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Abstract

We examine the impact of limited channel knowledge on the secondary user (SU) in a cognitive radio system.
Under a minimum signal-to-interference-and-noise ratio (SINR) constraint for the primary user (PU) receiver, we
determine the SU capacity under five channel knowledge scenarios. We derive analytical expressions for the capacity
cumulative distribution functions and the probability of SU blocking as a function of allowable interference. We
show that imperfect knowledge of the PU-PU channel gain by the SU-Tx often prohibits SU transmission or
necessitates a high interference level at the PU. We also show that errored knowledge of the PU-PU channel is
more beneficial than statistical channel knowledge and imperfect knowledge of the SU-Tx to PU-Rx link has a
limited impact on SU capacity.

I. INTRODUCTION

The cognitive radio (CR) concept, introduced in [1], refersto a smart radio which can sense the external
electromagnetic environment and adapt its transmission parameters according to the current state of the
environment [2]. Secondary (or cognitive) users (SUs) can be designed to access parts of the primary user
(PU) spectrum opportunistically or concurrently, provided that they cause minimal interference to the PUs
in that band [3]–[5].

The CRs can protect the PU transmissions by a variety of control mechanisms. For example, the SU
can regulate transmit power so that the interference at the PU receiver (PU-Rx) is below a well defined
threshold. The limits on this received interference level can be imposed with an average and/or peak level
constraint [6]. Another method of protecting the PU transmission is to consider a minimum value for
its signal-to-interference noise ratio (SINR) beyond which further degradation is not accepted. Note that
if the PU signal has a signal-to-noise ratio (SNR) below thislevel then the SU cannot transmit at all
since the minimum SINR is unobtainable. With the SINR constraint, depending on the fading level of the
PU transmitter (PU-Tx) to PU-Rx link, the conservatism inherent in the constant interference threshold
constraint can be relaxed to some extent. The tolerable PU interference is no longer a constant and this
can be to the benefit of the SU-Tx when the PU link is strong. Theprice of this relaxation is that some
information about the PU-Tx to PU-Rx link must be available to the SU transmitter (SU-Tx).

A large body of work is now available on various aspects of CR systems, including fundamental
information theoretic capacity limits and performance analysis, which often assumes perfect SU-Tx to
PU-Rx channel state information (CSI) [6]–[12]. In practice, there is expected to be limited (or no)
collaboration between PU and SU systems. Hence, accuratelyestimating the SU-Tx to PU-Rx channels
is a challenging task. An important question is the impact ofthe nature of channel knowledge on CR
capacity. Several recent contributions have considered imperfect CSI [13]–[19]. In [13], mean and outage
capacities along with optimum power allocation policies have been investigated for a CR system in a
fading environment with imperfect CSI.
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In order to enforce PU protection with imperfect CSI, probabilistic constraints are imposed in [13]
and are also employed in this paper. The constraints in [13] guarantee that the interference power
experienced by the PU receiver stays below a tolerable levelwithin a prescribed probability. In our
work, the probabilistic constraints apply to SINR. Assuming imperfect and quantized CSI for the SU-
Tx to PU-Tx link, in [14], the mean capacity with peak interference power constraints was studied. In
[15], mean SU capacity is derived under average and peak transmit-power constraints and with respect to
two different interference constraints: an interference outage constraint and a signal-to-interference outage
constraint. To protect the PU under imperfect CSI, a new power control strategy is developed in [17]. For
a range of different assumptions about the available CSI at the SU-Tx, in [18], achievable PU and SU rate
regions were studied. The optimal robust transmitter design problem for a multiple-input single-output
secure SU network under imperfect CSI was considered in [19]. All of these studies have focused on the
effect of imperfect knowledge of the SU-Tx to PU-Rx link, while ignoring the impact of imperfect CSI
knowledge of other links, such as the PU-Tx to PU-Rx link at the SU-Tx. In [10], it was demonstrated
that obtaining the CSI of such links is highly beneficial to the SU capacity.

In [20] and [15], optimal power allocation and mean channel capacity is investigated for a secondary
system under limited channel knowledge of the SU-Tx to the PU-Rx link. Both average and peak
transmit power constraints are considered and two different interference constraints: an interference outage
constraint and a signal-to-interference outage constraint. In contrast, [16] considers CSI imperfections on
both the SU-Tx to the PU-Rx link and the SU-Tx to the SU-Rx link. Considering an average SU transmit
power constraint and an instantaneous interference outageconstraint, the authors have found an expression
for the ergodic SU capacity.

The system considered in [21] includes a single SU-Tx and SU-Rx pair sharing the same narrowband
channel withN-multiple PUs. For this system, by considering various forms of imperfect CSI of the SU-
Tx to the PU-Rx link at the secondary transmitter, the authors of [21] have analyzed the mean SU capacity
under an average SU transmit power constraint andN individual peak interference power constraints at
each PU-Rx.

Some results in the case of multiple antenna deployments also exist in the literature. For example, in
[22], the capacity of a spectrum sharing system with maximalratio combining (MRC) diversity at the
secondary receiver with imperfect CSI on the SU-Tx to the PU-Rx link is studied. Their results show that
deployment of a multi-antenna array with MRC allows the secondary system to achieve a higher capacity
as well as the opportunity to tolerate larger estimation errors.

This paper differs from the existing literature in several ways. There are four channel links in a two user
PU/SU channel to consider and each of them may or may not be perfectly known at the SU transmitter.
Previous studies [13]–[15], [17], [19] have only assumed imperfect knowledge of the SU-Tx to PU-Rx link.
Thus, the impact of imperfect knowledge of the other links has not received a comprehensive treatment
and remains unknown. Additionally, in previous work, the effect of the interference from the PU-Tx on
SU capacity is ignored. Also, we employ the SINR at the PU-Rx to impose probabilistic constraints to
protect the PU-Rx, while prior works, with the exception of [15], have considered an interference outage
constraint. Finally, we consider several cases where the imperfect CSI manifests itself in the form of
statistical channel knowledge (i.e., knowledge of the meanchannel gains). Such a form of imperfect CSI
is attractive from a practical stand point, since obtainingaccurate knowledge is almost impossible for
some links, such as the PU-Tx to PU-Rx link. Moreover, the mean value does not impose a large system
burden as it only requires infrequent updates. Note that theinclusion of PU-Tx to SU-Rx interference and
probabilistic constraints enables a rigorous evaluation of the benefits of various types of CSI. However, it
also increases the analytical complexity. Hence, in order to make progress on the key issue of assessing
the impact of CSI we focus on the simple case of a two user PU/SUchannel.

In this paper, we study the SU performance under various scenarios for the CSI available at the
transmitter with the aim of evaluating the relative importance of the different links in our model. We
consider knowledge of the mean and errored channel gains as types of imperfect CSI and the baseline case
of perfect CSI. All three situations are relevant with perfect CSI providing a benchmark and imperfect
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CSI representing some level of SU-PU cooperation. The case where only the mean channel gains are
available corresponds to very low rate feedback of the mean values from the receivers to the SU-Tx. The
channel needs to be updated only when the positions of the terminals are changed. In all cases where the
channels are not exactly known, we are able to compare performance using a single probabilistic SINR
constraint. This provides novel and fair comparisons and allows the true importance of various CSI levels
to be identified. In particular, we establish the following key observations and results:

• In four of the five scenarios considered, we derive analytical expressions for the cumulative distri-
bution function (cdf) of the SU SINR and use it to evaluate theSU capacity cdf.

• For all scenarios, we derive the probability of SU blocking as a function of the permissible interference
at the PU-Rx.

• By evaluating our results for a range of system parameters, we demonstrate the importance of accurate
knowledge of the PU-Tx to PU-Rx link at the SU-Tx. We show thatunder demanding operating
conditions, this information is required for SU transmission, in contrast to the full knowledge of
other links.

• We demonstrate the very high sensitivity of SU performance to the error in the estimation of the
PU-Tx to PU-Rx and SU-Tx to PU-Rx links.

• We show that errored knowledge of the PU-Tx to PU-Rx link and SU-Tx to PU-Rx link (if available)
is better for SU capacity than a knowledge of the mean link gains and, of the two, the former has
more impact on SU capacity.

• By considering a single probabilistic SINR constraint, a unified framework is presented which enables
fair comparisons between different types of channel knowledge. Hence, intuitive results such as the
importance of the PU-Tx to PU-Rx link, can be verified and isolated results from the literature can
be confirmed in a rigorous manner.

The rest of the paper is organized as follows. Section II introduces the system model. In Section III,
we investigate the mean SU capacity and SU blocking probability under different channel knowledge
scenarios. In Section IV, numerical results supported by simulations are presented and discussed. Finally,
we conclude in Section V.

II. SYSTEM MODEL

Consider a CR system (shown in Fig. 1) with the SU-Tx and PU-Txtransmitting simultaneously to
their respective receivers. Independent point-to-point flat Rayleigh fading channels are assumed for all
links. Let gp = |hp|

2, gs = |hs|
2, gps = |hps|

2 andgsp = |hsp|
2 denote the instantaneous channel gains of

the PU-Tx to PU-Rx, SU-Tx to SU-Rx, PU-Tx to SU-Rx and SU-Tx toPU-Rx links, respectively. Denote
the exponentially distributed probability density functions (pdfs) of the random variables (RVs)gp, gs, gps
andgsp by fgp(x), fgs(x), fgps(x) andfgsp(x), respectively, governed by their corresponding parameters,
Ωp = E(gp),Ωs = E(gs), Ωps = E(gps) andΩsp = E(gsp), whereE(·) denotes the expectation operator.

As described further in this Section, the SU transmission under the SINR constraint is governed solely
by the state of thegp andgsp links1. Thus, in this paper we consider the following five scenariosfor the
knowledge ofgp andgsp by the SU-Tx.

Scenario 1: The PU-Tx to PU-Rx channel,gp, and the SU-Tx to PU-Rx channel,gsp, are perfectly
known. This clearly unrealistic scenario serves as a benchmark for comparison of the other cases.

Scenario 2: The PU-Tx to PU-Rx channel,gp, is perfectly known while only the meanΩsp of the
channel between the SU-Tx and the PU-Rx is known. We considerthis scenario to reflect the fact that
while the PU is more likely to estimate and feed back the full CSI of its own communication link, it
should not be tasked to do so for the SU-Tx to PU-Rx channel. Instead, only statistical information about
gsp is relayed back to SU-Tx.

1The channel gainsgs andgps have an impact on achievable SU capacity, however the level of their knowledge by the SU-Tx does not
impact the transmit powerPs.
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Scenario 3: The mean,Ωp, and the exact channel gain,gsp, are known. In contrast toScenario 2, this
case is considered mainly for completeness.

Scenario 4: Only the means,Ωp andΩsp, are known. This scenario arises when only statistical infor-
mation about the channels is available to the SU-Tx as a result of limited feedback resources.

Scenario 5: Estimates of the PU-Tx to PU-Rx and SU-Tx to PU-Rx channels are available. This scenario
arises as a result of channel estimation errors, as well as feedback quantisation and delay.

Where possible, we impose a constraint,γT, on the PU-Rx SINR, denoted byγp. Hence,

γp =
Ppgp

Psgsp + σ2
p

, andγp ≥ γT, (1)

whereγT is a pre-defined SINR threshold,Pp (assumed constant and known to the SU-Tx) andPs are the
PU and SU transmit powers, respectively, andσ2

p is the additive white Gaussian noise (AWGN) variance
at the PU-Rx. In the event that the PU-Rx SNR lies in the region, Ppgp/σ

2
p < γT, the constraint in (1)

cannot be satisfied, and thus, the SU transmit power is zero and thus there is no SU interferences to
the PU. If the PU SNR is above the SINR thresholdγT, the SU-Tx will adapt its transmit power to a
maximum level satisfying (1) as determined under the five scenarios. This adaptation does not consider
the SU linkgs. We also impose a maximum SU transmit power constraint,Pm, which arises in practice,
for example, due to power amplifier nonlinearities. Thus, inScenario 1, where the SU-Tx knowsgp, the
SU transmit power is given by

Pt =

{

0 Ppgp
γT

< σ2
p

min (Ps, Pm) otherwise,
(2)

wherePs is obtained from (1) by solvingγT = γp. Furthermore, the constraints described above can
only be guaranteed if the SU-Tx has perfect knowledge of the links gp and gsp, i.e., underScenario 1.
In analysingScenarios 2-5, we use probabilistic constraints. Hence, we require the SINR constraint to
hold with an acceptably high probability,1− α, whereα is small. These are described in Sections III-C
- III-E.

In analysing the SU capacity, we first consider the SINR at theSU-Rx, denoted byγI, where

γI =
Ptgs

Ppgps + σ2
s

, (3)

and σ2
s is the AWGN variance at the SU-Rx. We denote the pdf and cdf ofγI by fγI(x) and FγI(x),

respectively. The instantaneous SU capacity is given by

C = log2 (1 + γI) , (4)

where the mean,̄C, can be derived usingfγI(x) as

C̄ = E(C) =

∫

∞

0

log2 (1 + x) fγI(x) dx. (5)

The cdf ofC can be obtained fromFγI(x) by noting that

FC(y) = Pr(γI < 2y − 1) = FγI(ỹ), (6)

where Pr(·) denotes probability and̃y = 2y − 1. Using (3), we can express (6) as

FγI(ỹ) = Egps

{

Pr
(

Ptgs < ỹ(σ2
s + Ppgps)

)

∣

∣

∣

∣

∣

gps

}

(7)

=

∫

∞

0

Fγ
(

ỹ(σ2
s + Ppv)

) e−v/Ωps

Ωps

dv,
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where we have definedγ = Ptgs with a cdf Fγ(x). In what follows, we derive expressions forFγ(x)
which, using (6) and (7), allows us to compute the capacity cdf.

We parameterize the main system variables by two key parameters. The first,c1, defined by

c1 =
Ωsp

Ωs
, (8)

represents the ratio of interference at the PU-Rx to the desired channel strength for the SU. The second,
c2, is given by

c2 =
γT

PpΩp/σ2
p

, (9)

which is the ratio of the minimum target SINR to the mean SNR atthe PU-Rx. Hence, increasingc2
corresponds to reducing the allowable interference, with the case ofc2 = 1 corresponding to zero average
allowable interference.

III. SU CAPACITY

The capacity mean in (5) and the cdf in (7) require a knowledgeof the distributions ofγ = Ptgs and
γI. Hence, in this section we derive the cdfs forγ andγI for Scenarios 1-4. ForScenario 5, an alternative
approach is required (see Section III-E).

A. Scenario 1

When the SU has full knowledge ofgp andgsp, Ps can be obtained directly from (1), giving

Ps =

Ppgp
γT

− σ2
p

gsp
. (10)

We note that while we ignore thePt = 0 case in (2), the following derivation is valid since Pr(γ > 0) = 0
for Pt ≤ 0. In finding Fγ(x), we solve for the complementary cdf given by

Pr(γ > x) = Pr(gsmin(Pm, Ps) > x)

= Pr

(

Pmgs > x,

(

Ppgp
γT

− σ2
p

)

gs
gsp

> x

)

= Pr

(

gs >
x

Pm
,

(

Ppgp
γT

− σ2
p

)

gs > xgsp

)

. (11)

Noting thatgp is an exponentially distributed RV, we can rewrite (11) as

Pr(γ > x) =

∫

∞

0

∫

∞

x
Pm

e
−

γT
PpΩp

(xvu +σ2p)fgs(u)fgsp(v) du dv. (12)

Substituting forfgs(u) andfgsp(v), and changing the order of integration one obtains

Pr(γ > x) =
e
−
γTσ

2
p

PpΩp

ΩspΩs

∫

∞

x
Pm

e−
u
Ωs

∫

∞

0

e
−

(

γTx

PpΩpu
+ 1

Ωsp

)

v
dv du (13)

=
e
−
γTσ

2
p

PpΩp

ΩspΩs

∫

∞

x
Pm

e−
u
Ωs

γTx
PpΩpu

+ 1
Ωsp

du.

After simplifying (13), the cdfFγ(x) = 1− Pr(γ > x) can be shown to be [23, Eq. (3.351.2)]

Fγ(x) = 1− e
−

γTσ
2
p

PpΩp

[

e−
x

PmΩs −
ΩspγTx

PpΩpΩs
e

ΩspγTx

PpΩpΩs Γ

(

0,
ΩspγTx

PpΩpΩs
+

x

PmΩs

)

]

, (14)
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whereΓ(·, ·) is the upper incomplete gamma function. Substituting (14) into (7) results in

FγI (ỹ) = 1−
PmΩse

−

(

γTσ
2
p

PpΩp
+

ỹσ2s
PmΩs

)

PmΩs + ỹPpΩps
+

ΩspγTỹ

ΩpsΩpΩsPp
exp

{

ΩspγTσ
2
p

ΩpΩsPp

(

ỹ −
Ωs

Ωsp

)}

(15)

×

∫

∞

0

(

σ2
p + Ppv

)

exp

{(

ΩspγT
ΩpΩs

ỹ −
1

Ωps

)

v

}

Γ

(

0,
ΩspγTPm + PpΩp

PpPmΩpΩs
(σ2

p + Ppv)ỹ

)

dv.

To the best of the authors’ knowledge, the integral in (15) does not have a closed-form solution. In Section
IV, the capacity cdf results are obtained by numerical integration.

In order to obtain the expression for mean capacity, we can derive the pdf,fγ(x), by differentiating
(14) with respect tõy. Alternatively, using (7) we have

fγI(ỹ) =

∫

∞

0

(σ2
p + Ppv)fγ(ỹ(σ

2
p + Ppv))

e−v/Ωps

Ωps
dv, (16)

wherefγ(x) was computed in [24] as,

fγ(x) = e
−

γTσ
2
p

PpΩp

[

(

1

PmΩs
−

ΩspγT
PpΩpΩs

)

e−
x

PmΩs (17)

+ e
ΩspγTx

PpΩpΩs

(

(ΩspγT)
2x

(PpΩpΩs)2
+

ΩspγT
PpΩpΩs

)

Γ

(

0,
ΩspγTx

PpΩpΩs

+
x

PmΩs

)

]

.

The expression resulting from substituting (17) into (16) cannot be written in closed-form. Thus, the mean
capacity,C̄, must be calculated numerically by substituting (17) into (16) and (5).

B. Scenario 2

In Scenarios 2-5, where exact channel knowledge is unavailable, the SU cannot guarantee that (1) is
satisfied since the values ofgp and gsp are uncertain. Thus, we constrain the SU to satisfy (1) with an
acceptably high probability,1− α, whereα is usually small.

Hence, forScenario 2, where the SU knows only the mean,Ωsp, of gsp, we consider the probability of
satisfying the SINR constraint with a probability of1− α. This gives

Pr

(

Ppgp
Psgsp + σ2

p

≥ γT

∣

∣

∣

∣

∣

gp,Ωsp

)

= 1− α, (18)

which can be rewritten as

Pr

(

gsp ≤
Ppgp − γTσ

2
p

PsγT

∣

∣

∣

∣

∣

gp,Ωsp

)

= 1− α. (19)

Sincegsp is exponential, from (19), we can derive the expression for the transmit power,Ps, as

Ps = −
Ppgp − γTσ

2
p

ln(α)γTΩsp
. (20)

Using (20), the complementary cdf ofγ is derived as follows:

Pr(γ > x) = Pr(Pmgs > x, Psgs > x)

= E

[

Pr
(

Pmgs > x, Psgs > x
∣

∣

∣
gp

)]

, (21)
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where the conditional probability in (21) is given by

Pr
(

Pmgs > x, Psgs > x
∣

∣

∣
gp

)

=







Pr
(

gs >
x
Pm

)

Pm ≤ Ps

Pr
(

gs >
x
Ps

)

Pm > Ps.
(22)

Hence, we have

Pr(γ > x) =

∫ ψ

ψ0

Pr

(

gs >
x

Ps

)

fgp(y) dy +

∫

∞

ψ

Pr

(

gs >
x

Pm

)

fgp(y) dy, (23)

whereψ0 =
γTσ

2
p

Pp
andψ =

γT(σ2p−Pm ln(α)Ωsp)

Pp
. The lower integration limit in the first term of (23) takes

into account thePt = 0 condition in (2). After some manipulation, we can simplify (23) to obtain
Fγ(x) = 1− Pr(γ > x) as,

Fγ(x) = 1−

∫ ψ

ψ0

Pr

(

gs >
x

Pm

)

fgp(y) dy −

∫

∞

ψ

Pr

(

gs > −
ln(α)γTΩspx

Ppy − γTσ2
p

)

fgp(y) dy (24)

= 1− exp

{

−
x

PmΩs

−
ψ

Ωp

}

−
1

Ωp

∫ ψ

ψ0

e
−

ln(α)γTΩspx

(γTσ
2
p−Ppy)Ωs e

−
y
Ωp dy. (25)

Once again, there exists no closed-form solution to the integral in (25). Following the same approach
as in Scenario 1, we use (25) and (7) to findFγI(ỹ) (and thus the capacity cdf from (6)). After some
manipulation, we obtain

FγI(ỹ) = 1−
PmΩse

−

(

ỹσ2p
PmΩs

+ ψ
Ωp

)

ΩpsPpỹ + PmΩs
(26)

+
1

Ωs

∫ ψ

ψ0

e
−

(

ΩspγTσ
2
p lnαỹ

γTσ
2
pΩs−PpΩsz

+ z
Ωs

)

γTσ
2
pΩs − PpΩsz

γTσ2
pΩs + ΩspγTPpΩps ln(α)ỹ − PpΩsz

dz.

Here, again, the capacity cdf is obtained using (6) and numerically integrating (26).
To compute the SU mean capacity, we differentiate (26) with respect tõy to find the pdf

fγI(x) = −σ2
pe

−

(

xσ2p
PmΩs

+ ψ
Ωp

)

+
ΩspγTσ

2
p ln(α)

Ωs

∫ ψ

ψ0

e
−

(

ΩspγTσ
2
p ln(α)x

γTσ
2
pΩs−PpΩsz

+ z
Ωs

)

(27)

×

(

(γTσ
2
pΩs − PpΩsz)(ΩspγTPpΩps lnα− 1) + ΩspγTPpΩps ln(α)x

(γTσ2
pΩs + ΩspγTPpΩps ln(α)x− PpΩsz)2

)

dz.

The mean capacity is then computed by substituting (27) into(5) and numerically integrating.

C. Scenario 3

In Scenario 3, where the SU has exact knowledge ofgsp and knows only the meanΩp, we once again
satisfy the SINR constraint with a probability of1− α. Hence,

Pr

(

Ppgp
Psgsp + σ2

p

≥ γT

∣

∣

∣

∣

∣

Ωp, gsp

)

= 1− α, (28)

which gives

Pr

(

gp ≥
γT(Psgsp + σ2

p)

Pp

∣

∣

∣

∣

∣

Ωp, gsp

)

= 1− α. (29)
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Following the same approach as forScenario 2 , one can show that

Ps = −

(

ln(1− α)PpΩp

γT
+ σ2

p

)

1

gsp
. (30)

From (30), the SU SINR cdfFγI(ỹ) and pdffγI(ỹ) are derived in Appendix A. The cdf is expressed in
terms of simple functions of̃y as

FγI (ỹ) = 1− s(ỹ)− h(ỹ)E1(r(ỹ)), (31)

wheres(ỹ), h(ỹ) andr(ỹ) are given in Appendix A by (57). Similarly, the pdf is given by

fγI (ỹ) = −s′(ỹ)− h′(ỹ)E1(r(ỹ)) + h(ỹ)r′(ỹ)
e−r(ỹ)

r(ỹ)
, (32)

wheres′(ỹ), h′(ỹ) andr′(ỹ) are given in Appendix A by (58).

D. Scenario 4

Consider the scenario where the SU-Tx has knowledge of only the mean values ofgp and gsp. Here,
we have

Pr

(

Ppgp
Psgsp + σ2

p

≥ γT

∣

∣

∣

∣

Ωp,Ωsp

)

= 1− α. (33)

Using conditioning, (33) can be given as

E

[

Pr

(

Ppgp ≥ γT
(

Psgsp + σ2
p

)

∣

∣

∣

∣

gsp

)]

= 1− α, (34)

which after some manipulation gives the transmit power,Ps, as

Ps =
PpΩp

γTΩsp





e
−
γTσ

2
p

PpΩp

1− α
− 1



 . (35)

Here,Ps andPt are deterministic, depending on the system parameters. Thelatter is given by

Pt =







0 Ps < 0
Ps 0 < Ps < Pm

Pm Ps > Pm.
(36)

Hence, the cdf ofγ is given by

Fγ(x) = 1− e
−

x
PtΩs , (37)

which, after substituting into (7) and (6), results in the capacity cdf

FC(y) = 1−
PtΩs

ỹPpΩps + PtΩs

e
−

ỹσ2s
PtΩs . (38)

In order to compute the mean capacity,C̄, we note thatFγI (x) can be trivially derived from (38) and (7).
Differentiating to obtainfγI (x) and substituting into (5), one obtains

C̄ =
1

ln(2)

∫

∞

1

(

σ2
s

PpΩpst+ PtΩs
+

PtPpΩsΩps

(PpΩpst+ PtΩs)
2

)

ln(t)e
−tσ2s
PtΩs dt, (39)

where we have used the change of variable,t = 1 + x.
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E. Scenario 5

Finally, we investigate the scenario where the SU-Tx operates on estimates of the gainsgp andgsp, which
would typically arise from the information being fed back via a feedback channel, whose quantization
and delay further contributes to the estimation error. In such a case, we aim to satisfy

Pr

(

Ppgp ≥ γTPsgsp + γTσ
2
s

∣

∣

∣

∣

ĝp, ĝsp

)

= 1− α, (40)

which must be solved forPs. The complexity of (40) makes it infeasible to derive any analytical capacity
results. Instead, (40) is derived in Appendix B and is shown to be equivalent to

∞
∑

j=0

(λ1/2)
j

j!
e−λ1/2

(

1− e−
λ2+β

2 e
λ2

4(α+1)

√

8

λ2(α + 1)
×

j
∑

r=0

r
∑

s=0

(

β

2

)r

(

2α
β(α+1)

)s

(r − s)!
M−s−1/2,0

(

λ2
2(α+ 1)

)



 = α, (41)

whereMµ,ν(·) is a Whittaker function. The transmit power,Ps, is then computed using a numerical root
finder to solve (41) and the resulting transmit power is used in capacity simulations. Note that the analysis
in Appendix B is an essential part of the simulation scheme since it avoids a simulated search for thePs

value for every realization of̂gp and ĝsp.

F. SU Blocking

Using the results derived in Sections III-A - III-D, we can derive the SU blocking conditions, that is
the probability or condition under which the SU is not allowed to transmit due to the constraint (1).

In the case ofScenarios 1 and 2, wherePs is dependent on the instantaneous value ofgp, via (10)
and (20), respectively, we can compute the probability of SUblocking, by solving for Pr(Pt ≤ 0) or
equivalently Pr(Ps ≤ 0). It is easily shown that forScenarios 1 and 2

Pr(Pt ≤ 0) = 1− e
−
γTσ

2
p

ΩpPp = 1− e−c2. (42)

For Scenarios 3 and 4, the SU blocking condition is determined purely from the system parameters,
and can be obtained by settingPs ≤ 0 in (30) and (35), respectively. Here, the SU blocking condition is
related toα and c2 by

Pt = 0 if α ≤ 1− e
−
γTΩp

σ2pPp = 1− e−c2. (43)

Using (43), we note that for small values ofα, that is where we guarantee the PU SINR constraint with
high probability, the SU blocking condition is approximated by α ≤ c2.

For Scenario 5, blocking occurs when (40) can not be satisfied, even forPs = 0. Hence, the blocking
probability is equivalent to

Pr

{

Pr

(

gp ≥
γTσ

2
p

Pp

∣

∣

∣

∣

∣

ĝp

)

< 1− α

}

. (44)

Converting the inner probability in (44) to a standard non-centralχ2 probability, we use the variableX,
in (62), to rewrite (44) as

Pr

{

Pr

(

X ≥
2γTσ

2
p

Ωp(1− ρ2)Pp

∣

∣

∣

∣

∣

ĝp

)

< 1− α

}

= Pr

{

Pr

(

X ≥
2c2

1− ρ2

∣

∣

∣

∣

∣

ĝp

)

< 1− α

}

, (45)
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where the dependence ofX on ĝp lies in the non-centrality parameter,λ1 = 2ρ2ĝp/(Ωp(1−ρ2)). In order
to evaluate (45) we solve

Pr

(

X ≥
2c2

1− ρ2

∣

∣

∣

∣

∣

ĝp

)

= 1− α, (46)

by a simple root-finder, to find the threshold value,ĝp = g∗, which satisfies (46). Then, the blocking
probability is simply

Pr(ĝp < g∗) = 1− e−g
∗/Ωp . (47)

IV. SIMULATION RESULTS AND DISCUSSION

We now present simulation results to validate the analytical expressions derived in Section III, and
to compare capacity values achievable under each scenario.In all simulations, we have setPp/σ

2
p =

Pm/σ
2
s = 0 dB andΩp/σ

2
p = Ωs/σ

2
s = 5 dB, where we assumeσ2

p = σ2
s . In Scenarios 2-5 we setα = 0.1,

andρ = 0.9 is used inScenario 5, unless otherwise indicated in the figures.
Figures 2, 3, 4 and 6 show the SU capacity cdfs for various scenarios and a range ofc1, c2 values.

Figures 3 and 6, withc1 = 0.01, represent very favourable SU operating conditions due to either relative
distances or the levels of shadowing being experienced by the PU and SU receivers. Figures 2 and 4
(c1 = 0.1 and c1 = 0.9) represent increasingly difficult conditions for the SU. The analytical expressions
were obtained using (15), (26) or (54) substituted into (6),and (38) forScenarios 1-3 andScenario 4,
respectively. Results forScenario 5 were obtained by solving (41) for SU powerPs, restricted by (2), and
substitutingPt into (4) via (3).

From these results, we observe thatScenarios 1 and 2 result in similar performance, even in the case
of c1 = 0.9 (Fig. 4), that is where the SU interference is very prominent. Furthermore, lack of knowledge
of the PU-PU link (that is, knowing only the meanΩp) greatly reduces the achievable capacity of the
SU. This is shown in Figs 2, 3 and 4 whereScenarios 3 and 4 suffer a considerable loss in comparison
to Scenarios 1 and 2. Hence, knowledge ofgp is more important than knowledge ofgsp.

The dependence onc1 can be observed by comparing Figs. 2, 3 and 4. Under very favourable conditions,
c1 = 0.01, Scenarios 3 and 4 slightly outperformScenarios 1 and 2. This seemingly counterintuitive result
is due to the flexibility afforded by the probabilistic SINR constraint. This is confirmed by the additional
cdfs for Scenarios 3 and 4 in Fig. 4, withα = 0.096, where the protection of PU SINR with higher
degree of certainty causes degradation of performance forScenarios 3 and 4 below that forScenarios 1
and 2. The high sensitivity to the parameterα is due to the fact that the SU is operating near the blocking
condition given by (43), which forc2 = 0.1 requiresα > 0.0952 in order to allow SU transmission.

From Fig. 4, we observe that placing the SU in a demanding environment,c1 = 0.9, results in very poor
performance underScenarios 3 and 4. Furthermore, the performance ofScenario 2 is noticeably degraded
from that of Scenario 1. Further insight into this is provided by Fig. 5, which shows the cdf of the SU
transmit power,Pt, for c1 = 0.1 andc1 = 0.9. We observe that in the latter case, the SU-Tx underScenario
1 operates at maximum power,Pt = 1, with a likelihood of 70 %, compared to approximately 50 % for
Scenario 2. This difference is much less pronounced for the less challenging case ofc1 = 0.1. Finally,
based on Figs. 2, 3 and 4, we observe that the performance under Scenario 5 is not highly dependent on
the value ofc1.

Comparing the curves forScenarios 3 and 4 with those forScenario 5 in Fig. 4 we note that for the most
part imperfect knowledge of the channel gains is more beneficial to the knowledge of their mean. Only
in low capacity regime we observe thatScenarios 3 and 4 outperformScenario 5, which has a relatively
high blocking probability for the parameters considered. It should be noted, however, that blocking in
Scenarios 3 and 4 is dictated by the parameterc2 and thus, unless (43) is satisfied, the capacity cdfs for
these scenarios originate at zero. Consequently, at highercapacity values there exists a crossover point
with Scenario 5.
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Figures 2, 3 and 4 compare the scenarios usingc2 = 0.1, which is very generous to the SU. From
(43), we see that SU transmission inScenarios 3 and 4 occurs only for large values ofα or for small
values ofc2. That is, without the knowledge ofgp, the SU can only operate if the PU is willing to accept
large amounts of interference. Figure 6 presents the capacity results forScenarios 1 and 2 with the more
realistic values ofc2 = 0.5 and c2 = 0.9, where (43) prevents SU transmission underScenarios 3 and 4.
While SU transmission is possible underScenario 5, we observe a high blocking probability of 0.73 and
0.88 for c2 = 0.5 and c2 = 0.9, respectively.

Figure 7 shows the probability Pr(C ≤ 0.5) as a function ofc1. As expected, for a constantc2, the
performance underScenario 2 diverges from the baselineScenario 1 with increasingc1, that is as the
amount of interference to the PU increases.

Finally, Fig. 8 shows the blocking probability forScenarios 1, 2 and 5. We recall that the SU ability to
transmit inScenarios 3 and 4 is deterministic and governed by the blocking condition of (43). The results
for Scenario 5 were obtained numerically via (46). We observe that, as expected, as the channel knowledge
error decreases (ρ → 1) the blocking probability approaches that ofScenarios 1 and 2. Specifically,
referring back to Fig. 6, we note from Fig. 8 that improving the channel estimate toρ = 0.99 will
reduce the blocking probability atc2 = 0.5 and c2 = 0.9 to 0.5 and 0.7, respectively, thus bringing
the performance ofScenario 5 closer to that ofScenario 1. Similarly, relaxing the probabilistic SINR
constraint by increasingα to 0.3 results in a significant reduction in blocking probability, as fully expected.

V. CONCLUSIONS

We have examined the effects of limited channel knowledge onthe SU capacity. Considering five
scenarios, we derived (in four cases) analytical expressions for the SU capacity cdf under an PU-Rx
SINR constraint. We determined the SU blocking probabilityand blocking conditions as a function of the
allowable interference at the PU-Rx. The results demonstrate the importance of the PU-PU CSI, which
was shown to be much greater than that of the SU-Tx to PU-Rx link. Furthermore, we have shown that in
challenging situations or in the presence of CSI error therecan be extremely large blocking probabilities
for the SUs.

APPENDIX A
DERIVATION OF FγI(ỹ) AND fγI(ỹ) FOR Scenario 3

We now derive the SU SINR cdfFγI(ỹ) and pdffγI(ỹ), based on the SU transmit powerPs under the
SINR constraint ofScenario 3, given by (30). Defining for notational convenience

Q = −

(

ln(1− α)PpΩp

γT
+ σ2

p

)

, (48)

the transmit power forScenario 3 is given by

Pt = min

(

Pm,
Q

gsp

)

. (49)

Solving for the cdf ofγ, we write

Pr(γ > x) = Pr(Pmgs > x, Psgs > x)

= E

[

Pr
(

Pmgs > x, Psgs > x
∣

∣

∣
gsp

)]

, (50)

where the conditional probability in (50) is given by

Pr
(

Pmgs > x, Psgs > x
∣

∣

∣
gsp

)

=







Pr
(

gs >
x
Pm

)

Pm ≤ Q
gsp

Pr
(

gs >
x
Ps

)

Pm > Q
gsp
.

(51)
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Hence, we have

Pr(γ > x) =

∫ Q/Pm

ψ0

Pr

(

gs >
x

Pm

)

fgsp(y) dy +

∫

∞

Q/Pm

Pr

(

gs >
xy

Q

)

fgsp(y) dy. (52)

Upon simplifying (52), we obtain

Fγ(x) = 1− e
−

x
ΩspPm

(

1− e−
Q

ΩsPm

)

−
1

1 + Ωs

ΩspQx

e
−

Q
ΩspPm

−
x

ΩsPm . (53)

Substituting (53) into (7) and after some manipulation one obtains

FγI (ỹ) = 1−

(

1− e−Q/PmΩsp
)

1 + ỹPpΩps

PmΩs

e−ỹσ
2
s /PmΩs + I(ỹ), (54)

whereI(ỹ) is given by

I(ỹ) = −
QΩs

ΩpsΩsp
exp

{

−
QΩs + σ2

s ỹ

PmΩsΩsp

}
∫

∞

0

exp
{

−
(

Ppỹ

PmΩs
+ 1

Ωps

)

v
}

σ2
s ỹ +

QΩs

Ωsp
+ Ppỹv

dv. (55)

The integral in (55) can be solved using [23, Eq. (3.352.4)],resulting in

I(ỹ) = −
QΩs

ΩpsΩspPpỹ
exp

{

−
QΩs + Ωspσ

2
s ỹ

PmΩsΩsp

}

exp

{

(PpΩpsỹ + PmΩs)(σ
2
sΩspỹ +QΩs)

PmPpΩsΩpsΩspỹ

}

(56)

× E1

(

(PpΩpsỹ + PmΩs)(σ
2
sΩspỹ +QΩs)

PmPpΩsΩpsΩspỹ

)

,

where E1(·) denotes the exponential integral. Equation (54) can be expressed in terms of simple functions
of ỹ by (31), where

s(ỹ) =
K1e

−bỹ

1 + aỹ
, h(ỹ) =

K2e
−bỹ+r(ỹ)

ỹ
, (57)

r(ỹ) =
(PpΩpsỹ + PmΩs)(σ

2
sΩspỹ +QΩs)

PmPpΩsΩpsΩspỹ
,

with constants,K1 = 1−eQ/PmΩsp , K2 =
QΩseQ/PmΩsp

PpΩpsΩsp
, a = PpΩps

PmΩs
andb = σ2

s /PmΩs. Taking the derivative
of (31) gives (32), where the derivatives ofs(ỹ), h(ỹ) andr(ỹ) are given by

s′(ỹ) = −

(

K1a + bK1(1 + aỹ)

(1 + aỹ)2

)

e−bỹ,

h′(ỹ) =

(

ỹ(r(ỹ)− bỹ)(r′(ỹ)− b)K2 −K2

ỹ2

)

e−bỹ+r(ỹ), (58)

r′(ỹ) =
Ppσ

2
sΩpsΩspỹ

2 −QPmΩ
2
s

(PmPpΩsΩpsΩspỹ)2
.
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APPENDIX B
COMPUTATION OFPs FOR Scenario 5

We now derive the expression used to numerically compute theSU power,Ps, for Scenario 5, based
on the SINR constraint given by (40). Consider the standard estimation error model [25]

hp = ρĥp +
√

1− ρ2ẽp, hsp = ρĥsp +
√

1− ρ2ẽsp, (59)

where ẽp and ẽsp are unit variance complex, zero mean Gaussian random variables andρ controls the
accuracy of the estimates. We assume equalρ for hp andhsp. Defining

ep = ẽp
√

1− ρ2, esp = ẽsp
√

1− ρ2, (60)

gives

Pr

(

∣

∣ρĥp + ep
∣

∣

2
≥
γTPs

∣

∣ρĥsp + esp
∣

∣

2
+σ2

s γT

Pp

∣

∣

∣

∣

ĥp, ĥsp

)

= 1− α. (61)

We now define two non-centralχ2 random variables [26, p.451-452]

X =
2
∣

∣ρĥp + ep
∣

∣

2

Ωp(1− ρ2)
∼ χ

′2
2

(

2ρ2
∣

∣ĥp
∣

∣

2

Ωp(1− ρ2)

)

= χ
′2
2 (λ1) , (62)

Y =
2
∣

∣ρĥsp + esp
∣

∣

2

Ωsp(1− ρ2)
∼ χ

′2
2

(

2ρ2
∣

∣ĥsp
∣

∣

2

Ωsp(1− ρ2)

)

= χ
′2
2 (λ2) ,

and with this notation, (61) becomes

Pr

(

X ≥
γTPsΩsp

ΩpPp
Y +

2σ2
s γT

Ωp(1− ρ2)Pp

∣

∣ĥp, ĥsp

)

= 1− α (63)

or

Pr
(

X ≥ αY + β
∣

∣ĥp, ĥsp

)

= 1− α. (64)

Dropping the conditioning notation for ease of exposition and conditioning onesp (equivalent to condi-
tioning onY ) results in

E
[

Pr
(

X ≥ αY + β
∣

∣Y
)]

= 1− α (65)

⇒ E
[

Pr
(

X ≤ αY + β
∣

∣Y
)]

= α.

Using the cdf of a non-centralχ2 in (65) gives [26]

E

[

∞
∑

j=0

(λ1/2)
j

j!
e−λ1/2

(

1− e−(αY+β)/2

j
∑

r=0

(

αY + β

2

)r
)]

= α. (66)

Expanding the binomial series in (66) gives

E

[

∞
∑

j=0

(λ1/2)
j

j!
e−λ1/2

(

1− eβ/2
j
∑

r=0

r
∑

s=0

(

r

s

)(

β

2

)r−s
(α

2

)s

Y se−αY/2

)]

= α. (67)

Taking expectation over Y using the pdf of a non-centralχ2 [26] gives
∞
∑

j=0

(λ1/2)
j

j!
e−λ1/2

(

1− eβ/2
j
∑

r=0

r
∑

s=0

(

r

s

)(

β

2

)r−s
(α

2

)s

J(s)

)

= α, (68)

where

J(s) =

∫

∞

0

yse−αy/2I0(
√

yλ2)e
(y+λ2)/2 dy, (69)

where I0(·) is the zeroth order modified Bessel function of the first kind.Using the result in [23, Eq.
(6.643)] gives after simplification the final result in (41).



14

REFERENCES

[1] I. J. Mitola, “Cognitive radio: An integrated agent architecture for software defined radio,” Ph.D. dissertation, KTH Royal Institute of
Technology, Sweden, May 2000.

[2] S. Haykin, “Cognitive radio: Brain-empowered wirelesscommunications,”IEEE J. Select. Areas Commun., vol. 23, pp. 201–220,
February 2005.

[3] T. A. Weiss and F. K. Jondral, “Spectrum pooling: An innovative strategy for the enhancement of spectrum efficiency,”IEEE Commun.
Mag., vol. 42, pp. 8–14, March 2004.

[4] B. Wang and J. K. R. Liu, “Advances in cognitive radio networks: A survey,”IEEE J. Select. Topics Signal Process., vol. 5, pp. 5–23,
February 2011.

[5] K. G. Shin, H. Kim, A. W. Min, and A. Kumar, “Cognitive radios for dynamic spectrum access: From concept to reality,”IEEE Wireless
Commun. Mag., vol. 17, pp. 64–74, December 2010.

[6] A. Ghasemi and E. S. Sousa, “Fundamental limits of spectrum-sharing in fading environments,”IEEE Trans. Wireless Commun., vol. 6,
pp. 649–658, February 2007.

[7] S. A. Jafar and S. Srinivasa, “Capacity limits of cognitive radio with distributed and dynamic spectral activity,”IEEE J. Select. Areas
Commun., vol. 25, pp. 529–537, April 2007.

[8] L. Musavian and S. Aissa, “Capacity and power allocationfor spectrum sharing communications in fading channels,”IEEE Trans.
Wireless Commun., vol. 8, pp. 148–156, January 2009.

[9] H. A. Suraweera, J. Gao, P. J. Smith, M. Shafi, and M. Faulkner, “Channel capacity limits of cognitive radio in asymmetric fading
environments,” inProc. IEEE International Conference on Communications, 2008. ICC ’08., May 2008, pp. 4048–4053.

[10] R. Zhang, “Optimal power control over fading cognitiveradio channels by exploiting primary user CSI,” inProc. IEEE Global
Telecommunications Conference, 2008. GLOBECOM ’08., November 2008, pp. 1–5.

[11] X. Kang, Y.-C. Liang, A. Nallanathan, H. K. Garg, and R. Zhang, “Optimal power allocation for fading channels in cognitive radio
networks: Ergodic capacity and outage capacity,”IEEE Trans. Wireless Commun., vol. 8, pp. 940–950, February 2009.

[12] C.-X. Wang, X. Hong, H.-H. Chen, and J. Thompson, “On capacity of cognitive radio networks with average interference power
constraints,”IEEE Trans. Wireless Commun., vol. 8, pp. 1620–1625, April 2009.

[13] L. Musavian and S. Aissa, “Fundamental capacity limitsof cognitive radio in fading environments with imperfect channel information,”
IEEE Trans. Commun., vol. 57, pp. 3472–3480, November 2009.

[14] H. A. Suraweera, P. J. Smith, and M. Shafi, “Capacity limits and performance analysis of cognitive radio with imperfect channel
knowledge,”IEEE Trans. Veh. Technol., vol. 59, pp. 1811–1822, May 2010.

[15] Z. Rezki and M.-S. Alouini, “On the capacity of cognitive radio under limited channel state information over fadingchannels,” inProc.
2011 IEEE International Conference on Communications (ICC), June 2011, pp. 1–5.

[16] L. Sboui, Z. Rezki, and M. Alouini, “Capacity of cognitive radio under imperfect secondary and cross link channel state information,”
in Proc. 2011 IEEE 22nd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), September 2011,
pp. 614 –618.

[17] Q. Hu and Z. Tang, “An improved power control strategy for cognitive radio networks with imperfect channel estimation,” in Proc.
2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM), September 2010, pp.
1–4.

[18] R. D. Taranto and P. Popovski, “Outage performance in cognitive radio systems with opportunistic interference cancelation,” IEEE
Trans. Wireless Commun., vol. 10, pp. 1280–1288, April 2011.

[19] Y. Pei, Y.-C. Liang, K. C. Teh, and K. H. Li, “Secure communication in multiantenna cognitive radio networks with imperfect channel
state information,”IEEE Trans. Signal Process., vol. 59, pp. 1683–1693, April 2011.

[20] Z. Rezki and M.-S. Alouini, “On the capacity of cognitive radio under limited channel state information,” inProc. 2010 7th International
Symposium on Wireless Communication Systems (ISWCS), September 2010, pp. 1066 –1070.

[21] Y.-Y. He and S. Dey, “Throughput maximization in cognitive radio under peak interference constraints with limitedfeedback,”IEEE
Transactions on Vehicular Technology, vol. 61, no. 3, pp. 1287 –1305, March 2012.

[22] R. Duan, R. Jantti, M. Elmusrati, and R. Virrankoski, “Capacity for spectrum sharing cognitive radios with mrc diversity and imperfect
channel information from primary user,” inProc. 2010 IEEE Global Telecommunications Conference (GLOBECOM 2010), December
2010, pp. 1 –5.

[23] I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series and Products, 7th ed. San Diego, CA: Academic Press, 2007.
[24] P. A. Dmochowski, H. A. Suraweera, P. J. Smith, and M. Shafi, “Impact of channel knowledge on cognitive radio system capacity,” in

Proc. 2010 IEEE 72nd Vehicular Technology Conference Fall (VTC 2010-Fall), September 2010, pp. 1–5.
[25] K. S. Ahn and R. W. Heath Jr., “Performance analysis of maximum ratio combining with imperfect channel estimation inthe presence

of cochannel interferences,”IEEE Trans. Wireless Commun., vol. 8, pp. 1080–1085, March 2009.
[26] N. Johnson, S. Kotz, and N. Balakrishnan,Continuous Univariate Distributions, 2nd ed. Wiley-Interscience, 1994, vol. 1.



15

PU-Tx 

SU-Tx 

PU-Rx 

SU-Rx 

 !"  "! 

 ! 

 " 
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Fig. 2. SU capacity cdf forScenarios 1-4 (c1 = c2 = 0.1).
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