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Throughput Maximization in Cognitive Radio Under
Peak Interference Constraints With Limited Feedback
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Abstract—A spectrum-sharing scenario in a cognitive radio
(CR) network where a secondary user (SU) shares a narrowband
channel with N primary users (PUs) is considered. We investigate
the SU ergodic capacity maximization problem under an average
transmit power constraint on the SU and N individual peak inter-
ference power constraints at each primary-user receiver (PU-Rx)
with various forms of imperfect channel-state information (CSI)
available at the secondary-user transmitter (SU-Tx). For easy
exposition, we first look at the case when the SU-Tx can obtain per-
fect knowledge of the CSI from the SU-Tx to the secondary-user
receiver link, which is denoted as g1, but can only access quan-
tized CSI of the SU-Tx to PU-Rx links, which is denoted as g0i ,
i = 1, . . . , N , through a limited-feedback link of B = log2 L b.
For this scenario, a locally optimum quantized power allocation
(codebook) is obtained with quantized g0i , i = 1, . . . , N infor-
mation by using the Karush–Kuhn–Tucker (KKT) necessary
optimality conditions to numerically solve the nonconvex SU
capacity maximization problem. We derive asymptotic approx-
imations for the SU ergodic capacity performance for the case
when the number of feedback bits grows large (B → ∞) and/or
there is a large number of PUs (N → ∞) that operate. For the
interference-limited regime, where the average transmit power
constraint is inactive, an alternative locally optimum scheme,
called the quantized-rate allocation strategy, based on the
quantized-ratio g1/ maxi g0i information, is proposed. Subse-
quently, we relax the strong assumption of full-CSI knowledge of
g1 at the SU-Tx to imperfect g1 knowledge that is also available at
the SU-Tx. Depending on the way the SU-Tx obtains the g1 infor-
mation, the following two different suboptimal quantized power
codebooks are derived for the SU ergodic capacity maximization
problem: 1) the power codebook with noisy g1 estimates and
quantized g0i , i = 1, . . . , N knowledge and 2) another power
codebook with both quantized g1 and g0i , i = 1, . . . , N infor-
mation. We emphasize the fact that, although the proposed algo-
rithms result in locally optimum or strictly suboptimal solutions,
numerical results demonstrate that they are extremely efficient.
The efficacy of the proposed asymptotic approximations is also
illustrated through numerical simulation results.

Index Terms—Cognitive radio, interference constraints, limited
feedback.
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I. INTRODUCTION

RADIO spectrum is a limited precious natural resource.
As the number of wireless communication systems and

services grows, traditional spectrum allocation policies that are
employed by regulatory authorities become inefficient. To avoid
interference, these policies grant the license-holding owner an
exclusive right to access the allocated frequency band [1], thus
resulting in the severe scarcity of vacant spectrum. However,
recent measurements that were performed by the Federal Com-
munications Commission (FCC) revealed that several portions
of spectrum are largely under utilized or even unoccupied. This
condition led to the idea of cognitive radio (CR) technology,
originally introduced by Mitola [2], which promises a dramatic
improvement of the efficiency of spectral utilization.

The key idea behind CR is that an unlicensed/secondary
user (SU) is allowed to communicate over the frequency band
originally licensed to a primary user (PU), as long as the
transmission of SUs does not generate an unfavorable impact
on the operation of PU in that band. Effectively, the following
three categories of CR network paradigms have been proposed:
1) interweave, 2) overlay, and 3) underlay [3]. In the underlay
systems, which is the focus of this paper, the SU can simulta-
neously coexist with the PU, but the transmitted power of the
SU should properly be controlled to ensure that the resulting
interference does not degrade the received signal quality of
the PU to an undesirable level [4] by imposing the so-called
interference temperature [1] constraints at the PU, e.g., the
average interference power (AIP) or peak interference power
(PIP) constraint. This type of CR scenario is also known as the
spectrum-sharing [1] model.

Information-theoretic capacity is a very important criterion
for analyzing the performance limits of CR systems. In [6], the
authors first studied the behavior of the capacities of different
additive white Gaussian noise (AWGN) channels under average
received-power constraints or, equivalently, AIP constraints at
the primary-user receiver (PU-Rx) and showed that, in non-
fading AWGN channels, the capacity performances under the
transmit and receive power constraints are very similar. In [1],
the authors investigated the ergodic capacity of such a dynamic
spectrum-sharing model in a narrowband under either the AIP
or the PIP constraint at the PU-Rx in various fading envi-
ronments, illustrating that, in a fading environment, spectrum
access opportunity for the SU significantly increases compared
to the AWGN case. In [7], the authors extended the work in
[1] to an asymmetric fading environment. In [8], the authors
studied optimum power allocation for three different capacity
notions under both AIP and PIP constraints. The optimal power
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allocation strategies for maximizing secondary ergodic capacity
and outage capacity under various combinations of secondary
transmit power constraints and interference constraints were
derived in [4]. For results on resource allocation in CR networks
with various other forms of interference constraints, see [5].

Most of the aforementioned results assume perfect knowl-
edge of the full CSI of the fading channels at the secondary-
user transmitter (SU-Tx), which is very difficult to implement
in practice, particularly for the channel information from the
SU-Tx to the PU-Rx. A few recent papers have addressed this
concern by investigating capacity analysis with imperfect CSI.
The effect of imperfect channel information for the secondary
to primary channels under the AIP or PIP constraint has been
investigated in [9] by assuming perfect knowledge of the CSI
from SU-Tx to the secondary-user receiver (SU-Rx) channel,
considering the channel information from the SU-Tx to the
PU-Rx as a noisy estimate of the true CSI, and employing the
so-called truncated channel inversion with fixed rate transmis-
sion policy. In [10], the authors proposed a practical design
paradigm for cognitive beamforming based on finite-rate coop-
erative feedback from the PU-Rx to the SU-Tx and cooperative
feedforward from the SU-Tx to the PU-Rx. In another recent
work [12], the authors considered imperfect CSI for the SU-Tx
to PU-Rx channel in the form of noisy channel estimates (rang-
ing from near-perfect estimates to seriously flawed estimates)
and studied the effect of using a midrise uniformly quantized
CSI, assuming full knowledge of the SU-Tx to SU-Rx channel
at the SU-Tx. A robust cognitive beamforming scheme was
also analyzed in [11], where full CSI on the SU-Tx to SU-Rx
channel was assumed, and the imperfect channel information
on the SU-Tx to the PU-Rx was modeled using an uncertainty
set. Related work also includes [13], where a stochastic re-
source allocation scheme for a multiuser CR network with a
probabilistic primary interference constraint is considered with
imperfect information on the primary activity, and [14], where
separate channel quantization (SCQ) of secondary and primary
links is considered to maximize secondary spectral efficiency
over fading channels. Finally, [15] studies the issue of channel
quantization for resource allocation through the framework
of utility maximization in CR networks based on orthogonal
frequency-division multiple access but does not investigate
the joint channel partitioning and rate/power codebook design
problem. Indeed, the lack of a rigorous and systematic design
methodology for quantized resource allocation algorithms in
the context of CR networks formed the key motivation for
our recent work [19], where we addressed an SU ergodic ca-
pacity maximization problem in a wideband spectrum-sharing
scenario with quantized information about the vector channel
space that involves the SU-Tx to SU-Rx channel and the
SU-Tx to PU-Rx channel over all bands. In [19], we considered
an average transmit power (ATP) constraint at the SU-Tx and
an average interference constraint at the PU-Rx. However, the
techniques that were used for designing an optimal quantized
power codebook in [19] cannot be directly extended to the case
of peak interference constraints at the PU-Rx, which is the topic
of interest in this paper.

In this paper, we aim at designing locally optimum power al-
location algorithms in the narrowband spectrum-sharing system

of an infrastructure-based CR network similar to [19]. In this
setting, an SU communication uplink shares a randomly fading
frequency band with N PUs. The objective is to maximize the
SU throughput (ergodic capacity), under an ATP constraint on
the SU-Tx and the N individual peak interference constraints
at each PU-Rx [contained within the primary-user base station
(PU-BS)], with various forms of imperfect CSI knowledge
at the SU-Tx. We first consider the throughput maximiza-
tion problem with full knowledge of the CSI for the SU-Tx
to SU-Rx [contained within the secondary-user base station
(SU-BS)] link, which is denoted as g1, and quantized informa-
tion about the CSI from the SU-Tx to each PU-Rx link, which
is denoted as g0 = {g01, . . . , g0N} and is available at the SU-
Tx through a limited-feedback link of B = log2 L b. We derive
the structure of the optimal quantization regions, and a locally
optimal power codebook is then obtained by solving the non-
convex throughput maximization problem using the associated
Karush–Kuhn–Tucker (KKT) necessary optimality conditions.
Asymptotic approximations for the SU ergodic capacity when
B and/or N grows large are derived. For the interference-
limited regime, where only the PIP constraints are active, a
locally optimum quantized transmission rate codebook is also
designed by quantizing the ratio g1/maxi g0i. To this end, sim-
ilar to [19], we assume the availability of a central controller,
called the CR network manager, which can obtain full CSI of
g1 and g0i, i = 1, 2, . . . , N , from the SU-BS and the PU-BS,
respectively, through (possibly) fiber-optic backhaul links. This
controller is essentially needed for assigning the joint real-time
channel information (g1, g01, . . . , g0N ) to the optimal channel
partition (designed offline) so that the corresponding power
codebook index can be fed back to the SU-Tx (or the SU-Rx)
through the limited-feedback link. Further details on the as-
sumption with regard to the availability of a CR network man-
ager, its justification, and the benefits that it brings can be found
in [19]. We also investigate the combined effect of imperfect g1

and g0 knowledge at the SU-Tx in designing a locally optimal
power codebook. When a noisy estimate of g1 is available
together with quantized g0 at the SU-Tx, it can be shown
that it is not possible to guarantee that the actual PIP con-
straints will be satisfied with probability one, particularly if
the channel estimation error has an unbounded support. Thus,
a more appropriate approach for this case is to allow the PIP
constraints to be violated with a certain small probability, called
the interference violation probability (IVP). The relationship
between SU capacity loss due to the effect of noisy estimated
g1 and the IVP is studied. For the case where both quantized g1

and g0 are available at the SU-Tx, due to the difficulty and com-
plexity of the associated optimal quantized power allocation
(QPA) analysis, we design two different types of suboptimal
quantized power codebooks. The efficacy of the various pro-
posed algorithms and asymptotic approximations is evaluated
through numerical simulations, which illustrate that, in general,
a small number (4–6) of feedback bits is often enough to
achieve SU ergodic capacity very close to the full-CSI-based
performance.

The rest of this paper is organized as follows. Section II
describes the system model and briefly describes the opti-
mal power allocation scheme for the throughput maximization
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problem with full-CSI assumption. In Section III, we design
a locally optimal power codebook for the throughput maxi-
mization problem with perfect g1 information and quantized g0

knowledge at the SU-Tx. The asymptotic SU ergodic capacity
performance analysis for a large number of quantization levels
and/or a large number of PUs is provided. For the interference-
limited regime, a locally optimum quantized rate allocation
(QRA) scheme for solving the throughput maximization prob-
lem is studied. In Section IV, the throughput maximization
problem with both imperfect g1 and g0 information at the
SU-Tx is investigated. A discussion on how we can extend the
analysis to the case of multiple SUs is provided in Section V.
Numerical results are presented in Section VI, and Section VII
contains some concluding remarks. All proofs (unless other-
wise specified) are relegated to the Appendices.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an infrastructure-based spectrum-sharing sce-
nario where a SU communicates to its base station using a nar-
rowband randomly fading channel shared with multiple PUs for
transmission. Regardless of the ON/OFF status of PUs, the SU
is allowed to use the band that is licensed to PU1, . . . , PUN ,
as long as the impact of the secondary transmission does not
substantially degrade the received signal quality of the PUs.
Let g1 = |h1|2 and g0i = |h0i|2 (i = 1, . . . , N) denote the non-
negative real-valued instantaneous channel power gains for the
links from the SU-Tx to the secondary receiver (SU-Rx) and
from the SU-Tx to the receiver of PUi (i = 1, . . . , N), respec-
tively, where h1 and h0i are the corresponding complex channel
amplitude gains. These channels are assumed to be Rayleigh
block-fading channels such that all g1 and g0i (i = 1, . . . , N)
are statistically and mutually independent and, without loss of
generality (w.l.o.g.), are exponentially distributed with unity
mean. Similarly, additive noises for each channel are inde-
pendent Gaussian random variables with zero mean and unit
variance w.l.o.g. Note that extensions to other distributions such
as Nakagami and Rician can also be handled by our techniques.
For analytical simplicity, the interference from the primary
transmitter to the SU-Rx is neglected following previous work
such as [1] and [4]. This assumption is justified when either
the SU is outside the PU’s transmission range or the SU-Rx is
equipped with interference cancellation capability, particularly
when the PU signal is strong.

Given channel realization g0
∆= {g01, . . . , g0N} and g1, as-

sume that the channel-state information (CSI; g0, g1) is avail-
able at the SU-Tx and the power that is allocated at the SU-Tx
is represented by p(g0, g1); then, the ergodic capacity of the SU
for this spectrum-sharing system can be expressed as

C = E [log (1 + g1p(g0, g1))] (1)

where log represents the natural logarithm. One common way
of protecting the PU’s received signal quality is by imposing
either an AIP or a PIP constraint at the PU-Rx. We studied
the optimization problem of maximizing the SU capacity under
both the ATP constraint at the SU and AIP constraints at
PUs with quantized CSI in [19]. Although the AIP constraint

is more favorable, particularly in the context of transmission
over fading channels [16], there are other applications where
it is desirable to impose a PIP constraint [7]. Thus motivated,
we consider the following optimal power allocation problem
that maximizes the ergodic capacity of SU in a narrowband
spectrum sharing with multiple PUs, under an ATP constraint
at the SU-Tx and a PIP constraint at each PUi-RX, given by

max
p(g0,g1)≥0

E [log (1 + g1p (g0, g1))]

s. t. E [p(g0, g1)] ≤ Pav

g0ip(g0, g1) ≤ Qpk ∀i almost surely (2)

where Pav is the ATP of the SU, and Qpk is the maximum peak
interference power tolerated by each PU-Rx. It is easy to show
that the aforementioned PIP constraints can be reformulated as
[1], [7]

p(g0, g1) ≤
Qpk

maxi g0i
i = 1, . . . , N. (3)

For the case of N = 1, the optimal power allocation for (2),
assuming that full CSI is available at the SU-Tx, can be found
in [4]. A trivial extension of this result for N > 1 shows that
the optimal solution for (2) with full CSI is given by

p(g0, g1) =




0, g1 ≤ λf
1

λf
− 1

g1
, g1 > λf , gm <

Qpk
1

λf
− 1

g1
Qpk

gm
, g1 > λf , gm ≥ Qpk

1
λf

− 1
g1

(4)

where gm = maxi g0i, i = 1, . . . , N , and λf is the nonnegative
Lagrange multiplier that is associated with the ATP constraint
and can be obtained by solving λf (E[p(g0, g1)] − Pav) = 0. In
fact, (4) can also be written as (below [x]+ = max(x, 0))

p(g0, g1) = min

([
1
λf

− 1
g1

]+

,
Qpk

gm

)
. (5)

Remark 1: Note that it is standard to consider an ATP con-
straint for transmission over fading channels, such as in (2). The
justification is given by the fact that an ATP constraint allows
the system designer to adapt transmission power to the channel
conditions while optimizing some performance measure. For
example, when maximizing ergodic capacity for a single user
under an average power constraint, the optimal power allocation
policy is the celebrated “water-filling” policy [28]. However,
motivated by the peak power limitations imposed by practical
power amplifiers, it becomes necessary to consider an addi-
tional peak power constraint, such as in [29]. For low average
power values, the peak power constraint becomes inactive and,
therefore, can be ignored altogether. In fact, a more recent
study [30] showed how the optimal single-user power allocation
policy for maximizing the ergodic capacity under both average
and peak power constraints can be characterized in terms of the
average power and the peak-to-average-power ratio (PAPR). It
turns out, however, that, for most practical fading distributions,
the maximum FCC-prescribed PAPR value of 13 dB [31] can
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still be met for average power greater than −10 dB with
the water-filling-based power allocation, i.e., by completely
ignoring the peak power constraint. Although these results are
derived for standard noncognitive (or primary) radio networks,
they provide a justification for us to also ignore peak transmit
power constraints at the SU-Tx’s for our CR network setting.
Note that we can derive similar conditions as in [30] to justify
for what range of values of Pav and Qpk we can ignore the
peak power constraint while still satisfying the aforementioned
FCC regulations. However, these conditions involve far more
complicated expressions than the expressions in [30] due to the
presence of the peak interference constraint in (2), particularly
for N > 1 PUs. Hence, we do not go into further details about
these results to maintain readability.

Special case. When Pav is sufficiently large1 to make the
ATP constraint inactive and, thus, only the PIP constraints
are active, called the interference-limited regime (ILR), (2)
with full CSI reduces to the problem considered in [1] and
[7], where the ergodic capacity maximization problem is
studied under PIP constraints only and gives the maximum
ergodic capacity of SU as

C = E

[
log

(
1 + g1

Qpk

gm

)]
= E [log(1 + zQpk)] (6)

where Z = g1/gm, and the probability density function
(pdf) of Z is given by [1], [7]

f(z) = N

N−1∑
k=0

(−1)k
(
N−1
k

) 1
(1 + k + z)2

. (7)

However, the assumption of full CSI at the SU-Tx (partic-
ularly of g0) is usually unrealistic in practical systems. In the
next section, we are therefore interested in designing power
allocation schemes of the SU ergodic capacity maximization
problem (2) based on the quantized information of g0, which
is acquired through a no-delay error-free feedback link with
a limited rate, where we assume that the SU-Tx has perfect
knowledge of g1 but can only access partial knowledge of g0.
Later, we will relax the assumption of perfect g1 at the SU-Tx.
Finally, with regard to the usage of the various notions of CSI,
we interchangeably use the term “perfect” and “full” CSI to
denote the availability of exact instantaneous channel informa-
tion. Similarly, “imperfect” or “partial” CSI is interchangeably
also used to denote some loss of CSI information. In particular,
imperfect or partial CSI can be available in the following two
forms: 1) as a noisy estimated (noisy instantaneous) CSI or 2) a
quantized CSI (through a finite-rate limited-feedback link).

III. QUANTIZED POWER ALLOCATION WITH

PERFECT g1 AND IMPERFECT g0 AT THE

SECONDARY-USER TRANSMITTER

In this section, we design and analyze a QPA strategy when
the SU-Tx has exact knowledge of the instantaneous channel

1For N = 1, it can be shown that we need infinite Pav for this condition to
hold, but for N > 1, a sufficiently large but finite Pav will suffice.

Fig. 1. System model for the QPA strategy.

information of g1 and quantized information of the channel vec-
tor g0, which is available through a finite-rate limited-feedback
link. In Section III-A, we first present an iterative algorithm
to find a locally optimum solution to the associated nonconvex
optimization problem, followed by some asymptotic analysis
for the case when the number of feedback bits becomes large.
We also present a simple suboptimal algorithm for comparison,
because our algorithm can attain only a local optimum. In
Section III-B, we provide an asymptotic analysis for the case
when the number of PUs N becomes large. Finally, in
Section III-C, we present an alternative scheme for the ILR,
called the QRA strategy, based on the rate-constrained in-
formation of the ratio g1/maxi g0i and discuss the relative
advantages and disadvantages of QPA and QRA.

A. QPA With the Limited-Feedback Strategy

Following [19] and as shown in Fig. 1, here, we assume that
there is a central controller, called the CR network manager,
who can obtain perfect information on g1 from the SU-BS and
perfect information of g0 from the PU-BS, possibly over fiber-
optic links, and then forward some appropriately quantized
V = Qpk/gm CSI information to the SU-Tx through a finite-
rate feedback link. Note that the existence of such central
controllers is also assumed quite commonly in the literature
on multicell multiple-input–multiple-output or macrodiversity-
based systems with cooperative base stations in a primary
network, where several base stations are assumed to be con-
nected to a central controller through a backhaul link so that
information about out-of-cell interference can be obtained,
resulting in higher capacity [17], [18]. Under such a network
modeling assumption, given B b of feedback, a power code-
book P = {p1, . . . , pL} of cardinality, L = 2B , is designed
offline based on the statistics of V and g1. This codebook is
made available a priori by the SU-Tx, the SU-Rx, and the
CR network manager. Given a channel realization (g0, g1), the
CR network manager applies a deterministic mapping I(V, g1)
from the current instantaneous (V, g1) information to one of
the L integer indices, which partitions the vector space of
(V, g1) into L regions R1, . . . ,RL. This mapping is defined
as I(V, g1) = j, if (V, g1) ∈ Rj , j = 1, . . . , L), and then sends
the corresponding index j = I(V, g1) to the SU-Tx (and also
the SU-Rx) through the feedback link. The SU-Tx then uses
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the associated power codebook element (for example, if the
feedback signal is j, then pj will be used as the transmission
power) to adapt its transmission strategy.

Let Pr(Rj), E[•|Rj ] indicate Pr((V, g1) ∈ Rj) (the prob-
ability that (V, g1) falls in the region Rj) and E[•|(V, g1) ∈
Rj ], respectively. Then, the SU ergodic capacity maximization
problem (2) with limited feedback can be formulated as

max
{p1,...,pL}

CL(P) =
L∑

j=1

E [log(1 + pjg1)|Rj ] Pr(Rj)

s.t.
L∑

j=1

pjPr(Rj) ≤ Pav

0 ≤ pj ≤ min(V |V ∈ Rj) ∀j = 1, . . . , L. (8)

Thus, we need to jointly optimize the channel partition regions
and the power codebook such that the ergodic capacity of SU
is maximized under the aforementioned constraints. Note that
the aforementioned joint optimization problem, in general, is
not convex, and hence, any optimum solution to the aforemen-
tioned problem that we can find by solving the KKT necessary
conditions should be interpreted as a local optimum only. In the
following discussion, we have also made it explicitly clear that
the solutions that we obtained are locally optimum.

Lemma 1: Let P = {p1, . . . , pL} and the corresponding
channel partitioning R1, . . . ,RL denote a locally optimal solu-
tion to the optimization problem (8). Let p(V, g1) represent the
mapping from the instantaneous (V, g1) to the allocated power
level; then, the following cases hold.

1) When λ > 0, let {v1, . . . , vL−1} denote the correspond-
ing quantization thresholds on the V -axis (0 = v1 <
. . . < vL−1 < (1/λ)) and let vL = 1/λ. We have (9),
shown at the bottom of the page.

2) When λ = 0, let {v1, . . . , vL} denote the corresponding
quantization thresholds on the V -axis (0 = v1 < . . . <
vL < ∞) and let vL+1 = ∞. We have

p(V, g1) = pj = vj if vj ≤ V < vj+1, j = 1, . . . , L
(10)

where λ is the nonnegative Lagrange multiplier associ-
ated with the ATP constraint of (8).

Proof: See Appendix A. �
Based on Lemma 1, when λ = 0, i.e., the ATP constraint

is inactive, the quantization structure is pretty straightforward,
because it involves only the quantization of the V -axis. Fig. 2
illustrates the optimum partition region structure for the non-
trivial case when λ > 0. Note that, here, the first region R1

Fig. 2. Structure of optimum quantization regions when λ > 0.

includes two parts—{g1 ≤ λ} and {V < (1/λ − (1/g1)), v1 ≤
V < v2}—and p1 = 0 implies that the first region is in outage.

We separately consider the following two cases.

Case 1: λ > 0 (the ATP constraint is active).

Let F (v), f(v) indicate the cumulative distribution function
(cdf) and pdf of V , respectively, based on Lemma 1. Then, (8)
becomes

max
{v2,...,vL−1}

CL(P)=
L−1∑
j=2

E [log(1+vjg1)|Rj ] Pr(Rj)

+E

[
log

(
1+

(
1
λ
− 1

g1

)
g1

)
|RL

]
Pr(RL)

s.t.
L−1∑
j=2

vjPr(Rj) + E

[(
1
λ
− 1

g1

)
|RL

]
Pr(RL) ≤ Pav.

(11)

Although the aforementioned optimization problem may be
verified to be nonconvex, under some regularity conditions,
we can employ the KKT necessary conditions to find local
maxima for (11). These regularity conditions (see Section III-
C1) essentially state that, for a feasible solution to be a local
maximum that satisfies the KKT necessary conditions, the
gradient vectors of the active inequality constraints with respect
to the variables of optimization, evaluated at the solution, must
be linearly independent. Note that, although such regularity
conditions cannot be verified, in general, before solving the
KKT conditions, they can be checked after finding the solutions

p(V, g1) =




p1 = 0, if g1 ≤ λ or V <
(

1
λ − 1

g1

)
, v1 ≤ V < v2

pj = vj , if V <
(

1
λ − 1

g1

)
, vj ≤ V < vj+1, j ∈ [2, L − 1]

pL =
(

1
λ − 1

g1

)
, if g1 > λ, V ≥

(
1
λ − 1

g1

) (9)
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that satisfy the KKT conditions. Taking the first derivative of the
Lagrangian function of (11) by using the Leibniz integral rule
and setting it to zero, we can obtain

vj+1∫
vj


−e

1
vj E1

(
1

1
λ−v

+ 1
vj

)
v2

j

+ e
− 1

1
λ

−v

(
1
vj

− λ

) f(v)dv

=
(
f̂j(vj) − f̂j(vj−1)

)
f(vj) j = 2, . . . , L − 1 (12)

where E1(x) is the exponential integral, defined as E1(x) =∫∞
x (e−zdz/z), and f̂2(v1) = 0. In addition

f̂j(v) = e
1
v E1

(
1

1
λ − vj

+
1
v

)
+ e

− 1
1
λ

−vj log
(

1 + v
1

1
λ − vj

)

− λve
− 1

1
λ

−vj (13)

and the λ can be obtained by solving

λ


L−1∑

j=2

vjPr(Rj) + E

[
1
λ
− 1

g1
|RL

]
Pr(RL) − Pav


 = 0.

(14)

It is shown in Appendix B that

F (v) = 1 −
(

1 − e−
Qpk

v

)N

f(v) =
NQpk

v2
e−

Qpk
v

(
1 − e−

Qpk
v

)N−1

. (15)

Thus, for fixed λ, given a v2, based on (12), we can successively
compute v3, . . . , vL−1 numerically, and then, (12) with j =
L − 1, which has thus only one unknown variable v2, can
numerically be solved for v2. In principle, the optimal value
of the Lagrange multiplier λ (note that, although the primal
problem is nonconvex for a fixed λ, the dual problem is convex
in λ [32]) can be obtained by solving (14) with a subgradient
method, i.e., by updating λ until convergence using

λl+1 =


λl − αl


Pav −

L−1∑
j=2

vjPr(Rj)

− E

[(
1
λ
− 1

g1

)
|RL

]
Pr(RL)






+

(16)

where l is the iteration number, and αl is the positive scalar
step size for the lth iteration that satisfies

∑∞
l=1 αl = ∞ and∑∞

l=1(αl)2 < ∞. One alternative method is to use an iterative
bisection search method to find the optimal λ, because the
average power consumption function in the constraint of (11)
can be shown to be a monotonically decreasing and contin-
uous function of λ, following a proof identical to [34]. In
our implementation, however, due to the nonconvexity of the
primal problem, we cannot guarantee the global optimality of
the variables {vj}, and hence, neither the subgradient- nor

the bisection-based method can theoretically be strictly guar-
anteed to converge. It is common practice, however, to use
such methods, even in the case of nonconvex primal problems
(for example, see [32] for a justification on the subgradient
method), and indeed, our simulation studies confirm that both
the subgradient- and bisection-based methods for finding λ con-
verge to almost-identical solutions. Note that the subgradient in
this case can be considered an approximate subgradient (when
only locally optimal solutions to the primal problem can be
found), and for a discussion on related convergence issues, see
[33, Sec. VI-C2, pp. 614-615].

We can thus iteratively repeat the aforementioned two steps
(12) and (16) until a satisfactory convergence criterion is met.
Case 2: λ = 0 (only the PIP constraints are active, i.e., ILR).

In this case, we can see based on Lemma 1 that none of the
power levels depends on the g1 information; therefore, in this
case, the SU-Tx or the CR network manager does not require
any knowledge of g1, and (8) becomes

max
{v2,...,vL}

CL(P)=
L∑

j=2

E [log(1 + vjg1)] (F (vj+1) − F (vj)) .

(17)

By using the KKT necessary conditions, we can obtain

F (vj+1) = F (vj) + f(vj)
f̃1(vj) − f̃1(vj−1)

f̃2(vj)
, j ∈ [2, L]

(18)

where f̃1(v1) = 0, and

f̃1(v) = E [log(1 + vg1)] = e
1
v E1

(
1
v

)
f̃2(v) =

∂f̃1(v)
∂v

=
−e

1
v E1

(
1
v

)
v2

+
1
v
. (19)

Based on the expression of F (v) in (15), (18) can be
rewritten as

vj+1 =− Qpk

log
(

1−
(

1−
(
F (vj)+f(vj)

f̃1(vj)−f̃1(vj−1)

f̃2(vj)

)) 1
N

)

j = 2, . . . , L−1

F (vL)+f(vL)
f̃1(vL)−f̃1(vL−1)

f̃2(vL)
= 1. (20)

Thus, given a specific value of v2, we can successively compute
v3, . . . , vL using (20), and then, the last equation in (20), which
has thus only one unknown variable v2, can numerically be
solved for v2.

As the number of feedback bits B = log2(L) → ∞, the
length of quantization interval [vj , vj+1) approaches zero, and
by using the mean value theorem [21], we can get

f̃1(vj) − f̃1(vj−1)
f̃2(vj)

≈ vj − vj−1. (21)
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Substituting (21) into (18), for j = 2, . . . , L, we have

F (vj+1) − F (vj) ≈ f(vj)(vj − vj−1) ≈ F (vj) − F (vj−1).
(22)

Based on (22), we have

F (vL+1) − F (vL) ≈ · · · ≈ F (v2) − F (v1) =
1
L

. (23)

This expression implies that we can apply an equal probability
per region (EPrPR) approximation that yields

F (vj) ≈
j − 1

L
j = 2, . . . , L. (24)

Therefore, based on the expression of F (v), we have

vj = F−1(v) ≈ − Qpk

log
(

1 −
(
1 − j−1

L

) 1
N

) , j = 2, . . . , L.

(25)

Then, we can obtain an approximate expression for the maxi-
mum ergodic capacity of SU of (17) with large L as

CL≈ 1
L

L∑
j=2

e
−

log

(
1−(1−j−1

L )
1
N

)
Qpk E1


− log

(
1−

(
1− j−1

L

) 1
N

)
Qpk


.

(26)

Remark 2: Note that the aforementioned approximation
based on the EPrPR (although mathematically somewhat
justified) approach is only a heuristic-based technique, and
therefore, the asymptotic SU capacity expression is only ap-
proximately valid for large L. The justification of this heuristic
is, however, shown through the effectiveness of these asymp-
totic results, as illustrated in Section VI, Numerical Results (see
Fig. 6 and the associated explanations in Section VI).

Special case. When, in addition to L → ∞, N → ∞ (i.e.,
in the case of large number of PUs), applying an
asymptotic approximation to the cdf of v given by

F (v) ≈ 1 − e−Ne−(Qpk/v)
, which is derived as follows

based on (27) and (28), shown below, to (24), we
have vj ≈ −(Qpk/ log(−(log(1 − (j − 1/L))/N)),
j = 2, . . . , L. Therefore, we can obtain CL ≈
(1/L)

∑L
j=2 e−(log(−(log(1−(j−1/L))/N))/Qpk)E1(−(log

(−(log(1 − (j − 1/L))/N))/Qpk)). For further details
and numerical results on the efficacy of this approxi-
mation, see [20].

So far, we have discussed how we can solve the quantization
problem (8) for the λ > 0 and λ = 0 cases, respectively. We
can now combine these two procedures to define the following
two steps for finding a locally optimal solution for problem (8)
(we call this QPA with perfect g1 and quantized g0 scheme as
QPA-g0).

1) Let λ = 0; then, solving (20) gives a power codebook
{p1, . . . , pL}. With this codebook, if

∑L
j=1 pjPr(Rj) ≤

Pav, then it is a locally optimal power codebook for
problem (8). Stop; otherwise, go to step 2.

2) If step 1 is not satisfied, we must have λ > 0. Starting
with a random initial value for λ, we can solve (12) to
obtain the corresponding power codebook {p1, . . . , pL}
and then update λ by (16). Repeat these steps until
convergence, and the final codebook will be a locally
optimal power codebook for (8).

Suboptimal algorithm. Because we derive results in a lo-
cally optimum solution in the aforementioned scheme, for
comparison, we also propose a suboptimal QPA algorithm
with a simple intuitive channel quantizer described as
follows. Using the celebrated Lloyd algorithm (LA), we
quantize V by minimizing its distortion

∑L′

n=1 E[(v −
vn)2|Rn]Pr(Rn), where vn is the reconstruction point for
v in region Rn. When λ = 0, we partition the V -axis into
L regions with the LA. With the resulting channel quanti-
zation regions, the corresponding optimal power allocation
is given by p∗n = min(v|Rn), n = 1, . . . , L. For λ > 0,
based on the optimal quantization structure in Fig. 2,
we quantize the finite set {V |0 ≤ V ≤ 1/λ} into L − 1
regions with the LA and obtain power allocation p∗n =
min(v|Rn), n = 1, . . . , L − 1 for the first L − 1 regions
and then use p∗L = ((1/λ) − (1/g1)) as the optimal power
for the last region. We call this suboptimal method subopti-
mal scalar quantization (SSQ). Numerical results show that
our locally optimum QPA-g0 significantly outperforms this
suboptimal method.

B. Asymptotic Analysis With a Large Number
of PUs for QPA (ALNPs-QPA)

In the previous analysis, we have considered one SU and N
PUs. As shown in Section III-A, a change in the value of N
affects only the distribution of V in (15). Instead of using the
exact cdf and pdf for a particular value of N , in this section,
we are interested in finding the asymptotic distribution of V as
N → ∞ so that we can significantly reduce the computational
complexity of solving (8) for a large number of PUs.

As shown, V = Qpk/gm. Then, the cdf of V can be ex-
pressed as

F (v) = Pr
(

Qpk

gm
< v

)
=

∞∫
Qpk

v

fgm
(gm)dgm (27)

where fgm
(gm) denotes the pdf of gm. It is shown in

Appendix C that, as N → ∞, the limiting asymptotic pdf of
gm is given by

fgm
(gm) ∼ Ne−gme−Ne−gm

(28)

where the notation y(N) ∼ x(N) implies that limN→∞ y
(N)/x(N) = 1, where y(N), x(N) are two functions of N .
Substituting (28) into (27), we can use the approximation

1 − e−Ne−(Qpk/v)
for the cdf F (v) as N becomes large. Then,

after differentiation, the limiting asymptotic pdf of V given

by (NQpk/v2)e−(Qpk/v)e−Ne−(Qpk/v)
can be used as an ap-

proximation for f(v) when N becomes large, and the same
techniques as the previous section can be used to find a locally
optimum QPA.
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C. QRA for the ILR

For the ILR case, when the ATP constraint is inactive and
only the PIP constraints are active, we can use the QPA strategy
with λ = 0, as discussed in Section III-A. In this section, we
propose an alternative limited-feedback-based strategy called
the QRA scheme with quantized information of the ratio Z =
g1/gm. Note that, unlike QPA with λ = 0 (here, we call it
QPA0), the QRA scheme requires the assumption that the
SU-Tx has full knowledge of g1.

The limited-feedback strategy for QRA is similar to the
QPA case, because given B b of feedback, a locally optimal
operating rate codebook r = {r1, . . . , rL} is designed purely
offline based on the statistics of ratio Z information. Again,
the codebook is known a priori by both the SU-Tx and the
CR network manager. Given a channel realization (g0, g1), the
CR network manager applies a deterministic mapping I(Z)
from the current instantaneous ratio Z information to one of
the L integer indices, which partitions the nonnegative ratio
information (scalar space) into L regions R1, . . . ,RL, i.e.,
I(Z) = j, if Z ∈ [zj , zj+1), j = 1, . . . , L, where zj represents
the boundary point between Rj−1 and Rj , and z1 = 0, zL+1 =
∞. It then sends the corresponding index j = I(Z) to the
SU-Tx through the feedback link. The SU-Tx then uses the
associated rate codebook element to adapt its transmission
strategy. We will show later that rj = log(1 + zjQpk); thus,
with perfect knowledge of g1, the actual transmission power
at the SU is pj = zjQpk/g1, and then, the actual received
interference power at PUi is

pjg0i =
zjQpk

g1
g0i

≤ zjQpk
g1

maxi g0i

≤ Qpk (29)

because the current ratio CSI g1/maxi g0i falls in Rj ,
g1/maxi g0i ≥ zj . (29) confirms that this limited-feedback
strategy can guarantee that all PIP constraints are satisfied at
the PU-Rx’s.

For any given ratio-state information Z = z, the correspond-
ing maximum mutual information of the SU is given by R(z) =
log(1 + zQpk). Thus, for any z ∈ Rj , with the rate level being
rj , reliable transmission can be guaranteed only if R(z) ≥
rj . In other words, when R(z) < rj , outage will occur. Let
Pr(Rj), Pr(•|Rj) denote Pr(Z ∈ Rj) and Pr(•|Z ∈ Rj),
respectively. Then, the ergodic capacity of the SU can be
expressed as

CL(r) =
L∑

j=1

rjPr (R(z) ≥ rj |Rj) Pr(Rj). (30)

Lemma 2: Let z∗j be the unique solution for rj = log(1 +
z∗jQpk). Then, we have z∗j ∈ [zj , zj+1).

Proof: See Appendix D. �
With a slight abuse of notation, let F (z) indicate the cdf of

ratio Z, and using a result in [7], we obtain

F (z) = 1 − N
N−1∑
k=0

(−1)k
(
N−1
k

) 1
1 + k + z

(31)

which can be rewritten as

F (z) = 1 − NB(N, z + 1) (32)

where B(a, b) is the beta function, defined by B(a, b) =
Γ(a)Γ(b)/Γ(a + b), where Γ(x) is defined by Γ(x) =∫∞
0 tx−1e−tdt. Note that the pdf f(z) (again, with a slight abuse

of notation) of ratio Z is given in (7). Then, the secondary
ergodic capacity maximization problem (6) with QRA can be
formulated as

max
{z2,...,zL,z∗

1 ,...,z∗
L}

L∑
j=1

log
(
1 + z∗jQpk

) (
F (zj+1) − F

(
z∗j
))

s.t. zj ≤ z∗j ≤ zj+1 ∀j. (33)

Lemma 3: zj = z∗j ∀j = 2, . . . , L.
Proof: See Appendix E. �

Using this result, (33) becomes

max
z∗

j

L∑
j=1

log
(
1 + z∗jQpk

) (
F
(
z∗j+1

)
− F

(
z∗j
))

. (34)

Applying the KKT necessary condition to (34), we have

log

(
1+z∗j−1Qpk

1+z∗jQpk

)
f
(
z∗j
)
+

Qpk

1+z∗jQpk

(
F
(
z∗j+1

)
−F

(
z∗j
))

=0

(35)

where z∗0 = 0, and z∗L+1 = ∞. Based on (35), we have, j =
2, . . . ,L

z∗j−1 =
1

Qpk


e

{
− Qpk

1+z∗
j

Qpk

F(z∗
j+1)−F(z∗

j )
f(z∗

j )
+log(1+z∗

j Qpk)
}
−1


 .

(36)

Thus, given a z∗L, based on (36), we can successively compute
z∗L−1, . . . , z

∗
1, and then, (35) with j = 1 becomes an equation

with only one unknown variable z∗L, which can numerically be
solved.

QRA has a similar asymptotic behavior in the high-resolution
quantization regime as QPA0, and we use an EPrPR-like
(EPrPRL) approximation to obtain an asymptotic expression
for the SU ergodic capacity. Based on the KKT conditions (35),
for j = 1, . . . , L, we have

F
(
z∗j+1

)
−F

(
z∗j
)

f
(
z∗j
) =

log
(
1 + z∗jQpk

)
− log

(
1 + z∗j−1Qpk

)
Qpk

1+z∗
j
Qpk

.

(37)

Again, as the number of feedback bits B = log2(L) → ∞, by
using the mean-value theorem, we can get

log
(
1 + z∗jQpk

)
− log

(
1 + z∗j−1Qpk

)
Qpk

1+z∗
j
Qpk

≈
(
z∗j − z∗j−1

)
. (38)
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Substituting (38) into (37), we have

F
(
z∗j+1

)
− F

(
z∗j
)
≈f

(
z∗j
) (

z∗j − z∗j−1

)
≈F

(
z∗j
)
− F

(
z∗j−1

)
.

(39)

Based on (39), we have

F
(
z∗L+1

)
− F (z∗L) ≈ · · · ≈ F (z∗1) − F (z∗0) =

1
L + 1

(40)

which gives

F
(
z∗j
)
≈ j

L + 1
j = 1, . . . , L. (41)

Therefore, we have

z∗j ≈ F−1

(
j

L + 1

)
, j = 1, . . . , L. (42)

Finally, based on (32), we have F (z) = 1 − NB(N, z + 1),
which implies that F−1(j/L + 1) can be obtained by solving
the following equation for z:

1 − NB(N, z + 1) =
j

L + 1
. (43)

Using the aforementioned expression, we can obtain the asymp-
totic expressions for the maximum ergodic capacity of SU as

CL ≈ 1
L + 1

L∑
j=1

log
(

1 + F−1

(
j

L + 1

)
Qpk

)
. (44)

Remark 3: Similar to the aforementioned EPrPR approxi-
mation, the EPrPRL approximation is only a heuristic-based
approach, and the effectiveness of the aforementioned EPrPRL
approximation for large L is illustrated through simulation
results in Section VI, Numerical Results (see Fig. 7 and the
associated explanations in Section VI).

Special cases. When N = 1 (only one PU is present),
(44) becomes CL ≈ (1/L + 1)

∑L
j=1 log(1 + (j/L +

1 − j)Qpk). When N → ∞ (a large number of PUs
are present), applying the asymptotic cdf of z [which
is derived in (46), shown below] into (42) and applying
a further approximation (see [20] for more details),
(44) can be given by the following closed-form
approximation: CL ≈ (1/L + 1)

∑L
j=1 log(1 + ((1/γ) −

(W (1/γ)(L + 1 − j/L + 1)N1/γ log N)/ log N))Qpk).
Here, γ = 0.57721566 . . . is the Euler–Mascheroni
constant, and W (x) is the Lambert W function, which
gives the principal solution for w in x = wew. It was
illustrated in [20] that these approximations for the special
cases are highly efficient.

As in the QPA case, we can also find the asymptotic distri-
bution of Z as N → ∞. We can simplify the computational
burden of solving (34) for the large number of PUs case by
applying the asymptotic distribution of Z into (36). We call

this QRA method ALNPs-QRA. Because we know that Z =
g1/gm, by letting X = gm, the cdf of Z is given by

F (z) =

∞∫
0

P (g1 < xz|x)fX(x)dx =

∞∫
0

(1 − e−xz)fX(x)dx.

(45)

It is shown in Appendix C that, as N → ∞, the asymptotic pdf
of X is given by fX(x) ∼ Ne−xe−Ne−x

. Substituting it into
(45), we can approximate F (z) for large N as

F (z) ≈ 1 − e−N +

∞∫
0

e−xzNe−Ne−x

de−x

= 1 − e−N + N−z (Γ(z + 1, N) − Γ(z + 1)) (46)

where Γ(a, b) is the incomplete gamma function given by
Γ(a, b) =

∫∞
b ta−1e−tdt. Then, the asymptotic pdf of Z is

approximated by

f(z) ≈ N

(z + 1)2 2F2(z + 1, z + 1; z + 2, z + 2;−N) (47)

where 2F2(a1, a2; b1, b2;x) is a generalized hypergeometric
function, given by

_2F2(a1, a2; b1, b2;x) =
∞∑

k=0

(a1)k(a2)kxk

(b1)k(b2)kk!
(48)

in which (α)n = Γ(α + n)/Γ(α) is called the Pochhammer
symbol.

Remark 4: Note that the QPA and QRA methods based on
the asymptotic distribution of V and the ratio Z, respectively,
i.e., ALNPs-QPA and ALNPs-QRA, result in approximate solu-
tions to the QPA and QRA problems for large N and are strictly
suboptimal. The efficacy of ALNPs-QRA is illustrated through
numerical results only (see Fig. 9). Similar results are observed
for ALNPs-QPA but are excluded to avoid repetition.

As we have already shown, QPA and QRA both have some
useful properties in the ILR that are similar, and both ap-
proaches can very easily be extended to other symmetric- or
asymmetric-fading distributions (corresponding to whether the
distributions of g1 and g0i are identical or different). However,
there are also a few differences between these approaches.

1) For QPA0, we do not need to know the instantaneous in-
formation of g1 at the SU-Tx or the CR network manager.
However, for QRA, both the SU-Tx and the CR network
manager are required to have full information of g1.

2) Compared to QRA, QPA0 requires more complex com-
putations, because it needs to compute expectations with
respect to g1, which may not always have a closed-form
solution for arbitrarily general distributions of g1.

3) With regard to more general distributions for g0, e.g., the
Rician distribution, for QPA0, we cannot get a valuable
closed-form expression for the quantization thresholds
(such as in (20) with Rayleigh distribution), and we have
to solve (18) for the thresholds. However, for QRA, re-
gardless of the distribution of g1 and g0, we always have
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a closed-form expression for the quantization thresholds
(36), which can substantially reduce the complexity of
solving the optimization problem, particularly for a large
number of feedback bits.

As we will show through simulation studies (Section VI),
with the same number of feedback bits, QPA0 outperforms
QRA, but as the number of feedback bits increases, the capacity
gap between these approaches is reduced, which implies that
the performances of these two methods are very close for a
large number of feedback bits. Therefore, when g1 or g0 has
a complicated distribution, we can choose to use QRA instead
of QPA0 for a large number of feedback bits (e.g., ≥ 6 b).

IV. QUANTIZED POWER ALLOCATION WITH IMPERFECT

g1 AND g0 AT THE SECONDARY-USER TRANSMITTER

In Section III, we studied a locally optimum QPA scheme
with perfect g1 and quantized g0 feedback at the SU-Tx.
In this section, we consider the more practical scenario of the
availability of partial or imperfect g1 information at the SU-Tx.
We are interested in investigating the effect of partial or im-
perfect g1 information at the SU-Tx in designing the QPA
scheme, where the following two different forms of partial g1

information at SU-Tx will be examined: 1) noisy estimated
g1 and 2) quantized g1. In Section IV-A, we show that, when
a noisy estimate of g1 is available at the SU-Tx, it may not
be possible to guarantee the peak interference constraints with
probability one, particularly when the channel estimation error
is modeled as a random variable with unbounded support.
However, by choosing a reduced (stricter) peak interference
threshold, we can keep the IVP under control and design a
suboptimal QPA scheme (with respect to the original peak
interference threshold). In Section IV-B, we consider the case
where quantized information about g1 and g0 is available at
the SU-Tx and design another suboptimal QPA scheme. Two
further suboptimal QPA schemes are proposed based on simple
intuitive channel quantization schemes. The performances of
all of these suboptimal schemes are investigated and compared
through simulation studies in Section VI.

A. QPA With Quantized g0 and Noisy Estimated g1

In this section, we assume that a noisy estimate of the
instantaneous g1 is available at the SU-Tx, where the noise
in estimation or the estimation error can be unbounded. In
particular, we exploit the following well-established model
[12], [22] for the complex channel estimate of the h1 at SU-Tx,
i.e., ĥ1:

ĥ1 = ρ0h1 +
√

1 − ρ2
0 η (49)

where η is the channel estimation error with the standard com-
plex normal distribution (SCND), i.e., η is distributed according
to CN (0, 1) (which implies that E[η] = 0, E[|η|2] = 1), and η
is independent of h1. ρ0 ∈ [0, 1] is the correlation coefficient
between the true channel amplitude gain h1 and its estimate

ĥ1, given as ρ0 = E[h1ĥ1] − E[h1]E[ĥ1]/
√

V ar[h1]V ar[ĥ1].

Thus, the estimated g1, i.e., ĝ1, is obtained as ĝ1 = |ĥ1|2.
As aforementioned,

√
g1 = |h1| is Rayleigh distributed, and

E[|h1|2] = E[g1] = 1; thus, h1 is also SCND. Based on (49), it
is easy to verify that the linear transform ĥ1 is also distributed
complex normally, because E[ĥ1] = 0, and

E[ĝ1] = E

[∣∣∣∣ρ0h1 +
√

1 − ρ2
0 η

∣∣∣∣
2
]

= ρ2
0E[g1] +

(
1 − ρ2

0

)
E
[
|η|2

]
= 1. (50)

Thus, the magnitude |ĥ1| will also have a Rayleigh distribution,
and the squared magnitude |ĥ1|2, i.e., ĝ1 will have the unit mean
exponential distribution.

As stated in Section III-A, for the locally optimum QPA
with quantized g0 only, when λ = 0 (for a sufficiently high
Pav), implying that only the PIP constraints are active, the
SU-Tx is not required to have any knowledge of g1. Thus,
with partial g1 information available at the SU-Tx, the optimum
QPA solution for this case is still the same as the aforemen-
tioned QPA0. However, when λ > 0 (the ATP constraint is
active), with estimated g1 at the SU-Tx, the transmit power
pL for the last region RL becomes pL = (1/λ − (1/ĝ1))+.
The actual PIP becomes (1/λ − (1/ĝ1))+gm, which may not
necessarily be less than or equal to Qpk, although we have
(1/λ − (1/g1))gm < Qpk satisfied. Note that this case is due to
the unbounded nature of the channel estimation error (modeled
as complex Gaussian). Thus, with estimated g1 at the SU-Tx,
it is not possible to guarantee the actual instantaneous PIP to
be ≤ Qpk with probability 1. It seems that, to satisfy the PIP
constraint with probability one, the SU-Tx has to transmit with
zero power in RL [9], which renders the whole RL in outage. A
more appropriate strategy for this case is to allow the actual PIP
with estimated g1 to exceed Qpk with a certain small probability
(e.g., ≤5%) [9], which we call the IVP, given by

IVP = Pr

((
1
λ
− 1

ĝ1

)+

gm > Qpk|RL

)
Pr(RL). (51)

To achieve a given percentage IVP, we employ a reduced level
of QPK [12], which is denoted as QPK , to design the locally
optimal QPA codebook in Section III-A, with λ > 0. This case
implies that the maximum IVP with a certain nominal QPK is
attained when QPK is chosen to be the maximum allowable
peak interference in designing QPA and the proposed QPA
becomes strictly suboptimal for the original problem with the
peak power constraint QPK . Next, the optimum QPA (11) with
estimated g1 and QPK becomes

max
{v2,...,vL−1}

CL =
L−1∑
j=2

E
[
log(1+vjg1)|Rj

]
Pr(Rj)

+E

[
log

(
1+

(
1
λ′ −

1
ĝ1

)+

g1

)
|RL

]
Pr(RL)

s.t.
L−1∑
j=2

vjPr(Rj)+E

[(
1
λ′ −

1
ĝ1

)+

|RL

]
Pr(RL)≤Pav (52)
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where {v2, . . . , vL−1}, {R1, . . . ,RL} denote the new locally
optimum quantization thresholds and regions that are asso-
ciated with QPK , respectively, and λ′ is the nonnegative
Lagrange multiplier that is associated with the ATP constraint
of (52). Equation (52) can be solved using similar methods as
used to solve (11). Note that, in (52), the capacity of last region
is given by

E

[
log

(
1 +

(
1
λ′ −

1
ĝ1

)+

g1

)
|RL

]
Pr(RL)

=

∞∫
λ′

∞∫
λ′

log
(

1 +
(

1
λ′ −

1
ĝ1

)
g1

)
f(g1, ĝ1)

×
(

1 − F

(
1
λ′ −

1
g1

))
dg1dĝ1 (53)

where F (x) = 1 − (1 − e−(Qpk/x))N , and f(g1, ĝ1) is the joint
pdf of g1 and ĝ1, which, according to the bivariate exponential
distributions in [23, eq. (47.1)], is given as

f(g1, ĝ1) =
1

1 − ρ
I0

(
2
√

ρg1ĝ1

1 − ρ

)
e−

g1+ĝ1
1−ρ (54)

where ρ is the correlation coefficient between g1 and ĝ1, and
I0(x) =

∑∞
k=0(x/2k!)2k is the well-known modified Bessel

function of the first kind with order zero.
With the optimal QPA codebook obtained by QPK , the mod-

ified last region RL becomes {g1 ≥ λ′, (Qpk/gm) ≥ (1/λ′) −
(1/g1)}, and thus, IVP can be expressed as

IVP = Pr

((
1
λ′ −

1
ĝ1

)+

>
Qpk

gm
|g1 ≥ λ′

Qpk

gm
≥ 1

λ′ −
1
g1

)
Pr(RL)

= Pr

(
1
λ′ >

Qpk

gm
ĝ1 >

1
1
λ′ − Qpk

gm

|g1 ≥ λ′

Qpk

gm
≥ 1

λ′ −
1
g1

)
Pr(RL). (55)

Because Qpk ≤ Qpk and (1/λ′) > Qpk/gm, we have (1/λ′) >

(Qpk/gm). Applying this result to (55), we get

IVP=Pr


 1

λ′ >
Qpk

gm
, ĝ1 >

1
1
λ′ − Qpk

gm

|λ′ ≤ g1 ≤ 1

1
λ′ −

Qpk

gm




× Pr


λ′ ≤ g1 ≤ 1

1
λ′ −

Qpk

gm




=

∞∫
λ′Qpk

fgm
(gm)


 c∫

λ′

∞∫
c

f(g1, ĝ1)dĝ1dg1


 dgm (56)

where c = (1/(1/λ′) − (Qpk/gm)), c = (1/(1/λ′) −
(Qpk/gm)), and the pdf of gm is given by fgm

(gm) =
Ne−gm(1 − e−gm)N−1 [1]. Let � =

∫ c

λ′

∫∞
c f(g1, ĝ1)dĝ1dg1.

Applying (54) to �, we have

� =

c∫
λ′

1
1 − ρ

e−
g1

1−ρ


 ∞∫

c

I0

(
2
√

ρg1ĝ1

1 − ρ

)
e−

ĝ1
1−ρ dĝ1


 dg1.

(57)

With a change of variable x =
√

2ĝ1/1 − ρ, (57) becomes

� =

c∫
λ′

e−g1Q

(√
2ρg1

1 − ρ
,

√
2c

1 − ρ

)
dg1 (58)

where Q(a, b) =
∫∞

b xe−(x2+a2/2)I0(ax)dx is the first-order
Marcum Q-function. With, again, a change of variable, let
y =

√
2g1; then, (58) becomes

� =

∞∫
√

2λ′

ye−
y2

2 Q

(√
ρ

1 − ρ
y,

√
2c

1 − ρ

)
dy

−
∞∫

√
2c

ye−
y2

2 Q

(√
ρ

1 − ρ
y,

√
2c

1 − ρ

)
dy. (59)

Applying (14) of [24] to (59), we obtain

� = e−λ′
Q

(√
2λ′ρ

1 − ρ
,

√
2c

1 − ρ

)

− e−cQ

(√
2λ′

1 − ρ
,

√
2cρ

1 − ρ

)

− e−cQ

(√
2cρ

1 − ρ
,

√
2c

1 − ρ

)

+ e−cQ

(√
2c

1 − ρ
,

√
2cρ

1 − ρ

)
. (60)

Thus, the IVP can be given as

IVP=

∞∫
λ′Qpk

fgm
(gm)

{
e−λ′

Q

(√
2λ′ρ

1 − ρ
,

√
2c

1 − ρ

)

−e−cQ

(√
2λ′

1 − ρ
,

√
2cρ

1−ρ

)

− e−cQ

(√
2cρ

1−ρ
,

√
2c

1−ρ

)

+ e−cQ

(√
2c

1 − ρ
,

√
2cρ

1 − ρ

)}
dgm

(61)

which can numerically be calculated.
The capacity loss with estimated g1 due to using Qpk as the

PIP to obtain a suboptimal QPA codebook (so that the IVP can
be kept below a desired maximum) is calculated as Closs =
CL − CL, where CL is the maximum SU ergodic capacity
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obtained from the quantization problem (11) with PIP Qpk and
perfect knowledge of g1.

B. QPA With Quantized (g0, g1) Information

The limited-feedback scheme here is similar to QPA in
Section III-A, except that we quantize both V and g1, not only
V . Let λl represent the nonnegative Lagrange multiplier that is
associated with the ATP constraint for this case. Again, when
Pav is large enough to make the ATP constraint inactive, only
the PIP constraints are effective (λl = 0), and designing the
optimum QPA does not require the SU-Tx to have knowledge
of g1. Therefore, the optimum QPA for this scenario is the same
as QPA with quantized g0 only, as shown in Section III-A,
with λ = 0.

When λl > 0, due to the difficulty and complexity of the
QPA analysis (as shown in Section III-A) for this case, we
consider a low-complexity suboptimal QPA, in which, based
on the boundary v = ((1/λl) − (1/g1))+ (similar to the full-
CSI case), two different types of power codebooks are derived.
Let P = {p1, . . . , pL1 , p

′
1, . . . , p

′
L2
} with L1 + L2 = L and the

corresponding partitioning {R1, . . . ,RL1 ,R′
1, . . . ,R′

L2
} de-

note an optimal solution for the current suboptimal setting.
Let V = {v1, . . . , vL1}, q = {q1, . . . , qL2} denote the quanti-
zation thresholds that correspond to this solution on the V -axis
(where 0 = v1 < . . . < vL1 < vL1+1 = 1/λ) and the g1-axis
(where λl < q1 < . . . < qL2 < qL2+1 = ∞), respectively, and
p(V, g1) represent the mapping from the instantaneous (V, g1)
to the allocated power level. Then, we have

p(V, g1) =


p1 = 0, if V ≥
(

1
λL

− 1
g1

)
, g1 < q1, or

V <
(

1
λL

− 1
g1

)
, v1 ≤ V < v2

pj = vj , if V <
(

1
λL

− 1
g1

)
, vj ≤ V < vj+1

j ∈ [2, L1]
p′k =

(
1

λL
− 1

qk

)
, if V ≥

(
1

λL
− 1

g1

)
, qk ≤ g1 < qk+1

k ∈ [1, L2].

(62)

We call this suboptimal QPA scheme with both g0 and g1 quan-
tized [when λl = 0, the power allocation is the same as (10),
whereas when λ > 0, the power allocation is given by (62)]
vector quantized power allocation (VQPA). Fig. 3 illustrates the
structure of the partition regions for VQPA with λl > 0.

When λl > 0, the QPA problem of quantizing both g0 and g1

with limited feedback therefore becomes

max
{v1,...,vL1 ,q1,...,qL2}

L1∑
j=1

E
[
log(1 + vjg1)

∣∣∣Rj

]
Pr (Rj)

+
L2∑

k=1

E

[
log

(
1 +

(
1

λL
− 1

qk

)
g1

) ∣∣∣R′
k

]
Pr (R′

k)

s.t.
L1∑
j=1

vjPr(Rj) +
L2∑

k=1

E

[
1

λL
− 1

qk

∣∣∣R′
k

]
Pr (R′

k) ≤ Pav.

(63)

Fig. 3. Quantization region structure of VQPA with λl > 0.

By using the KKT necessary conditions, v2, . . . , vL1 can be
obtained by solving (12) with λ = λl and j = 2, . . . , L1, and
q1, . . . , qL2 can be found by solving the equations in

qk+1∫
qk

1
q2
k


 g1

1+
(

1
λL

− 1
qk

)
g1

−λ


f1(g1)

(
1−F

(
1

λL
− 1

g1

))
dg1

=
(
fk(qk)−fk(qk−1)

)
f1(qk)

(
1−F

(
1

λL
− 1

qk

))
j = 1, . . . , L2 (64)

where fk(q) = log(1 + (1/λl − (1/q))qk) − 1 + (λl/q),
f1(g1) = e−g1 , F (.) is given by (15), and λl can be obtained
by solving

λL


 L1∑

j=1

vjPr(Rj)+
L2∑

k=1

E

[
1

λL
− 1

qk

∣∣∣R′
k

]
Pr (R′

k)−Pav


=0.

(65)

Thus, for a fixed λl, v2, . . . , vL1 can be obtained by solving
(12), with λ = λl and j = 2, . . . , L1, and given a q1, based
on (64) we can successively compute q2, . . . , qL2 numeri-
cally. Then, (64) with k = L2, which has only one unknown
variable q1, can numerically be solved for q1. Then, we can
update λl until convergence using an approximate subgradient-
based method (or a bisection-based method, as mentioned in
Section III-A), as shown in

λn+1
L =

[
λn

L − αn

(
Pav −

L1∑
j=1

vjPr(Rj)

−
L2∑

k=1

E

[
1

λL
− 1

qk

∣∣∣R′
k

]
Pr (R′

k)

)]+

(66)

where n is the iteration number, and αn is a positive scalar step
size for the nth iteration that satisfies the aforementioned usual
conditions. We can thus iteratively repeat the aforementioned
two steps until a satisfactory convergence criterion is met.
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The aforementioned result is based on a given pair of values
for L1 and L2. To find the optimum pair of (L1, L2), we can
exhaustively search all possible combinations of L1 and L2 so
that L1 + L2 = L and pick the combination that gives the best
SU ergodic capacity.

Alternative suboptimal algorithms: Again, for comparison,
we propose the following two alternative intuitive subopti-
mal algorithms for finding the QPA.

1) We separately quantize V and g1 (i.e., separate
scalar quantization is used) by minimizing their corre-

sponding distortion
∑L′

1
n=1 E[(v − vn)2|Rn]Pr(Rn) and∑L′

2
k=1 E[(g1 − g1k)2|R′

k]Pr(R′
k), respectively, with the

LA, where vn, g1k are the reconstruction points for v and
g1 in Rn and R′

k, respectively, and L′
1 × L′

2 = L. We
then use the resulting channel quantization regions to find
the corresponding optimal power allocation p∗nk for the
region where v ∈ Rn, g1 ∈ R′

k, which is given by p∗nk =
min{min(v|Rn, R′

k), [pnk]+}, where pnk is the solution
that is found by solving E[g1/1 + g1pnk − λl|Rn, R′

k] =
0. We call this method SCQ.

2) We jointly quantize V and g1 by minimizing the dis-
tortion

∑L
m=1 E[(v − vm)2 + (g1 − g1m)2|Rm]Pr(Rm)

with the LA and then use the resulting channel quan-
tization regions to find the associated optimal power
allocation p∗m = min{min(v|Rm), [pm]+}, where pm is
the solution of solving E[(g1/1 + g1pm) − λl|Rm] = 0.
We call this approach the joint channel quantization
(JCQ) method. Note that, when λl = 0, which implies
quantizing only V , it is easy to verify that the results in
this case of SCQ or JCQ are same as the SSQ scheme in
Section III-A, with λ = 0.

Numerical results illustrate that the VQPA scheme that
we propose significantly outperforms SCQ and JCQ. See
Section VI for more details.

V. EXTENSION TO THE MULTIPLE-SECONDARY

USER CASE

In our system model, when more than one SU transmits
to the SU-BS, it becomes a cognitive multiple-access channel
(C-MAC) network as shown in [27]. Given K SUs and N
PUs, with the assumption of perfect channel knowledge, the
throughput (sum-rate) maximization problem under both K
individual ATP constraints at each SU and N individual PIP
constraints at each PU-Rx has been considered in [27]. It is
shown that this convex optimization problem does not have a
closed-form solution but can numerically be solved using the
interior point method for convex optimization. For the case
when only partial or imperfect CSI is available at the SU-Tx’s,
this optimization problem is still an open problem, is beyond
the scope of this paper, and will be investigated in future work.
However, for illustration, we show that, with quantized CSI, by
considering the AIP constraints instead of the PIP constraints at
each PU-Rx, the SU ergodic capacity maximization problem
can be solved by using a modified generalized Lloyds-type
algorithm (GLA), similar to our previous work [19], where only
a single SU was considered.

Let gkn denote the channel power gain for the link from
the kth SU-Tx to the nth PU-BS, k = 1, . . . , K, n = 1, . . . , N ,
whereas the channel power gain for the link from the kth
SU-Tx to the SU-BS is indicated by hk, k = 1, . . . , K. Let P =
{P1, . . . , PL} with Pj = {p1j , . . . , pKj}′ denote the power
codebook and {Rj , j = 1, . . . L} represent the quantization
regions. With limited feedback, the ergodic sum-rate maximiza-
tion problem subject to both K individual ATP constraints at
each SU and N individual AIP constraints at each PU-Rx can
be formulated as

max
{pkj≥0,Rj∀k,j}

L∑
j=1

E

[
log

(
1 +

K∑
k=1

hkpkj

)∣∣∣Rj

]
Pr(Rj)

s.t.
L∑

j=1

E[pkj |Rj ]Pr(Rj) ≤ P k
av ∀k = 1, . . . , K

L∑
j=1

E

[
K∑

k=1

gknpkj

∣∣∣Rj

]
Pr(Rj) ≤ Qn

av ∀n = 1, . . . , N

(67)

where P k
av and Qn

av are the ATP at the kth SU-Tx and the
AIP at the nth PU-Rx, respectively. We employ a modified
GLA to jointly optimize the power codebook and partition
regions (note that the solution that we obtain here is again only
locally optimum), stated as follows. Let h = {h1, h2, . . . , hK}
and G = (gkn), k = 1, 2, . . . , K, n = 1, 2, . . . , N denote
the SU-Tx to SU-BS channel gain vector and the SU-Tx
to PU-Rx channel matrix, respectively. Let λk, µn be the
nonnegative Lagrange multipliers that are associated with the
kth ATP and nth AIP constraints, respectively. Beginning
with a random initial codebook, we can design the associated
optimal partitions using the fact that Rj = {(h, G) : [log(1 +∑K

k=1 hkpkj) −
∑K

k=1 λkpkj −
∑N

n=1 µn(
∑K

k=1 gknpkj)] ≥
[log(1 +

∑K
k=1 hkpki) −

∑K
k=1 λkpki −

∑N
n=1 µn(

∑K
k=1 gkn

pki)]∀i 
= j}, where Rj is the corresponding partition
region for power level Pj in the codebook, and ties are
arbitrarily broken. Once the optimal partitions are designed,
the new optimal power codebook is found by solving for
arg max{pkj≥0∀k} E[log(1 +

∑K
k=1 hkpkj) −

∑K
k=1 λkpkj −∑N

n=1 µn(
∑K

k=1 gknpkj)|Rj ]Pr(Rj) ∀j =1, 2, . . . , L. Given
a partition, this optimization problem is convex, and by
using the KKT conditions, we can obtain the optimal power
as max(p∗kj , 0), where p∗kj is the solution to the equation

E[hk/1 +
∑K

k=1 hkpkj − (λk +
∑N

n=1 µngkn)|Rj ] = 0. The
optimal Lagrange multipliers can be obtained using similar
subgradient based methods, as shown in [19]. These two
steps can then be repeated until the resulting ergodic capacity
converges within a prespecified accuracy. Note, however, that
the problem of finding the jointly optimal partitions and power
codebook is nonconvex and that we can only guarantee a local
optimum. Nevertheless, numerical results illustrate that with
only 4 b of feedback, the ergodic capacity performance of
the C-MAC optimization problem with limited feedback (67)
using the modified GLA can achieve a performance that is very
close to the full-CSI case. See Section VI for more details.
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Fig. 4. Ergodic capacity performance of the SU using the QPA-g0 scheme for
different numbers of PUs (Qpk = 0 dB).

VI. NUMERICAL RESULTS

In this section, we illustrate the analytical results derived in
Sections III and V through numerical simulations. We imple-
ment a narrowband spectrum-sharing system with one SU and
N PUs, where all the channels involved are assumed to undergo
identical Rayleigh fading, i.e., all g0i and g1 are independent
and identically distributed (i.i.d.) and exponentially distributed
with unity mean. For the C-MAC case, where K SUs and N
PUs share a narrowband, we also assume that all the channels
are i.i.d. and P k

av = Pav, ∀k,Qn
av = Qav∀n.

Fig. 4 studies the ergodic capacity performance of SUs
that share a narrowband spectrum with N = 2, 4, respectively,
under both the ATP and PIP constraints with the locally opti-
mum QPA − g0 strategy (i.e., with quantized V = Qpk/gm and
perfect g1) at Qpk = 0 dB and illustrates the effect of increasing
the number of feedback bits on the capacity performance. For
comparison, we also plot the corresponding capacity perfor-
mance with full CSI. First, it can easily be observed that the
ergodic capacity gradually increases as Pav increases until Pav

reaches a certain threshold, after which the curves become flat
(because for a sufficiently large Pav , only the PIP constraints
are active). The capacity performance also degrades as the
number of PUs becomes larger (because the number of PIP
constraints increases), as expected.

In Fig. 4, another observation is that, for a fixed value of
N , introducing one extra bit of feedback substantially reduces
the gap with capacity based on full CSI. To be specific, for
N = 4, at Pav = 10 dB, with 2, 4, and 6 b of feedback,
the percentage capacity gap between them and full-CSI case
are approximately 25.45%, 6.87%, and 1.97%, respectively.
In addition, for any N , only 6 b of feedback can result in
secondary ergodic capacity very close to the full-CSI case. For
example, with Pav = 10 dB, 6 b of feedback for N = 2, 4 only
generates around 2.33% and 1.97% percentage capacity losses,
respectively, compared with their full-CSI performance, which
is clearly an encouraging result.

In addition, we compare the capacity performance of QPA-g0

with the suboptimal method SSQ at Qpk = 0 dB and N = 4, as
shown in Fig. 5. It is not hard to observe that, with same number
of feedback bits, QPA-g0 can provide dramatic performance

Fig. 5. Capacity performance comparison between the QPA-g0 scheme and
the suboptimal scheme SSQ.

Fig. 6. Comparison of SU ergodic capacity performance using the EPrPR
approximation and the corresponding locally optimal QPA0 case for different
numbers of PUs with 6 b of feedback.

advance over the SSQ case, particularly at the case of a small
number of feedback bits. With a larger number of feedback
bits, e.g., 6 b, the gap between these two methods becomes
smaller, because when the number of feedback bits is large,
the actual structure of the quantization regions becomes less
important.

Fig. 6 illustrates the performance of the high-resolution
quantization approximation of QPA0 (i.e., EPrPR), which, with
6 b of feedback, compares the SU ergodic capacity performance
between the EPrPR approximation and its corresponding lo-
cally optimal QPA0 for different numbers of PUs (N = 2, 4, 8),
respectively. In Fig. 6, one interesting observation is that, for
a given N , the capacity performances using the asymptotic
EPrPR approximation and the optimal scheme (QPA0) are
almost indistinguishable. To be specific, with 6 b of feedback at
Qpk = 10 dB, for N = 2, 4, 8, the percentage capacity loss due
to using the EPrPR approximation instead of using the optimal
scheme is only around 0.93%, 0.9%, and 0.91%, respectively.
This result implies that the EPrPR approximation performs
very close to the optimum and confirms that EPrPR is an
efficient suboptimal scheme for a large number of quantization
levels L. A similar observation can also be made for QRA in
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Fig. 7. Comparison of SU ergodic capacity performance using the EPrPRL
approximation and the corresponding locally optimal QRA case for different
numbers of PUs with 6 b of feedback.

Fig. 8. Asymptotic capacity behavior versus the number of quantization levels
L of QPA0 obtained using EPrPR.

Fig. 7. In addition, Fig. 8 depicts the asymptotic SU capac-
ity behavior of QPA0 obtained from (26) versus the number
of quantization levels L for different numbers of PUs (N =
1, 2, 4, 8, 16, 32, 64) with Qpk = 10 dB. Based on Fig. 8, note
that, for a given N , the capacity increases as the number of
quantization levels L increases; however, as L increases beyond
a certain number (L ≥ 26), the capacity curves start to saturate,
which further confirms that only a small number of feedback
bits (6 b) is required to approach the perfect CSI performance.
A similar behavior is also shown for the QRA scheme. We do
not include a figure to avoid repetition.

Next, we illustrate the performance of the ALNPs approx-
imation method for QPA and QRA. Here, we only plot the
results for QRA. A similar result is also shown for QPA. Fig. 9
investigates the ergodic capacity performance of the SU with
quantized feedback (4 b) using the asymptotic analysis method
(ALNPs-QRA) for different numbers of PUs (N = 4, 8, 16)
and compares the results with the corresponding optimal QRA
(4-b) case. Interestingly, it can be observed that, with the
same number of feedback bits, increasing the number of PUs
substantially shrinks the capacity performance gap between

Fig. 9. Comparison of SU ergodic capacity performance between ALNPs-
QRA with 4 b of feedback and the corresponding optimal 4-b QRA case for
different numbers of PUs.

Fig. 10. Comparison of SU ergodic capacity performance using the QPA0 and
QRA schemes with N = 4.

ALNPs-QRA and the optimal scheme. When N = 16, the
capacity performance of ALNPs-QRA and the optimal scheme
are almost the same. For example, with 4 b of feedback at
Qpk = 10 dB, for N = 4, 8, 16, the percentage capacity gap
between ALNPs and the optimal scheme is around 3.21%,
2.21%, and 0.81%, respectively. These results confirm that the
ALNPs approximation is an efficient alternative for a large
number of PUs.

Fig. 10 compares the ergodic capacity performance of two
alternative quantization methods (QPA0 and QRA) for the
high-Pav case with N = 4 for different numbers of feedback
bits (B = 2, 4, 6). Based on Fig. 10, it can be observed that,
with same number of feedback bits, QPA outperforms QRA.
However, as the number of feedback bits increases, the capacity
gap between the two methods decreases, and as we can see,
with 6 b of feedback, the performance of the QRA scheme
is very close to the QPA case. For example, at Qpk = 10 dB,
with 2, 4, and 6 b, the percentage capacity gap between the
two quantization schemes is around 5.56%, 2.86%, and 0.84%,
respectively.
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Fig. 11. SU ergodic capacity loss of QPA schemes with quantized g0 and
noisy estimated g1 versus the IVP for various values of the correlation coeffi-
cient ρ (N = 4, Qpk = 0dB, Pav = −5 dB).

Next, we illustrate the SU ergodic capacity performance
with the additional effect of imperfect g1 in designing QPA
schemes. Fig. 11 shows (with Qpk = 0 dB, Pav = −5 dB, and
N = 4), the resulting percentage SU ergodic capacity loss of
using QPA schemes with estimated g1 and Qpk against the IVP
for different values of the correlation coefficient ρ. Here, the
range of Qpk is from −2.871 dB to 0 dB, corresponding to
IV P = 0 to the maximum value of the IVP. As illustrated in
Fig. 11, for any ρ, the capacity loss dramatically rises as the IVP
decreases, because to obtain a lower IVP, we need to further
decrease Qpk, which leads to further capacity loss. Increasing
ρ lowers the capacity loss due to having better estimates of g1.
When Qpk = Qpk = 0 dB, we obtain the maximum value of
the IVP, which is 0.0450 and 0.0365 for ρ = 0.5 and ρ = 0.9,
respectively, and the least value of the capacity loss is 2.91%
and 1.23% for ρ = 0.5 and ρ = 0.9, respectively. Interestingly,
regardless of ρ, zero IVP is observed when Qpk decreases up
to −2.871 dB, which achieves the maximum capacity loss,
roughly 26.59% for all ρ. This case is because, when Qpk

is sufficiently small to make the ATP constraint inactive and
only the PIP constraints are active, the optimum QPA does not
depend on g1, and hence, even with estimated g1, IVP = 0.

Fig. 12 depicts the SU ergodic capacity performance of
VQPA (i.e., with quantized V and g1) with 2, 4, and 6 b of
feedback, respectively, and compares the results with the cor-
responding performance of the QPA-g0 scheme (quantized V
and perfect g1). Based on Fig. 12(a), we can easily observe that,
with the same number of feedback bits, these two performances
almost overlap with each other (recall that, when λl = 0, they
are identical, and a difference only exists when λl > 0), and
with 6 b of feedback, VQPA is also very close to the full-
CSI case. For clearer visualization, in Fig. 12(b), we zoom
into the detail of the area of A in Fig. 12(a), which shows
that, with the same number of feedback bits, the performance
of QPA-g0 is only slightly better than VQPA, and with an
increasing number of feedback bits, the capacity loss due to
imperfect g1 information is reduced. These results confirm that
VQPA is a very efficient scheme. Furthermore, as shown in
Fig. 13, we also compare the ergodic capacity performance

Fig. 12. (a) SU ergodic capacity performance comparison between QPA-g0

and VQPA (N = 4). (b) Zooming in the area of A in (a).

Fig. 13. Capacity performance comparison between the VQPA scheme and
two other suboptimal schemes (N = 4).

of VQPA with the two other proposed possible suboptimal
methods (SCQ and JCQ), with Qpk = 0 dB and N = 4. For
the SCQ case, various combinations of L′

1, L
′
2 such that L′

1 ×
L′

2 = L are investigated, and the combination with the best
performance is reported for every value of Pav . In Fig. 13, we
can easily observe that, with the same number of feedback bits,
the performance of both JCQ and SCQ are much worse than
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Fig. 14. Ergodic capacity performance for the fading C-MAC under limited
feedback with K = 4, N = 1 (Qav = 0 dB).

VQPA, particularly at the case of a small number of feedback
bits, which further confirms the efficiency of VQPA.

Fig. 14 shows the ergodic capacity performance of the
C-MAC optimization problem (67) with limited feedback
solved by the modified GLA, with K = 4, N = 1, and Qav =
0 dB. The important observation in this figure is that, again,
only a few bits of feedback can eliminate most of the gap
with the full-CSI performance. For example, at Pav = 10 dB,
with 4 b of feedback, there is only around 4.13% capacity loss
compared with the full-CSI case.

VII. CONCLUSION

In this paper, we have investigated the problem of ergodic
capacity maximization of a SU that shares the same frequency
band with a number of PUs in a narrowband spectrum-sharing
CR framework under an ATP constraint at the SU-Tx and
individual peak interference constraints at each primary re-
ceiver. The following three different quantized power code-
book schemes are designed for the throughput maximization
problem, which correspond to three different forms of chan-
nel information of g1 and g0 at the SU-Tx: 1) perfect g1

and quantized information on g0; 2) noisy estimated g1 and
quantized information on g0; and 3) quantized information on
both g1 and g0. Note that these quantized power codebook
schemes are either locally optimal due to nonconvexity or
strictly suboptimal when only partial information on g1 is
available. A discussion on the extension to multiple SUs that
share a C-MAC is provided. Numerical results present the
efficiency of our quantized feedback schemes. A general obser-
vation for these schemes is that, with only 4–6 b of feedback,
the SU ergodic capacity with quantized channel information
closely approximates the SU ergodic capacity with full CSI at
the SU-Tx.

APPENDIX A
PROOF OF LEMMA 1

Let λ denote the nonnegative Lagrange multiplier that
is associated with the ATP constraint of (8). When λ = 0

(the ATP is inactive), (8) becomes

max
{p1,...,pL}

L∑
j=1

E
[
log(1 + pjg1)

∣∣∣Rj

]
Pr(Rj)

s.t. 0 ≤ pj ≤ min{V |Rj} j = 1, . . . , L. (68)

In this case, it is easy to verify that all the constraints in (68) are
satisfied with equality. Let {v1, . . . , vL} denote the optimum
quantization thresholds on the V -axis and vL+1 = ∞ (0 =
v1 < . . . < vL < ∞). We can obtain

p(V, g1) = pj = vj if vj ≤ v < vj+1 j = 1, . . . , L
(69)

which is independent of the g1 information.
When λ > 0, the dual problem of (8) is given as

min
λ≥0

g(λ) + λPav (70)

where the Lagrange dual function g(λ) is defined as

max
{p1,...,pL}

L∑
j=1

E
[
log(1 + pjg1) − λpj

∣∣∣Rj

]
Pr(Rj)

s.t. 0 ≤ pj ≤ min{V |Rj} j = 1, . . . , L (71)

which can be decomposed into L parallel subproblems, i.e., for
each region Rj , j = 1, . . . , L, solve

max
pj

E
[
log(1 + pjg1) − λpj

∣∣∣Rj

]
Pr(Rj)

s.t. 0 ≤ pj ≤ min{V |Rj}. (72)

First, based on (72), we can obtain the following results.

Case 1. If min{V |Rj} < ((1/λ) − (1/g1)), based on the
power constraint in (72), we must have pj = min{V |Rj};
otherwise, we can always increase pj up to min{V |Rj} to
achieve better capacity performance for (72);

Case 2. If min{V |Rj} ≥ ((1/λ) − (1/g1))+, we must have
pj = ((1/λ) − (1/g1))+, because the capacity of (72) in
this case is maximized at pj = ((1/λ) − (1/g1))+.

Now, let {v1, . . . , vL−1} denote the optimum quantization
thresholds on the V -axis, where 0 = v1 < . . . < vL−1 < 1/λ.
Let vL = 1/λ. Based on cases 1 and 2, we can easily get the
following results.

1) If R1 = {(V, g1)|g1 ≤ λ}
⋃
{(V, g1)|V < ((1/λ) −

(1/g1)), v1 ≤ V < v2}, then we must have p1 = 0.
2) If Rj = {(V, g1)|V < ((1/λ) − (1/g1)), vj ≤ V <

vj+1}, then we must have pj = vj , j = 2, . . . , L − 1.
3) If RL = {(V, g1)|V ≥ ((1/λ) − (1/g1)) > 0}, we must

have pL = ((1/λ) − (1/g1)).
Next, we will show that, with the power levels in 1), 2),

and 3), the aforementioned partition regions are optimal. Let
P = {p1, . . . , pL} and the corresponding channel partitioning
R1, . . . ,RL denote the optimal solution to the optimization
problem (8) such that p(V, g1) = pj if (V, g1) ∈ Rj .
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Let R∗
1 = {(V, g1)|g1 ≤ λ}

⋃
{(V, g1)|V < ((1/λ) −

(1/g1)), v1 ≤ V < v2} and assume that the set R∗
1 \ R1

is a nonempty set, where \ is the set subtraction
operation (i.e., if (V, g1) ∈ R∗

1 \ R1, then (V, g1) ∈ R∗
1,

but (V, g1) 
∈ R1). Then, we have R∗
1 \ R1 ⊆ (∪L

k=2Rk),
which gives ∀(v, g1) ∈ (R∗

1 \ R1), p(V, g1) > 0. How-
ever, this condition violates the power constraint in R∗

1 \ R1,
i.e., 0 ≤ p(V, g1) ≤ min{V |R∗

1 \ R1}, implying p(V, g1) = 0,
which is in contradiction with the optimality of the solu-
tion P , Rj∀j. Therefore, R∗

1 \ R1 = ∅, i.e., R∗
1 ⊆ R1.

∀j = 2, . . . , L − 1, let R∗
j = {(V, g1)|V < ((1/λ) −

(1/g1)), vj ≤ V < vj+1} and assume that the set R∗
j \ Rj

has nonzero probability. Then, the set R∗
j \ Rj can be

partitioned into the following two subsets: 1) S−
j = (R∗

j \
Rj) ∩ (∪j−1

k=1Rk) and 2) S+
j = (R∗

j \ Rj) ∩ (∪L
k=j+1Rk).

The set S−
j = ∅; otherwise, we can reassign the set S−

j into
region Rj without violating the power constraints in (71),
whereas the total capacity of (71) is increased, because
∀(V, g1) ∈ (∪j−1

k=1Rk), p(V, g1) < pj < ((1/λ) − (1/g1)), and
with the reassignment the capacity of set S−

j , it achieves better
performance, which contradicts the optimality of the solution
P,Rj∀j. We must also have S+

j = ∅; otherwise, the power
constraints in S+

j , i.e., 0 ≤ p(v, g1) ≤ vj , will be violated,
because ∀(v, g1) ∈ S+

j , p(v, g1) > vj , which is a contradiction
to optimality. Therefore, we must have R∗

j \ Rj = ∅, which
implies R∗

j ⊆ Rj .
Let R∗

L = {(V, g1)|V ≥ ((1/λ) − (1/g1)) > 0} and assume
that the set (R∗

L \ RL) 

= ∅. Then, we have R∗
L \ RL ⊆

(∪L−1
k=1Rk). Again, we can repartition the set R∗

L \ RL into
region RL, which still satisfies the power constraints in (71).
However, this new partition increases the total capacity of (71),
because ∀(V, g1) ∈ (∪L−1

k=1Rk), p(V, g1) < ((1/λ) − (1/g1)),
and after the repartitioning, the capacity of set R∗

L \ RL

achieves its maximum value, which contradicts optimality.
Therefore, we must have R∗

L \ RL = ∅, i.e., R∗
L ⊆ RL.

In summary, we have shown that ∀j = 1, . . . , L,R∗
j ⊆ Rj .

Because ∪L
j=1R∗

j equals the whole space covered by (V, g1)
or ∪L

j=1Rj and R∗
j ⊆ Rj , ∀j, we can obtain R∗

j = Rj , ∀j =
1, . . . , L.

APPENDIX B
DERIVATION OF THE CDF AND THE

PDF OF V = Qpk/maxi g0i

Let g0 = maxi g0i, i = 1, . . . , N . Then, the pdf of g0 is given
by [1]

f(g0) = Ne−g0(1 − e−g0)N−1. (73)

The cdf of V = Qpk/maxi g0i can be obtained as

F (v) = Pr
(

Qpk

maxi g0i
< v

)
= Pr

(
g0 >

Qpk

v

)

=

∞∫
Qpk

v

f(g0)dg0 = 1 −
(

1 − e−
Qpk

v

)N

. (74)

After differentiation, the pdf of V is given as

f(v) =
NQpk

v2
e−

Qpk
v

(
1 − e−

Qpk
v

)N−1

. (75)

Derivation of the Asymptotic pdf of maxi g0i, i = 1, . . . , N ,
as N → ∞: Given that g01, g02, . . . , g0N are i.i.d. random
variables and are exponentially distributed with unity mean,
let the cdf F (x) = Pr(g0i < x) = 1 − e−x and pdf f(x) =
e−x. Let X = max(g01, g02, . . . , g0N ). We want to derive the
asymptotic pdf of X as N → ∞. First, note that

Pr(X < x) = FN (x). (76)

Because f(x) > 0 and is differentiable for all x in (x1, F
−1(1))

for some x1, and

lim
x→F−1(1)

d

dx

[
1 − F (x)

f(x)

]
= lim

x→∞

d

dx
[1] = 0 (77)

according to [25], there exist constants aN > 0 and bN such
that

FN (aNx + bN ) → e−e−x

, as N → ∞ (78)

where → denotes the limit as N → ∞. We can choose

bN = F−1

(
1 − 1

N

)
= log N aN = [Nf(bN )]−1 = 1.

(79)
Therefore, as N → ∞, we have

FN (x + log N) → e−e−x

FN (x) ∼ e−e−(x−log N)
(80)

fX(x) =
∂FN (x)

∂x
∼ Ne−xe−Ne−x

. (81)

Proof of Lemma 2: The proof is similar to [26], given
a set of optimum quantization thresholds z = {z2, . . . , zL},
we assume that the corresponding optimum rate code-
book r = {r1, . . . , rL} satisfies z∗j 
∈ [zj , zj+1) (i.e., z∗j ≥
zj+1 or z∗j < zj). We construct a new codebook r′ =
{r1, . . . , rj−1, r

′
j , rj+1 . . . , rL}, where r′j = R(zj) with corre-

sponding z′∗j = zj . If z∗j ≥ zj+1, we have CL(r′) − CL(r) =
r′jPr(Rj) > 0, which contradicts the optimality of the rate
codebook r. If z∗j < zj , we have CL(r′) − CL(r) = (r′j −
rj)Pr(Rj) > 0, which is also a contradiction with the assumed
optimality.

Proof of Lemma 3: Given an optimum rate codebook
r = {r1, . . . , rL}, we assume that the optimum quantization
thresholds z = {z2, . . . , zL} satisfies zj 

= z∗j . Then, based on
Lemma 2, we have zj < z∗j < zj+1. Now, we construct a set of
new quantization thresholds z′ = {z2, . . . , zj−1, z

∗
j , zj+1, . . . ,

zL}, and we can show that CL(z′) − CL(z) = [rj−1(F (z∗j) −
F (z∗j−1))+ rj(F (zj+1)−F (z∗j))]−[rj−1(F (zj)−F (z∗j−1)) +
rj(F (zj+1) − F (z∗j))] = rj−1(F (z∗j) − F (zj)) > 0, which
contradicts the optimality of the quantization thresholds z.
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