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The effect of multiple primary users on the spectrum sensingperformance is investigated. Different

models for the primary user traffic are considered. The effects of different system parameters on

the sening accuracy are examined. Numerical results show that the spectrum sensing performance is

significantly degraded by the primary user traffic, and that the degradation decreases when the number
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I. I NTRODUCTION

Spectrum sensing is a critical functionality of cognitive radio [1]. It enables unlicensed users,

referred to as cognitive radio (CR) users hereafter, to find the“spectrum holes”. Many works have

been conducted on spectrum sensing [2] - [4]. Among them, energy detector is the most widely

used method. All these previous works assume that the primary user is either absent or present

during the whole sensing period. However, in practice, the primary user may arrive or leave

during the sensing period. The effect of the primary user traffic on the sensing performance has

been analyzed in [5] for the case when only one primary user occupies the licensed spectrum at a

time. In [6], the energy detection was improved to reduce theeffect from the primary user traffic

when only one primary user is present. However, in many widely used code division multiple

access (CDMA) systems, such as 3G and WiMAX, the systems are designed to have several users

operating in the same frequency band simultaneously. The “spectrum holes” also include vacant

unlicensed bands. In this case, several unlicensed systems, such as Wi-Fi, Bluetooth and DECT,

will share the same band without coordination, giving the scenario where multiple primary users

may occupy the same band. All these realistic applications motivate a general investigation of

the effect of primary user traffic on the sensing performancewith multiple primary users.

In this letter, the effect of primary user traffic on the performance of energy detection is

evaluated by considering the general case when multiple primary users arrive or leave during the

sensing period. Different models for the primary user traffic are considered. Numerical results

show that the performance of energy detection is significantly degraded when the primary user

status changes during the sensing period, and that the degradation decreases when the number

of primary users increases.

II. SYSTEM MODEL

In the energy detection, the output of a band-pass filter withbandwidthW is squared and

integrated over the observation intervalT . Let the time-bandwidth productTW = m, and assume

thatm is an integer. The total number of samples is2m. Then, the output of the energy detector
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is Y =
∑2m

n=1 Y
2
n , whereYn = Zn when then-th sample does not contain the primary signal

andYn = S
(u)
n + Zn when then-th sample does contain the primary signal,Zn are independent

samples of the additive white Gaussian noise (AWGN) with meanzero and varianceα2, and

S
(u)
n are samples of the signals fromu primary users. It is assumed that each primary user signal

is independent and identically distributed with average power P . Thus, the average SNRs for

one primary user andu primary users areγ = P/α2 anduγ, respectively. In the case when the

primary user signal is non-identically distributed,γ anduγ can be replaced byγi for the i-th

primary signal and
∑u

i=1 γi in the following results, respectively.

Each primary user has two status: busy or idle. The holding time of busy or idle is assumed

to be random and has cumulative distribution functions (CDFs) Fλ(x) or Fµ(x), respectively.

Denote the mean holding times of busy and idle asλ and µ, respectively. Therefore, at any

time instant, a primary user is busy with probabilitypb(λ, µ) = λ
µ+λ

, and idle with probability

pi(λ, µ) = 1−pb(λ, µ). Assume that a primary user is idle at the beginning of the sensing period,

and then becomes busy after thek-th sample. Then, the last sample of the idle period is the

k-th sample. The probability mass function (PMF) for the casewhen the primary user’s status

changes from idle to busy after thek-th sample is derived as [9]

pµ(k) = Fµ(kTs)− Fµ((k − 1)Ts) (1)

whereTs is the sample interval. Similarly, the PMF for the case when the primary user’s status

changes from busy to idle after thek-th sample is derived as

pλ(k) = Fλ(kTs)− Fλ((k − 1)Ts). (2)

Note that this alternating renewal process model has been verified by real traffic data [7] [8] and

has been used in different works [9]- [11]. Therefore, our analysis based on this model applies

to these practical cases [7]- [11]. As well, since the analysis is based on a very general traffic

model in (1) and (2), it is valid for any model of the primary network with a specific PMF.

In the numerical examples, several typical models will be examined but study of each primary

user’s activitity in different practical systems is beyondthe scope of the paper.
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III. PERFORMANCEANALYSIS

Assume that the state of each primary user changes at most once during the sensing period.

This is the case when the sensing period is at the same level ofthe holding time but also the

case when the sensing period is shorter than the holding timebut the primary user happens to

change status during the sensing period. We consider the case of two primary users first. In this

case, at any time instant, the channel can be idle with probability pI(λ, µ) = p2i (λ, µ), or be

occupied by one primary user with probabilitypB1(λ, µ) = 2pi(λ, µ)pb(λ, µ), or be occupied

by two primary users with probabilitypB2(λ, µ) = p2b(λ, µ). Since the state of each primary

user changes at most once during the sensing period, the channel state can change up to twice

during the sensing period. Then, the binary hypothesis testing problem in the conventional energy

detector given by [2] can be decomposed into a ten-hypothesis testing problem as

Y =
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(3)

wherek1 represents the number of samples after which the first primary user’s status changes,

k2 represents the number of samples after which the second primary user’s status changes,k1

andk2 are determined by the primary user traffic andk1, k2 ∈ [1, 2m], S(1)
n is the primary user

signal for one primary user,S(2)
n is the primary user signal for two primary users,Zn is defined
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as before, and
∑b

i=a(·) = 0 when a > b. One sees that the conventional sensing model in [2]

corresponds to the hypotheses ofH1,4 andH0,1 in (3), and the sensing model for one primary

user in [5] corresponds to the hypotheses ofH1,4, H1,5, H0,1 andH0,2 in (3).

The probabilities of detection and false alarm can be derived as

Pd(λ, µ) =
1

P (H1)
{P (H1,1, λ, µ) · P (H1|H1,1) + P (H1,4, λ, µ) · P (H1|H1,4) (4)

+
2m
∑

k1=1

[P (H1,2, λ, µ, k1) · P (H1|H1,2, k1) + P (H1,3, λ, µ, k1) · P (H1|H1,3, k1)

+ P (H1,5, λ, µ, k1) · P (H1|H1,5, k1) +
2m
∑

k2=1

(P (H1,6, λ, µ, k1, k2) · P (H1|H1,6, k1, k2)

+ P (H1,7, λ, µ, k1, k2) · P (H1|H1,7, k1, k2))]}

and

Pf (λ, µ) =
1

P (H0)
{P (H0,1, λ, µ) · P (H1|H0,1) +

2m
∑

k1=1

[P (H0,2, λ, µ, k1) · P (H1|H0,2, k1) (5)

+
2m
∑

k2=1

P (H0,3, λ, µ, k1, k2) · P (H1|H0,3, k1, k2)]},

respectively, where

P (H1) = P (H1,1, λ, µ) + P (H1,4, λ, µ) +
2m
∑

k1=1

[P (H1,2, λ, µ, k1) + P (H1,3, λ, µ, k1) (6)

+ P (H1,5, λ, µ, k1) +
2m
∑

k2=1

(P (H1,6, λ, µ, k1, k2) + P (H1,7, λ, µ, k1, k2))]

is the probability that the channel is occupied, and

P (H0) = P (H0,1, λ, µ) +
2m
∑

k1=1

[P (H0,2, λ, µ, k1) +
2m
∑

k2=1

P (H0,3, λ, µ, k1, k2)] (7)

is the probability that the channel is idle,P (H1,1, λ, µ), P (H1,2, λ, µ, k1), P (H1,3, λ, µ, k1),

P (H1,4, λ, µ), P (H1,5, λ, µ, k1), P (H1,6, λ, µ, k1, k2), P (H1,7, λ, µ, k1, k2), P (H0,1, λ, µ), P (H0,2,

λ, µ, k1) andP (H0,3, λ, µ, k1, k2) are defined in Appendix A. Note from (4)-(7) that the prob-

ability that the primary user leaves or arrives during the sensing period is given byP̃ =

(P (H1)− P (H1,1, λ, µ)− P (H1,4, λ, µ)) + (P (H0)− P (H0,1, λ, µ)). This result is general and
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applies to all applications. The specific value ofP̃ could be low or high, depending on the

specific sensing period and primary mean holding time in the interested applications.

The above analysis can be specialized to the primary networks with λ << µ by setting

pB1(λ, µ) = 0 and pB2(λ, µ) = 0 in the equations, aspb(λ, µ) ≈ 0 and pi(λ, µ) ≈ 1. It applies

to the case of two primary users. Using similar methods, one can extend it to the case of more

primary users. The complexity grows exponentially with thenumber of primary users. Thus, it

does not lead to a tractable analysis for a large number of primary users. On the other hand, a

simplified special case exists whenλ equalsµ. One can letk1 andk2 span from0 to 2m and

definepµ(0) = 1− Fλ(T ), pλ(0) = 1− Fµ(T ). Then, one has the case ofN primary users as

Y =
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(8)

whereH1,i represent the hypothesis that the channel is occupied byN − (i− 1) primary users

at the end of the sensing period,H0 represent the hypothesis that the channel is idle at the end

of the sensing period,k1, · · · ki, · · · kN ∈ [0, 2m] represents the number of samples after which

the primary user status changes withk1 ≤ · · · ≤ ki ≤ · · · ≤ kN , and
∑b

i=a(·) = 0 whena > b.
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The probabilities of detection and false alarm in this case are derived in Appendix B as

Pd(λ, µ) =
1

P (H1)
[
2m
∑

k1=0

2m
∑

k2=0

· · ·
2m
∑

kN=0

P (H1,1, λ, µ, k1, · · · , kN) · P (H1|H1,1, k1, · · · , kN ) + · · ·

+ P (H1,N , λ, µ, k1, · · · , kN ) · P (H1|H1,N , k1, · · · , kN)] (9)

and

Pf (λ, µ) =
1

P (H0)
[
2m
∑

k1=0

2m
∑

k2=0

· · ·
2m
∑

kN=0

P (H0, λ, µ, k1, · · · , kN ) · P (H1|H0, k1, · · · , kN)] (10)

respectively, where

P (H1) =
2m
∑

k1=0

2m
∑

k2=0

· · ·
2m
∑

kN=0

P (H1,1, λ, µ, k1, · · · , kN) + · · ·+ P (H1,N , λ, µ, k1, · · · , kN) (11)

is the probability that the channel is occupied,

P (H0) =
2m
∑

k1=0

2m
∑

k2=0

· · ·
2m
∑

kN=0

P (H0, λ, µ, k1, · · · , kN) (12)

is the probability that the channel is idle, and the expressions ofP (H1,1, λ, µ, k1, · · · , kN), · · · ,

P (H1,N , λ, µ, k1, · · · , kN) andP (H0, λ, µ, k1, · · · , kN) are given in Appendix B. Then, the error

probability can be calculated as

Pe(λ, µ) = [1− Pd(λ, µ)]P (H1) + Pf (λ, µ)P (H0). (13)

Note that the above results assume the same traffic load for all primary users. It can be easily

extended to the case when different primary users have different loads by replacingλ and µ

with λi andµi, respectively, for thei-th user.

IV. N UMERICAL RESULTS AND DISCUSSION

In this section, numerical examples are presented. In the Neyman-Pearson (NP) criterion,η is

calculated by assigning a predetermined valueβ to the probability of false-alarm derived [12].

In the minimum error-probability (ME) criterion,η is calculated by minimizing the probability

of error [12]. We setTs = 0.00125 s in all the examples. Exponential distribution [13], Gamma

distribution [14] and lognormal distribution [15] are usedto model the primary user traffic. Also,

assumeλ = µ. Other relationships betweenλ andµ for other network conditions can also be

examined for two primary users. For more than two primary users, this assumption has to be
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used but it still gives very useful and important insights onthe sensing performance, which

serves the purpose of this paper.

Fig. 1 compares the simulation results and the analytical results for the probability of detection

Pd. Two primary users are considered with exponential traffic,γ = −5 dB, and the NP criterion

for β = 0.01. One sees that the simulation results agree with the analytical results well for all

the cases. Comparing different values ofµ, it can be seen that, the larger the value ofµ is, the

higher the probability of detection will be, under the same conditions. This is due to the fact

that, the larger the mean holding time is, the less the probability that the primary user status

changes during the sensing time will be, which improves the detection performance.

Fig. 2 shows the receiver operating characteristics (ROC) curves for different models of the

primary user traffic based on the NP criterion. In the calculation, the detection thresholdη is

derived from (5) numerically, by varyingPf from 10−3 to 1. Also, we haveT = 0.05 s andγ = 0

dB. Comparing the ROC curves for the same distribution with different variances, one sees that

a smaller variance gives a higherPd for the samePf . This is because when the mean holding

time is larger than the sensing time, a smaller variance makes the probability of a primary user

status changes during the sensing period smaller and therefore, the sensing performance is better.

Comparing the ROC curves for different distributions, it is seen that the sensing performance for

the lognormal distributed holding time is more sensitive tothe variance than that for the Gamma

distributed holding time. For the same system, in Fig. 3, we take the exponential holding time as

an example to show the effect of the mean holding time on the spectrum sensing performance.

One can see that a smaller mean holding time results in a lowerPd for the same givenPf .

This is due to the fact that a smaller mean holding time makes it more likely for the primary

user status to change during the sensing period and to degrade the sensing performance. Fig. 4

shows the ROC curves for different relationships betweenµ andλ for two primary users when

λ = 0.2. Whenλ is fixed to 0.2, it can be seen from the figure that a smaller value of µ gives

a better ROC performance. However, the performance gain is smaller whenµ is smaller.

Fig. 5 shows the error probability versus the number of samples for different models of the
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primary user traffic. Two primary users are considered. The mean holding time in this figure is

determined by the ratioR = λ/T , and we setR = 3 in this comparison. We haveγ = 0 dB,

and the ME criterion is used. It can be observed that a smallervariance results in a lower error

probability, and the error probability for the lognormal distributed holding time is more sensitive

to the variance than that for the Gamma distributed holding time. It can also be shown that a

largerR results in a lower error probability. This is because that, the larger the value ofR is,

the smaller the probability that a primary user status changes during the sensing period will be.

Also one can show that the error probability for a largerR is more sensitive to the number of

samples than that for a smallerR.

Fig. 6 shows the ROC curves for different numbers of primary users. The NP criterion is

used withPf varying from 10−3 to 1. We setT = 0.01 s, γ = 0 dB, and the holding time

is exponentially distributed with means0.01 s and0.02 s. As expected, a larger number of

primary users results in a higher probability of detection under the same conditions. Comparing

the performance gains achieved by multiple primary users for different values of mean holding

time, it is seen that a larger mean holding time increases theperformance gain.

Fig. 7 shows the error probability versus the SNR of the primary signal for different numbers

of primary users. We setT = 0.01 s, and the mean holding time in this figure is also determined

by the ratioR = λ/T , which is set at3 and6 in this comparison. It is seen that the decreasing

rate of the error probability forR = 3 is smaller than that forR = 6. This is also due to the

fact that a smallerR results in a higher probability that the primary users arrive or leave during

the sensing period. Also, as expected, a larger number of primary users results in a lower error

probability under the same conditions.

V. CONCLUSIONS

The effect of the primary user traffic on the performance of spectrum sensing has been analyzed

for the case when multiple primary users arrive or leave during the sensing period. Numerical

results have shown that the performance of spectrum sensingwill be degraded by the primary
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user traffic and the degradation decreases when the number ofprimary users increases. This

analysis tells us how spectrum sensing will perform for a given traffic and a given number of

primary users. However, knowledge of the traffic distribution and the number of primary users

is not required in the energy detection. Although this paperextends the single-user case in [5]

using a common method, to the best of the authors’ knowledge,the result is new and has not

been obtained in the literature. Due to the exponential complexity for an arbitrary number of

primary users, this paper only presents a simplified result for λ = µ. Although this result is

useful and important, future research will derive general closed-form expressions for any values

of mean holding times by considering approximations to the hypotheses-testing problem.

APPENDIX A

DERIVATIONS OF (4) AND (5)

Based on the traffic model given in (1) and (2), and assuming that two primary users are

independent, the probability for each channel state can be calculated as

P (H1,1, λ, µ) = pB2(1− Fλ(T ))(1− Fλ(T )) (14)

P (H1,2, λ, µ, k1) = pB1pµ(k1)(1− Fλ(T ))

P (H1,3, λ, µ, k1) = 2pB2(1− Fλ(T ))pλ(k1)

P (H1,4, λ, µ) = pB1(1− Fλ(T ))(1− Fµ(T ))

P (H1,5, λ, µ, k1) = 2pI(1− Fµ(T ))pµ(k1)

P (H1,6, λ, µ, k1, k2) = pIpµ(k1)pµ(k2)

P (H1,7, λ, µ, k1, k2) = pB1pµ(k1)pλ(k2)

P (H0,1, λ, µ) = pI(1− Fµ(T ))(1− Fµ(T ))

P (H0,2, λ, µ, k1) = pB1pλ(k1)(1− Fµ(T ))

P (H0,3, λ, µ, k1, k2) = pB2pλ(k1)pλ(k2).
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Similar to [5], chi-square distribution is used to model theoutput of the energy detectorY.

Using this distribution, the probability of detection under different cases can be derived as

P (H1|H1,1) = Qm(
√

4mγ,
√
η), P (H1|H1,2, k1) = Qm(

√

(2m− k1)γ + 2mγ,
√
η) (15)

P (H1|H1,3, k1) = Qm(
√

k1γ + 2mγ,
√
η), P (H1|H1,4) = Qm(

√

2mγ,
√
η)

P (H1|H1,5, k1) = Qm(
√

(2m− k1)γ,
√
η)

P (H1|H1,6, k1, k2) = Qm(
√

(2m− k1)γ + (2m− k2)γ,
√
η)

P (H1|H1,7, k1, k2) = Qm(
√

k1γ + (2m− k2)γ,
√
η)

whereQm(a, b) =
∫

∞

b
xm

am−1 e
−

x
2
+a

2

2 Im−1(ax)dx is the generalized Marcum Q-function [16] with

Im−1(·) being the modified Bessel function of the (m−1)th order, andη is the detection threshold

for the energy detector. The probability of false alarm under different cases are given as

P (H1|H0,1) = 1− Γ(m, η/2)

Γ(m)
(16)

P (H1|H0,2, k1) = Qm(
√

k1γ,
√
η)

P (H1|H0,3, k1, k2) = Qm(
√

k1γ + k2γ,
√
η),

whereΓ(z) =
∫

∞

0
tz−1e−tdt andΓ(z, x) =

∫ x

0
tz−1e−tdt are the complete and lower incomplete

Gamma functions [17], respectively. Note that the probabilities of false alarm and detection

given in (15) and (16), respectively, are conditional probabilities, conditioned onk1 andk2. By

averaging the conditional probabilities of detection in (15) and the conditional probabilities of

false alarm in (16) overk1 andk2, the overall unconditional probabilities of detection andfalse

alarm can be calculated as (4) and (5), respectively.

APPENDIX B

DERIVATIONS OF (9) AND (10)

Using the chi-square distribution forY in (8), by inspection,Y in H1,i has freedom2m and

non-centrality parameter(2m− k1)γ+ ...(2m− kN−i+1)γ+ kN−i+2γ+ ...+ kNγ. Therefore, the
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probability of detection for different cases in (8) can be calculated as

P (H1|H1,i, k1, ..., kN ) =

Qm(
√

(2m− k1)γ + ...(2m− kN−i+1)γ + kN−i+2γ + ...+ kNγ,
√
η)

for i = 1, · · · , N . Similarly, the probability of false alarm can be calculated as

P (H1|H0, k1, · · · , kN) = 1− Γ(m, η/2)

Γ(m)
, when k1 = k2 = · · · = kN = 0 (17)

P (H1|H0, k1, · · · , kN) = Qm(
√

k1γ + k2γ + · · ·+ kNγ,
√
η) otherwise.

Next, we calculate the probabilities of theN + 1 channel states. When there areN primary

users, at the beginning of the sensing, the channel hasN + 1 possible states with probabilities

pBi =
(

N
i

)

pib(λ, µ)p
N−i
i (λ, µ) (18)

pI =
(

N
N

)

pNi (λ, µ)

where pBi is the probability thati primary users are busy and other primary users are idle,

i = 1, · · · , N , andpI is the probability that all the primary users are idle. Sinceeach primary

user’s status changes at most once during the whole sensing period, the channel status changes

up toN times when there areN primary users. Then, one as

P (H1,i, λ, µ, k1, ..., kN ) = pB(i−1)

N−i+1
∏

n1=1

pµ(kn1
) ·

i−1
∏

n2=1

pλ(kn2
)

P (H0, λ, µ, k1, ..., kN ) = pBN

N
∏

n=1

pλ(kn),

whereP (H1,i, λ, µ, k1, ..., kN ) is the probability thati − 1 primary users are idle and the rest

N − (i − 1) primary users are busy at the end of the sensing period,P (H0, λ, µ, k1, ..., kN ) is

the probability of that all theN primary users are idle at the end of the sensing period. Finally,

using the above results, the overall unconditional probabilities of detection and false alarm can

be calculated as (9) and (10), respectively.

DRAFT



12

REFERENCES

[1] Z. Quan, S. Cui, H. V. Poor and A. H. Sayed, “Collaborative wideband sensing for cognitive radios,”IEEE Signal Processing

Mag., vol. 25, no. 6, pp. 60-73, Nov. 2008.

[2] D. Cabric, S. M. Mishra, R. W. Brodersen, “Implementation issuesin spectrum sensing for cognitive radios,” inProc. the

38th. Asilomar Conference on Signals, Systems and Computers, pp. 772-776, Pacific Grove, CA, USA, Nov. 2004.

[3] S. Shellhammer and R. Tandra, “Performance of the power detector with noise uncertainty,” IEEE 802.22-06/0134r0, Jul.

2006.

[4] Y. Chen and N. C. Beaulieu, “Performance of collaborative spectrum sensing for cognitive radio in the presence of Gaussian

channel estimation errors”,IEEE Trans. Commun., vol. 57, no. 7, pp. 1944-1947, Jul. 2009.

[5] T. Wang, Y. Chen, E. L. Hins and B. Zhao, “Analysis of effect ofprimary user traffic on spectrum sensing performance”,

Proc. of the Fourth International Conference on Communications and Networking in China (ChinaCom 2009), pp. 1-5, Aug.

2009.

[6] N. C. Beaulieu and Y. Chen, “Improved energy detectors for cognitive radios with randomly arriving or departing primary

users”,IEEE Signal Process. Lett., vol. 17, no. 10, pp. 867-870, Oct. 2010.

[7] K. Sriram and W. Whitt, “Characterizing superposition arrival processes in packet multiplexers for voice and data,”IEEE

J. Sel. Areas Commun., vol. SAC-4, no. 6, pp. 833-846, Sept. 1986.

[8] X. Yang and A. P. Petropulu, “The extended alternating fractal renewal process for modeling traffic in high-speed

communication networks,”IEEE Trans. Signal Process., vol. 49, no. 7, pp. 1349-1363, Jul. 2001.

[9] J. Ma, X. Zhou and G. Y. Li, “Probability-based periodic spectrum sensing during secondary communication”,IEEE Trans.

Commun., vol. 58, no. 4, pp. 1291-1301, Apr. 2010.

[10] M. Sharma and A. Sahoo, “Opportunistic channel access scheme for cognitive radio system based on residual white space

distribution,” in Proc. of the IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC

2010), pp. 1842-1847, Instanbul, 26-30 Sept. 2010.

[11] P. Wang and I. F. Akyildiz, “Effects of different mobility models ontraffic patterns in wireless sensor networks,” inProc.

of the IEEE GLOBECOM2010, pp. 1-5, Miami, U.S.A., 6-10 Dec. 2010.

[12] R. D. Yates and D. J. Goodman,Probability and Stochastic Processes, John Wiley& Sons, Inc., 1997.

[13] R. A. Guerin, “Channel occupancy time distribution in a cellular radiosystem,” IEEE Trans. Veh. Technol., vol. VT-35,

no. 3, pp. 89-99, Aug. 1987.

[14] Y. Fang, I. Chlamtac and Y.-B. Lin, “Call performance for a PCS network”, IEEE J. Sel. Areas Commun., vol. 15, no. 8,

pp. 1568-1581, Oct. 1997.

[15] C. Jedrzycki and V. C. M. Leung, “Probability distributions of channel holding time in cellular telephony systems”, in

IEEE Vehicular Technology Conference (VTC 96), pp. 247-251, Atlanta, GA, May 1996.

[16] A. H. Nuttall, “Some integrals involving theQM function,” IEEE Trans. Inform. Theory, vol. 21, no. 1, pp. 95-96, Jan.

1975.

[17] I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and Products, 5th ed., San Diego, CA: Academic Press, 1994.

DRAFT



13

40 50 60 70 80 90 100 110 120
10

−1

10
0

2m

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n 

P
d

 

 

Analytical, µ=0.1
Analytical, µ=0.2
Analytical, µ=0.3
Simulation, µ=0.1
Simulation, µ=0.2
Simulation, µ=0.3

Fig. 1. Probability of detectionPd versus the number of samples2m based on the NP criterion.

Two primary users are considered, and the holding time is exponentially distributed.
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Fig. 2. The ROC curves for different models of the primary user traffic based on the NP criterion.

Two primary users are considered.
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Fig. 3. The ROC curves for different values of mean holding time of the primary user when

the holding time is exponentially distributed based on the NP criterion. Two primary users are

considered.
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Fig. 4. The ROC curves for different relationships betweenµ and λ when the holding time

is exponentially distributed based on the NP criterion withλ = 0.2. Two primary users are

considered.
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Fig. 5. Error probability versus the number of samples2m based on the ME criterion for different

models of the primary user traffic. Two primary users are considered.
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Fig. 6. The ROC curves for different numbers of primary users and different values of mean

holding time of the primary user when the holding time is exponentially distributed based on

the NP criterion.
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Fig. 7. Error probability versus SNR based on the ME criterion for different numbers of primary

users and different values ofR when the holding time is exponentially distributed.
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