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Abstract

Femtocell is becoming a promising solution to face the explosive growth of mobile broadband

usage in cellular networks. While each femtocell only covers a small area, a massive deployment is

expected in the near future forming networked femtocells. An immediate challenge is to provide seamless

mobility support for networked femtocells with minimal support from mobile core networks. In this

paper, we propose efficient local mobility management schemes for networked femtocells based on

X2 traffic forwarding under the 3GPP Long Term Evolution Advanced (LTE-A) framework. Instead

of implementing the path switch operation at core network entity for each handover, a local traffic

forwarding chain is constructed to use the existing Internet backhaul and the local path between the local

anchor femtocell and the target femtocell for ongoing session communications. Both analytical studies

and simulation experiments are conducted to evaluate the proposed schemes and compare them with

the original 3GPP scheme. The results indicate that the proposed schemes can significantly reduce the

signaling cost and relieve the processing burden of mobile core networks with the reasonable distributed

cost for local traffic forwarding. In addition, the proposed schemes can enable fast session recovery to

adapt to the self-deployment nature of the femtocells.

Index Terms

Femtocell, LTE-A, mobility management, traffic forwarding.

I. INTRODUCTION

The prevalence of smartphones and flat data tariffs place huge capacity demands on mobile

operators’ networks. This has triggered the development of the next generation wireless standards
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such as 3GPP Long Term Evolution Advanced (LTE-A) [1] and Worldwide Interoperability

for Microwave Access (WiMAX) IEEE 802.16m [2]. Although advanced access schemes and

antenna systems have been adopted in both standards, the capacity of a single cell is still very

limited compared to the huge user demands. Realizing that more than 50 percent of voice calls

and more than 70 percent of data traffic originate indoors as indicated in recent studies [3] [4],

the femtocell technology has been recognized as a key advancement to face the explosive growth

of mobile broadband usage [5]. A femtocell, also called home base station, is a low-cost, low-

power, and short-range wireless access point usually deployed indoors and connected to a mobile

operator’s network via residential broadband access, e.g. Digital Subscriber Line (DSL) or cable

connection. It is usually deployed under the coverage of an overlaid macrocell and operates in

the same licensed spectrum as the macrocells. It is expected that millions of femtocells will

be deployed in the near future. Multiple femtocells deployed in certain area may form a new

network architecture, referred as networked femtocells [6].

Mobility management is a fundamental problem in cellular networks, which consists of Han-

dover (HO) management and location management. Handover management supports the cell

switch of mobile users in connected mode with ongoing sessions during their movement. Location

management tracks the locations of the mobile users in idle mode to facilitate the fast incoming

service delivery. The small coverage, massive deployment, and long Internet backhaul of fem-

tocells provide new challenges for mobility management, especially for inter-femto handover

scenario. Whereas inter-femto handover may not be an issue for residential environment, we

envisage that frequent handovers among femtocells will occur in scenarios such as shopping mall,

high street, enterprise and conference events. Furthermore, with the rapidly increased demand

to offload traffic from mobile cellular networks, a large number of femtocells are expected to

be deployed in hotspot areas by the operators for public access. Currently, 3GPP LTE-A adopts

a scheme for inter-femto handover similar to the scheme used for inter-macro handover. After a

mobile establishes the radio connection with the target cell, the target cell will inform the core

network entities to switch the data path and the corresponding resource at the source cell will be

released. This scheme performs well for handover in conventional macrocell networks. Since the

coverage of a macrocell is normally up to several kilometers, only few handovers occur during

a typical session. The data path switch after each handover can reduce the transmission latency

over the data path. However, when a mobile moves between femtocells, handovers will be much
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more frequent than macrocell scenarios due to the much smaller coverage of each femtocell.

Further considering the dense deployment of femtocells, the frequent data path switch operations

will cause significant signaling load to the core network entities. Furthermore, excessive data

path switch operations may also degrade the users’ Quality of Experience (QoE). The main

factor affecting the users’ QoE is not the absolute delay but the delay jitter. When a path switch

operation is initiated at the core network, the nth packet is sent to the UE along the old path

while the n+1th packet is sent to the UE along the new path. Given the delay-varying Internet

backhauls, the interval from the time the UE receives the nth packet to the time the UE receives

the n + 1th packet (i.e. the first packet from the new path) may be large if the new path has a

non-negligible larger delay than the old path. The delay jitter for the following arriving packets

along the same path should be relatively small.

Although a number of research work has been recently conducted for femtocells, they mostly

focus on radio access aspects, such as interference management [7] and coverage optimization

[8]. Little work has been done for mobility management in femtocell networks, especially for

inter-femto handover scenario. In this paper, we propose two local mobility management schemes

for networked femtocells based on X2 traffic forwarding. Instead of switching the data path after

each handover, the target femtocell can use the local path between the previous serving femtocell

and itself for ongoing session communications without sending the path switch request to the core

network entities. A X2 traffic forwarding chain will be established from the original local anchor

point to the current serving femtocell. Since the local traffic forwarding may increase the end-to-

end communication latency and consume the local resource, a threshold of the forwarding chain

should be defined to balance the trade- off between the path switch cost and traffic forwarding

cost. The first scheme, namely Traffic Forwarding with Cascading Path (TF CP),cascades the

target femtocell to the previous source femtocell via the local path after a handover. The second

scheme, namely Traffic Forwarding with Shortest Path (TF SP), implements local path switch

if the target femtocell has a shorter path to the original local anchor point than the cascading

path. We develop analytical models based on Markov chains and conduct simulation studies

for model validation and performance comparison. The results show that the proposed schemes

can significantly reduce the signaling cost and relieve the processing burden of the mobile core

network compared to the standard scheme, especially when the core path switch cost and users’

mobility rates are high. Compared to the standard scheme, the incurred extra data delivery latency
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is within the reasonable range and the traffic load at local links is distributed within the local

network. Their cost can be traded off with the signaling cost by adjusting the threshold of the

forwarding chain.

The rest of this paper is organized as follows. The related work is described in Section II.

Section III describes the system architecture and deployment scenario. In Section IV, the two

proposed local mobility management scheme with traffic forwarding are presented in details.

The analytical models are developed in Section V. In Section VI, both analytical and simulation

results are presented to show the performance of the proposed schemes. Conclusion is given in

Section VII.

II. RELATED WORK

The existing work on mobility management in femtocell networks can be grouped into han-

dover management and location management. In [9], handover trigger algorithms considering

signal strength and user velocity are proposed for hierarchical macro-femto networks to reduce

the number of unnecessary handovers. In [10], a handover algorithm for inbound mobility from

a macrocell to a femtocell is proposed to tackle the transmission power asymmetry problem. For

inbound handover, the scanning time may be considerably long due to the massive deployment of

femtocells. A cache scheme for femtocell reselection is proposed in [11] to speed up the switch

from the macro-tier to femto-tier. To reduce the signaling cost to the mobile core network and

improve the scalability of the femtocell deployment, [12] proposes to use a femto gateway

located between the femtocells and the mobile core network to act as the mobility anchor point

for inter-femto handover. However, the femto gateway is still deployed at the mobile operators’

premise. Therefore, the signaling cost still burdens the mobile core network and the latency

over the Internet backhaul is unavoidable. In standard 3GPP femtocell architecture, even though

two femto users reside in the same campus or enterprise area, the call signaling and voice

traffic has to be routed via the core network, incurring unnecessary cost. Recent work [13]

[14] introduces a new network element called Enterprise Femtocell GateWay (EFGW) within

the local enterprise femtocell networks to facilitate local mobility management. However, the

extra deployment cost of the new elements will be incurred and the application is limited to

the femtocells maintained by the same owner. [15] proposes a Femto Private Branch Exchange

(FPBX) architecture to replace an expensive normal call between two femto users with a local
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extension call. An implicit location update approach is used to log the location of the users,

and thus enable the local call routing. Frequent location update may happen when the users

move between femtocells and macrocells. In [16], a Cell Priority Transition (CPT) mechanism

is proposed to reduce the location update cost. The standard 3GPP cell selection procedure is

modified such that a mobile will keep camping on the macrocell when it moves into a femtocell.

The cell selection, location update, and call establishment will be implemented when a call event

arrives. Therefore, the reduced location update cost comes at a price of the increased number of

handovers.

The proposed schemes in this paper are inspired by the idea of pointer forwarding scheme,

which is first introduced in [17] to reduce location management cost in cellular network. If a

mobile changes registration areas frequently but receives calls relatively infrequently, it can set

up a forwarding pointer from the previous Visitor Location Register (VLR) instead of updating

the Home Location Register (HLR) as the latter event is more expensive. Calls to a mobile will

query the HLR to determine the first VLR where the mobile was registered, and then follow a

forwarding chain to the current VLR. Since then, this idea has been widely extended to various

networks, such as mobile IP networks [18][19] and wireless mesh networks [20]. The pointer

forwarding schemes in the literature are proposed to reduce location management cost, and

thus, they are interested in the trade-off between the total registration cost and the call delivery

cost when a call arrives. In this paper, we first propose local mobility management schemes

based on traffic forwarding for LTE-A based networked femtocells to reduce the path switch

cost during handover. The tunneling mechanisms have been extensively employed in mobile IP

networks [21], WiMAX networks [2] and etc. For example, when a handover occurs between

base stations belonging to different Access Service Networks (ASNs) in WiMAX, the old ASN

gateway can become the traffic anchor point and the traffic can be still sent to the old ASN

gateway, which then tunnels the traffic to the new ASN gateway. The ASN gateway relocation

can be performed later after the link layer handover is completed. In this way, the handover

latency is reduced by avoiding ASN gateway relocation during the handover. Normally only two

neighbors are considered in the above tunneling scenarios. However, a mobile may travel across

several femtocells during one session in networked femtocells due to the small coverage and

dense deployment of the femtocells. The forwarding chain mechanisms need to be investigated

in this scenario.



6

III. SYSTEM ARCHITECTURE

A 3GPP LTE-A networked femtocell architecture is considered as shown in Fig.1,in which a

number of femtocells are deployed forming a local network. In the following sections, we will use

3GPP terminology for description purpose, e.g. Evolved Node B (eNB) for macro base station,

Home Evolved Node B (HeNB) for femto base station, User Equipment (UE) for mobile station.

The detailed descriptions of each functional entity and network architecture can be found in [1].

Each HeNB is connected to the Mobility Management Entity (MME) and Serving Gateway (S-

GW) in the Evolved Packet Core (EPC) via S1-MME and S1-U interfaces, respectively. A HeNB

Gateway (HeNB GW) can be optionally deployed to act as a concentrator for the Control-Plane

(CP) signaling and optionally for the User-Plane (UP) data traffic. The purpose of introducing

the HeNB GW by 3GPP is to support a large number of HeNBs in a scalable manner without

modifying the S1 interfaces between the HeNB and the EPC. Therefore, a HeNB GW appears to

an MME as a HeNB, while it appears to a HeNB as an MME. However, a HeNB GW is deployed

at the edge of the mobile core network and the signaling messages exchanged between it and

HeNBs still need to traverse the Internet backhaul. And this centralized management entity can

still become a bottleneck if massive signaling messages from/to HeNBs need to be processed.

The direct X2 connection between femtocells has been supported in 3GPP since release 10

and has been further defined in recent release 11 [1]. Direct X2 backhaul links are considered as

a key requirement for inter-HeNB mobility enhancement [22] and interference management [23].

In principle, a HeNB can maintain an X2 interface between every HeNB in the local network and

itself. However, this implies that each HeNB needs to maintain a number of active Stream Control

Transmission Protocol (SCTP) sessions all the time, which are difficult to be supported by a cost-

constrained HeNB and even by an eNB. Therefore, similar to the X2 interfaces between eNBs

[24], HeNB should normally only maintain the X2 interfaces with its immediate neighboring

cells (instead of a full mesh) with overlapping radio coverage . Thus, it is worth mentioning

that the complexity in the establishment of direct backhaul links does not increase with the

growth of network size, so the implementation of direct backhaul links is not an issue even with

a large number of femtocells. The X2 connection setup between HeNBs can be described as

follows based on [1]: When a HeNB is plugged into the network, it switches to operational mode

and scans its environment. If neighboring HeNBs are detected, the HeNB registers its local IP
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address and the detected neighbor information at the HeNB GW (or at the MME if the HeNB

GW is absent). The HeNB-GW already has the local IP addresses of other operational HeNBs,

and thus it can respond to the newly added HeNB with this information. A direct X2 interface

is then setup between the newly added HeNB and its neighboring HeNBs. Note that although

X2 interface is a logical interface by definition and can traverse any physical path in principle,

it is assumed in this paper to be within the local network. This is a reasonable assumption when

HeNBs are within the same subnet or connected with each other according to the IP routing

table.

Different from eNBs that are open to all the UEs, three access control strategies may be applied

to HeNBs: closed access, open access and hybrid access. 3GPP has introduced the concept of a

Closed Subscriber Group (CSG) to identify a group of UEs that are permitted to access one or

more HeNBs having restricted access. In closed access mode, only UEs that are CSG-members

can access the services via the HeNB. In open access mode, the HeNB provides services to all

the UEs within its coverage without restriction. In hybrid access mode, UEs that are not member

of the CSG can have limited access to the HeNB as long as the services received by the CSG

members are not degraded. The access control may be implemented at the MME. In this case,

X2-based handover between HeNBs is not possible. If no access control at the MME is needed,

i.e., when the handover is between HeNBs in closed/hybrid access mode having the same CSG

ID or when the target HeNB has open access, X2-base handover can be adopted. In this paper,

we consider a scenario that no access control is needed at the MME. Example scenarios include

the enterprise scenario in which femtocells have the same CSG ID and the high street scenario

in which femtocells are deployed by the store owners and are open to public.

IV. LOCAL MOBILITY MANAGEMENT WITH X2 TRAFFIC FORWARDING

In this section, we first present the X2-based inter-femto handover procedure defined by 3GPP.

Then we introduce the proposed Traffic Forwarding with Cascading Path (TF CP) scheme and

Traffic Forwarding with Shortest Path (TF SP) scheme.

A. 3GPP Scheme

In the recent 3GPP standard [1], direct X2 interface is supported between HeNBs, and thus

an X2-based HO can be utilized when UEs move between HeNBs similar to the X2-based HO
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between eNBs. The Message Sequence Chart (MSC) for the X2-based HO between HeNBs

is shown in Fig.2,which consists of three phases: HO preparation, HO execution, and HO

completion.

A UE measures the signal strength received from the neighboring HeNBs at the end of each

measurement interval. If the HO criterion is satisfied, the HO preparation phase will be initiated.

The source HeNB will send a HO Request to the target HeNB over the X2 interface. If the target

HeNB can admit this request, an acknowledgment with configuration information will be sent

back to the source HeNB over the X2 interface. The configuration information will be forwarded

to the UE via the air interface.

In the HO execution phase, the UE will detach from the source HeNB and synchronize to

the target HeNB. Meanwhile, the source HeNB will send a SN Status Transfer message to the

target HeNB conveying the bearer sequence number status and the data received from the EPC

will be forwarded to the target HeNB over the X2 interface.

After the synchronization is completed, in case that the mobility anchor point is located at the

HeNB GW, the target HeNB will send a Path Switch Request to the HeNB GW to switch the

data path and the HeNB GW will switch the data path from the source HeNB to the target HeNB

and respond with a Path Switch Request Ack to the target HeNB. After the data path is switched,

the HeNB GW will send an “end marker” along the old path. Upon receiving the Path Switch

Request Ack, the target HeNB will inform success of HO to the source HeNB and triggers the

release of radio and control-plane related resources associated to the UE context from the source

HeNB by sending a UE Context Release message to the source HeNB. The release of the data

forwarding resource at the source HeNB will be triggered after the “end marker” of the data

arrives. In case that the mobility anchor point is located at the MME, the Path Switch Request

will be forwarded to the MME and the MME will inform the corresponding S-GW to switch the

path. After the MME receives the response from the S-GW, the MME will send a Path Switch

Request Ack to the target HeNB, which is then followed by a similar resource release procedure.

This completes the HO procedure.

Note that a data forwarding mechanism is already proposed by 3GPP to forward the data from

the source HeNB to the target HeNB for lossless session mobility, however, this is only used

during the HO procedure. An example is shown in Fig.1 to indicate the data path switch after

each HO.
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B. Traffic Forwarding with Cascading Path

The MSC of this proposed scheme is shown in Fig.3.The target HeNB does not have to

send a Path Switch Request to the EPC each time a HO occurs. When an UE moves across

the boundary of the covering areas of two neighboring HeNBs, it disassociates with the source

HeNB and associates with the target HeNB. After the synchronization between the UE and the

target HeNB is completed, the target HeNB will not send the Path Switch Request to the EPC

as long as the length of the forwarding chain does not exceed a predefined threshold K. Note

that other criteria may be considered to determine whether or not to trigger traffic forwarding

such as the end-to-end latency. For simplicity, the forwarding chain length in terms of hops is

considered in this paper since this length is closely related to the end-to-end latency and total

resource required for local traffic forwarding. As in the original 3GPP handover procedure, the

target HeNB will send the UE Context Release message to the source HeNB to inform success

of HO and trigger radio and control-plane resource release. The resource for data forwarding at

the source HeNB will remain reserved for the UE since no “end marker” is recevied and the

data received from the EPC will be forwarded to the target HeNB along the forwarding chain.

If the threshold of the forwarding chain is exceeded, the normal data path switch operation

will be applied. The EPC will switch the data path from the head of the forwarding chain to the

target HeNB and send an “end marker” along the old path until the tail of the forwarding chain.

The resource for data forwarding on a forwarding node will be released after the “end marker”

is received. After the data path switch operation, the target HeNB becomes the new local traffic

anchor point, i.e. the head of a new forwarding chain if any. Fig.4 shows an example of the

data paths of the TF CP scheme during mobility, where the threshold of the forwarding chain

K = 2.

The target HeNB may have been already on the forwarding chain. To remove the loop, a

Forwarding List including all the node identities on the current forwarding chain and their

orders is included in the SN Status Transfer message and sent from the source HeNB to the

target HeNB during the HO execution phase. The target HeNB can check the forwarding chain

status for the UE. If the target HeNB finds that it has been already on the forwarding chain,

it will reset the forwarding chain length and send an “end maker” along the rest of the old

forwarding chain to release the resource for data forwarding. In case that the UE moves out
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from a femtocell and moves into a macrocell, the HO signaling has to reach the MME and the

S-GW is the mobility anchor point. Therefore, the forwarding chain will be reset to zero and

the data path at the S-GW will be switched from the HeNB to the eNB.

For the proposed traffic forwarding scheme, the mobility is transparent to the EPC, i.e. the

EPC thinks that the head of the forwarding chain is the current serving cell for the UE. The

proposed scheme is also transparent to the UE. Therefore, the proposed scheme can be easily

fit into the current 3GPP scope, since no upgrade is required from the EPC side or the UE side.

Due to the self-deployment nature of the HeNBs, a HeNB may be switched off or failed when

it is on a forwarding chain. Therefore, a mechanism is needed to fast resume the sessions in this

case. In the TF CP scheme, the next HeNB on the forwarding chain will detect the failure of its

previous-hop neighbor (The implementation of the failure detection is left to the manufacturer

’s discretion.) and send a Path Switch Request message to the core network entity. The core

network entity will switch the data path to the next HeNB on the forwarding chain after the

failed one. The forwarding list after the recovery will be updated. During this process, the data

packets sent along the old path may be lost and the upper layer mechanisms will be responsible

for the packet loss recovery if needed.

C. Traffic Forwarding with Shortest Path

In the TF CP scheme, the forwarding chain is formed by simply cascading the HeNBs along

the trajectory of the UEs. In many cases, the UEs may move around the local anchor point in its

surrounding area resulting in the possibility of finding a shorter path compared to the original

forwarding chain. In the TF SP scheme, the HeNB will advertize its neighbor list within the

local network and thus, each HeNB will possess the network topology information and calculate

the per-pair shortest path in advance. In HO completion phase as shown in Fig.5,the target HeNB

will compare the forwarding list with the shortest path to the local anchor point. If the length of

the shortest path is less than the length of the forwarding chain, the target HeNB will initiate a

local path switch operation. A Local Path Switch Request will be sent to the local anchor point

along the shortest path. If the request is admitted, the local anchor point will respond with a

Local Path Switch Request Ack. During the message exchange process, the resource required on

the new path will be requested and allocated. The data path will be now along the shortest path

from the local anchor point to the target HeNB. An “end marker” will be send from the local
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anchor point along the old forwarding chain to release the resource for data forwarding. And

during the local path switch process, the current forwarding chain will continue forwarding the

data to the target HeNB until the “end marker” is received, and thus, there is no data loss during

this process.

An example is shown in Fig.6 to illustrate the data path of the TF SP scheme, where a UE is

moving along the trajectory HeNB1 → HeNB2 → HeNB3 → HeNB4 and HeNB1 is the current

local traffic anchor point. In the TF CP scheme, a local path is formed following the trajectory

of the UE. For example, when the UE arrives at HeNB3, the end-to-end data path from the EPC

should be (1)+(2)+(3) as shown in Fig.4, thus resulting in a forwarding chain of length 2. On

the other hand, the TF SP scheme will implement a local path switch operation resulting in a

forwarding chain of length 1.

In case of a HeNB on the forwarding chain being switched off or failed, the next-hop HeNB on

the forwarding list can detect the failure of its neighbor and calculate a new shortest path to the

HeNB that is the previous-hop node of the failed one on the forwarding chain. A local recovery

mechanism is implemented by sending a Local Path Switch Request message to the precedent

HeNB of the failed one on the forwarding chain along the new shortest path. In addition, all the

neighbor HeNBs of the failed one will advertize the failure information within the local network

such that the corresponding affected per-pair shortest paths will be recalculated. The total length

of the forwarding chain after the local recovery may exceed the threshold. However, the current

serving HeNB, i.e. the tail of the forwarding chain, will initiate the local path switch or the core

path switch after the network topology and per-pair shortest paths are updated. The threshold is

allowed to be temporarily relaxed since the session continuity has the first priority.

V. ANALYTICAL MODEL

In this section, the performance of the TF SP scheme and the standard 3GPP scheme are

analyzed for a grid network topology. It is difficult to model the loop removal of the TF CP

scheme since it depends on the users’ trajectory history. Therefore, it will be studied in the next

section via simulations. However, the recovery mechanisms of both proposed schemes will be

analytically compared in this section. For clarification, Table I summarizes the parameters used

in this section.



12

A. Discrete-Time Markov Chain model

In the grid network topology considered in this paper as shown in Fig.7(a), each HeNB

has four neighbors and a UE can move randomly from the current cell to one of its four

neighbors with equal probability. The grid-like femtocell deployment has been widely used in

the femtocell-related performance analysis as suggested by 3GPP [25], which can be used to

model the office or terraced house environment. Let S
(1)
0 denote the local anchor point and

S
(j)
i (1 ≤ i ≤ K, 1 ≤ j ≤ 4i) represent the cell location at which the HeNB has the shortest path

of length i (ring i) towards the local anchor point, where K is the threshold of the forwarding

chain and j is the cell index at ring i. A location state aggregation method similar to [19] is

used here to model the UE mobility. The original cell location states that the UE can reach in

Fig.7(a) can be aggregated according to the grid symmetry as shown in figurename 7(b). When

a UE moves out of the coverage of the local anchor point S(1)
0 , no matter the direction of the

UE movement, the forwarding chain will be increased by 1. Therefore, the states S
(1)
1 , S

(2)
1 ,

S
(3)
1 , S(4)

1 can be aggregated to a single state S
(1)
1 . When i = 2, the states S

(1)
2 , S(3)

2 , S(5)
2 , S(7)

2

can be aggregated to a state S
(1)
2 since the UE at these states has 3/4 probability to increase its

forwarding chain and 1/4 probability to decrease it, while the states S
(2)
2 , S(4)

2 , S(6)
2 S

(8)
2 can be

aggregated to another state S
(2)
2 since the UE at these states has 1/2 probability to increase its

forwarding chain and 1/2 probability to decrease it. Similarly, when i = K, the 4K states can

be aggregated to the ⌈K+1
2

⌉ states, where ⌈x⌉ denotes the smallest integer not less than x.

The evolution of a UE’s activity is modeled as a stochastic process that occurs in a sequence

of discrete steps. The duration of a time slot is τ time unit. It is assumed that the UE state can

only change at the end of each time slot and only one change is allowed at a time. Clearly,

the system evolution can reflect the real-life characteristics when the time slot is sufficiently

small. Based on this assumption, a Discrete-Time Markov Chain (DTMC) model is developed

to model the evolution of the UE state when the traffic forwarding scheme is used, as shown

in Fig.8.The state Sidle denotes the state at which a UE has no ongoing sessions. The state

S
(j)
i (0 ≤ i ≤ K, 1 ≤ j ≤ ⌈ i+1

2
⌉) represents the aggregated state at which a UE with ongoing

sessions has a forwarding chain of length i. When a UE is at the state Sidle, the probability of

a session arriving (incoming or outgoing) during a time slot τ is Pλ. Thus, the current HeNB

becomes the local anchor point and the UE moves to the state S
(1)
0 with this probability and
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stays at the idle state with the probability 1 − Pλ at the end of a time slot. When a session is

initiated at the UE, the probability of a session departing during a time slot τ is Pµ. Thus, at

each state S
(j)
i , the UE may move to the state Sidle with this probability at the end of a time slot.

During a time slot, there is a probability Pm that the UE will move to another cell. If the session

is still ongoing and the UE decides to move to another cell, the length of the forwarding chain

will change. When the UE is at the state S
(j)
K (1 ≤ j ≤ ⌈K+1

2
⌉), the further forward movement

will trigger the forwarding chain to be reset.

Let πidle and π
(j)
i (0 ≤ i ≤ K, 1 ≤ j ≤ ⌈ i+1

2
⌉) denote the stationary probability distribution of

the UE being at the state Sidle and S
(j)
i , respectively. Based on Fig.8, the balance equations can

be derived as follows:

πidle = (1− Pλ)πidle + Pµ

K∑
i=0

⌈ i+1
2

⌉∑
j=1

π
(j)
i . (1a)



π
(1)
0 =

(
1− Pµ − (1− Pµ)Pm

)
π
(1)
0 + Pλπidle

+(1− Pµ)Pm(
1
4
π
(1)
1 + 3

4
π
(1)
K + 1

2

∑⌈K+1
2

⌉
j=2 π

(j)
K ),

π
(1)
1 =

(
1− Pµ − (1− Pµ)Pm

)
π
(1)
1 + (1− Pµ)Pm(π

(1)
0 + 1

4
π
(1)
2 + 1

2
π
(2)
2 ),

∀2 ≤ i ≤ K − 1 :

π
(1)
i =

(
1− Pµ − (1− Pµ)Pm

)
π
(1)
i + 1

4
(1− Pµ)Pm(π

(1)
i−1 + π

(1)
i+1 + π

(2)
i+1),

π
(1)
K =

(
1− Pµ − (1− Pµ)Pm

)
π
(1)
K + 1

4
(1− Pµ)Pmπ

(1)
K−1.

(1b)



π
(2)
2 =

(
1− Pµ − (1− Pµ)Pm

)
π
(2)
2 + (1− Pµ)Pm(

1
2
π
(1)
1 + 1

4
π
(2)
3 ),

π
(2)
3 =

(
1− Pµ − (1− Pµ)Pm

)
π
(2)
3 + (1− Pµ)Pm(

1
2
π
(1)
2 + 1

2
π
(2)
2 + 1

4
π
(2)
4 + 1

2
π
(3)
4 ),

∀4 ≤ i ≤ K − 1 :

π
(2)
i =

(
1− Pµ − (1− Pµ)Pm

)
π
(2)
i + (1− Pµ)Pm(

1
2
π
(1)
i−1 +

1
4
π
(2)
i−1 +

1
4
π
(2)
i+1 +

1
4
π
(3)
i+1),

π
(2)
K =

(
1− Pµ − (1− Pµ)Pm

)
π
(2)
K + (1− Pµ)Pm(

1
2
π
(1)
K−1 +

1
4
π
(2)
K−1).

(1c)
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

∀4 ≤ i ≤ K − 1 and i is even :

π
(⌈ i+1

2
⌉)

i =
(
1− Pµ − (1− Pµ)Pm

)
π
(⌈ i+1

2
⌉)

i + 1
4
(1− Pµ)Pm(π

(⌈ i+1
2

⌉−1)

i−1 + π
(⌈ i+1

2
⌉)

i+1 ),

∀4 ≤ i ≤ K − 1 and i is odd :

π
(⌈ i+1

2
⌉)

i =
(
1− Pµ − (1− Pµ)Pm

)
π
(⌈ i+1

2
⌉)

i

+(1− Pµ)Pm(
1
4
π
(⌈ i+1

2
⌉−1)

i−1 + 1
2
π
(⌈ i+1

2
⌉)

i−1 + 1
4
π
(⌈ i+1

2
⌉)

i+1 + 1
2
π
(⌈ i+1

2
⌉+1)

i+1 ),

∀4 ≤ i ≤ K − 3 and ∀3 ≤ j ≤ ⌈ i+1
2
⌉ :

π
(j)
i+2 =

(
1− Pµ − (1− Pµ)Pm

)
π
(j)
i+2

+1
4
(1− Pµ)Pm(π

(j−1)
i+1 + π

(j)
i+1 + π

(j)
i+3 + π

(j+1)
i+3 ),

∀3 ≤ j ≤ ⌈K+1
2

⌉ − 1 :

π
(j)
K =

(
1− Pµ − (1− Pµ)Pm

)
π
(j)
K + 1

4
(1− Pµ)Pm(π

(j−1)
K−1 + π

(j)
K−1).

(1d)

If K is even :

π
(⌈K+1

2
⌉)

K =
(
1− Pµ − (1− Pµ)Pm

)
π
(⌈K+1

2
⌉)

K + 1
4
(1− Pµ)Pmπ

(⌈K+1
2

⌉−1)

K−1 ,

If K is odd :

π
(⌈K+1

2
⌉)

K =
(
1− Pµ − (1− Pµ)Pm

)
π
(⌈K+1

2
⌉)

K

+(1− Pµ)Pm(
1
4
π
(⌈K+1

2
⌉−1)

K−1 + 1
2
π
(⌈K+1

2
⌉)

K−1 ).

(1e)

πidle +
K∑
i=0

⌈ i+1
2

⌉∑
j=1

π
(j)
i = 1. (1f)

By solving (1a) - (1f), the stationary probability distributions can be derived. In the following,

we derive the parameters used in the Markov chain model: the probability of a session arriving,

the probability of a session departing, and the probability of a UE moving to another cell during

a time slot τ . Assuming that the sessions arrive as a Poisson process with rate λ, the duration

of a session has an exponential distribution with mean 1/µ, and the cell residence time also has

an exponential distribution with mean 1/m (m is also called mobility rate), we obtain:

Pλ = λτ,

Pµ = µτ,

Pm = mτ.

(2)
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B. Signaling and Data Delivery Cost Per UE

In this subsection, we analyze the signaling cost during the HO and data delivery cost from

the perspective of a single UE. Since the proposed scheme shares the same radio access and

session initiation/termination procedures with the standard 3GPP scheme, they are not taken

into account here for comparison purpose. Similar to the previous work [19] [20], the cost

is calculated based on processing latency and transmission latency. To show the performance

improvement compared to the 3GPP scheme even when a HeNB GW is deployed, the HeNB GW

is assumed to be the mobility anchor in the mobile core network. And thus, the data path will

be switched at the HeNB GW without involving the MME and S-GW processing. Let Dc
HeNB

and DHeNB GW denote the signaling processing latency at HeNB and HeNB GW respectively.

Let DX2 and DS1 denote the transmission latency over the X2 and S1 interface respectively.

If a UE moves forward to a HeNB, the threshold of the forwarding chain is not reached, and

the forwarding chain is one of the shortest paths to the local mobility anchor, there is no path

switch during the HO procedure and the forwarding chain will be cascaded. The signaling cost

in this case is:

Cnps = 4(DX2 +Dc
HeNB), (3)

which only accounts for the transmission latency of HO Request, HO Request Ack, SN Status

Transfer, and UE Context Release message over the X2 interface and their processing latency

at HeNBs. If a UE moves backward to the previous HeNB, the target HeNB will find that it is

already on the forwarding chain. It will send an “end marker” along the old forwarding chain

back to itself and buffer the data packets received from the precedent HeNB on the forwarding

chain. After it receives the “end marker”, it can transmit the buffered data packets to the UE.

The signaling cost in this case is:

Cbps = 4(DX2 +Dc
HeNB) + 2(DX2 +Dc

HeNB). (4)

Compared to (3), the extra cost is needed for the “end marker” transmission and processing.

If the threshold of the forwarding chain is not reached but the target HeNB finds that there is

a shorter path to the local mobility anchor, the target HeNB will initiate a local path switch

procedure. Given the considered grid network topology, this situation will happen when the

source HeNB is on ring i while the target HeNB is on ring i − 1. Thus, the signaling cost is
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given as:

Ci
lps = 4(DX2 +Dc

HeNB) + 2(i− 1)(DX2 +Dc
HeNB) + i(DX2 +Dc

HeNB), (5)

where the second term accounts for the message transmission and processing of the Local Path

Switch Request and Local Path Switch Request Ack along the shortest path, and the third term

accounts for the “end marker” transmission and processing along the old forwarding chain back

to the target HeNB. When the threshold of the forwarding chain is exceeded, the target HeNB

will trigger a core path switch procedure similar to the standard 3GPP path switch operation

with the signaling cost:

Ccps = 4(DX2 +Dc
HeNB) + 2DS1 +DHeNB GW

+DS1 +Dc
HeNB + (K + 1)(DX2 +Dc

HeNB),
(6)

where 2DS1 + DHeNB GW denotes the path switch signaling over the S1 interface and the

processing latency at the HeNB GW, DS1 + Dc
HeNB denotes the “end marker” transmission

and processing in a standard 3GPP path switch operation, and (k + 1)(DX2 +Dc
HeNB) denotes

the “end marker” transmission and processing along the local forwarding path back to the target

HeNB. Thus, the total signaling cost per time slot can be expressed as:

Cc
total = π

(1)
0 (1− Pµ)PmCnps +

K−1∑
i=1

π
(1)
i (1− Pµ)Pm(

3

4
Cnps +

1

4
Cbps)

+
K−1∑
i=2

⌈ i+1
2

⌉∑
j=2

π
(j)
i (1− Pµ)Pm(

1

2
Cnps +

1

4
Cbps +

1

4
Ci

lps)

+ π
(1)
K (1− Pµ)Pm(

1

4
Cbps +

3

4
Ccps)

+

⌈K+1
2

⌉∑
j=2

π
(j)
K (1− Pµ)Pm(

1

4
Cbps +

1

4
CK

lps +
1

2
Ccps).

(7)

Let Du
HeNB denote the U-plane processing latency at HeNB. The expected total data delivery

cost can be expressed as:

Cu
total =

K∑
i=0

⌈ i+1
2

⌉∑
j=1

π
(j)
i (DS1 + i(DX2 +Du

HeNB)). (8)

Similarly, the per-UE signaling cost and data delivery cost of the standard 3GPP procedure can

be derived by setting the forwarding chain threshold to be null.
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C. Signaling Load at MME/HeNB GW

In case that the S-GW acts as the mobility anchor in the EPC, there are four signaling messages

that need to be processed (receiving and sending) at the control node (MME or HeNB GW)

during each path switch operation: Path Switch Request, Path Switch Request Ack, User Plane

Update Request, and User Plane Update Response. Let N denote the number of grid femtocell

networks under the coverage of an MME/HeNB GW and U denote the number of UEs in each

grid femtocell network. The number of messages processed at MME/HeNB GW per time slot

can be expressed as:

MMME/HeNB GW = 4N · U ·
(3
4
(1− Pµ)Pmπ

(1)
K

+

⌈K+1
2

⌉∑
j=2

1

2
(1− Pµ)Pmπ

(j)
K

) (9)

In case that the HeNB GW acts as the mobility anchor in the EPC, the path switch operation

can be implemented at the HeNB GW without the involvement of the S-GW. Thus, the HeNB

GW only processes two messages per path switch operation: Path Switch Request and Path

Switch Request Ack, which may cut the number of messages above in half.

D. Recovery Latency and Packet Loss

Finally, we give a simple analysis for the comparison of the recovery mechanisms of the

TF CP and TF SP scheme. The metrics considered here are the recovery latency and the packet

loss during the recovery process. In the TF CP scheme, when a HeNB on the forwarding chain

is switched off or failed, the next HeNB on the forwarding chain can detect the failure of the

precedent HeNB after a duration Ddetect. Then the next HeNB will send a Path Switch Request

to the mobile core network to initiate a core path switch operation. Thus, the recovery latency

of the TF CP scheme is given as:

DTF CP
recovery = Ddetect + 2DS1 +DHeNB GW . (10)

Let rp denote the packet arrival rate during a session. The total lost packets are denoted as:

P TF CP
loss = rp(Ddetect +DS1 +DHeNB GW ). (11)

In the TF SP scheme, after the next HeNB on the forwarding chain detects the failure of its

precedent HeNB, it will send a Local Path Switch Request to the precedent HeNB of the failed
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one on the forwarding chain. Considering S
(1)
1 in Fig.6 as the failed HeNB and S

(1)
0 as the

precedent HeNB of the failed one, the forwarding chain section starting from S
(1)
0 can be either

{S(1)
0 , S

(1)
1 , S

(1)
2 } or {S(1)

0 , S
(1)
1 , S

(2)
2 } the recovery latency can be expressed as:

DTF SP
recovery = Ddetect +

π
(1)
2

π
(1)
2 + π

(2)
2

8(DX2 +Dc
HeNB)

+
π
(2)
2

π
(1)
2 + π

(2)
2

4(DX2 +Dc
HeNB).

(12)

In case that a buffering mechanism is used at the precedent HeNB of the failed one, i.e.

unsuccessfully transmitted packets will be buffered for certain period, the packet loss can be

ignorable. Otherwise, it can be denoted as:

P TF SP
loss = rp(Ddetect +

π
(1)
2

π
(1)
2 + π

(2)
2

4(DX2 +Dc
HeNB)

+
π
(2)
2

π
(1)
2 + π

(2)
2

2(DX2 +Dc
HeNB)).

(13)

Note that the buffering mechanism cannot be applied to the TF CP scheme using core recovery.

After a forwarding HeNB fails, the packets that have been sent out from the S-GW before the

recovery request is received will be dropped.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed schemes and the 3GPP scheme

via the analytical models and discrete-event simulations. To achieve the statistical validity, the

simulation for each scenario is run for 5 million events. The default parameter setting used in

the evaluation is listed in Table II.In the following, we may vary the values of some parameters

to show their impacts on the performance. The 3GPP related parameter values are based on [26].

A. Signaling and Data Delivery Cost Per UE

We first evaluate the signaling cost during HO and the data delivery cost in terms of the

transmission and processing latency of the messages from the perspective of a single UE. In

order to validate the analytical models and show the impact of the long forwarding chain, the

size of the local grid femtocell network is assumed to be sufficiently large in the simulation. The

Internet backhaul plays an important role in differentiating the femtocells from the traditional
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macrocells. Fig.9 shows the relative cost ratio between the proposed schemes and the 3GPP

scheme as a function of K under various backhaul latency DS1. The relative cost ratio is used

here for better illustration, defined as the ratio of the cost of the proposed schemes to the cost of

the 3GPP scheme under the same parameter setting. In terms of the relative signaling cost ratio

as shown in Fig.9(a), we have the following observations: Firstly, more signaling cost saving can

be achieved when the backhaul cost becomes higher. Although we do not explicitly model the

congestion at the core network entity resulting from the large processing requests from HeNBs,

the backhaul cost can somewhat reflect this congestion condition. The proposed schemes can

significantly reduce the processing load for the EPC to manage a great number of HeNBs.

Secondly, the signaling cost of both proposed schemes is reduced with the initial increase of

K since the longer forwarding chain reduces the number of core path switch operations. Up to

a certain value of K, the TF SP scheme achieves more signaling cost saving than the TF CP

scheme because the local path switch operations reduce the chance to reach the forwarding chain

threshold. With the further increase of K, the TF CP scheme has less signaling cost than the

TF SP scheme because the local path switch operations incur too much local signaling cost to

the local mobility anchor. However, the signaling cost saving comes at the cost of the increased

data delivery cost as shown in Fig.9(b). with the increase of K, both proposed schemes will

incur more data delivery cost compared to the 3GPP scheme without local traffic forwarding.

But when the Internet backhaul latency is much higher than the local forwarding latency, which

is the typical case in a networked femtocell scenario, the local traffic forwarding only introduces

marginal extra cost. Opposite to Fig.9(a), the TF SP scheme has a little higher data delivery

cost than the TF CP scheme up to a certain value of K, but has lower data delivery cost than

the TF CP scheme with the further increase of K. Therefore, based on the requirements of the

K value, signaling and data delivery cost, a better scheme can be selected.

The cell residence time is another factor differentiating the femtocells from the traditional

macrocells. Given the small coverage of a femtocell, frequent handover may happen when users

move within the local femtocell networks. Fig.10 shows the normalized cost of the proposed

schemes and the 3GPP scheme as a function of cell residence time 1/m. The cost shown in

the figures is normalized with the maximum cost value of the 3GPP scheme in the figure being

1. It is clearly shown in Fig.10(a) that significant signaling cost saving can be obtained by the

proposed schemes when the cell residence time is small, i.e. frequent HO happens. When a
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user stays connected with a HeNB for a relatively long period, the signaling cost generated by

the 3GPP scheme is not that significant. In addition, a long forwarding chain will be preferred

under high mobility to reduce the signaling cost. Fig.10(b) shows that the data delivery cost

of the proposed schemes will reduce with the increase of the cell residence time since a UE

will traverse less HeNBs during its communication session. The data delivery cost of the 3GPP

scheme is independent of the cell residence time as the core path will be switched at each HO.

The impact of the session duration on the normalized cost is shown in Fig.11. The session

duration will not affect the signaling cost and the data delivery cost of the 3GPP scheme. When

the session duration is sufficiently short, the proposed schemes with different forwarding chain

thresholds achieve a similar performance for both costs. Because a communication session will be

likely to end before a core path switch operation is triggered. As the session duration increases,

both the signaling cost and the data delivery cost of the proposed schemes will increase. And the

schemes with a higher threshold of the forwarding chain will have less signaling cost but more

data delivery cost. For all the above analytical results,it is clearly shown that they closely match

the simulation results. Therefore, the proposed analytical models accurately capture the behaviors

of the studied schemes and can be used to derive the optimal threshold of the forwarding chain

for minimizing the handover cost based on the specific requirements and environments.

B. Signaling Load at EPC

The impact of the signaling load on the EPC is evaluated in this subsection in terms of the

number of messages processed at the MME/HeNB GW. We consider the case that the S-GW is

used as the mobility anchor point in the EPC during the HO process. While the analytical model

provides accurate results under the assumption that the local grid femtocell network is sufficiently

large, it may not fully reflect the characteristics in real world where a local grid femtocell network

has a limited scale. Thus, we focus on the simulation results in this subsection. We consider that

500 grid femtocell networks are deployed under the coverage area of an MME/HeNB GW and

each one is a 5×5 grid consisting of 25 femtocells. In each grid network, 50 UEs are randomly

deployed and they move randomly within the local network from the current cell to one of its

neighbors with equal probability.

Fig.12 shows the number of signaling messages processed at the MME (HeNB GW) per

second with respect to the inter-session arrival interval 1/λ. Other simulation parameter values
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are the same as in Table II. It is shown that both the TF CP scheme and the TF SP scheme

can significantly reduce the number of signaling messages need to be processed at the MME

even when the allowed maximum length of the forwarding chain is only 2 hops. The longer the

forwarding chain is allowed to become, the more signaling overhead can be saved at the MME.

More saving can be achieved by the TF SP scheme compared to the TF CP scheme since the

local path optimization can reduce the chance that the forwarding chain reaches its threshold.

C. Data Traffic Load of Local X2 Links

The reduction of the signaling load at the EPC may come at the cost of the increased data

traffic load/utilized bandwidth of the local X2 links. In this subsection, we evaluate the impact

of the forwarding chain on the local traffic load in terms of the number of concurrent sessions

on an X2 link via simulations. For comparison purpose, the same simulation environment as the

previous subsection is used. Fig.13 shows the average number of concurrent sessions per X2 link

over all the X2 links and over the whole simulation time in a local femtocell network. Clearly,

the average traffic load per X2 link is increased as the user sessions arrive more frequently.

However, it is still reasonably low even when the inter-session arrival interval per UE is only

50 minutes relative to the transport capacity of the local links.

In addition to the average traffic load conditions, a more important metric is the instantaneous

traffic load distribution in the local network during the entire time duration, which can reflect

the traffic load on an X2 link in the worst case. Fig.14 shows the percentage of the time over the

whole simulation time that a certain number of concurrent sessions resides on a single X2 link

over all the X2 links when the threshold of the forwarding chain K = 4 and the inter-session

arrival interval 1/λ = 100 minutes. It can be found that the number of concurrent sessions

traversing an X2 link is limited to two most of the simulation time. The percentage of time

that an X2 link needs to carry 5 concurrent sessions is only 1.1e-06 for the TF CP scheme and

1.6e-06 for the TF SP scheme. And no X2 link needs to carry 6 or more concurrent sessions

at any time instant. This implies that the traffic load incurred by the forwarding chain can be

efficiently distributed over the local network. The bottleneck effect on an X2 link is negligible.
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D. Recovery Latency and Packet Loss

For the failure detection time and packet arrival rate given in Table II, the average recovery

latency and lost packets during the recovery process of the proposed schemes are calculated and

listed in Table III. Given the low recovery latency as shown in this Table, a small buffer at a

HeNB will be enough to completely eliminate the packet loss for the TF SP scheme. For the

purpose of comparing the two proposed schemes, we consider the case that there is no buffering

mechanism used at the HeNBs in the TF SP scheme, which reflects a worst case scenario. It is

shown that the TF SP scheme using local recovery has less recovery latency and lost packets

than the TF CP scheme using core recovery. And both schemes can recover the communication

session within a short period and only incur limited packet loss. Therefore, the proposed schemes

are suitable for the self-deployed femtocells.

VII. CONCLUSION

Given the small coverage, massive deployment, long Internet backhaul of femtocells, mobility

management in femtocells faces new challenges. In this paper, we propose two local mobility

management schemes based on X2 traffic forwarding for networked femtocells to reduce the

inter-femto handover cost. Instead of implementing the path switch operation at the EPC for each

handover, a local traffic forwarding chain is constructed to reuse the old Internet backhaul path.

Analytical and simulation studies show that remarkable signaling cost saving can be achieved

per UE compared to the standard 3GPP scheme, especially when the core path switch cost and

the mobility rates are high. In particular, the TF SP scheme has less signaling cost and a little

more data delivery cost than the TF CP scheme when the threshold of the forwarding chain is

small while it has more signaling cost and less data delivery cost when the threshold is large.

Based on the specific session and cost requirements, mobility pattern and topology availability,

an appropriate threshold and traffic forwarding scheme can be selected. Simulation results also

show that the processing load in terms of the number of signaling messages processed at the EPC

can be significantly reduced while the local traffic load is relatively moderate and well distributed

over the local networks. In addition, both schemes can recover the communication session within

a short period and only incur limited packet loss in case that a HeNB on the forwarding chain

is switched off or failed. As a final remark, the proposed schemes are transparent to the EPC

and the UEs and no upgrade is required from either side. The modifications are only needed for
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the femto base stations. Given the deployment of the femtocells is still at the early stage and

the standardization activities are ongoing, the proposed schemes can be easily incorporated into

the current standard.
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Fig. 1. 3GPP networked femtocell architecture and path switch operation.
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Fig. 2. MSC of 3GPP X2-based handover.
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Fig. 3. MSC of TF CP scheme.
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TABLE I
PARAMETERS USED IN ANALYSIS

Parameter Notation

τ Time slot duration of Markov chain

λ Session arrival rate

µ Session departure rate

m UE mobility rate

K Threshold of forwarding chain

DX2 Transmission latency over X2

DS1 Transmission latency over S1

Dc
HeNB C-plane processing latency at HeNB

Du
HeNB U-plane processing latency at HeNB

DHeNB GW UE context retrieval and processing latency at HeNB GW

N Number of grid femtocell networks controlled by an MME/HeNB GW

U Number of UEs in a grid femtocell network

Ddetect HeNB failure detection latency

rp Packet arrival rate during a session

TABLE II
PARAMETER SETTING

Parameter Value Parameter Value

τ 0.001 min DX2 5 ms

λ 0.01 /min DS1 50 ms

µ 0.1 /min Dc
HeNB 4 ms

m 1 /min Du
HeNB 1 ms

K 2,4,6 DHeNB GW 15 ms

N 500 U 50

rp 60 /sec Ddetect 50 ms

TABLE III
COMPARISON OF RECOVERY MECHANISMS

Schemes Average Recovery Latency Average Lost Packets

TF CP 165.00 ms 6.90

TF SP 100.63 ms 4.52


