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Abstract

Relays in cellular systems are interference limited. The highest end-to-end sum rates are achieved

when the relays are jointly optimized with the transmit strategy. Unfortunately, interference couples the

links together making joint optimization challenging. Further, the end-to-end multi-hop performance is

sensitive to rate mismatch, when some links have a dominant first link while others have a dominant

second link. This paper proposes an algorithm for designing the linear transmit precoders at the trans-

mitters and relays of the relay interference broadcast channel, a generic model for relay-based cellular

systems, to maximize the end-to-end sum-rates. First, the relays are designed to maximize the second-hop

sum-rates. Next, approximate end-to-end rates that depend on the time-sharing fraction and the second-

hop rates are used to formulate a sum-utility maximization problem for designing the transmitters. This

problem is solved by iteratively minimizing the weighted sum of mean square errors. Finally, the norms

of the transmit precoders at the transmitters are adjusted to eliminate rate mismatch. The proposed

algorithm allows for distributed implementation and has fast convergence. Numerical results show that

the proposed algorithm outperforms a reasonable application of single-hop interference management

strategies separately on two hops.
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I. INTRODUCTION

Multi-hop communication is one strategy to improve reliability on wireless communication links. The

idea is to send information through one or more relays, who receive and retransmit from source to desti-

nation. In cellular system designs that support relaying, the relay is usually a piece of fixed infrastructure

connected to a power source but not a wired backhaul. Unfortunately, aside from simple repeaters, relays

have yet to see wide deployment commercial despite a tremendous amount of research [?], [?], [?],

[?], [?], [?], [?], [?], [?], [?], [?], [?]. A main reason is that relays in cellular systems are sensitive to

interference [?], [?], [?], [?].

In this paper, we propose an algorithm for relaying in multiple-antenna relay interference channels.

We assume half-duplex decode-and-forward (DF) relays [?] that cannot transmit and receive at the same

time. Thus, the transmission procedure consists of two stages. In the first stage, the transmitters send data

to the relays. By assumption, the relays attempt to decode only the signals intended for their associated

receivers. In the second stage, the relays re-generate and re-encode signals intended to each of their

associated receivers before retransmitting to the receivers. While each receiver intends to receive data

from only a single transmitter via a single relay, each transmitter can have independent data for multiple

receivers. Consequently, each transmitter may ask for the aid of multiple relays at the same time and

each relay may simultaneously forward independent data from a transmitter to multiple receivers.

Using shared radio resources, the transmissions from the transmitters to relays interfere with each

other. Similarly, the transmissions from the relays to receiver interfere with each other. If considered

separately, each stage of transmission is an instance of the single-hop interference broadcast channel [?],

[?], a generalization of the conventional single-hop interference channel. Each transmitter in the broadcast

channel has independent data for multiple receivers while each transmitter in the conventional channel has

data for only one receiver. Although recent results on the single-hop interference broadcast channel [?],

[?] can be applied separately for the two hops, in this paper we show that higher end-to-end sum rates

can be achieved when the transmitters and relays are configured jointly. Unfortunately, jointly configuring

the transmitters and relays is challenging, especially with limited information about the interferers.

In general, the optimal transmit and receive strategies for sum-rate maximization in interference

channels are not widely known, even for single-hop channels. Thus, we adopt a pragmatic approach

that treats interference as noise and maximizes end-to-end sum-rates by searching within the class of

linear transmit and receive strategies. Assuming the receivers always use the optimal linear MMSE receive
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filters, we focus on designing the transmit precoders at the transmitters and relays. Unfortunately, the

problem is nonconvex and NP-hard. Moreover, by definition, the end-to-end achievable rates of two-hop

links are not continuously differentiable at every point. Thus, finding the stationary points of the problem,

including its globally and locally optimal solutions, is challenging [?], [?], [?].

We assume all two-hop links have a common timesharing value, i.e., the same fractions of time

for transmission on two hops because decode-and-forward is assumed. The achievable end-to-end rate

corresponding to a relay is defined as the minimum of the achievable normalized rate from its associated

transmitter to itself and the achievable normalized sum-rates from itself to its associated receivers [?]. A

two-hop rate mismatch occurs when some links have a dominant first hop while others have a dominant

second hop, resulting in low end-to-end sum-rates. An efficient system design should not cause any

two-hop rate mismatch while mitigating interference.

Transmit precoder design has been studied widely for the multiple-antenna single-hop interference

broadcast channel [?], [?], especially for its special case of the single-hop interference channel [?],

[?], [?], [?], [?], [?], [?]. The methods in [?], [?], [?], [?] were based on the so-called interference

pricing framework where the transmitters configure themselves based on interference prices fed back

from the receivers. Interference prices represent the marginal decrease in the sum-utility function per unit

increase in interference power. In [?], [?], [?], based on a relationship between mutual information and

mean squared error (MSE), sum-utility maximization problems were solved via iterative minimization

of weighted sum-MSEs. Under certain conditions on the utility functions, the algorithms in [?], [?],

[?], [?], [?], [?], [?] are guaranteed to converge to the stationary points of the corresponding sum-

utility maximization problems. Note that the existing single-hop results are designed specifically for the

single-hop interference channel. It is not straightforward to incorporate the special features of the relay

interference channel, e.g., relay signal processing operation and multi-hop transmission.

To the best of our knowledge, there has been little prior work on transmit precoder design in the

relay interference broadcast channel. Prior work focused on interference mitigation for special cases of

this DF relay model [?], [?], [?], [?]. In [?], the authors proposed a transmit precoder design for the

MIMO relay broadcast channel where a single MIMO DF relay forwards data from a single transmitter

to multiple receivers. This means that there is no interference on the first hop and there is no inter-relay

interference on the second hop. Prior work in [?], [?], [?] considered the DF relay interference channel

where the receivers are equipped with a single antenna and each relay is dedicated to aiding a single
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transmitter-receiver pair. The transmit precoders at the transmitters and relays are designed completely

independently in [?] to maximize the minimum average signal-to-interference-plus-noise ratio (SINR) on

each hop. Prior work in [?] investigated the end-to-end sum-rate performance of different relay cooperation

strategies and found that the zero-forcing based approach is attractive for interference management. Based

on the interference pricing framework, the algorithm in our prior work in [?] used approximations of

end-to-end rates to compute interference prices for designing the second-hop transmit precoders with

fixed first-hop transmit precoders. It is not straightforward to extend the results of [?] to the general

relay interference broadcast channel with multiple-antenna receivers. There have been other algorithms

for designing transmit precoders at the relays and/or transmitters in the relay interference channel [?], [?],

[?], [?], [?], [?], [?], [?], [?], [?], [?], [?], [?], [?], [?]. Nevertheless, much of the prior work considered

either AF relays [?], [?], [?], [?], [?], [?], [?], [?], [?], [?], [?], [?] or other relay architectures, like

the shared relay [?], [?] or two-way relay [?]. In addition, in this prior work, each relay simultaneously

forwards data for multiple transmitter-receiver pairs unlike in our approach.

In this paper, we propose a cooperative algorithm for efficiently finding suboptimal solutions of

the transmit precoder design problem with high end-to-end sum-rates. The proposed algorithm can be

implemented in a distributed fashion with low communication overhead. The algorithm consists of three

phases in the following order: i) second-hop transmit precoder design, ii) first-hop transmit precoder

design, and iii) first-hop transmit power control. In the first phase, we ignore the first hop and focus on

configuring the relays to maximize the achievable second-hop sum-rates. Essentially, the second hop is

treated as the conventional single-hop interference broadcast channel. Thus, existing single-hop algorithms

can be applied to find the stationary points of second-hop sum-rate maximization [?], [?], [?], [?], [?],

[?], [?], [?], [?], [?], [?], [?], [?], [?]. Having computed the second-hop transmit precoders, each relay

computes the sum of achievable rates from itself to its associated receivers, which is used as input to the

second phase.

The second phase focuses on designing the first-hop transmit precoders. In the naive approach, this can

be done by applying the prior work in [?], [?], [?], [?], [?], [?], [?], [?], [?], [?], [?], [?], [?], [?] while

ignoring the designed second-hop transmit precoders. The naive approach, however, may cause a two-hop

rate mismatch because it does not take into account the timesharing value and second-hop configuration.

To overcome this limitation, we formulate and solve a new problem to maximize an approximation of

the achievable end-to-end sum-rates. Such approximations of the achievable end-to-end rates depend not
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only on the first-hop transmit precoders, but also on the timesharing value and second-hop configuration.

This allows for second-hop interference mitigation at the same time as rate-mismatch alleviation. Some

guidelines for selecting such approximations are provided. Having defined a more comprehensive utility

function, we use the technique in [?], [?], [?] to develop an iterative method that is guaranteed to converge

to the stationary points of the new sum-utility maximization problem. This concludes the second phase

of the proposed algorithm.

The output of the second phase may contain a residual two-hop rate mismatch since only an approximate

solution is proposed. In the final phase, we propose to fix the shapes of the first-hop transmit precoders

and to adjust their norms to eliminate completely two-hop rate mismatching. Essentially, this is a transmit

power control problem. Note that for a two-hop link with a dominant first hop, excess power is allocated

for the transmissions on the first hop. We propose a method for simultaneously reducing excess power

for the first-hop transmissions so that the achievable end-to-end rates for all the relays are nondecreasing

over iterations, thus potentially improving the achievable end-to-end sum-rates. The method is guaranteed

to converge. At the convergence point, there are no two-hop links with a dominant first hop, i.e., there

is no longer two-hop rate mismatch. Although there have been many power control algorithms for the

single-hop interference channel [?], [?], [?], [?], [?], [?], [?], [?], [?], [?] and for the relay interference

channel [?], [?], [?], [?], they are not designed to eliminate two-hop rate mismatching. Therefore, even if

applicable to the third phase, existing power control algorithms may worsen the two-hop rate mismatch

situation.

We use Monte Carlo simulations to evaluate the average achievable end-to-end sum-rates of the

proposed algorithm for various relay interference broadcast channel configurations. The naı̈ve approach

of applying existing single-hop results separately for the two hops is selected as the baseline strategy.

The proposed algorithm and the naı̈ve approach have the same second-hop transmit precoders. While the

timesharing value and second-hop configuration are taken into account in the first-hop transmit precoder

design in the last two phases of the proposed algorithm, they are ignored in that of the naı̈ve approach.

Numerical results show that the first two phases of the proposed algorithm are enough to provide large

end-to-end sum-rate gains over the naı̈ve approach. In addition, the last phase of the proposed algorithm

makes considerable improvements in end-to-end sum-rate performance over the output of the second

phase. This highlights the importance of two-hop rate matching in the DF relay interference (broadcast)

channel. Finally, each phase of the proposed algorithm is observed to converge in a few iterations. Note



6

that the proposed algorithm can be implemented in a distributed manner with a little more overhead than

the naı̈ve approach. Thus, it is suitable for practical implementation in DF relay networks.

The organization of the remainder of this paper is as follows. Section II describes the system model.

Section III formulates the design problem and discusses the challenges. Section IV presents the proposed

algorithm in detail. Section V numerically evaluates the achievable end-to-end sum-rates of the proposed

algorithm. Section VI concludes this paper and suggests future research.

Notation: We use normal letters (e.g., a) for scalars, lowercase and uppercase boldface letters (e.g., h

and H) for column vectors and matrices. IN is the identity matrix of size N ×N . For a matrix A, A∗

is the conjugate transpose, tr(A) the trace, |A| the determinant, and ‖A‖F the Frobenius norm. E[·] is

the statistical expectation operator. ()(n) denotes iteration index. ()T is used for transmitters’ parameters,

()R for receivers’, and ()X for relays’.

II. SYSTEM MODEL

Consider a relay interference broadcast channel where KT transmitters communicate with KR receivers

with the aid of KX half-duplex DF relays, as illustrated in Fig. 1. Each transmitter is assigned a unique

index from KT , {1, · · · ,KT}. Similarly, each relay is assigned a unique index from KX , {1, · · · ,KX}

and each receiver is assigned a unique index from KR , {1, · · · ,KR}. Each transmitter may require

the aid of multiple relays to simultaneously send independent data streams to its receivers. Each relay is

dedicated to serving multiple receivers that are associated with a single transmitter. Each receiver intends

to receive data from only one transmitter with the aid of a single relay. Let χ(k) ∈ KX denote the index

of the relay that aids receiver k ∈ KR. Let µ(k) ∈ KT denote the index of the transmitter that is aided

by relay k ∈ KX. The transmitters and relays do not share data. We assume that each relay k does not

attempt to decode the signal intended for receiver m ∈ KR with χ(m) 6= k. Transmitter k ∈ KT has

NT,k antennas, relay m ∈ KX has NX,m antennas, and receiver q ∈ KR has NR,q antennas.

Half-duplex relays cannot transmit and receive at the same time, thus the transmission procedure

requires two stages. Using a common frequency at the same time, the transmissions in the same stage

interfere with each other. For tractable analysis, we assume Gaussian signaling is used in both stages

although it may not be optimal for the relay interference broadcast channel. In the first stage, the

transmitters send data to the relays. Treating unwanted signals as additive Gaussian noise, each relay

decodes its desired signal. Each relay separates its decoded signals for individual associated receivers,
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Fig. 1. A relay interference broadcast channel where a number of half-duplex DF relays aid the data transmission from a
number of transmitters (TXs) to their associated receivers (RXs). The solid lines connect the associated nodes and represent
communication links. The dashed lines represent interference links.

re-encodes and retransmits to its associated receivers in the second stage. Each receiver treats unwanted

signals as additive Gaussian noise when decoding its desired signal.

We consider slowly-varying, frequency-flat, block-fading channels. We denote Hm,k ∈ CNX,m×NT,k as

the matrix channel between transmitter k and relay m for k ∈ KT and m ∈ KX. Let x1,k ∈ Cd1,k×1 denote

the symbol vector that transmitter µ(k) ∈ KT sends to relay k ∈ KX in the first stage, where d1,k is the

number of data streams and E(x1,kx
∗
1,k) = Id1,k . We denote FT,k ∈ CNT,µ(k)×d1,k as the linear transmit

precoder that transmitter µ(k) uses to send x1,k to relay k ∈ KX. We define FT , {FT,1, · · · ,FT,KX
} ∈

FT , CNT,µ(1)×d1,1 × · · · × CNT,µ(KX)×d1,KX . Let pT,k be the sum transmit power at transmitter k ∈ KT.

The sum transmit power constraint at transmitter k ∈ KT is

∑
m∈KX

µ(m)=k

‖FT,m‖2F =
∑
m∈KX

µ(m)=k

tr(FT,mF
∗
T,m) ≤ pT,k, ∀k ∈ KT. (1)

We denote nX,k ∈ CNX,k×1 as spatially white, additive Gaussian noise at relay k ∈ KX with E(nX,kn
∗
X,k) =

σ2
X,kINX,k

. Relay k ∈ KX observes

yX,k = Hk,µ(k)FT,kx1,k︸ ︷︷ ︸
desired signal

+
∑
m∈KX

m6=k

Hk,µ(m)FT,mx1,m

︸ ︷︷ ︸
interference

+nX,k. (2)
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The interference plus noise covariance matrix at relay k ∈ KX is

RX,k(FT) =
∑
m∈KX

m 6=k

Hk,µ(m)FT,mF
∗
T,mH

∗
k,µ(m) + σ2

X,kINX,k
. (3)

Each relay k ∈ KX applies a linear receive filter WX,k ∈ CNX,k×d1,k to yX,k. We define WX ,

(WX,1, · · · ,WX,KX
) ∈ WX , CNX,1×d1,1 × · · · × CNX,KX

×d1,KX . The maximum achievable rate on the

first hop from transmitter µ(k) ∈ KT to relay k ∈ KX is

R1,k(FT) = log2 det
(
I + F∗T,kH

∗
k,µ(k) [RX,k(FT)]−1 Hk,µ(k)FT,k

)
, (4)

which can be achieved using the linear MMSE receive filter

WMMSE
X,k =

[
Hk,µ(k)FT,kF

∗
T,kH

∗
k,µ(k) + RX,k(FT)

]−1
Hk,µ(k)FT,k. (5)

We define ξ1,k(FT) , 2R1,k(FT) − 1. Intuitively, ξ1,k(FT) can be thought of as the effective first-hop

SINR to relay k if we send a single data stream from transmitter µ(k) ∈ KT to relay k at the rate

R1,k(FT).

Let Gm,k ∈ CNR,m×NX,k denote the matrix channel between relay k ∈ KX and receiver m ∈ KR. Let

x2,m ∈ CNX,χ(m)×d2,m denote the transmit symbol vector that relay χ(m) ∈ KX sends to receiver m ∈ KR

where d2,m is the number of data streams and E(x2,mx
∗
2,m) = Id2,m . We denote FX,m ∈ CNX,χ(m)×d2,m

as the linear transmit precoder that relay χ(m) uses to send x2,m to receiver m ∈ KR. We define

FX , {FX,1, · · · ,FX,KR
} ∈ FX , CNX,χ(1)×d2,1 × · · · × CNX,χ(KR)×d1,KR . Let pX,k be the sum transmit

power at relay k ∈ KX. The sum transmit power constraint at relay k ∈ KX is

∑
m∈KR

χ(m)=k

‖FX,m‖2F =
∑
m∈KR

χ(m)=k

tr(FX,mF
∗
X,m) ≤ pX,k,∀k ∈ KX. (6)

We denote nR,m ∈ CNR,m×1 as spatially white, additive Gaussian noise at receiver m ∈ KR with

E(nR,mn
∗
R,m) = σ2

R,mINR,m
. Receiver m ∈ KR observes

yR,m = Gm,χ(m)FX,mx2,m︸ ︷︷ ︸
desired signal

+
∑
q∈KR

q 6=m

Gm,χ(q)FX,qx2,q

︸ ︷︷ ︸
interference

+nR,m. (7)
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The interference plus noise covariance matrix at receiver m ∈ KR is

RR,m(FX) =
∑
q∈KR

q 6=m

Gm,χ(q)FX,qF
∗
X,qG

∗
m,χ(q) + σ2

R,mINR,m
. (8)

Each receiver m ∈ KR applies a linear receive filter WR,m ∈ CNR,m×d2,m to yR,m. The maximum

achievable rate at receiver m ∈ KR is

R2,m(FX) = log2 det
(
I + F∗X,mG

∗
m,χ(m) [RR,m(FX)]−1 Gm,χ(m)FX,m

)
, (9)

which can be achieved by the following linear MMSE receive filter

WMMSE
R,m =

[
Gm,χ(m)FX,mF

∗
X,mG

∗
m,χ(m) + RR,m(FX)

]−1
Gm,χ(m)FX,m. (10)

The sum of maximum achievable second-hop rates for relay k ∈ KX is defined as

R2,k,sum(FX) ,
∑
m∈KR

χ(m)=k

R2,m(FX). (11)

We define ξ2,k(FX) , 2R2,k,sum(FX) − 1. Similar to ξ1,k(FT), we refer to ξ2,k(FX) as the effective SINR

on the second hop corresponding to relay k.

We assume the transmissions in each stage start and end at the same time. Let t be the fraction of time

for transmission on the first hop, which is also referred to as the timesharing value. The fraction of time

for transmission on the second hop is (1− t). For example, in 3GPP LTE-Advanced cellular systems, t

depends on the number of subframes allocated to the backhaul links (i.e., between base stations and relays)

in a radio frame [?]. In this paper, t is a fixed parameter. The optimization of the timesharing value is left

for future work. For relay k ∈ KX, the normalized rate on the first hop is tR1,k(FT) while the normalized

sum of second-hop rates for this relay is (1− t)R2,k,sum(FX). Based on the relative comparison of the

normalized rates on two hops, the two-hop link corresponding to relay k ∈ KX can be classified into

the following three categories: i) first-hop dominant if tR1,k(FT) > (1− t)R2,k,sum(FX), ii) second-hop

dominant if tR1,k(FT) < (1− t)R2,k,sum(FX), and iii) equal rate if tR1,k(FT) = (1− t)R2,k,sum(FX).

The achievable end-to-end rate for relay k ∈ KX is defined as the minimum of the normalized



10

achievable rates on two hops [?]

Rk(FT,FX) , min{tR1,k(FT), (1− t)R2,k,sum(FX)} (12)

= min{t log2(1 + ξ1,k(FT)), (1− t) log2(1 + ξ2,k(FR))}. (13)

Given the achievable rates on two hops, the end-to-end achievable rate for relay k can be obtained by

properly allocating fractions of the normalized first-hop rate tR1,k(FT) for sending data for its associated

receivers. Specifically, let βk,m ≥ 0 be the first-hop rate corresponding to receiver m ∈ KR such that

χ(m) = k, where

∑
m∈KR

χ(m)=k

βk,m ≤ tR1,k(FT). (14)

For example, we can achieve Rk(FT,FX) in (12) if relay k uses the following first-hop rate allocation

strategy

βk,m =


(1− t)R2,m(FX), if tR1,k(FT) ≥ (1− t)R2,k,sum(FX)

tR1,k(FT) R2,m(FX)
R2,k,sum(FX) , otherwise.

(15)

We can check that βk,m for k ∈ KX and m ∈ KR satisfies the condition in (14). The end-to-end sum-rate

is defined as

Rsum(FT,FX) ,
∑
k∈KX

Rk(FT,FX). (16)

The design of FT and FX for maximizing Rsum(FT,FX) should take into account t.

III. PROBLEM FORMULATION

This section formulates the design problem and discusses the challenges in finding optimal solutions.

The problem of designing the transmit precoders at the transmitters and relays to maximize the sum of
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achievable end-to-end rates is formulated as follows

(OP) : max
(FT,FX)∈FT×FX

Rsum(FT,FX)

subject to
∑
m∈KR

χ(m)=k

tr(FX,mF
∗
X,m) ≤ pX,k, ∀k ∈ KX (17)

∑
m∈KX

µ(m)=k

tr(FT,mF
∗
T,m) ≤ pT,k,∀k ∈ KT. (18)

The transmit precoder design problem for sum-rate maximization in the single-hop interference channel is

nonconvex and NP-hard [?], [?]. This means that its globally optimal solutions cannot be found efficiently

in terms of computational complexity even in a centralized fashion. The more complicated problem, (OP)

is expected to be NP-hard as well. Moreover, (OP) is a sum-utility maximization problem where the

per-user utility function is not smooth at every point. Thus, it is challenging to find the stationary points

of (OP), including its optimal solutions [?].

In this paper, we focus on finding suboptimal solutions to (OP) with high values of achievable end-

to-end sum-rates. Remark 1 and Remark 2 discusses two main challenges in solving for high-quality

suboptimal solutions of (OP).

Remark 1: Interference mitigation is a challenge in end-to-end sum-rate maximization. According

to (2), each relay observes undesired signals from unintended transmitters on the first hop. Similarly,

according to (7), each receiver observes undesired signals from unintended relays as well as from its

associated relay (but they are intended for other receivers). Due to interference, there exists coupling

among the achievable rates on the same hop.

Remark 2: Two-hop rate matching is a challenge in maximizing the end-to-end sum-rates of the DF

relay interference broadcast channel. Specifically, for a given t, FT, and FR, there may exist a mismatch

between the normalized achievable rates on two hops. By definition, a two-hop rate mismatch occurs

when there exist k,m ∈ KX and k 6= m, such that tR1,k(FT) > (1− t)R2,k,sum(FX) and tR1,m(FT) <

(1 − t)R2,m,sum(FX). When this happens, it is always possible to improve the end-to-end sum-rate

performance of the system design. For example, the norm of FT,k can be scaled down to obtain a

new set of transmit precoders (F′T,FX) so that tR1,k(F
′
T) = (1 − t)R2,k,sum(FX). This decreases the

interference power from transmitter k to all other relays on the first hop, improving the achievable rates to

all other relays, especially tR1,m(F′T) > tR1,m(FT). This means that Rsum(F′T,FX) > Rsum(FT,FX).
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Thus, an efficient transmit precoder design in terms of end-to-end sum-rate maximization should not

cause any two-hop rate mismatch.

IV. TRANSMIT BEAMFORMING DESIGN

This section presents an algorithm for finding high-quality suboptimal solutions to (OP). Section IV-A

discusses briefly the design of FX. Section IV-B presents the design of FT.

A. Second-Hop Transmit Beamforming Design

We design FX by treating the transmission on the second hop as the single-hop interference broadcast

channel. Specifically, we need to solve the following optimization problem

(SP) : max
FX∈FX

∑
k∈KX

R2,k,sum(FX)

subject to
∑
m∈KR

χ(m)=k

tr(FX,mF
∗
X,m) ≤ pX,k,∀k ∈ KX. (19)

Note that (SP) is nonconvex and NP-hard. Nevertheless, its stationary points can be found by existing

algorithms for the single-hop interference broadcast channel. The principle of many existing algorithms

is to formulate a series of related optimization problems that can be solved in polynomial time by

available methods and provide multiple approximations or relaxations of the original sum-utility problem.

In general, the globally optimal solutions of these related problems converge to the stationary points of

the original sum-utility maximization problem. The key requirement for the applicability of existing

algorithms is that the utility function of the original problem is continuously differentiable at every point.

An example is the algorithm for transmit precoder design via matrix-weighted sum-MSE minimization

in [?], [?]. Due to space limits, the details of the algorithm are deferred to [?], [?].

Let F̄X denote the resulting second-hop transmit precoders. We denote ξ̄2,k = ξ2,k(F̄X) for k ∈ KX.

By setting R2,k,sum(F̄X) equal to log2(1 + ξ̄2,k), we obtain

ξ̄2,k = 2R2,k,sum(F̄X) − 1. (20)

We assume that each receiver m ∈ KR feeds back the value of R2,m(F̄X) to its associated relay, i.e.,

relay χ(m). Then, we assume that each relay k ∈ KX can compute R2,k,sum(F̄X) from its corresponding

R2,m(F̄X) such that k = χ(m) and then ξ̄2,k.
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B. First-Hop Transmit Beamforming Design

1) Subproblem Formulation and Challenges: This section focuses on designing FT given knowledge

of t and ξ̄2,k for k ∈ KX. It follows from (OP) that the problem for designing FT is

(FP) : max
FT∈FT

∑
k∈KX

min{t log2(1 + ξ1,k(FT)), (1− t) log2(1 + ξ̄2,k)}

subject to
∑
m∈KX

µ(m)=k

tr(FT,mF
∗
T,m) ≤ pT,k,∀k ∈ KT. (21)

Note that (FP) belongs to the same class of nonconvex and NP-hard sum-utility maximization problems

as (SP) and it is even more complicated than (SP). While the objective function of (SP) depends only

on the corresponding transmit precoders, i.e., FX, that of (FP) depends not only on FT but also on t

and ξ̄k for k ∈ KX.

Remark 3: It is not possible to apply existing algorithms developed for the single-hop interference

broadcast channel to find the stationary points of (FP). As discussed in Section IV-A, existing algorithms

require that the utility function of sum-utility maximization problems be continuously differentiable at

every point. Due to the min operation, however, the utility function of (FP) is not continuously differen-

tiable with respect to ξ1,k(FT) at the point that makes t log2(1+ξ1,k(FT)) equal to (1− t) log2(1+ ξ̄2,k).

Remark 4: In the naı̈ve approach, the timesharing and second-hop configuration are ignored, leading

to an approximation of the objective function
∑

k∈KX
log2(1 + ξ1,k(FT)). The resulting problem has the

same form as (SP). Thus, its stationary points can be found by existing single-hop algorithms.

For notational convenience, we define ηk as the following function of ξ̄2,k and t

ηk = (1 + ξ̄2,k)
1−t
t − 1. (22)

Note that t log2(1 + ηk) = (1 − t) log2(1 + ξ̄2,k). This means that ξ1,k(FT) is equal to ηk when the

achievable first-hop rate at relay k matches with the sum of achievable second-hop rates from relay k to

its associated receivers. Thus, ηk is the rate-matching received SINR at relay k.

2) Proposed Approach: It is challenging to find the stationary points of (FP) because the utility

function in the problem is not continuously differentiable at every point. In the section, we aim at finding

suboptimal solutions to (FP) with high end-to-end sum-rates. Instead of solving directly (FP), we

propose to formulate and solve a new sum-utility maximization problem, which we refer to as (AFP).

Having the same constraints as (FP), (AFP) uses an approximation of min{t log2(1 + ξ1,k(FT)), (1−
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t) log2(1 + ξ̄2,k)} as the utility function. Note that such approximations depend on not only FT but

also t and ξ̄2,k for k ∈ KX. Let uk(ξ1,k(FT), t, ξ̄2,k) denote the utility function of (AFP). In addition,

we propose to solve (AFP) via iterative minimization of weighted sum-MSEs, the well-established

technique that has been used widely in prior work [?], [?], [?], [?].

Some guidelines for selecting uk(ξ1,k(FT), t, ξ̄2,k) are provided. First, it must be twice continuously

differentiable with respect to ξ1,k(FT) at every point. Second, it must satisfy the following condition

(1 + ξ1,k(FT))u′′k(ξ1,k(FT), t, ξ̄2,k) + 2u′k(ξ1,k(FT), t, ξ̄2,k) ≥ 0. (23)

This condition is required to ensure that the resulting iterative algorithm for solving (AFP) is convergent

as shown in Proposition 1 in [?]. There are many approximate functions that satisfy the conditions in

the guidelines. It is still unclear, however, what is the best approximation.

According to Remark 3, the utility function of (FP) is not continuously differentiable with respect to

ξ1,k(FT) at ξ1,k(FT) = ηk. We propose an approximation of the utility function of (FP) as follows

uk(ξ1,k(FT), t, ξ̄2,k) =


t log2(1 + ξ1,k(FT)), if ξ1,k(FT) ≤ ηk,

t log2(1 + ηk) + t
log 2

[
exp

(
1− 1+ηk

1+ξ1,k(FT)

)
− 1
]
, otherwise.

(24)

Note that if ξ1,k(FT) ≤ ηk, then uk(ξ1,k(FT), t, ξ̄2,k) is exactly equal to tR1,k(FT) and hence equal to

Rk(FT, F̄X). If ξ1,k(FT) > ηk, then uk(ξ1,k(FT), t, ξ̄2,k) is larger than both tR1,k(FT) and Rk(FT, F̄X).

Moreover, when ξ1,k(FT) > ηk, the gap between uk(ξ1,k(FT), t, ξ̄2,k) and Rk(FT, F̄X) increases with

ξ1,k(FT) and is upper bounded by t/ log 2. Using the approximation uk(ξ1,k(FT), t, ξ̄2,k) in (24) as the

utility function, we formulate (AFP) as follows

(AFP) : max
FT∈FT

∑
k∈KX

uk(ξ1,k(FT), t, ξ̄2,k)

subject to
∑
m∈KX

µ(m)=k

tr(FT,mF
∗
T,m) ≤ pT,k, ∀k ∈ KT. (25)

The stationary points of (AFP) are expected to correspond to suboptimal solutions to (FP).

3) Sum-Utility Maximization via Matrix-Weighted Sum-MSE Minimization: We develop an algorithm

for solving (AFP) via an iterative minimization of weighted sum-MSEs. We denote Ek(FT,WX,k) as
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the MSE matrix at relay k ∈ KX, which is given by

Ek(FT,WX,k) = tr
(
W∗

X,k

[
Hk,µ(k)FT,kF

∗
T,kH

∗
k,µ(k) + RX,k(FT)

]
WX,k

)
− tr(W∗

X,kHk,µ(k)FT,k)− tr(F∗T,kH
∗
k,µ(k)WX,k) + d1,k.

The MSE of the estimate of x1,k based on W∗
X,kyX,k is given by

εk(FT,WX,k) = E‖x1,k −W∗
X,kyX,k‖2F

= tr(Ek(FT,WX,k)). (26)

Fixing FT and solving ∂Ek(FT,WX,k)
∂W∗

X,k
= 0, we can check that εk(FT,WX,k) is minimized by the linear

MMSE receive filter WMMSE
X,k given in (5). We denote Ek,0(FT) = Ek(FT,W

MMSE
X,k ). After some

manipulation, we obtain the following well-known relationship between R1,k(FT) and Ek,0(FT)

R1,k(FT) = − log2(det(Ek,0(FT))), (27)

or equivalently

ξ1,k(FT) = 1/ det(Ek,0(FT))− 1. (28)

Based on (28), we define

gk(Ek,0(FT)) , − log 2

t
uk
(
1/det(Ek,0(FT))− 1, t, ξ̄2,k

)
(29)

=


log (det(Ek,0(FT))) , if det(Ek,0(FT)) ≥ (1 + ηk)

−1,

− log(1 + ηk)− exp [1− (1 + ηk) det(Ek,0(FT))] + 1, otherwise.
(30)

We can check that gk(Ek,0(FT)) is twice continuously differentiable with respect to Ek,0(FT) at any

point. Moreover, gk(Ek,0(FT)) is a strictly concave function of Ek,0(FT). Note that (AFP) is equivalent

to the following optimization problem

(GFP) : min
FT∈FT

∑
k∈KX

gk(Ek,0(FT))

subject to
∑
m∈KX

µ(m)=k

tr(FT,mF
∗
T,m) ≤ pT,k, ∀k ∈ KT. (31)
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Note that (GFP) is nonconvex and NP-hard. We define the following function

α(x) =


1, if x ≥ (1 + ηk)

−1

(1 + ηk)x exp [(1 + ηk)x− 1] , otherwise.
(32)

The first-order gradient of gk(Ek,0(FT)) with respect to Ek,0(FT) is given by

∇gk(Ek,0(FT)) ,
∂gk(Ek,0(FT))

∂Ek,0(FT)

= α(det(Ek,0(FT)))(Ek,0(FT))−1. (33)

According to Theorem 2 in [?], the inverse mapping of ∇gk(Ek,0(FT)) is well-defined. We refer to it

as γk(·) : Cd1,k×d1,k → Cd1,k×d1,k .

We now use the technique in [?], [?] to solve (AFP) via matrix-weighted sum-MSE minimization.

We introduce auxiliary variables Vk ∈ Cd1,k×d1,k for k ∈ KX. We define V , (V1, · · · ,VKX
) ∈ V ,

Cd1,1×d1,1 × · · · × Cd1,KX
×d1,KX . We define the following matrix-weighted sum-MSE function

sk(FT,WX,V) = tr(V∗kEk(FT,WX,k)) + gk(γk(Vk))− tr(V∗k)γk(Vk). (34)

A matrix-weighted sum-MSE minimization problem is formulated as follows

(MFP) : min
(FT,WX,V)∈FT×WX×V

∑
k∈KX

sk(FT,WX,V)

subject to
∑
m∈KX

µ(m)=k

tr(FT,mF
∗
T,m) ≤ pT,k,∀k ∈ KT.

It follows from Theorem 2 in [?] that (MFP) and (GFP) have the same stationary points if the relays

use their corresponding linear MMSE receive filters and the matrix weights Vk = ∇gk(Ek(FT,WX))

for any FT and WX. Thus, we can find the stationary points of (AFP) by solving (GFP).

4) Algorithm for Matrix-Weighted Sum-MSE Minimization: We adopt an alternating minimization

approach to develop an iterative algorithm for finding the stationary points of (MFP). In each iteration,

we focus on determining only one of the sets of parameters FT,WX, and V while assuming the others

are fixed. When FX and V are fixed, the optimal linear receive filter at relay k ∈ KX is exactly WMMSE
X,k

given in (5). In addition, as discussed in Section IV-B3, when FT and WX are fixed, the optimal matrix
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weights are as follows

Vopt
k = ∇gk(Ek,0(FT)), ∀k ∈ KX. (35)

It follows from (26) that Ek(FT,WX,k) is a Hermitian and positive semidefinite matrix for any FT

and WX. Combined with (33), we have ∇gk(Ek,0(FT)) is a Hermitian and positive semidefinite matrix.

This means that if we always choose Vk = Vopt
k according to (35), then Vk is a Hermitian and positive

semidefinite matrix for k ∈ KX.

What remains is the design of FT when WX and VX are fixed. When WX and VX are fixed, we

need to solve the following optimization problem to determine FT

(MFP-FT) : min
FT∈FT

∑
k∈KX

tr(V∗kEk(FT,WX,k))

subject to
∑
m∈KX

µ(m)=k

tr(FT,mF
∗
T,m) ≤ pT,k,∀k ∈ KT. (36)

Note that (MFP-FT) is convex with respect to FT,k for k ∈ KX. Let λk ≥ 0 be the Lagrangian multiplier

associated with the sum transmit power constraint at transmitter k ∈ KT. Based on the optimality condition

of (MFP-FT), the globally optimal solution of (MFP-FT) must has the following form for k ∈ KX

FT,k(λk) =

( ∑
m∈KX

H∗m,µ(k)WX,mVmW
∗
X,mH

∗
m,µ(k) + λkINT,k

)−1

H∗k,µ(k)WX,kVk. (37)

Since Vk is a Hermitian and positive semidefinite matrix,
∑

m∈KX
H∗m,µ(k)WX,mVmW

∗
X,mH

∗
m,µ(k)

is also Hermitian and positive semidefinite. It can be checked that tr
(
FT,k(λk)F

∗
T,k(λk)

)
is strictly

decreasing with λk in [0,+∞). The optimal Lagrangian multiplier λ∗k ≥ 0 is chosen such that the

complementary slackness condition of the sum power constraint at transmitter k ∈ KT is satisfied. For

any k ∈ KT, if
∑

m∈KX: µ(m)=k tr(FT,k(0)F∗T,k(0)) ≤ pT,k, then Fopt
T,k = FT,k(0). Otherwise, λ∗k is the

unique solution of the following equation

∑
m∈KX

µ(m)=k

tr
(
FT,k(λk)F

∗
T,k(λk)

)
= pT,k. (38)

This equation can be solved by using one-dimensional search techniques, e.g., the bisection method.

Note that in the proposed algorithm for solving (MFP), we are able to find the globally optimal solu-

tions to the corresponding optimization problem in each iteration. Therefore, the algorithm is guaranteed
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to converge to a stationary point of (MFP), which is also a stationary point of (AFP). Let F̄T denote

the transmit precoders corresponding to the resulting stationary point. It is worthwhile to emphasize that

it is not guaranteed that we can find a stationary point of (FP). Thus, a two-hop rate mismatch may still

happen for the resulting suboptimal solution (F̄T, F̄X) of the original transmit precoder design problem

(OP). This leaves room for potential improvements in terms of maximizing Rsum(FT, F̄X).

5) Rate-Matching Transmit Power Control: We propose an iterative power control method for elim-

inating any residual two-hop rate mismatch corresponding to (F̄T, F̄X). Let F
(n)
T,k denote the transmit

precoder for the transmission to relay k ∈ KX in iteration n of this method. Note that F(0)
T,k = F̄T,k for

k ∈ KX. Let θ(n)
k ∈ R be the norm of F(n)

T,k, i.e., the power allocated for the transmission from transmitter

µ(k) ∈ KT to relay k ∈ KX in iteration n. We propose to fix the shapes of the transmit precoders and

to adjust only their norm θk for k ∈ KX. It follows that F(n)
T,k = θ

(n)
k

F̄T,k

‖F̄T,k‖F
for all n ≥ 0 where F̄T,k

‖F̄T,k‖F

has unit norm and represents the shape of F̄T,k.

We define θ(n) = (θ
(n)
1 , · · · , θ(n)

KX
) ∈ RKX×1 and θ

(n)
−k = (θ

(n)
1 , · · · , θ(n)

k−1, θ
(n)
k+1 · · · , θ

(n)
KX

). Note that θ(n)

and (θ
(n)
k ;θ

(n)
−k) are used interchangeably in the section. Also, we denote Hm,µ(k) = Hm,µ(k)

F̄T,k

‖F̄T,k‖F
for

k,m ∈ KX. The interference plus noise covariance matrix at relay k ∈ KX is rewritten as

RX,k(θ
(n)
−k) =

∑
m∈KX

m 6=k

θ(n)
m Hk,µ(m)H∗k,µ(m) + σ2

X,kINX,k
, (39)

while the maximum achievable rate at relay k ∈ KX is rewritten as

R1,k(θ
(n)) = log2 det

(
I + θ

(n)
k H∗k,µ(k)

[
RX,k(θ

(n)
−k)
]−1Hk,µ(k)

)
. (40)

Thus, it follows that

ξ1,k(θ
(n)) = det

(
I + θ

(n)
k H∗k,µ(k)

[
RX,k(θ

(n)
−k)
]−1Hk,µ(k)

)
− 1. (41)

The end-to-end achievable rate corresponding to relay k ∈ KX is written as

Rk(θ
(n)) = min{tR1,k(θ

(n)), (1− t) log2(1 + ξ̄2,k)}. (42)

Note that H∗k,µk[RX,k(θ
(n)
−k)]−1Hk,µk is independent of θ(n)

k . It is also a Hermitian and positive semidef-

inite matrix. Since det(I + xA) is strictly increasing in x for x ≥ 0 when A is a positive semidefinite

matrix, both R1,k(θ
(n)) and ξ1,k(θ

(n)) are strictly increasing in θ(n)
k when θ(n)

k ≥ 0.
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Let A(n) , {k ∈ KX : tR1,k(θ
(n)) > (1 − t) log2(1 + ξ̄2,k)} be the index set of the relays with a

dominant first hop in iteration n. If k ∈ A(n), then excess power is allocated for the transmission to relay

k. Similarly, let B(n) , {k ∈ KX : tR1,k(θ
(n)) < (1− t) log2(1 + ξ̄2,k)} be the index set of the relays

with a dominant second hop in iteration n. A two-hop rate mismatch happens if and only if A(n) 6≡ ∅ and

B(n) 6≡ ∅. When a two-hop rate mismatch happens, we consider an arbitrary kA ∈ A(n) and kB ∈ B(n).

It follows A(n)∩B(n) ≡ ∅ that kA 6= kB. When θ(n)
m is fixed for m ∈ KX and m 6= kA, since kA ∈ A(n),

there must exist φ(n)
kA
∈ (0, θ

(n)
kA

) such that

tR1,k(φ
(n)
kA

;θ
(n)
−kA)) = (1− t) log2(1 + ξ̄2,kA). (43)

Equivalently, it follows that

det
(
I + φ

(n)
kA

H∗kA,µ(kA)

[
RX,kA(θ

(n)
−kA)

]−1HkA,µ(kA)

)
− 1 = ηkA . (44)

Since the left-hand side of (44) is strictly increasing in φ(n)
kA

, this equation has a unique solution, which

can be found by using one dimensional search techniques, e.g., the bisection method. Note that φ(n)
kA

is

the rate-matching power for the transmission to relay kA in iteration n.

The key observation for the proposed power control algorithm is that if a two-hop rate mismatch

happens at the end of iteration n, excess power can be reduced by setting θ
(n+1)
kA

= φkA and θ
(n+1)
−kA =

θ
(n)
−kA for an arbitrary kA ∈ A(n). Note that RkA(θ(n+1)) = (1 − t) log2(1 + ξ̄2,kA) = RkA(θ(n)),

Also, this excess power reduction decreases the power of interference observed by all relay m 6= kA,

leading to R1,m(θ(n+1)) ≥ R1,m(θ(n)) and hence Rm(θ(n+1)) ≥ Rm(θ(n)). Especially, it follows that

R1,kB(θ(n+1)) > R1,kB(θ(n)) and hence RkB(θ(n+1)) > RkB(θ(n)). As a result, the end-to-end sum-rate

is strictly improved, i.e.,
∑

k∈KX
Rk(θ

(n)) <
∑

k∈KX
Rk(θ

(n+1)). Thus, when a two-hop rate mismatch

happens, reducing excess power in a controlled manner strictly increases the end-to-end sum-rates.

Based on the observation, we propose an iterative algorithm for updating the power allocated for the

transmission from the transmitters to the relays. Specifically, at the end of each iteration n ≥ 0, each

relay k ∈ KR computes ξ1,k(θ
(n)) to check if the transmission to itself is allocated excess power. If

ξ1,k(θ
(n)) ≤ ηk, then the power allocated for the transmission to relay k does not need to change, i.e.,

θ
(n+1)
k = θ

(n)
k . Otherwise, relay k determines the corresponding rate-matching power φ(n)

k and feeds back

the value to its associated transmitter µ(k) to instruct the transmitter to update θ(n+1)
k = φ

(n+1)
k ∈ (0, θ

(n)
k ).
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In other words, the power update rule for k ∈ KX and n ≥ 0 is

θ
(n+1)
k =


φ

(n)
k , if k ∈ A(n),

θ
(n)
k , otherwise.

(45)

This process is repeated until the algorithm converges or the maximum number of iteration is reached.

It follows from the power update rule that θ(n+1)
k ≤ θ

(n)
k for k ∈ KX and n ≥ 0. Several properties of

the proposed algorithm are presented in Remark 5, Remark 6, and Remark 7.

Remark 5: Note that θ(n+1)
k ≤ θ

(n)
k for k ∈ KX and n ≥ 1. Since θ(n)

k is nonnegative, it is lower

bounded by 0. Thus, it is guaranteed that the proposed power control algorithm converge as the number

of iterations goes to infinity.

Remark 6: The resulting solution of the proposed power control algorithm does not causes a two-hop

rate mismatch. Indeed, let n0 be the index of the iteration at which the proposed algorithm is convergent,

i.e., θ(n0)
k = θ

(n0+1)
k for k ∈ KX. This means that ξ1,k(θ

(n0)) ≤ ηk for all k ∈ KX or A(n0) ≡ ∅. Recall

that a two-hop rate mismatch happens in iteration n if and only if A(n) 6≡ ∅ and B(n) 6≡ ∅. Thus there

is not any two-hop rate mismatch in iteration n0.

Remark 7: The proposed algorithm does not decrease Rk(θ(n)) over iterations for n ≥ 0. It can be

showed that if A is positive semidefinite, then det(I + B∗(I + xA)−1B) is strictly decreasing in x for

x ≥ 0 for any B. From (39) and (41), we have

ξ1,k(θ
(n+1)) + 1 = det

(
I + θ

(n+1)
k H∗k,µ(k)

[ ∑
m∈KX

m6=k

θ(n+1)
m Hk,µ(m)H∗k,µ(m) + σ2

kI

]−1

Hk,µ(k)

)

≥ det

(
I + θ

(n+1)
k H∗k,µ(k)

[ ∑
m∈KX

m6=k

θ(n)
m Hk,µ(m)H∗k,µ(m) + σ2

kI

]−1

Hk,µ(k)

)
(46)

=


ηk + 1, if k ∈ A(n)

ξ1,k(θ
(n)) + 1, otherwise,

(47)

where (46) comes from the property that θ(n+1)
k ≤ θ(n)

k for k ∈ KX and (47) comes from (45) and (44).

It follows that min{ηk, ξ(n+1)
1,k } ≥ min{ηk, ξ(n)

1,k }; equivalently, Rk(θ(n+1)) ≥ Rk(θ(n)) for k ∈ KX.

Remark 8: We can always use the same steps to develop a similar rate-matching transmit power

control at the relays on the second hop. Nevertheless, because the proposed algorithm is implemented
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in a distributed manner, it is unclear how to determine when the rate-matching transmit power control

should be performed on the first hop and when it should be performed on the second hop.

Note that the proposed power control algorithm does not help find any stationary points of (OP).

Essentially, it helps eliminate the residual two-hop rate mismatch in (F̄T, F̄X) to find a potentially better

suboptimal solution to (OP).

C. Discussion

1) Summary of the Proposed Algorithm: Recall that the proposed algorithm aims to find high-quality

suboptimal solutions to the end-to-end sum-rate maximization problem (OP). The development of this

algorithm is involved with the formulation of a number of optimization problems as illustrated in Fig.

2. The flow diagram of the proposed algorithm is presented in Fig. 3, where the notation for the main

parameters is summarized in Table I. Note that Phase 1 is a counterpart of Table I in [?].

2) Distributed Implementation: The proposed transmit precoding algorithm for the relay interference

broadcast channel allows for distributed implementation. Similar to [?], [?], [?], [?], two assumptions

are needed. First, each transmitting node has the corresponding local channel state information (CSI).

Specifically, on the first hop, transmitter k ∈ KT has the CSI of Hm,k for all m ∈ KX; on the second

hop, relay m ∈ KX has the CSI of Gq,m for all q ∈ KR. Second, there is a feedback channel to send

information from a receiving node to its serving node, i.e., from receiver q ∈ KR to relay χ(q) ∈ KX and

from relay m ∈ KX to transmitter µ(m) ∈ KT. Specifically, while using the iteratively weighted MMSE

approach to solve (SP), in each iteration, the receivers need to feedback the updated matrix weights

and receive filters to the relays [?], [?]. At the end of Phase 1, each receiver m ∈ KR computes the

second-hop received SINR and sends back to its serving relay, i.e. relay χ(m). On the first hop, in each

iteration of solving (MFP), the relays also need to send back the updated matrix weights and receive

filters to the transmitters.

3) Opportunistic Approach: Recall that it is not guaranteed that the proposed algorithm can find

optimal solutions to (OP). In fact, the end-to-end sum-rate performance of the resulting solution (FT,FX)

depends on the initial solutions in the first two phases. One method for improving the end-to-end sum-

rate performance of the algorithm is to use multiple random transmit precoders as initial solutions in

the first two phases and then to select the best one in terms of end-to-end sum-rate maximization. Such

an opportunistic approach, however, may require more coordination among the nodes and result in more
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(a) 

(b) 

(c) (d) (e) (f) 

(OP)

(SP)

(FP) (AFP) (GFP) (MFP) (MFP-FT)

Fig. 2. Illustration of the transformations between different optimization problems to find high-quality suboptimal solutions to
(OP): (a) the design problem for the transmit precoders at the relays (SP) is obtained from (OP) when the first hop is ignored;
(b) the design problem for the transmit precoders at the transmitters (FP) is obtained from (OP) and the first-hop performance
results from the previous step; (c) approximates of the utility function of (FP) given in (24) are used to formulate (AFP);
(d) (AFP) is equivalently rewritten as (GFP); (e) (MFP) is the matrix-weighted sum-MSE minimization problem that has
the same stationary points as (GFP); the alternating minimization approach is adopted to solve (MFP) and (f) (MFP-FT)
is the design problem to design the transmit precoders at the transmitters in the corresponding iterations.
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Fig. 3. Flow diagram of the proposed algorithm for the relay interference broadcast channel.

overhead in the network.

4) Order of Optimization: In the proposed algorithm, the relays are optimized for second-hop sum-rate

maximization before the transmitters are designed for end-to-end sum-rate maximization. Note that the

rates on two hops are matched with each other per relay in the design of the transmitters. In particular,

when the allocated first-hop rates βk,m for k ∈ KX and m ∈ KR are determined as in (15), at each

relay k, the normalized first-hop rate tR1,k(FT) is matched with the sum of normalized second-hop rates

(1 − t)R2,k,sum(FX). There is another order of optimization where the transmitters are optimized for

first-hop sum-rate maximization before the relays are optimized for end-to-end sum-rate maximization.
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TABLE I
SUMMARY OF NOTATION

Notation Parameters
χ(k) index of the relay aiding receiver k ∈ KR

µ(k) index of the transmitter aided by relay k ∈ KX

FX,q precoder at relay χ(q) ∈ KX for transmission to receiver q ∈ KR

F̄X,q resulting transmit precoder at relay χ(q) ∈ KX for transmission to receiver q ∈ KR

WR,q receive filter at receiver q ∈ KR

Uq matrix weight for MSE at receiver q ∈ KR in the second-hop weighted sum-MSEs
ξ̄2,k effective SINR corresponding to second-hop sum-rates from relay k ∈ KX

ηk rate-matching SINR at relay k ∈ KX on the first hop
FT,k precoder at transmitter µ(k) ∈ KT for transmission to relay k ∈ KX

F̄T,k resulting precoder at transmitter µ(k) ∈ KT for transmission to relay k ∈ KX in
the second phase

WX,k receive filter at relay k ∈ KX

Vk matrix weight for MSE at relay k ∈ KX in the first-hop weighted sum-MSEs
θk Frobenius norm of FT,k in the third phase, i.e., the power for transmission from

transmitter µ(k) ∈ KT to relay k ∈ KX

ξ1,k effective received SINR at relay k ∈ KX

In this case, the second-hop achievable rates R2,m(FX) for m ∈ KR are determined given the knowledge

of the first-hop achievable rates R1,k(FT) for k ∈ KX. For a fixed first-hop rate allocation strategy βk,m

for k ∈ KX and m ∈ KR, the end-to-end sum-rates in (11) can be rewritten as

R2,k,sum(FX) =
∑
m∈KX

min{βχ(m),m, (1− t)R2,m(FX)}. (48)

Note that the end-to-end sum-rate performance in this case depends significantly on the selected first-hop

rate allocation strategy. Moreover, when the set of βk,m for k ∈ KX and m ∈ KR is given, the same steps

as in Section IV-B can be used in the design of relays in this case if matching the rates on two hops

is performed per receiver. What remains is to determine the optimal first-hop rate allocation strategy in

terms of end-to-end sum-rate maximization. Unfortunately, it is challenging to do this before designing

the relays, i.e., without the knowledge of second-hop achievable rates R2,m(FX) for m ∈ KR. This is

the main reason that we decided that the relays are designed before the transmitters. In the special case

where each relay serves a single receiver, the two orders of optimization are the same since there is no

need for first-hop rate allocation.
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V. SIMULATIONS

This section presents Monte Carlo simulations to investigate the end-to-end sum-rate performance of

the proposed algorithm. We consider only symmetric relay systems with NT,k = NT and pT,k = pT for

k ∈ KT; NX,m = NX, d1,m = d1, and pX,m = pX for m ∈ KX; and NR,q = NR and d2,q = d2 for q ∈ KR.

Each transmitter is aided by KX/KT relays. Each relay forwards data from its associated transmitter to

KR/KX receivers. We denote the system as (NKT

T × NKX

X × NKR

R , d1 × d2). Except when it is stated

explicitly, we use t = 0.5. The channels are flat both in time and in frequency. The channel coefficients

on two hops are generated as i.i.d. zero-mean unit-variance complex Gaussian random variables. Path

loss is not considered in the simulations, thus the average power values of all cross-links on the same hop

are equal to each other. The power values are normalized such that pT = pX, σX,m = 1 for m ∈ KX and

σR,q = 1 for q ∈ KR. The plots are produced by averaging over 1000 random channel realizations. In

each channel realization, the initial transceivers are chosen randomly. The maximum number of iterations

in the first two phases is 2000 while that of the last phase is 30.

A. Convergence of the Proposed Algorithm

Note that if each of its three phases is convergent, the proposed algorithm is also convergent. The

first two phases are based on the prior work for the single-hop MIMO broadcast channel, of which the

convergence is well validated in [?]. Fig. 4 shows the convergence behavior of the proposed rate-matching

transmit power control method for a channel realization of the system (23× 26× 212, 1× 1). We observe

that this method converges in few iterations and it does so monotonically.

B. Benefits of Each of the Last Two Phases

In this section, we investigate the benefits of each of the last two phases by comparing the proposed

algorithm with three alternative algorithms. Fig. 5 shows the block diagrams of all four algorithms. All

algorithms use the same design of the second-hop precoders, which is the first phase of the proposed

algorithm. Although they use different approaches to designing the first-hop precoders, they always use

the same initial solution. The naı̈ve approach is used as the main baseline strategy, which is labeled as

Baseline. The output of the proposed algorithm is labeled as Final output. The output of the second

phase in the proposed algorithm is labeled as After phase 2. Since the proposed rate-matching power

control method for first-hop precoder adjustment can be applied for any (FT,FX), we proposed an
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Fig. 4. Convergence behavior of the rate-matching power control algorithm for the (23 × 26 × 212, 1× 1) system.

algorithm that applies the proposed rate-matching power control for first-hop precoder adjustment to the

output of Baseline. We label it as Baseline + PC. Note that the comparison between After phase 2 and

Baseline gives us insights into the benefits of the second phase of the proposed algorithm. Similarly, the

comparison between Final output and After phase 2 and that between Baseline + PC and Baseline give

us insights into the benefits of the third phase of the proposed algorithm.

Phase 1
Second-hop
precoder

design

Phase 2
First-hop
precoder

design

Phase 3
First-hop
precoder

adjustment

After phase 2

Final output

Second-hop precoders

Phase 3B
First-hop
precoder

adjustmentPhase 2B
First-hop
precoder

design

Baseline

Baseline + PC

Proposed three-phase algorithm

Fig. 5. Block diagrams of the proposed algorithm and the three reference algorithms. The dashed lines represent the links used
for exchanging design parameters. The solid lines represent the output of the corresponding blocks.

Fig. 6 shows the average end-to-end sum-rates achieved by the four algorithms for the (23×26×212, 1×

1) system. All algorithms achieve non-zero end-to-end multiplexing gains thanks to their capabilities of

interference management on two hops. The proposed algorithm outperforms the other algorithms for all
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Fig. 6. Investigation of the benefits of the last two phases for the (23 × 26 × 212, 1× 1) system.

transmit power values. At pT = pX = 30 dB, Final output provides a gain of 10% over After phase 2,

which in turn provides a gain of 44% over Baseline. Also, Baseline + PC provides a gain of 28% over

Baseline. The results mean that thanks to the consideration of t and ξ2,k for k ∈ KX in the design of FT,

the second phase of the proposed algorithm is able to alleviate a two-hop rate mismatch to obtain higher

end-to-end sum-rates. In addition, the results show that there exist two-hop rate mismatches at the output

of both After phase 2 and Baseline. This is expected since the second phase of the proposed algorithm

aims only at maximizing an approximate of the end-to-end sum-rates. We notice that the two-hop rate-

mismatch of the output of Baseline is relatively more significant than that of the output of After phase 2.

This emphasizes the benefits of two-hop rate-mismatch alleviation of the second phase of the proposed

algorithm. Note that After phase 2 outperforms Baseline + PC in this simulation scenario, however, it is

not guaranteed that After phase 2 always outperforms Baseline + PC.

Note that the relative gains provided by each of the last two phases depend on the configurations.

Fig. 7 provides the simulation results for After phase 2 and Baseline for the following three systems:

(23 × 26 × 112, 1 × 1), (24 × 24 × 24, 1 × 1), and (44 × 48 × 216, 2 × 2). We observe that even before

rate-matching power control, the proposed algorithm always outperforms the baseline. At pT = pX = 30

dB, the gain is 60% for the system (23 × 26 × 112, 1× 1), 22% for the system (24 × 24 × 24, 1× 1) and

40% for the system (44 × 48 × 216, 2× 2).
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Fig. 7. Comparison of average end-to-end sum-rates of After phase 2 and Baseline to show the benefits of the second phase
of the proposed algorithm.

C. Opportunistic Solutions

We adopt an opportunistic approach to improve the end-to-end sum-rate performance. Let N be the

number of random initializations in the opportunistic approach. The proposed algorithm is repeated

N times with the random initializations and choose the one with the highest achievable end-to-end

sum-rates. Fig. 8 provides the average achievable end-to-end sum-rates of the opportunistic solutions of

the proposed three-phase algorithm with the number of initializations N ∈ {1, 2, 5, 25} for the system

(23×26×212, 1×1). To provide a benchmark, we also show the results for the fixed average normalized

second-hop sum-rates, which provides an upper-bound for the solutions. As expected, increasing N

improves the end-to-end sum-rates achieved by the proposed algorithm with opportunistic implementation.

At pT = pR = 30 dB, the opportunistic solution with N = 5 nearly doubles the end-to-end sum-rates

when compared to the baseline. Nevertheless, the additional gains obtained by using an additional random

initialization in the opportunistic solutions decreases in N . At pT = pR = 30 dB, the opportunistic

solution with N = 25 achieves nearly 75% the value of the upper-bound.

D. Varying Timesharing Values

Fig. 9 presents the average achievable end-to-end sum-rates as functions of the timesharing values for

the system (24 × 28 × 216, 1× 1) for the following two cases: i) Case 1 with pT = pX = 30 dB and ii)
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Fig. 8. Average end-to-end sum-rates of opportunistic solutions of the proposed three-phase algorithm for N ∈ {1, 2, 5, 25}
for (23 × 26 × 212, 1× 1).

Case 2 with pT = 30 dB and pX = 20 dB. We notice that for the proposed algorithm and the baseline in

each case has the same optimal timesharing value, t1 = 0.5 for Case 1 and t2 = 0.425 for Case 2. These

optimal timesharing values approximately equalize the average normalized sum-rates on two hops. This

emphasizes the importance of matching the rates on two hops. In addition, we observe that thanks to the

explicit consideration of t for matching the rates on two hops, the proposed algorithm has large gains,

between 50% and 70%, over the baseline for t ∈ [0.1, 0.9].

VI. CONCLUSIONS AND FUTURE WORK

We proposed a cooperative algorithm for jointly designing transmit precoders at the transmitters and

relays for the decode-and-forward relay interference broadcast channel to (approximately) maximize

end-to-end sum-rates. The naive approach of applying single-hop interference management strategies

separately for two hops of the system causes rate mismatch, leading to low end-to-end sum-rates. The

main challenges were interference management and rate mismatch between the rates on the two hops. Our

solution is a three-phase cooperative algorithm. The first phase focuses on the design of precoders at the

relays to maximize the second-hop sum-rates. The second phases uses the knowledge of the timesharing

value and the second-hop achievable rates to design the precoders at the transmitters to maximize an

approximate of the end-to-end sum-rates. The last phase uses power control at the transmitters to eliminate
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Fig. 9. Average end-to-end achievable rates as a function of timesharing t for (24 × 28 × 216, 1× 1).

any residual rate mismatch to further improve the end-to-end sum-rates. The proposed algorithm allows

for distributed implementation and has fast convergence behavior, making it suitable for practical systems.

Simulations showed that the proposed algorithm obtains much higher end-to-end sum-rates than the naive

approach.

The work assumes instantaneous and perfect CSI is available at the transmitters and relays. Of course,

perfect CSI is not realizable in practical systems where there is channel estimation error, time-variation

in the channel, thermal noise, errors on the feedback link, and signal processing delay. Future work could

investigate and quantify impacts of imperfect CSI, e.g., due to channel estimation or CSI feedback delay,

on the proposed algorithm. Based on this knowledge, future work should focus on developing algorithms

that are robust in presence of CSI uncertainty. Our proposed algorithm provides benchmarks for future

work that accounts for more practical impairments.


	I Introduction
	II System Model
	III Problem Formulation
	IV Transmit Beamforming Design
	IV-A Second-Hop Transmit Beamforming Design
	IV-B First-Hop Transmit Beamforming Design
	IV-B1 Subproblem Formulation and Challenges
	IV-B2 Proposed Approach
	IV-B3 Sum-Utility Maximization via Matrix-Weighted Sum-MSE Minimization
	IV-B4 Algorithm for Matrix-Weighted Sum-MSE Minimization
	IV-B5 Rate-Matching Transmit Power Control

	IV-C Discussion
	IV-C1 Summary of the Proposed Algorithm
	IV-C2 Distributed Implementation
	IV-C3 Opportunistic Approach
	IV-C4 Order of Optimization


	V Simulations
	V-A Convergence of the Proposed Algorithm
	V-B Benefits of Each of the Last Two Phases
	V-C Opportunistic Solutions
	V-D Varying Timesharing Values

	VI Conclusions and Future Work

