Abstract:
In this paper, we propose a set of joint transmit diversity selection (TDS) and relay selection (RS) algorithms based on discrete iterative stochastic optimization for th...Show MoreMetadata
Abstract:
In this paper, we propose a set of joint transmit diversity selection (TDS) and relay selection (RS) algorithms based on discrete iterative stochastic optimization for the uplink of cooperative multiple-input-multiple-output (MIMO) systems. Decode-and-forward (DF) and amplify-and-forward (AF) multirelay systems with linear minimum mean square error (MSE), successive interference cancelation, and adaptive reception are considered. The problems of TDS and RS are expressed as MSE and mutual information (MI) joint discrete optimization problems and solved using iterative discrete stochastic algorithms. Such an approach circumvents the need for exhaustive searching and results in a range of procedures with low complexity and increased speed of convergence that can track the optimal selection over an estimated channel. The proposed schemes are analyzed in terms of their complexity, convergence, and diversity benefits and are shown to be both stable and computationally efficient. Their performance is then evaluated via MSE, MI, and bit error rate comparisons and shown to outperform conventional cooperative transmission and, in the majority of scenarios, match that of the optimal exhaustive solution.
Published in: IEEE Transactions on Vehicular Technology ( Volume: 61, Issue: 3, March 2012)