiver for differentM -QAM constellations.

After some algebra, the PL decoder of the differentialM -
QAM data can be obtained as follows:

Λp,q ≈ u0 + fPL(ur), (21)
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where

u0 = ln

(

|x[n− 1]|2 + |xq|2

|x[n− 1]|2 + |xp|2

)

+

∣

∣

∣ys,d[n]− ys,d[n− 1]
xq

|x[n−1]|

∣

∣

∣

2

(

1 + |xq|2 / |x[n− 1]|2
)

Ns,d

−

∣

∣

∣ys,d[n]− ys,d[n− 1]
xp

|x[n−1]|

∣

∣

∣

2

(

1 + |xp|2 / |x[n− 1]|2
)

Ns,d

,

ur = ln

(

|xr[n− 1]|2 + |xq|2

|xr[n− 1]|2 + |xp|2

)

+

∣

∣

∣yr,d[n]− yr,d[n− 1]
xq

|xr[n−1]|

∣

∣

∣

2

(

1 + |xq|2/|xr[n− 1]|2
)

Nr,d

−

∣

∣

∣yr,d[n]− yr,d[n− 1]
xp

|xr[n−1]|

∣

∣

∣

2

(

1 + |xp|2/|xr[n− 1]|2
)

Nr,d

, (22)

and fPL(ur) is given in (13). The proposed PL decoder of
the M -QAM constellation given in (21) provides decoding
complexity which is linear inM . Therefore, the proposed PL
decoder of theM -QAM constellation also reduces the decod-
ing complexity as compared to the proposed ML decoder (19).

Remark: We utilize one-way relaying in this paper for sim-
plicity. The ML and PL decoders obtained in this paper can be
extended to the two-way relaying based differential DF system.
However, the extension can be more involved.

IV. PERFORMANCEANALYSIS OF THE DIFFERENTIAL

COOPERATIVE SYSTEM WITH M -PSK CONSTELLATION

In this section, we will analyze the uncoded symbol error
rate of the proposed PL decoder of the DF based differential
cooperative communication system withM -PSK constellation.

A. Average SER of the Differential DF System with M -PSK
Constellation

Let x[n] = xp, xp ∈ A, be theM -PSK symbol transmitted
by the source and the destination wrongly decides thatx̂[n] =
xq, xq ∈ A, is the transmittedM -PSK symbol. The probability
of error of the destination receiver can be expressed in terms
of three mutually exclusive events. The conditional uncoded
pairwise error probability (PEP), given that the channel gains
of the source-destination and relay-destination links areknown
in the destination, is
P xp,xq
e (hs,d, hr,d)

= Pr{t0 − T < 0|t < −T, x[n]=xp}Pr{t < −T |x[n]=xp}
+ Pr{t0 + T < 0|t > T, x[n] = xp}Pr{t > T |x[n] = xp}
+ Pr{t0 + t < 0,−T ≤ t ≤ T |x[n] = xp} , (23)

where Pr{·} represents the probability of an event. Letγs,d =
|hs,d|2/Ns,d and γr,d = |hr,d|2/Nr,d be the instantaneous
SNR of the source-destination and relay-destination link,re-
spectively. It is shown in Appendix A that the conditional
uncoded PEP of the PL decoder in a differential cooperative

Fig. 4. Decision regions forM -PSK constellation.

system utilizing the DF protocol whenhs,d andhr,d are known
in the destination, will be
P xp,xq
e (hs,d, hr,d) = Pe1 (hs,d) (Pe2(hr,d) + Pe3(hr,d))

+ Pe4(hs,d) (Pe5 (hr,d) + Pe6(hr,d)) + Pe7(hs,d, hr,d)

+ Pe8(hs,d, hr,d) + Pe9(hs,d, hr,d) + Pe10 (hs,d, hr,d), (24)
where the termsPei (·) , i = 1, 2, .., 6 and Pej (·, ·) , j =
7, .., 10 are given in Appendix A.

If hs,d andhr,d are the complex-valued Gaussian random
variables, thenγs,d andγr,d will be Xi-square distributed with
the following p.d.f.s [20]:

pγs,d
(γ) =

1

γ̄s,d
e
− γ

γ̄s,d

pγr,d
(γ) =

1

γ̄r,d
e
− γ

γ̄r,d , (25)

whereγ̄s,d = σ2
s,d/Nr,d andγ̄r,d = σ2

r,d/Nr,d are the average
SNRs of the source-destination and relay-destination links,
respectively. The average uncoded PEP of decodingxq in place
of xp can be obtained as
P xp,xq
e = E {P xp,xq

e (hs,d, hr,d)}

=

∫ ∞

0

∫ ∞

0

P xp,xq
e (γ1, γ2)pγs,d

(γ1)pγr,d
(γ2)dγ1 dγ2, (26)

where E {·} denotes the expectation. It is shown in Ap-
pendix A that the closed-form average PEP of decodingxq

in place ofxp in the DF based differential cooperative system
using theM -PSK constellation will be
P xp,xq
e =Pe1(Pe2 + Pe3 ) + Pe4(Pe5 + Pe6) + Pe7 + Pe8

+ Pe9 + Pe10 , (27)
where the termsPel , l = 1, 2, .., 10 are given in Appendix A.

The constellation diagram of an arbitraryM -PSK constella-
tion is shown in Fig.4. The decision boundaries corresponding
to the symbolx1 are also shown. From equiprobability of the
constellation points it can be deduced that

Pr[error] =
1

M

M
∑

i=1

Pr[error|xi] = Pr[error|x1] . (28)
Let xp = x1 = 1 is the transmitted symbol, then the SER of
the M -PSK constellation can be approximated by using the
nearest neighbors approach [21, Subsection 5.1.5] as

Pe ≈ P x2,1
e + P xM ,1

e , (29)
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whereP x2,1
e andP xM ,1

e are the average probabilities of error
of decodingx2 andxM , respectively, in place of the originally
transmitted symbolx1 = 1. We can calculateP x2,1

e andP xM ,1
e

by using (27).

B. Diversity Analysis of the Differential DF System with A
Single Relay and M -PSK Constellation

Expression of the SER of the PL decoder given in (27)
and (29) is very complicated and it is difficult to draw a
conclusion from it. Therefore, we will derive an approximate
SER of the proposed PL decoder withM -PSK constellation
by ignoring the higher order noise in this subsection. For
simplicity, we assume thatxq is the transmitted symbol and
the destination wrongly decides thatxp was transmitted. It
can be noticed that because of symmetry of theM -PSK
constellationP xp,xq

e = P
xq,xp
e . By ignoring the higher or-

der noise terms int0 and t, it can be shown after some
manipulations thatt0 ∼ N

(

Re
{

γs,dx
∗
q x̄
}

, γs,d |x̄|2
)

and

t ∼ N
(

Re{γr,dx∗
r x̄} , γr,d |x̄|2

)

, wherex̄ = xp − xq andxr

is the symbol transmitted by the relay. After many algebraic
manipulations, the average pairwise error probability of the
proposed PL decoder can be obtained by ignoring the higher
order noise as
P xp,xq
e ≈ I1(γ̄, T ) + I2(γ̄, T ) + I3(γ̄, T ) + I4(γ̄, T ), (30)

where

I1(γ̄, T ) = (1− ǫ)
1

γ̄s,d

∫ ∞

0

Q

(

T − zqγs,d
|x̄| √γs,d

)

e
−

γs,d
γ̄s,d dγs,d

× 1

γ̄r,d

∫ ∞

0

Q

(

T + zqγr,d
|x̄| √γr,d

)

e
−

γr,d
γ̄r,d dγr,d

+
ǫ

M − 1

1

γ̄s,d

∫ ∞

0

Q

(

T − zqγs,d
|x̄| √γs,d

)

e
−

γs,d
γ̄s,d dγs,d

×
M
∑

i=1
i6=q

(

1

γ̄r,d

∫ ∞

0

Q

(

T + ziγr,d
|x̄| √γr,d

)

e
−

γr,d
γ̄r,d dγr,d

)

,

I2(γ̄, T ) = (1− ǫ)
1

γ̄s,d

∫ ∞

0

Q

(−T − zqγs,d
|x̄| √γs,d

)

e
−

γs,d
γ̄s,d dγs,d

× 1

γ̄r,d

∫ ∞

0

Q

(

T − zqγr,d
|x̄| √γr,d

)

e
−

γr,d
γ̄r,d dγr,d

+
ǫ

M − 1

1

γ̄s,d

∫ ∞

0

Q

(−T − zqγs,d
|x̄|√γs,d

)

e
−

γs,d
γ̄s,d dγs,d

×
M
∑

i=1
i6=q

(

1

γ̄r,d

∫ ∞

0

Q

(

T − ziγr,d
|x̄| √γr,d

)

e
−

γr,d
γ̄r,d dγr,d

)

,

I3(γ̄, T ) =
1− ǫ

γ̄s,dγ̄r,d

∫ ∞

γs,d=0

∫ ∞

γr,d=0

1
√

2πγr,d |x̄|

×
∫ T

−T

e
− 1

2

(w−zqγr,d)
2

|x̄|2γr,d Q

(−w − zqγs,d
|x̄| √γs,d

)

e
−

γs,d
γ̄s,d

× e
−

γr,d
γ̄r,d dwdγr,ddγs,d,

I4(γ̄, T ) =
ǫ

γ̄s,dγ̄r,d

∫ ∞

γs,d=0

∫ ∞

γr,d=0

1
√

2πγr,d |x̄| (M − 1)

×
∫ T

−T

Q

(−w − zqγs,d
|x̄| √γs,d

) M
∑

i=1
i6=q

e
− 1

2

(w−ziγr,d)
2

|x̄|2γr,d e
−

γs,d
γ̄s,d

× e
−

γr,d
γ̄r,d dwdγr,ddγs,d, (31)

where Q (·) is the Q-function [22, Eq. (2.3.10)],zq =
Re{xqx̄

∗}, and zi = Re{xix̄
∗}. It is difficult to solve the

integration in (30) analytically, therefore, the approximate
average SER of the PL decoder can be obtained numerically
from (29) and (30). We can use (30) for analytically finding
the diversity of the PL decoder.

Let us assume that the average SNR of all links involved in
the cooperation is equal and approaching to infinity with the
same rate, i.e.,̄γs,d = γ̄r,d = γ̄s,r = γ̄ → ∞, whereγ̄s,r is the
average SNR of the source-relay link. From [23, Section 5.1],
it can be shown that forM -PSK constellation and large values
of γ̄, ǫ ∝ 1

γ̄ . Therefore, for large values of̄γ, T ∝ ±lnγ̄.
Lemma 1: The following three inequalities are valid for

integrals of the Q-function:

1

γ̄

∫ ∞

0

Q

(

Z + a1γ√
b1γ

)

e−
γ
γ̄ dγ ≤ 1

γ̄

∫ ∞

0

e−
(Z+a1γ)2

2b1γ e−
γ
γ̄ dγ,

1

γ̄

∫ ∞

0

Q

(−Z + a1γ√
b1γ

)

e−
γ
γ̄ dγ ≤

∞
∑

k=1

(−1)k+1 (Z/γ̄)
k

k!ak2

+
1

γ̄

∫ ∞

0

e−
(Z−a1γ)2

2b1γ e−
γ
γ̄ dγ,

1

γ̄

∫ ∞

0

Q

(

Z − a1γ√
b1γ

)

e−
γ
γ̄ dγ ≤ η (Z/γ̄)α

+
1

γ̄

∫ ∞

0

e
−

(Z−a1γ)2

2b1γ e−
γ
γ̄ dγ, (32)

whereZ, a1, b1, η > 0, andα ≥ 1.
Lemma 1 can be proved with help of the Chernov bound
Q(x) ≤ e−x2/2, x ≥ 0 [23, Section 4.1.1].

Lemma 2: If Z = ln γ̄, a2 6= 0, a3 is an arbitrary real-
valued constant, andb2 > 0, then

lim
γ̄→∞

1

γ̄

∫ ∞

0

e
−

(Z−a2γ)2

b2γ e−
γ
γ̄ dγ ≈ c1

γ̄
, (33)

lim
γ̄→∞

1

γ̄

∫ ∞

0

1√
γ
e
−

(Z−a3γ)2

b2γ e−
γ
γ̄ dγ =

c2
γ̄
, (34)

and

lim
γ̄→∞

ǫ

γ̄

∫ ∞

0

e−
Z2

b2γ e−
γ
γ̄ dγ ≈ c3

γ̄
, (35)

wherec1, c2, c3 are positive constants.

Lemma 2 can be proved by applying [24, Eq. (3.471.9)]
in the left hand side of (33), (34), and (35), then using
the relationsKν(x) ≈

√

π/(2x)e−x, x >> 0 in (33),
K1/2(x) =

√

π/(2x)e−x in (34), andǫ ≈ c3
γ̄ andKν(x) ≈

1
2Γ(ν)

(

1
2x
)−ν

, x → 0 in (35), whereKν(·) is the modified
Bessel function [25, Section 9.6.1] andΓ (·) is the Gamma
function [25, Eq. (6.1.1)]. We have also used the fact thatln γ̄
varies extremely slowly as compared toγ̄ for γ̄ → ∞. There-
fore, for diversity related calculationsln γ̄ can be assumed
constant relative tōγ.

Let us consider the QPSK constellation for proving the
diversity of the proposed PL decoder for simplicity. For QPSK
constellation,zq = Re{xqx̄

∗} is negative, andzi = Re{xix̄
∗}

can be negative, zero, or positive. Therefore, by using Lem-
mas 1 and 2 in (31) it can be shown that
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lim
γ̄→∞

I1(γ̄, T ) ∝
c4
γ̄2

+ f1 (γ̄) ,

lim
γ̄→∞

I2(γ̄, T ) ∝
c5
γ̄2

+ f2 (γ̄) , (36)

where c4, c5 are constants andf1 (γ̄) , f2 (γ̄) are functions
containing summation terms each decaying at rate higher than
γ̄−2 for γ̄ → ∞.

By observing the fact thatQ(x) is a decaying function of
x, we have

I3(γ̄, T ) ≤
2T (1− ǫ)√
2π |x̄| γ̄2

∫ ∞

0

Q

(−T − zqγ

|x̄| √γ

)

e−
γ
γ̄ dγ

×
∫ ∞

0

1√
γ
e
− 1

2

(−T−zqγ)2

|x̄|2γ e−
γ
γ̄ dγ. (37)

By using Lemmas 1, 2 in (37), it can be shown that

lim
γ̄→∞

I3(γ̄, T ) ∝
c6
γ̄2

+ f3 (γ̄) , (38)

where c6 is a positive constant andf3 (γ̄) is a function
containing summation terms each decaying at rate higher than
γ̄−2 for γ̄ → ∞. Similarly, it can be shown that

lim
γ̄→∞

I4(γ̄, T ) ∝ f4 (γ̄) , (39)

wheref4 (γ̄) is a function containing summation terms each
decaying at rate higher than̄γ−2 for γ̄ → ∞.

It can be seen from (30), (31), (36), (38), and (39), that
the average probability of decodingxq asxp by a PL decoder
decays as̄γ−2 at γ̄ → ∞ and, therefore, the proposed PL
decoder achieves a second order diversity.

V. D IFFERENTIAL DF SYSTEM WITH MULTIPLE RELAYS

Let us consider a general case ofN , N ≥ 1, relays
cooperating along with the direct transmission. It is assumed
that the relays and the source useN + 1 time intervals, in
order to transmit the dataorthogonally to the destination.

A. ML and PL Decoders for M -QAM Constellation

It can be shown after some algebra that for the differential
M -QAM data andN relays the ML decoder will be

x̂[n] = arg max
x∈χ











−

∣

∣

∣ys,d[n]− ys,d[n− 1] x
|x[n−1]|

∣

∣

∣

2

(

1 + |x|2

|x[n−1]|2

)

Ns,d

+

N
∑

m=1

ln









(1 − ǫm)

1 + |x|2

|xm[n−1]|2

e

−
|yrm,d[n]−yrm,d[n−1] x

|xm[n−1]| |2
(

1+
|x|2

|xm[n−1]|2

)

Nrm,d

+
ǫm

M − 1

M
∑

i=1
xi 6=x

1

1 + |xi|2

|xm[n−1]|2

e

−
|yrm,d[n]−yrm,d[n−1]

xi
|xm[n−1]| |2

(

1+
|xi|

2

|xm[n−1]|2

)

Nrm,d









−ln

(

1 +
|x|2

|x[n− 1]|2

)}

, (40)

wherexm[n] is the demodulated symbol in them-th, m =
1, ..., N , relay in then-th time interval,ǫm is the average
probability of error of the link between the source and them-
th relay, yrm,d[n] is the signal received from them-th relay

by the destination in then-th time interval, andNrm,d is the
variance of the AWGN noise of the link between them-th
relay and the destination. Since the destination does not have
perfect knowledge ofx[n−1] andxm[n−1], it can utilize the
estimated values ofx[n−1] andxm[n−1] in (40) for decoding
the currently transmitted data of the source. The estimate of
xm[n − 1] in the destination can be obtained by using the
following differential decoder:

x̂m[n− 1]=arg min
x∈χ











∣

∣

∣yrm,d[n− 1]−yrm,d[n− 2] x
|xm[n−2]|

∣

∣

∣

2

(

1 + |x|2

|xm[n−2]|2

)

Nrm,d

+ln

(

1+
|x|2

|xm[n− 2]|2

)}

. (41)

Moreover, the PL decoder for the differentialM -QAM data
andN relays can be obtained after some algebra as

Λp,q ≈ u0 +

N
∑

m=1

fPL(um), (42)
where

u0 = ln

(

|x[n− 1]|2 + |xq|2

|x[n− 1]|2 + |xp|2

)

+

∣

∣

∣ys,d[n]− ys,d[n− 1]
xq

|x[n−1]|

∣

∣

∣

2

(

1 + |xq|2 / |x[n− 1]|2
)

Ns,d

−

∣

∣

∣ys,d[n]− ys,d[n− 1]
xp

|x[n−1]|

∣

∣

∣

2

(

1 + |xp|2 / |x[n− 1]|2
)

Ns,d

,

um = ln

(

|xm[n− 1]|2 + |xq|2

|xm[n− 1]|2 + |xp|2

)

+

∣

∣

∣yrm,d[n]− yrm,d[n− 1]
xq

|xm[n−1]|

∣

∣

∣

2

(

1 + |xq|2/|xm[n− 1]|2
)

Nrm,d

−

∣

∣

∣yrm,d[n]− yrm,d[n− 1]
xp

|xm[n−1]|

∣

∣

∣

2

(

1 + |xp|2/|xm[n− 1]|2
)

Nrm,d

, (43)

fPL(um) ,







−Tm, if um < −Tm,
um, if −Tm ≤ um ≤ Tm,
Tm, if um > Tm,

(44)

andTm = ±ln ((M − 1)(1− ǫm)/ǫm).

B. ML and PL Decoders for M -PSK Constellation

By substituting|x| = |x[n]| = |xm[n]| = 1 in (40) and
after some manipulations, the ML decoder for theM -PSK
constellation with multiple relays can be obtained as

x̂[n] = arg max
x∈A

{

1

Ns,d
Re
{

y∗s,d[n]ys,d[n− 1]x
}

+
N
∑

m=1

ln

(

(1− ǫm)e
1

Nrm,d
Re{y∗

rm,d[n]yrm,d[n−1]x}

+
ǫm

M − 1

M
∑

i=1,xi 6=x

e
1

Nrm,d
Re{y∗

rm,d[n]yrm,d[n−1]xi}










.

(45)
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Similarly, the PL decoder for theM -PSK constellation can be
obtained from (42) as

Λp,q ≈ t0 +

N
∑

m=1

fPL(tm), (46)

where t0 = 1
Ns,d

Re
{

y∗s,d[n]ys,d[n− 1] (xp − xq)
}

, tm =

1
Nrm,d

Re
{

y∗rm,d[n]yrm,d[n− 1] (xp − xq)
}

, and fPL(tm) is
given in (44).

C. Asymptotic SER Analysis of the PL Decoder with Multiple
Relays and M -PSK Constellation

Let us assume asymptotically thatγ̄s,rm → ∞ and γ̄s,d =
γ̄rm,d = γ̄, whereγ̄s,rm andγ̄rm,d are the average SNRs of the
links between the source and them-th relay and between the
m-th relay and the destination, respectively. Sinceγ̄s,rm → ∞,
ǫm → 0 andTm → ∞, i.e., them-th relay becomes error-free
under this asymptotic condition. Hence, the asymptotic SERof
the proposed PL decoder with multiple relays can be obtained
by assuming that all the relays are error-free. The conditional
uncoded PEP of the proposed PL decoder (46) withM -PSK
constellation andN error-free relays will be
P xp,xq
e (hs,d, hrm,d)

= Pr

{

t0+
N
∑

m=1

tm<0,−∞≤ tm≤ ∞|x[n]=xp, xm[n]=xp

}

.

(47)

By using the results of quadratic forms in complex Gaussian
variables [26] in (47), we have

P xp,xq
e (hs,d, hrm,d)=e

(

β
4 − 3|x̄|2

2

)

γt
∞
∑

k=0

k+N
∑

n=0

(2|x̄|2 − β)kγk
t

2N+n+k+1k!

× LN
n

(

− (2|x̄|2 + β)

4
γt

)

, (48)

where Lα
n (·) is the generalized Laguerre polynomial [25,

pg. 775], β = 2Re
{

x∗
px̄
}

, and γt = γs,d +
∑N

m=1 γrm,d,
whereγrm,d is the instantaneous SNR of the link between the
m-th relay and the destination. The distribution ofγt can be
obtained from (25) and [20, Eq. (2.1.110)] as

pγt
(γ) =

γN

Γ(N + 1)γ̄N+1
e−

γ
γ̄ . (49)

By using the series expansion of the generalized Laguerre
polynomial [24, Eq. (8.970.1)], we can simplify (48) as

P xp,xq
e (hs,d, hrm,d) = e

(

β
4 − 3|x̄|2

2

)

γt
∞
∑

k=0

k+N
∑

n=0

n
∑

i=0

N+nCn−i

× (2|x̄|2 − β)k
(

2|x̄|2 + β
)i
γk+i
t

2N+n+k+2i+1k!i!
. (50)

The average uncoded PEP of the proposed PL decoder with
M -PSK constellation andN error-free relays can be ob-
tained by averaging (50) overγt. From (49), (50), and [24,
Eq. (3.381.4)], the average PEP will be

P xp,xq
e =

1

Γ(N + 1)γ̄N+1

∞
∑

k=0

k+N
∑

n=0

n
∑

i=0

N+nCn−i

× (2|x̄|2 − β)k
(

2|x̄|2 + β
)i

2N+n+k+2i+1k!i!

Γ(N + k + i+ 1)

( 1γ̄ + c)N+k+i+1
, (51)

where c = 3|x̄|2

2 − β
4 . The average asymptotic approximate

SER of the proposed PL decoder with multiple relays can be
obtained from (29) and (51). It can be seen from (51) that

P xp,xq
e ∝ 1

γ̄N+1

1

( 1γ̄ + c)N+k+i+1
. (52)

Hence, as̄γ → ∞,

P xp,xq
e ∝ 1

γ̄N+1
. (53)

Therefore, the proposed PL decoder achieves diversity of
N + 1 in a DF based differential cooperative system withN
error-free relays. LetN = 1, then it can be seen from (53)
that the PL decoder with a single error-free relay achieves
the second order diversity. We have analytically proved in
Subsection IV-B that the PL decoder with a single erroneous
relay also achieves the second order diversity. Therefore,the
proposed PL decoder avoids loss in the diversity because of
an erroneous relaying node. It is shown in Subsection VI-B
and Fig. 9 by simulations that the PL decoder withN > 1
erroneous relays also achieves diversity ofN + 1.

VI. A NALYTICAL AND SIMULATION RESULTS

Simulations are performed withM -PSK and M -QAM
constellations. The channels of all links are assumed to be
Rayleigh fading and constant over multiple consecutive time
intervals.

A. Performance of the Proposed Decoders for Unitary and
Non-Unitary Constellations

It is assumed that̄γs,d = γ̄s,r = γ̄r,d = γ̄, i.e., all links
involved in cooperation have equal average SNR value. We
have shownγ̄ on x-axis in Figs. 5- 7. Moreover, we have
considered a DF based uncoded cooperative communication
system with asingle relay and one source-destination pair
for simulation results shown in Figs. 5- 7. In Fig. 5, we
have plotted the performance of the proposed ML (10) and
PL (14) decoders for differential QPSK, 16-PSK, and 32-PSK
constellations. It can be seen from Fig. 5 that the ML and
PL decoders work approximately similar for all constellations
and SNR values considered in the simulations. We have
plotted the performance of the proposed ML and PL decoders
by using the estimated values ofx[n − 1] and xr[n − 1]
in (17), (19), and (21) for differential 8-QAM, 16-QAM, 32-
QAM, and 64-QAM constellations in Fig. 6. It can be seen
from Fig. 6 that the proposed ML and PL decoders also
work approximately similar for allM -QAM constellations
considered in simulations. The SER versus SNR performance
of the proposed ML decoder by assuming thatx[n − 1] is
perfectly known in the relay andx[n − 1] andxr [n − 1] are
perfectly known in the destination is also plotted in Fig. 6.
We call this decoder as ‘genie added ML decoder’. It can
be seen from Fig. 6 that there is no error propagation in the
performance of the proposed ML and PL decoders due to
utilization of the estimated values of the previously transmitted
symbols.

A cooperative set-up with a singleerroneous relay and one
source-destination pair is considered in Fig. 7 for simulations.
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Fig. 5. SER versus SNR performance of the proposed ML◦ and PL�
decoders for differentM -PSK constellations.
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Fig. 6. SER versus SNR performance of the proposed ML◦ and PL�
decoders utilizing the estimated values of the previously transmitted symbols
in the relay and the destination, and the genie added ML decoder ∗ for
different M -QAM constellations.
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Fig. 7. Comparison of differential cooperative systems utilizing DF protocol
with a sub-optimal decoder and proposed PL decoder, and AF protocol [13]
with 8-PSK constellation.

In Fig. 7, we have plotted the SER versus SNR performance
of the differentially modulated 8-PSK constellation in the

DF based uncoded cooperative system with the proposed
PL decoder having knowledge of the instantaneous SNR
of the source-relay link and AF based uncoded cooperative
system [13]. The total average transmit power per time interval
is kept the same in the DF and AF schemes. It can be seen from
Fig. 7 that the uncoded DF based differential cooperative sys-
tem with the proposed PL decoder outperforms thesame rate
AF based differential cooperative system utilizing uncoded
transmissions. For example, a SNR gain of approximately
1 dB is obtained by the differential DF system as compared
to the differential AF system at SER=10−2. Full-diversity
ML and PL decoders of higher order unitary and non-unitary
constellations in the differential DF system are not available
in literature. Therefore, we have plotted the performance of
a sub-optimal decoder1 that does not have any information
of the SNR of the source-relay link in Fig. 7. Since the
sub-optimal decoder does not have knowledge of the SNR
of the source-relay link, itwrongly assumes that the relay
is error-free, whereas, the relay actually performs erroneous
transmissions. It can be seen from Fig. 7 that the sub-optimal
decoder performs poorer to the proposed PL decoder at all
SNRs considered in the figure. Moreover, the sub-optimal
decoder looses diversity due to the erroneous transmissions
of the relaying node.

B. Analytical Performance of the Proposed PL Decoder

We have plotted the analytical approximate average SER
versus SNR plots of the QPSK, 16-PSK, and 32-PSK constel-
lations in the differential cooperative communication system
having one source-destination pair and a single relay in Fig. 8.
It is assumed that̄γs,d = γ̄s,r = γ̄r,d = γ̄. The approximate
values of the average SER are calculated in closed-form by
using (27) and (29), and by numerically solving the integrals
in (30) and then using (29). It can be seen from Fig. 8 that the
simulation results follow the analytical results satisfactorily at
all SNR values. Moreover, there is no significant degradation
in the analysis by ignoring the higher order noise terms for all
constellations considered in the figure. We have also plotted
the simulated and analytical performance of the differential
cooperative system with one relay under the condition that
γ̄s,d = γ̄r,d = γ̄, γ̄s,r → ∞, i.e., the channel between the
source and relay is error-free for QPSK, 16-PSK, and 32-PSK
constellations, in Fig. 8. It can be seen from Fig. 8 that the
proposed analysis closely justifies the simulated behaviorof
the DF based differential cooperative system with error-free
relay.

In Fig. 9, we have plotted the analytical approximate asymp-
totic SER of the differential cooperative system with a single
source-destination pair,N = 2, 3 relays, QPSK constellation,
γ̄s,d = γ̄r,d = γ̄, and γ̄s,r → ∞. The analytical asymptotic
SER versus SNR values are calculated from (29) and (51). We
have also plotted the simulated SER versus SNR plots of the
proposed PL decoder forN = 2, 3, QPSK constellation, and
γ̄s,d = γ̄s,r = γ̄r,d = γ̄. It can be noticed that the analytical
asymptotic SER obtained from (29) and (51) is a lower bound
of the SER of the PL decoder with erroneous relays. From

1The sub-optimal decoder can be obtained by puttingǫ = 0 in (10).
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Fig. 8. Analytical (△ SER obtained in closed-form by using (27) and (29)
and⋆ SER obtained by numerically solving the integrals from (29)and (30),
and ignoring the higher order noise) and simulated−− performance of the
proposed PL decoder with̄γs,d = γ̄r,d = γ̄s,r = γ̄ and γ̄s,d = γ̄r,d =
γ̄, γ̄s,r → ∞, where 0 dB≤ γ̄ ≤ 36 dB. An uncoded cooperative system
with a single relay is considered in the simulations and analysis.
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Fig. 9. Analytical−⋄− performance of the proposed PL decoder withγ̄s,d =
γ̄r,d = γ̄, γ̄s,r → ∞ and simulated−�− performance of the proposed PL
decoder withγ̄s,d = γ̄r,d = γ̄s,r = γ̄, where 0 dB≤ γ̄ ≤ 21 dB and
N = 2, 3.

Fig. 9, it can be seen that for a fixed number of relays, the
SER versus SNR plot of the PL decoder with erroneous relays
decays at the same rate as that of the PL decoder with error-
free relays at high SNR considered in the figure. The diversity
is defined as slope of the SER versus SNR plot [27]. Therefore,
from Fig. 9, it can be noticed that the proposed PL decoder for
a given number (N = 2, 3) of error-free and erroneous relays
achieves the same diversity. We have analytically proved in
Subsection V-C that the diversity (slope of decay of the SER
versus SNR plot) of the proposed PL decoder withN error-
free relays isN+1. Therefore, from Fig. 9 and the discussion
above, it can be noticed that the proposed PL decoder with
N > 1 erroneous relays also achieves diversity ofN + 1.
The x-axis in Fig. 9 depicts the average SNR of the source-
destination link. .

VII. C ONCLUSIONS

We have derived optimal and low complexity decoders
for differentially modulated complex-valued constellations in
an uncoded cooperative communication system utilizing the
DF protocol and multiple relays. Moreover, we have also
derived expressions of the approximate average symbol error
rate of the proposed PL decoder. It is proved by analysis
and simulations that the proposed PL decoder achieves the
maximum possible diversity.

APPENDIX A
DERIVATION OF UNCODED AVERAGE PEPWITH A SINGLE

RELAY

By considering the erroneous decoding in the relay, we can
write

Pr{t0 − T < 0|t < −T, x[n] = xp}Pr{t < −T |x[n] = xp}
= Pr{t0 − T < 0|t < −T, x[n] = xp}
× ((1− ǫ)Pr{t < −T |x[n] = xp, xr[n] = xp}
+ǫPr{t < −T |x[n] = xp, xr[n] 6= xp})
= Pe1(hs,d) (Pe2 (hr,d) + Pe3(hr,d)) . (54)

Similarly, we have
Pr{t0 + T < 0|t > T, x[n] = xp}Pr{t > T |x[n] = xp}

= Pr{t0 + T < 0|t > T, x[n] = xp}
× ((1− ǫ)Pr{t > T |x[n] = xp, xr[n] = xp}
+ǫPr{t > T |x[n] = xp, xr[n] 6= xp})
= Pe4 (hs,d) (Pe5(hr,d) + Pe6 (hr,d)) . (55)

For givenhs,d, hr,d, x[n], andxr[n], t0 andt follow quadratic
form of Gaussian variates. Therefore, from [26, Section IV]
we havePe1 (hs,d) = 1 − g(cp, bp, γs,d), Pe2(hr,d) = (1 −
ǫ)g(bp, cp, γr,d), Pe4(hs,d) = g(bp, cp, γs,d), andPe5 (hr,d) =
(1− ǫ)g(cp, bp, γr,d), where

g(ai, aj , γb) ,
1

2
e−γb(2|x̄|

2−
ai
8 )

∞
∑

k=0

k
∑

n=0

γk
b a

k
j

4kk!

× Γ(k − n+ 1, 2T )

2n(k − n)!
Ln(−

aiγb
8

), (56)

ai, aj , and γb are variables,Γ(·, ·) denotes the incomplete
Gamma function [25, Eq. (6.5.3)],Ln(·) is the Laguerre
polynomial [25, pg. 775],bp = 2(2|x̄|2 + x∗

px̄ + xpx̄
∗), and

cp = 2(2|x̄|2 − x∗
px̄− xpx̄

∗).
Whereas, Pr{t < −T |x[n] = xp, xr[n] 6= xp} leads to the

cumulative distribution function (c.d.f.) of the quadratic Gaus-
sian mixture random variable which can be obtained by
marginalizing the c.d.f. of the quadratic Gaussian random
variable [26, Eq. (27)] overxi, i 6= p as follows:

Pr{t < −T |x[n] = xp, xr[n] 6= xp}

=
1

2(M − 1)

M
∑

i=0
i6=p

∞
∑

k=0

k
∑

n=0

e−γr,d(2|x̄|
2−

bi
8 )

γk
r,dc

k
i

4kk!

× Γ(k − n+ 1, 2T )

2n(k − n)!
Ln(−

biγr,d
8

), (57)

where bi = 2(2|x̄|2 + x∗
i x̄ + xix̄

∗) and ci = 2(2|x̄|2 −
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x∗
i x̄− xix̄

∗). From (54), (56) and (57), we havePe3 (hr,d) =

ǫ
M−1

M
∑

i=1
i6=p

g(bi, ci, γr,d). Similarly, we can obtainPe6(hr,d) =

ǫ
M−1

M
∑

i=1
i6=p

g(ci, bi, γr,d). Next, we can write

Pr{t0 + t < 0,−T ≤ t ≤ T |x[n] = xp}
= (1 − ǫ)Pr{t0 + t < 0,−T ≤t≤ T |x[n]=xp, xr[n]=xp}
+ ǫPr{t0 + t < 0,−T ≤ t ≤ T |x[n] = xp, xr[n] 6= xp} .

(58)

It can be shown after some algebra that

Pr{t0 + t < 0,−T ≤ t ≤ T |x[n] = xp, xr[n] = xp}

=

∫ T

−T

pt|xr[n]=xp
(w)

∫ −w

−∞

pt0(z)dz dw

=

∫ 0

−T

pt|xr[n]=xp
(w)

∫ −w

−∞

pt0(z)dz dw

+

∫ T

0

pt|xr[n]=xp
(w)

∫ −w

−∞

pt0(z)dz dw

=

∫ 0

−T

pt|xr[n]=xp
(w)Ft0 (−w)dw

+

∫ T

0

pt|xr[n]=xp
(w)Ft0 (−w)dw

=
1

1− ǫ
Pe7 (hs,d, hr,d) +

1

1− ǫ
Pe8(hs,d, hr,d), (59)

where Ft0(x) is the c.d.f. of t0 and pt|xr[n]=xp
(x) is the

p.d.f. of t given that xr [n] = xp. By change of variable
in (59), using [26, Eqs. (15),(27),(29)], series expansionof
the incomplete Gamma function

Γ(v, y) = (v − 1)!e−y
v−1
∑

k=0

yk

k!
, (60)

and then using [24, Eq. (3.381.1)], we can obtain

Pe7(hs,d, hr,d) = (1 − ǫ)
∑

k,n,m1,

l,i1

Dcp,bp
k,n Dbp,cp

m1,l
Dk,n

i1,m1,l

andPe8(hs,d, hr,d) =(1− ǫ)

[

∞
∑

k=0

k
∑

n=0

Dbp,cp
k,n 2n−k−1

×γ(−n+ k + 1, 2T )−
∑

k,n,m1,

l,i1

Dbp,cp
k,n Dcp,bp

m1,l
Dk,n

i1,m1,l






,

where Dai,aj

k,n = e−γr,d(2|x̄|2−ai
8 ) a

k
j γ

k
r,d

k!2k
Ln(−

aiγr,d
8 )

(k−n)!4n ,

Dk,n
i1,m1,l

= (m1 − l)! 2
i1

i1!
4n−k−i1−1γ(k − n + i1 + 1, 4T ),

Dai,aj

m1,l
= 1

2e
−γs,d(2|x̄|2− ai

8 ) a
m1
j γ

m1
s,d

m1!4m1

Ll(−
aiγs,d

8 )

(m1−l)!2l , and

∑

k,n,m1,

l,i1

=
∞
∑

k=0

k
∑

n=0

∞
∑

m1=0

m1
∑

l=0

m1−l
∑

i1=0

. Similarly, we have

Pr{t0 + t < 0,−T ≤ t ≤ T |x[n] = xp, xr[n] 6= xp}

=

∫ 0

−T

pt|xr[n] 6=xp
(w)Ft0 (−w)dw

+

∫ T

0

pt|xr[n] 6=xp
(w)Ft0 (−w)dw

=
1

ǫ
Pe9 (hs,d, hr,d) +

1

ǫ
Pe10 (hs,d, hr,d), (61)

wherept|xr[n] 6=xp
(x) is the p.d.f. oft given thatxr[n] 6= xp.

Since t is the quadratic Gaussian mixture random variable,
the p.d.f. oft can be obtained by marginalizingpt|xr[n]=xi

(x)
overxi, i 6= p as

pt|xr[n] 6=xp
(v) =























































1
M−1

M
∑

i=1
i6=p

∞
∑

k=0

k
∑

n=0

e
−

(

2v+
|x̄|2γr,d

2 +
ciγr,d

8

)

× vk−nγk
r,db

k
i

k!(k−n)!2n+kLn

(

− ciγr,d

8

)

, v > 0,

1
M−1

M
∑

i=1
i6=p

∞
∑

k=0

k
∑

n=0

e
−

(

2v+
|x̄|2γr,d

2 +
biγr,d

8

)

× (−v)k−nγk
r,dc

k
i

k!(k−n)!2n+k Ln

(

− biγr,d

8

)

, v ≤ 0.

(62)

From (60), (61), (62), [26, Eqs. (27),(29)], and [24,
Eq. (3.381.1)] we can obtain Pe9(hs,d, hr,d) =

ǫ
M−1

M
∑

i=1
i6=p

∑

k,n,m1,

l,i1

Dci,bi
k,n Dbp,cp

m1,l
Dk,n

i1,m1,l
and Pe10(hs,d, hr,d) =

ǫ
M−1







M
∑

i=1
i6=p

∞
∑

k=0

k
∑

n=0

Dbi,ci
k,n 2n−k−1 γ(−n+ k + 1, 2Tm)

−
M
∑

i=1
i6=p

∑

k,n,m1,

l,i1

Dbi,ci
k,n Dcp,bp

m1,l
Dk,n

i1,m1,l






, where γ (·, ·) is the

incomplete Gamma function [25, Eq. (6.5.2)].
A close examination of the termsPei (·) and Pej (·, ·)

of (24) reveals that the 2-D integration in (26) is separable.
After some algebra and using [24, Eqs. (3.381.4)
and (8.970.1)], we havePe1 = 1 − g1(bp, cp, γ̄s,d),
Pe2 = (1− ǫ)g1(cp, bp, γ̄s,d), Pe3

= ǫ
M−1

M
∑

i=1
i6=p

g1(ci, bi, γ̄s,d), Pe4 = g1(cp, bp, γ̄s,d), Pe5 = (1−

ǫ)g1(bp, cp, γ̄s,d), Pe6 = ǫ
M−1

M
∑

i=1
i6=p

g1(bi, ci, γ̄s,d), g1(a, b, γ̄)=

1
2γ̄

∞
∑

k=0

k
∑

n=0

n
∑

i2=0

ak

k!4k
Γ(k − n+ 1, 2Tm)

(k − n)!2n
nCi2

bi2

i2!8i2
(2|x̄|2 − b

8

+
1

γ̄
)−i2−k−1Γ(i2 + k + 1), Pe7 = (1− ǫ)

∑

k,n,m1,l,

i1,i2,i3

Bcp,bp
k,n,i2

×Bbp,cp
m1,l,i3

Dk,n
i1,m1,l

, Pe8 = (1−ǫ)

[

∞
∑

k=0

k
∑

n=0

n
∑

i2=0

Bbp,cp
k,n,i2

2n−k−1

×γ(k − n+ 1, 2Tm)−
∑

k,n,m1,l,

i1,i2,i3

Bbp,cp
k,n,i2

Bcp,bp
m1,l,i3

Dk,n
i1,m1,l






,
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Pe9 = ǫ
M−1

M
∑

i=1
i6=p

∑

k,n,m1,l,

i1,i2,i3

Bci,bi
k,n,i2

Bbp,cp
m1,l,i3

Dk,n
i1,m1,l

, Pe10 =

ǫ
M−1







M
∑

i=1
i6=p

∞
∑

k=0

k
∑

n=0

n
∑

i2=0

Bbi,ci
k,n,i2

2n−k−1γ(k − n+ 1, 2T )

−∑M
i=1
i6=p

∑

k,n,m1,l,

i1,i2,i3

Bbi,ci
k,n,i2

Bcp,bp
m1,l,i3

Dk,n
i1,m1,l






, where

∑

k,n,m1,l,

i1,i2,i3

=

∞
∑

k=0

k
∑

n=0

∞
∑

m1=0

m1
∑

l=0

m1−l
∑

i1=0

n
∑

i2=0

l
∑

i3=0

, Bc,b
k,n,i2

=

nCi2b
kci2

γ̄r,dk!2k(k−n)!i2!4n8i2
(2|x̄|2 − c

8 +
1

γ̄r,d
)−i2−k−1Γ(i2 + k+ 1),

and Bb,c
m1,l,i3

= 1
2γ̄s,d

lCi3c
m1 bi3

m1!4m1 (m1−l)!i3!2l8i3
(2|x̄|2 − b

8 +
1

γ̄s,d
)−i3−m1−1Γ(i3 +m1 + 1).
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