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Abstract

In this paper, a multi–source multi–relay cooperative wireless network with binary modulation and binary

network coding is studied. The system model encompasses: i)a demodulate–and–forward protocol at the

relays, where the received packets are forwarded regardless of their reliability; and ii) a maximum–likelihood

optimum demodulator at the destination, which accounts forpossible demodulations errors at the relays. An

asymptotically–tight and closed–form expression of the end-to-end error probability is derived, which clearly

showcases diversity order and coding gain of each source. Unlike other papers available in the literature, the

proposed framework has three main distinguishable features: i) it is useful for general network topologies

and arbitrary binary encoding vectors; ii) it shows how network code and two–hop forwarding protocol affect

diversity order and coding gain; and ii) it accounts for realistic fading channels and demodulation errors at

the relays. The framework provides three main conclusions:i) each source achieves a diversity order equal

to the separation vector of the network code; ii) the coding gain of each source decreases with the number

of mixed packets at the relays; and iii) if the destination cannot take into account demodulation errors at

the relays, it loses approximately half of the diversity order.

Index Terms

Cooperative networks, multi–hop networks, network coding, performance analysis, distributed diversity.

I. INTRODUCTION

Cooperative communications and Network Coding (NC) have recently emerged as strong candidate tech-

nologies for many future wireless applications, such as relay–aided cellular networks [1], [2]. Since their

inception in [3] and [4], they have been extensively studiedto improve performance and throughput of

wireless networks, respectively. In particular, theory and experiments have shown that they can be extremely

useful for wireless networks with disruptive channel and connectivity conditions [5]–[7].

However, similar to many other technologies, multi–hop/cooperative communications and NC are not

without limitations [1], [8]. Due to practical hardware limitations, e.g., the half–duplex constraint, relay

transmissions consume extra bandwidth, which implies thatusing cooperative diversity typically results in

a loss of system throughput [9]. On the other hand, NC is very susceptible to transmission errors caused by
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noise, fading, and interference. In fact, the algebraic operations performed at the network nodes introduce

some packet dependencies in a way that the injection of even asingle erroneous packet has the potential to

corrupt every packet received at the destination [10], [11]. Due to their complementary merits and limitations,

it seems very natural to synergically exploit cooperation and NC to take advantage of their key benefits while

overcoming their limitations. For example, NC can be an effective enabler to recover the throughput loss

experienced by multi–hop/cooperative networking, while the redundancy inherently provided by cooperation

might significantly help to alleviate the error propagationproblem that arises when mixing the packets [1].

In this context, multi–source multi–relay networks, whichexploit cooperation and NC for performance

and throughput improvement, are receiving an always increasing interest for their inherent flexibility to

achieving excellent performance and diversity/multiplexing tradeoffs [12]–[36]. More specifically, consider-

able attention is currently devoted to understanding the achievable performance of such networks when both

cooperation and NC operations are pushed down to the physical layer, and their joint design and optimization

are closely tied to conventional physical layer functionalities, such as modulation, channel coding, and

receiver design [37], [38]. In particular, how to tackle theerror propagation problem to guaranteeing a given

quality–of–service requirement,e.g., a distributed diversity order, plays a crucial role when these networks

are deployed in error–prone environments,e.g., in a wireless context. For example, simple case studies

in [16], [22], [23], and [39] have shown that a diversity lossoccurs if cooperative protocols or detection

algorithms are not adequately designed. To counteract thisissue, many solutions have been proposed in

the literature, which can be divided in two main categories:i) adaptive (or dynamic) solutions,e.g., [20],

[23], [27], [28], and [35], which avoid unnecessary error propagation that can be caused when encoding

and forwarding erroneous data packets; and ii) non–adaptive solutionse.g., [16], [19], [21], [22], and [25],

which allow erroneous packets to propagate through the network but exploit optimal detection mechanisms

at the destination to counteract the error propagation. Each category has its own merits and limitations.

Adaptive solutions rely, in general, on the following assumptions [23], [24], [27], [28]: a) network code

and cooperative strategy are adapted to the channel conditions and to the outcome/reliability of the detection

process at the relay nodes. This requires some overhead, since the network code must be communicated to

the destination for correct detection; b) powerful enough channel codes at the physical later are assumed to

guaranteeing that the error performance is dominated by outage events (according to the Shannon definition

of outage capacity) [36, Sec. II]; and c) the adoption of ideal Cyclic Redundancy Check (CRC) mechanisms

for error detection, which guarantees that a packet is either dropped or injected into the network without

errors (i.e., erasure channel model). However, recent results have shown that, in addition to be highly spectral

inefficient as an entire packet is blocked if just one bit is inerror, relaying based on CRC might not be

very effective in block–fading channels [40], [41]. An interesting link–adaptive solution, which does not

require CRC for error detection and avoids full–CSI (Channel State Information) information at the relays,

has been proposed in [18]. Therein, the achievable diversity (using the Singleton bound) is studied under
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the assumption thatad hocinterleavers are used, while no analysis of the coding gain is conducted.

Non–adaptive solutions rely, in general, on the following assumptions [16], [19], [25]: a) neither error

correction nor error detection mechanisms are needed at thephysical layer, but the relays just regenerate

the incoming packets and forward them to the final destination (i.e., error channel model). This results in

a simple design of the relay nodes, as well as in a spectral efficient transmission scheme as the received

packets are never blocked; and b) the possibility to receivepackets with errors needs powerful detection

mechanisms at the destination, which require CSI of the whole network to counteract the error propagation

problem and to achieve full–diversity. Similar to adaptivesolutions, this requires some overhead.

As far as adaptive solutions are concerned, [23], [27], [28]have recently provided a comprehensive study

of the diversity/multiplexing tradeoff for general multi–source multi–relay networks, and have shown that

the design of diversity–achieving network codes is equivalent to the design of systematic Maximum Distance

Separable (MDS) codes for erasure channels. Thus, well–established and general methods for the design of

network codes exist, which can be borrowed from classical coding theory. On the other hand, as far as non–

adaptive solutions are concerned, theoretical analysis and guidelines for system optimization are available

only for specific network topologies and network codes. To the best of the authors knowledge, a general

framework for performance analysis and code design over fading channels is still missing. Motivated by these

considerations, in this paper we focus our attention on non–adaptive solutions with a threefold objective:

i) to develop a general analytical framework to compute the Average Bit Error Probability (ABEP) of

multi–source multi–relay cooperative networks with arbitrary binary encoding vectors and realistic channel

conditions over all the wireless links; ii) to provide guidelines for network code design to achieve a given

diversity and coding gain tradeoff; and iii) to understand the impact of the error propagation problem and

the role played by CSI at the destination on the achievable diversity order and coding gain.

More specifically, by carefully looking at recent literature related to the performance analysis and code

design for non–adaptive solutions, the following contributions are worth being mentioned: i) in [16], the

authors study a simple three–node network without NC (a simple repetition code is considered) and they show

that instantaneous CSI is needed at the destination to achieve full–diversity. No closed–form expression of

the coding gain is given; ii) in [19] and [33], the authors introduce and study Complex Field Network Coding

(CFNC), which does not rely on Galois field operations and exploit interference and multi–user detection to

increase throughput and diversity. The analysis is valid for arbitrary network topologies. However, only the

diversity order is computed analytically, while the codinggain is studied by simulation; iii) in [21], the authors

study a simple three–node network with binary NC. Unlike other papers, channel coding is considered in the

analysis. However, the error performance is mainly estimated through Monte Carlo simulations; iv) in [22],

the author considers multiple relay nodes but a simple repetition code is used (no NC). Main contribution

is the study of the impact of channel estimation errors on theachievable diversity; v) in [25], the authors

study a network topology with multiple sources but with justone relay. Also, a very specific network code
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is analyzed. This paper provides a simple and effective method to accurately computing the coding gain of

error–prone cooperative networks with NC; vi) in [34], the authors analyze generic multi–source multi–relay

networks with binary NC, but error–free source–to–relay links are considered, and the performance (coding

gain) is computed by using Monte Carlo simulations; vii) in [39] and [46], we have studied the performance of

network–coded cooperative networks with realistic source–to–relay wireless channels. However, the analysis

is useful only for two–source two–relay networks and for a very specific binary network code; viii) in [42], a

general framework to study the ABEP for arbitrary modulation schemes is provided, but a simple three–node

network without NC is considered; and ix) in [43], the authors study a three–node network with a simple

repetition code. Exact results are provided for coding gainand diversity order. Finally, in [44] and [45],

NC with error–prone source–to–relay links is studied, but the analysis is applicable only to noisy channels,

while channel fading and distributed diversity issues are not investigated.

According to this up–to–date analysis of the state–of–the–art, it follows that no general framework for

performance analysis and design of non–adaptive solutionsexists in the literature, which is useful for

generic network topologies, for arbitrary encoding vectors, and which provides an accurate characterization

of diversity order and coding gain as a function of the CSI available at the destination. Motivated by

these considerations, in this paper we focus our attention on a general multi–source multi–relay network

with realistic and error–prone channels over all the wireless links. For analytical tractability (and to keep

the implementation complexity of relays at a low level [34],[47]), we consider a binary network code, a

Binary Phase Shift Keying (BPSK) modulation, and the Demodulate–and–Forward (DemF) relay protocol.

With these assumptions, the main contributions and outcomes of this paper are as follows: i) a Maximum–

Likelihood (ML–) optimum demodulator is proposed, which allows the destination to exploit the distributed

diversity inherently provided by cooperation and NC. The demodulator takes into account demodulation

errors that might occur at the relay nodes, as well as forwarding and NC operations. It is shown that

the demodulator resembles a Chase combiner [48] with hard–decision decoding at the physical layer; ii) a

simple but accurate framework to compute the end–to–end ABEP of each source is proposed. The framework

provides a closed–form expression of diversity order and coding gain, and it clearly highlights the impact

of error propagation and NC on the end–to–end performance; iii) it is proved that each source node can

achieve a diversity order that is equal to the separation vector [49], [50] of the network code. In particular, it

is shown that the optimization of network codes is equivalent to the design of systematic linear block codes

for fully–interleaved fading channels, and that Equal and Unequal Error Protection (EEP/UEP) properties

are preserved [49]; and iv) the impact of CSI at the destination is studied, and it is shown that half of the

diversity order is lost if the destination is unable to account for possible demodulation errors at the relays.

The paper is organized as follows. In Section II, network topology and system model are introduced. In

Section III, the ML–optimum demodulator that accounts for demodulation errors at the relays is proposed.

In Section IV, a closed–form expression of the end–to–end ABEP is given. In Section V, diversity order and
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coding gain are studied for arbitrary binary network codes and network topologies. In Section VI, numerical

results are presented to substantiate analysis and findings. Finally, Section VII concludes this paper.

II. SYSTEM MODEL

We consider a generic multi–source multi–relay network with NS sources (St for t = 1, 2, . . . , NS),

NR relays (Rq for q = 1, 2, . . . , NR), and, without loss of generality, a single destinationD. We consider

the baseline Time Division Multiple Access (TDMA) protocol, where each transmission takes place in

a different time–slot, and multiple–access interference can be neglected [3]. We assume that direct links

between sources and destination exist, and that the relays help the sources to deliver the information packets

to the final destination. The cooperative protocol is composed of two main phases: i) the broadcasting phase;

and ii) the relaying phase. During the first phase, the sourceSt transmits the information packet intended to

the destination in time–slotTt for t = 1, 2, . . . , NS . TheseNS packets are overheard by theNR relays too,

which store them in their buffers for further processing. This phase lastsNS time–slots. During the second

phase, the relayRq forwards a linear combination,i.e., NC is applied [4], of some received packets to the

destination in time–slotTNS+q for q = 1, 2, . . . , NR. We consider a non–adaptive DemF relay protocol, which

means that each relay demodulates the received packets, butperform NC and forward them regardless of their

reliability. As a result, packets with erroneous bits can beinjected into the network. However, these packets

can be adequately used at the destination, by exploiting advanced detection and signal processing algorithms

at the physical layer, to improve the system performance [1,pp. 18–20]. According to the working operation

of the protocol, broadcasting and relaying phases lastNS +NR time–slots. SinceNS information packets

are transmitted by the sources, the protocol offers a fixed rate, R, that is equal toR = NS/(NS +NR). In

this paper, we are interested in understanding how the operations, i.e., NC, performed at the relays affect the

end–to–end performance for this given rate. Main objectiveis understanding the performance of cooperative

networks with NC when physical layer terminologies are exploited to counteract the error propagation

problem [37], and, more specifically, when demodulation andnetwork decoding are jointly performed at

the destination (i.e., cross–layer decoding). For analytical tractability and simplicity, we retain three main

reasonable assumptions: i) uncoded transmissions with no channel coding are considered. Accordingly,

there is no loss of generality in considering symbol–by–symbol transmission. Some preliminary results with

channel coding are available in [51]; ii) BPSK modulation isassumed to keep the analytical complexity at

a low level; and iii) binary NC at the relays is investigated.However, unlike many current papers in the

literature,e.g., [25], [39], [46], and references therein, no assumption about the encoding vectors is made.

These assumptions are widespread used in related literature e.g., [14], [16], [22], and the references therein.

A. Broadcasting and Relaying Phases

According to the assumptions above, the generic sourceSt broadcasts, in time–slotTt, a BPSK–modulated

signal,xSt
, with average energyEm, i.e., xSt

=
√
Em (1− 2bSt

), wherebSt
∈ {0, 1} is the bit emitted by
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St. Then, the signals received at relaysRq for q = 1, 2, . . . , NR and destinationD are:






yStRq = hStRqxSt + nStRq

yStD = hStDxSt + nStD

(1)

wherehXY is the fading coefficient from nodeX to nodeY , which is a circular symmetric complex Gaussian

Random Variable (RV) with zero mean and varianceσ2
XY

/

2 per dimension (Rayleigh fading1). Owing to the

distributed nature of the network, independent but non–identically identically distributed (i.n.i.d.) fading is

considered. In particular, letdXY be the distance between nodesX andY , andα be the path–loss exponent,

we haveσ2
XY = d−α

XY [52], [53]. Also, nXY is the complex Additive White Gaussian Noise (AWGN) at

the input of nodeY and related to the transmission from nodeX to nodeY . The AWGN in different time

slots is independent and identically distributed (i.i.d.)with zero mean and varianceN0/2 per dimension.

Upon reception ofyStRq
andyStD in time–slotTt, the relayRq for q = 1, 2, . . . , NR and the destination

D demodulate these received signals by using the ML–optimum criterion, as follows:



















b̂StRq = argmin
b̃St

∈{0,1}

{

∣

∣

∣yStRq −
√
EmhStRq

(

1− 2b̃St

)∣

∣

∣

2
}

b̂StD = argmin
b̃St

∈{0,1}

{

∣

∣

∣yStD −
√
EmhStD

(

1− 2b̃St

)∣

∣

∣

2
} (2)

where (̂·) denotes the demodulated bit and̃(·) denotes the trial bit used in the hypothesis–testing problem.

More specifically,̂bStRq
andb̂StD are the estimates ofbSt

at relayRq for q = 1, 2, . . . , NR, and at destination

D, respectively. We note that (2) needs CSI about the source–to–relay and the relay–to–destination channels

at relay and destination nodes, respectively. In this paper, we assume that CSI is perfectly known at the

receiver while it is not known at the transmitter. This is obtained through adequate training [22].

After estimatingb̂StRq
and b̂StD, the destinationD keeps the demodulated bit for further processing, as

described in Section III, while the relays initiate the relaying phase. More specifically, the generic relay,

Rq, performs the following three operations: i) it applies binary NC on the set of demodulated bitsb̂StRq

for t = 1, 2, . . . , NS ; ii) it remodulates the network–coded bit by using BPSK modulation; and iii) it

transmits the modulated bit to the destinationD during time–slotTNS+q for q = 1, 2, . . . , NR. Once again,

we emphasize that all the demodulated bits are considered inthis phase, even though they are wrongly

detected,i.e., bSt
6= b̂StRq

. As far as NC is concerned, we denote the network–coded bit atrelay Rq

by bRq
= fRq

(

b̂S1Rq
, b̂S2Rq

, . . . , b̂SNS
Rq

)

= gS1Rq
b̂S1Rq

⊕ gS2Rq
b̂S2Rq

⊕ . . . ⊕ gSNS
Rq
b̂SNS

Rq
, where: i)

fRq
(·) denotes the encoding function at relayRq; ii) ⊕ denotes exclusive OR (XOR) operations; and iii)

gRq
=

[

gS1Rq
, gS2Rq

, . . . , gSNS
Rq

]T
is the binary encoding vector at relayRq [4], wheregStRq

∈ {0, 1} for

t = 1, 2, . . . , NS . From this notation, it follows that only a sub–set of received bits are actually network–

coded at relayRq, i.e., only those bits for whichgStRq
= 1 for t = 1, 2, . . . , NS . Thus, our system setup

is very general: no assumptions are made ongRq
for q = 1, 2, . . . , NR, and the encoding functionsfRq

(·)

1The framework proposed in this paper is applicable to other fading distributions. However, to keep the analytical development more concise and
focused, we consider Rayleigh fading only. In Appendix I, weprovide some comments on how to extend the analysis to other fading distributions.
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can be different at each relay. The goal of this paper is to understand how a given choice of these functions

affect the end–to–end performance, as well as to provide guidelines for their design and optimization.

Thus, the signal received at destinationD in time–slotTNS+q after NC and modulation is (q = 1, 2, . . . , NR):

yRqD = hRqDxRq + nRqD (3)

wherexRq
=

√
Em

(

1− 2bRq

)

. Let us note that the average transmit energy of each relay node is the same

as the average transmit energy of each source node,i.e., Em. This uniform energy–allocation scheme stems

from the assumption of no CSI at the transmitter. The impact of optimal energy allocation is postponed

to future research [25]. Thus, the total average transmit energy for broadcasting and relaying phases is

ET = Em (NS +NR), while the average transmit energy per network node isEA = ET /(NS +NR) = Em.

III. R ECEIVER DESIGN

In this section, we develop a demodulator at the destinationD which is robust to the error propagation

problem caused by forwarding wrong detected bits from the relays. As explained in [1, pp. 18–20], the main

goal is to improve the end–to–end performance by jointly performing demodulation and network decoding.

To this end, we exploit the ML–optimum approach, which is composed of two main steps.

a) Step 1:Upon reception ofyRqD in time–slotTNS+q, the destinationD computes:

b̂RqD = argmin
b̃Rq∈{0,1}

{

∣

∣

∣yRqD −
√

EmhRqD

(

1− 2b̃Rq

)∣

∣

∣

2
}

(4)

where b̂RqD is the estimate ofbRq
. Two important comments are worth being made. 1) At the end of

broadcasting and relaying phases, the destinationD has NS + NR estimated bits,i.e., b̂StD for t =

1, 2, . . . , NS from (2) and̂bRqD for q = 1, 2, . . . , NR from (4), which can be seen as hard–decision estimates

of all the bits transmitted in the network. These estimates are exploited inStep 2, as described below, to

retrieve the information bits emitted by the sources and by taking into account NC operations performed at

the relays. 2) Hard–decision demodulation is performed before network decoding, but, as we will better show

in Step 2below, the demodulator will take into account the reliability of these estimates when performing

network decoding. Similar to [1, pp. 18–20], we will show that this is instrumental to achieve full–diversity.

b) Step 2: In this step we take advantage of physical layer methods to develop network demodulation

schemes that are robust to the error propagation problem [1], [8], and, thus, to the injection into the network,

according to (2) and (3), of wrong demodulated bits. This demodulator can be seen as a generalization of

diversity–achieving demodulators for cooperative networks without NC [16]. The reader can notice that the

proposed approach belong to the family of channel–aware detectors [54], [55]. To the best of the authors

knowledge, the only notable paper which has recently extended these decoders to cooperative networks with

NC is [25]. However, a single relay node and a fixed network code are considered in [25].



7

Using the ML criterion,D demodulates the bitsbSt
(t = 1, 2, . . . , NS) of theNS sources as [52]:

[

b̂S1
, b̂S2

, . . . , b̂SNS

]

= argmax
b̃S1

∈{0,1},...,b̃SNS
∈{0,1}

{

P
(

b̃S1
, b̃S2

, . . . , b̃SNS

∣

∣

∣ b̂S1D, . . . , b̂SNS
D, b̂R1D , . . . , b̂RNR

D

)}

(a)∝ argmax
b̃S1

∈{0,1},...,b̃SNS
∈{0,1}











NS
∏

t=1

P
(

b̂StD

∣

∣

∣
b̃St

)









NR
∏

q=1

P
(

b̂RqD

∣

∣

∣
b̃S1

, b̃S2
, . . . , b̃SNS

)











(b)∝ argmax
b̃S1

∈{0,1},...,b̃SNS
∈{0,1}







NS
∑

t=1

ln
(

P
(

b̂StD

∣

∣

∣
b̃St

))

+

NR
∑

q=1

ln
(

P
(

b̂RqD

∣

∣

∣
b̃S1

, b̃S2
, . . . , b̃SNS

))







(5)

where: i)P (X|Y ) denotes the conditional Probability Density Function (PDF) of RV X given RVY 2; ii) ∝
denotes “proportional to”; iii)

(a)∝ is obtained from the Bayes theorem, by exploiting the independence of the

detection events in each time–slot, and by taking into account that the emitted bits are equiprobable; and iv)
(b)∝

is obtained by moving to the logarithm domain, which preserves optimality. Due to NC operations, in the sec-

ond summation in the third row of (5) each addend is conditioned upon all the bits emitted from the source. In

particular, from Section II, we have:P
(

b̂RqD

∣

∣

∣
b̃S1

, b̃S2
, . . . , b̃SNS

)

= P
(

b̂RqD

∣

∣

∣
fRq

(

b̃S1
, b̃S2

, . . . , b̃SNS

))

=

P
(

b̂RqD

∣

∣

∣
b̃Rq

)

with b̃Rq
= fRq

(

b̃S1
, b̃S2

, . . . , b̃SNS

)

.

The conditional probabilities in (5) can be computed as follows. By direct inspection, it follows that̂bStD

for t = 1, 2, . . . , NS turns out to be the outcome of a Binary Symmetric Channel (BSC) with cross–over prob-

ability PStD = Pr
{

b̂StD 6= bSt

}

= Q

(

√

2 (Em/N0) |hStD|2
)

, whereQ (x) =
(

1
/√

2π
) ∫ +∞

x exp
(

−t2
/

2
)

dt

is the Q–function,Pr {·} denotes probability, and the last equality is due to using BPSK modulation. Accord-

ingly, P
(

b̂StD

∣

∣

∣
b̃St

)

follows a Bernoulli distribution,i.e.,P
(

b̂StD

∣

∣

∣
b̃St

)

= (1− PStD)
1−|b̂StD−b̃St | P |b̂StD−b̃St |

StD
.

Similar arguments can be used to computeP
(

b̂RqD

∣

∣

∣
b̃Rq

)

. In particular, forq = 1, 2, . . . , NR, we have

P
(

b̂RqD

∣

∣

∣
b̃Rq

)

=
(

1− PS1:NS
RqD

)1−|b̂RqD−b̃Rq | P |b̂RqD−b̃Rq |
S1:NS

RqD
. However, in this case the cross–over probabil-

ity PS1:NS
RqD = Pr

{

b̂RqD 6= fRq

(

bS1
, bS2

, . . . , bSNS

)

}

is no longer related to a single–hop link, but it must

be computed by taking into account: i) dual–hop DemF protocol; and ii) NC operations performed at each

relay node. To emphasize this fact, we use the subscriptS1:NS
RqD, whereS1:NS

is a short–hand to denote

theNS sources of the network. This probability is better defined and computed in Section III-A.

By substitutingP
(

b̂StD

∣

∣

∣
b̃St

)

andP
(

b̂RqD

∣

∣

∣
b̃Rq

)

in (5), the ML–optimum demodulator simplifies, after

some algebra and by neglecting some terms that have no effecton the demodulation metric, as:

[

b̂S1
, b̂S2

, . . . , b̂SNS

]

∝ argmin
b̃S1

∈{0,1},...,b̃SNS
∈{0,1}







NS
∑

t=1

(

wStD

∣

∣

∣b̂StD − b̃St

∣

∣

∣

)

+

NR
∑

q=1

(

wS1:NS
RqD

∣

∣

∣b̂RqD − b̃Rq

∣

∣

∣

)







(6)

wherewStD = ln [(1− PStD)/PStD] andwS1:NS
RqD = ln

[(

1− PS1:NS
RqD

)/

PS1:NS
RqD

]

for t = 1, 2, . . . , NS

andq = 1, 2, . . . , NR, respectively.

Three comments about (6) are worth being made. 1) We can notice an evident resemblance with the

well–known Chase combiner [48, Eq. (13)]. In spite of the similar structure, two fundamental differences

exist between the original Chase combiner and (6): i) the Chase combiner does not consider dual–hop

2Throughout this paper, the PDF of RVX given RV Y is denoted either byP (X|Y ) or by PX ( ·|Y ).
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networks, which means that all the packets reach the destination through direct links; and ii) the effect of

error propagation caused by relaying and NC is not considered in the Chase combiner. These two differences

are very important for two reasons: i) the detector in (6) needs more CSI to work properly; and ii) the end–

to–end performance of (6) is affected by relaying and NC operations. Thus, the analysis of the performance

of (6) requires new analytical methodologies, as we will better describe in Section IV. 2) For largeNS and

NR, the complexity of (6) can be quite involving. As suggested in [1, p. 19], this issue can be mitigated

by using near–optimum demodulation methods (e.g., sphere decoding [56]), which attain ML optimality

with an affordable complexity. 3) The demodulator in (6) needs closed–form expressions of the cross–over

probabilitiesPS1:NS
RqD, which, in Section III-A, is shown to depend on the CSI of the source–to–relay

links, and on the NC operations performed at the relay nodes.In general, the estimation of this CSI requires

some overhead [22]. In Section V, we will analyze the impact of CSI on the achievable diversity order.

A. Cross–Over Probabilities of DemF–based Dual–Hop Networks with Binary NC

In this section,PS1:NS
RqD is computed in closed–form.Proposition 1summarizes the main result.

Proposition 1: Let us consider system model and notation in Section II and Section III. The exact cross–

over probability,PS1:NS
RqD, for arbitrary binary encoding vectors isPS1:NS

RqD = PS1:NS
Rq

+ PRqD −
2PS1:NS

Rq
PRqD, wherePRqD = Q

(

√

2 (Em/N0)
∣

∣hRqD

∣

∣

2
)

, PStRq
= Q

(

√

2 (Em/N0)
∣

∣hStRq

∣

∣

2
)

, and:

PS1:NS
Rq =

NS
∑

t=1



gStRqPStRq

NS
∏

r=t+1

(

1− 2gSrRqPSrRq

)



 (7)

Proof: For the generic relayRq, the end–to–end system can be seen as a dual–hop network where: i)

the first hop is given by an equivalent wireless link withb(TX)
Rq

= fRq

(

bS1
, bS2

, . . . , bSNS

)

at its input and

bRq
= fRq

(

b̂S1Rq
, b̂S2Rq

, . . . , b̂SNS
Rq

)

at its output, respectively; ii) the second hop is given by the wireless

link with bRq
= fRq

(

b̂S1Rq
, b̂S2Rq

, . . . , b̂SNS
Rq

)

at its input and̂bRqD in (4) at its output. Thus,PS1:NS
RqD

is given byPS1:NS
RqD = Pr

{

b̂RqD 6= b
(TX)
Rq

}

, which, by using [57, Eq. 23], is equal to:

PS1:NS
RqD = Pr

{

bRq 6= b
(TX)
Rq

}

+ Pr
{

b̂RqD 6= bRq

}

− 2Pr
{

bRq 6= b
(TX)
Rq

}

Pr
{

b̂RqD 6= bRq

}

(8)

In (8), Pr
{

b̂RqD 6= bRq

}

= PRqD = Q

(

√

2 (Em/N0)
∣

∣hRqD

∣

∣

2
)

, as it is the error probability of a

single–hop link. On the other hand,Pr
{

bRq
6= b

(TX)
Rq

}

= PS1:NS
Rq

can be explicitly written as:

PS1:NS
Rq = Pr

{

gS1Rq b̂S1Rq ⊕ gS2Rq b̂S2Rq ⊕ . . .⊕ gSNS
Rq b̂SNS

Rq 6= gS1Rq bS1Rq ⊕ gS2Rq bS2Rq ⊕ . . .⊕ gSNS
Rq bSNS

Rq

}

(9)

Let us now introduce the notation (t = 1, 2, . . . , NS):










PS1:tRq = Pr
{

gS1Rq b̂S1Rq ⊕ gS2Rq b̂S2Rq ⊕ . . .⊕ gStRq b̂StRq 6= gS1Rq bS1Rq ⊕ gS2Rq bS2Rq ⊕ . . .⊕ gStRq bStRq

}

P

(

gStRq

)

StRq
= Pr

{

gStRq b̂StRq 6= gStRq bStRq

}

= gStRq Pr
{

b̂StRq 6= bStRq

}

= gStRqPStRq

(10)

with PS1:tRq
= P

(gStRq)
StRq

= P
(gS1Rq)
S1Rq

if t = 1. Furthermore, similar toPRqD, PStRq
= Pr

{

b̂StRq
6= bStRq

}

=
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PStRq
= Q

(

√

2 (Em/N0)
∣

∣hStRq

∣

∣

2
)

. By taking into account the properties of the XOR operator, (9) can

be computed by using the following chain of recurrence relations:











































































PS1:NS
Rq = PS1:NS−1Rq






1 − P

(

gSNS
Rq

)

SNS
Rq






+

(

1 − PS1:NS−1Rq

)

P

(

gSNS
Rq

)

SNS
Rq

PS1:NS−1Rq = PS1:NS−2Rq






1 − P

(

gSNS−1Rq

)

SNS−1Rq






+

(

1 − PS1:NS−2Rq

)

P

(

gSNS−1Rq

)

SNS−1Rq

.

.

.

PS1:2Rq = PS1:1Rq

(

1 − P

(

gS2Rq

)

S2Rq

)

+
(

1 − PS1:1Rq

)

P

(

gS2Rq

)

S2Rq
= P

(

gS1Rq

)

S1Rq

(

1 − P

(

gS2Rq

)

S2Rq

)

+

(

1 − P

(

gS1Rq

)

S1Rq

)

P

(

gS2Rq

)

S2Rq

(11)

A closed–form solution of a recurrence relation similar to (11) has recently been given in [58] for multi–

hop networks. In particular, by using [58, Eq. (9)], (7) can be obtained. This concludes the proof. �

Proposition 1is instrumental for an efficient implementation of (6). Furthermore, the proof sheds lights

on the fundamental behavior of NC over fading channels. In fact, by comparing (7) and [58, Eq. (9)], we

notice that the cumulative error due to performing NC on wrong demodulated bits at the relay is equivalent

to the error propagation problem in multi–hop networks. In other words, if the relay performs NC on the data

received from1 ≤ N∗
S ≤ NS sources, then the error probability of the network–coded data is the same as a

multi–hop network withN∗
S hops having fading channels given by the source–to–relay links. When adding

the relay–to–destination link, the end–to–end network behaves like aN∗
S + 1 multi–hop network. In other

words,Proposition 1clearly states that the larger the number of network–coded sources is (i.e., the larger

the number of non–zero elements of the encoding vectorgRq
), the more important the error propagation

effect might be. In summary,Proposition 1provides a simple, compact, and intuitive characterization of the

error propagation caused by DemF relaying and NC over fadingchannels.

IV. PERFORMANCEANALYSIS – ABEP

In this section, we provide closed–form expressions of the ABEP for each source of the network. The

framework takes into account the DemF relay protocol and thecharacteristics of the network code. The

departing point of our analysis consists in recognizing that, according to Section II, the network code can

be seen as a(NS +NR)–long distributed linear block code, whose firstNS bits can be seen as systematic

information bits, and the lastNR bits can be seen as the parity (redundant) bits. However, there are two

fundamental differences between the system model under analysis and classical linear block codes [52],

[59]: i) the system model in Section II encompasses a dual–hop network, while state–of–the–art analysis

of classical codes usually considers single–hop transmission; and ii) coding is not performed at the source

nodes, but it is performed at the relay nodes. Due to the distributed nature of the network code and the

assumption of realistic fading channels, encoding operations at the relays are inherently error–prone, as shown

in Proposition 1. Accordingly, new frameworks are needed to characterize the end–to–end performance of

dual–hop networks with NC, similar to the many frameworks that have been developed for cooperative/multi–

hop networks without NC [58], [60]. Note that the frameworksproposed in [44] and [45] are not applicable

to our setup since fading is neglected and no diversity–achieving demodulators are investigated.
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Owing to the inherent similarly between the system model in Section II and distributed linear block codes,

we use union–bound methods to compute the ABEP [53, Eq. (12.44)]. The main difference with respect

to state–of–the–art frameworks is the computation of each individual Average Pairwise Error Probability

(APEP), which must account for the DemF protocol and for the error propagation introduced by NC.

Furthermore, in this paper we are interested in computing the ABEP of each source of the network instead

of considering frame or codeword error probabilities, as itis usually done for linear block codes [52], [53].

The reason is that in our distributed system each source transmits independent information flows, and we

are interested in characterizing the error performance of each of them.

Using the union–bound for equiprobable transmitted bits [53, Eq. (12.44)], the ABEP of sourceSt is:

ABEPSt ≤ 1

2NS

1
∑

bS1
=0

1
∑

bS2
=0

· · ·
1
∑

bSNS
=0

1
∑

b̄S1
=0

1
∑

b̄S2
=0

· · ·
1
∑

b̄SNS
=0

[

APEP (c → c̄) ∆̄ (c [t] , c̄ [t])
]

(a)
=

1

2NS

∑

b

∑

b̄

[

APEP(c → c̄) ∆̄ (c [t] , c̄ [t])
]

(12)

where: i)
(a)
= is a short–hand to avoid multi–fold summations; ii)(·)T denotes transpose operations; iii)In×n

is ann×n identity matrix; iv)b =
[

bS1
, bS2

, . . . , bSNS

]T
andb̄ =

[

b̄S1
, b̄S2

, . . . , b̄SNS

]T
; v) c = G⊙b and

c̄ = G⊙ b̄, where “⊙” indicates that matrix operations (additions and multiplications) are performed in the

Galois field GF(2),G̃ =
[

gR1
,gR2

, . . . ,gRNR

]T
is theNR ×NS matrix containing the encoding vectors of

all the relays, andG =
[

INS×NS
|G̃T

]T
is the (NS +NR)×NS generator matrix of the whole distributed

network code; vi)z [m] is them–th entry of vectorz; vii) ∆̄ (x, y) = 1 − ∆(x, y), where∆(·, ·) is the

Kronecker delta function,i.e., ∆(x, y) = 1 if x = y and∆(x, y) = 0 elsewhere; and viii)APEP (c → c̄) is

the probability, averaged over fading channel statistics,of detectinḡc when, instead,c is actually transmitted,

and these are the only two codewords possibly being transmitted. The Kronecker delta function takes into

account that a wrong demodulated codeword might not result in an error for the source,St, under analysis.

The next step is the computation of the APEP for a generic pairof distributed codewords. We proceed

in two steps: i) the PEP conditioned on fading channels is computed; and ii) the conditioning is removed.

A. Computation ofPEP (c → c̄)

The decision metric in (6) can be rewritten in a more compact form as follows:

NS
∑

t=1

(

wStD

∣

∣

∣b̂StD − b̃St

∣

∣

∣

)

+

NR
∑

q=1

(

wS1:NS
RqD

∣

∣

∣b̂RqD − b̃Rq

∣

∣

∣

)

=

NS+NR
∑

m=1

{w [m] |ĉ [m]− c̃ [m]|} = Λ (c̃) (13)

where we have defined:w =
[

wS1D, wS2D, . . . , wSNS
D, wS1:NS

R1D, wS1:NS
R2D, . . . , wS1:NS

RNR
D

]T
, b̂ =

[

b̂S1D, b̂S2D, . . . , b̂SNS
D, b̂R1D, b̂R2D, . . . , b̂RNR

D

]T
, b̃ =

[

b̃S1D, b̃S2D, . . . , b̃SNS
D, b̃R1D, b̃R2D, . . . , b̃RNR

D

]T
,

ĉ = Gb̂, and c̃ = Gb̃. From (13), the PEP,i.e., PEP(c → c̄) = Pr {Λ (c) > Λ (c̄)}, is:

PEP (c → c̄) = Pr







NS+NR
∑

m=1

w [m] (|ĉ [m]− c [m]| − |ĉ [m]− c̄ [m]|) > 0







(a)
= Pr







∑

m∈Θ(c,c̄)

w [m] (|ĉ [m]− c [m]| − |ĉ [m]− c̄ [m]|) > 0







(14)
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where
(a)
= is obtained by taking into account thatD (c [m] , c̄ [m]) = w [m] (|ĉ [m]− c [m]| − |ĉ [m]− c̄ [m]|)

contributes to the summation if and only ifc [m] 6= c̄ [m], and, thus, the summation considers only the

elements in the setΘ(c, c̄) = {m|c [m] 6= c̄ [m]}. The cardinality,card {·}, of Θ(c, c̄) is given by the

Hamming distance betweenc and c̄, i.e., card {Θ(c, c̄)} = dH (c, c̄) =
∑NS+NR

m=1 |c [m]− c̄ [m]|.
By conditioning onm ∈ Θ(c, c̄), it can be shown, by direct inspection, thatD (c [m] , c̄ [m]) is a discrete

RV which can only assume valuesw [m] and−w [m] with probability P [m] and1 −P [m], respectively,

whereP =
[

PS1D, PS2D, . . . , PSNS
D, PS1:NS

R1D, PS1:NS
R2D, . . . , PS1:NS

RNR
D

]T
is the vector of cross–over

probabilities computed in Section III. Accordingly, the conditional PDF of RVD (c [m] , c̄ [m]) is:

PD(c[m],c̄[m]) ( ξ|m ∈ Θ(c, c̄)) = P [m] δ (ξ −w [m]) + (1−P [m]) δ (ξ +w [m]) (15)

whereδ (·) denotes the Dirac delta function. Since the RVsD (c [m] , c̄ [m]) are independent form ∈ Θ(c, c̄),

thenD (c, c̄) =
∑

m∈Θ(c,c̄)D (c [m] , c̄ [m]) has a PDF given by the convolution of thedH (c, c̄) PDFs of the

individual RVsD (c [m] , c̄ [m]). More specifically, let us denote bȳm(c,c̄) =
{

m̄
(1)
(c,c̄), m̄

(2)
(c,c̄), . . . , m̄

(dH(c,c̄))
(c,c̄)

}

the specific set ofdH (c, c̄) indexes such thatm ∈ Θ(c, c̄). Then, the PDF ofD (c, c̄) can be written as:

PD(c,c̄) (ξ) =



P
D
(

c

[

m̄
(1)
(c,c̄)

]

,c̄
[

m̄
(1)
(c,c̄)

]) ⊗P
D
(

c

[

m̄
(2)
(c,c̄)

]

,c̄
[

m̄
(2)
(c,c̄)

]) ⊗ . . .⊗ P
D

(

c

[

m̄
(dH (c,c̄))
(c,c̄)

]

,c̄

[

m̄
(dH (c,c̄))
(c,c̄)

])



 (ξ) (16)

where⊗ denotes convolution operations. Thus, by definition, the PEP in (14) can be computed asPEP (c → c̄) =
∫ +∞
0 PD(c,c̄) (ξ) dξ. A closed–form expression of this PEP is given inProposition 2.

Proposition 2: LetPD(c,c̄) (·) in (16), for high–SNR (i.e., Em/N0 → ∞), PEP (c → c̄) =
∫ +∞
0 PD(c,c̄) (ξ) dξ

can be tightly upper–bounded as follows:

PEP (c → c̄) →
dH (c,c̄)
∏

k=1

P

[

m̄
(k)
(c,c̄)

]

+

(

dH (c,c̄)
1

)

∑

k=1
k∈Ψ1(c,c̄)

min



















P

[

m̄
(k)
(c,c̄)

]

,

dH (c,c̄)
∏

h=1
h6=k

P

[

m̄
(h)
(c,c̄)

]



















+

(

dH (c,c̄)
2

)

∑

k=1
k∈Ψ2(c,c̄)
vk∈Φ2(c,c̄)

min



















P

[

m̄
(vk[1])
(c,c̄)

]

P

[

m̄
(vk[2])
(c,c̄)

]

,

dH (c,c̄)
∏

h=1
h6=vk[1],h6=vk[2]

P

[

m̄
(h)
(c,c̄)

]



















+

(

dH (c,c̄)
3

)

∑

k=1
k∈Ψ3(c,c̄)
vk∈Φ3(c,c̄)

min



















P

[

m̄
(vk[1])
(c,c̄)

]

P

[

m̄
(vk[2])
(c,c̄)

]

P

[

m̄
(vk[3])
(c,c̄)

]

,

dH (c,c̄)
∏

h=1
h6=vk[1],h6=vk[2],h6=vk[3]

P

[

m̄
(h)
(c,c̄)

]



















.

.

.

+

( dH (c,c̄)

⌊dH (c,c̄)/2⌋
)

∑

k=1
k∈Ψ⌊dH (c,c̄)/2⌋(c,c̄)

vk∈Φ⌊dH (c,c̄)/2⌋(c,c̄)

min































P

[

m̄
(vk[1])
(c,c̄)

]

· · ·P
[

m̄
(vk [⌊dH (c,c̄)/2⌋])
(c,c̄)

]

,

dH (c,c̄)
∏

h=1
h6=vk[1],h6=vk[2]

...,h6=vk [dH (c,c̄)/2]

P

[

m̄
(h)
(c,c̄)

]































(17)

where: i)
(·
·
)

is the binomial coefficient; ii)⌊·⌋ is the floor integer part; iii)Ψn (c, c̄) is a set of in-

dexes defined asΨn (c, c̄) =
{

k| k +
∑n−1

h=1

(dH(c,c̄)
h

)

≤ 2dH(c,c̄)−1 − 1
}

; and iv) Φn (c, c̄) is the set of

all possible combinations of the indexes in̄m(c,c̄) taken in sets ofn, and it is defined asΦn (c, c̄) =

{vk|vk = {vk [1] ,vk [2] , . . . ,vk [n]}}, wherevk is its k–th element,i.e., the k–th combination of the

indexes inm̄(c,c̄). The cardinality ofΦn (c, c̄) is card {Φn (c, c̄)} =
(

dH(c,c̄)
n

)

.
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Proof: We proceed in two steps: i) first, we describe the step–by–step methodology to computePEP (c → c̄)

in (17) for dH (c, c̄) = 3; and ii) then, we describe how the approach can be generalized to genericdH (c, c̄).

Let us start withdH (c, c̄) = 3. In this case, we havēm(c,c̄) =
{

m̄
(1)
(c,c̄), m̄

(2)
(c,c̄), m̄

(3)
(c,c̄)

}

, andPD(c,c̄) (·) in

(16) can be computed by using some properties of the Dirac delta function. By doing so, and substituting

the obtained PDF inPEP(c → c̄) =
∫ +∞
0 PD(c,c̄) (ξ) dξ, we get:

PEP (c → c̄) = P

[

m̄
(1)

(c,c̄)

]

P

[

m̄
(2)

(c,c̄)

]

P

[

m̄
(3)

(c,c̄)

]

H
(

w

[

m̄
(1)

(c,c̄)

]

+ w

[

m̄
(2)

(c,c̄)

]

+ w

[

m̄
(3)

(c,c̄)

])

+
(

1 − P

[

m̄
(1)
(c,c̄)

]) (

1 − P

[

m̄
(2)
(c,c̄)

]) (

1 − P

[

m̄
(3)
(c,c̄)

])

H
(

−w

[

m̄
(1)
(c,c̄)

]

− w

[

m̄
(2)
(c,c̄)

]

− w

[

m̄
(3)
(c,c̄)

])

+ P

[

m̄
(1)
(c,c̄)

] (

1 − P

[

m̄
(2)
(c,c̄)

]) (

1 − P

[

m̄
(3)
(c,c̄)

])

H
(

w

[

m̄
(1)
(c,c̄)

]

− w

[

m̄
(2)
(c,c̄)

]

− w

[

m̄
(3)
(c,c̄)

])

+ P

[

m̄
(2)
(c,c̄)

] (

1 − P

[

m̄
(1)
(c,c̄)

]) (

1 − P

[

m̄
(3)
(c,c̄)

])

H
(

−w

[

m̄
(1)
(c,c̄)

]

+ w

[

m̄
(2)
(c,c̄)

]

− w

[

m̄
(3)
(c,c̄)

])

+ P

[

m̄
(3)

(c,c̄)

] (

1 − P

[

m̄
(1)

(c,c̄)

]) (

1 − P

[

m̄
(2)

(c,c̄)

])

H
(

−w

[

m̄
(1)

(c,c̄)

]

− w

[

m̄
(2)

(c,c̄)

]

+ w

[

m̄
(3)

(c,c̄)

])

+ P

[

m̄
(1)
(c,c̄)

]

P

[

m̄
(2)
(c,c̄)

] (

1 − P

[

m̄
(3)
(c,c̄)

])

H
(

w

[

m̄
(1)
(c,c̄)

]

+ w

[

m̄
(2)
(c,c̄)

]

− w

[

m̄
(3)
(c,c̄)

])

+ P

[

m̄
(1)
(c,c̄)

]

P

[

m̄
(3)
(c,c̄)

] (

1 − P

[

m̄
(2)
(c,c̄)

])

H
(

w

[

m̄
(1)
(c,c̄)

]

− w

[

m̄
(2)
(c,c̄)

]

+ w

[

m̄
(3)
(c,c̄)

])

+ P

[

m̄
(2)
(c,c̄)

]

P

[

m̄
(3)
(c,c̄)

] (

1 − P

[

m̄
(1)
(c,c̄)

])

H
(

−w

[

m̄
(1)
(c,c̄)

]

+ w

[

m̄
(2)
(c,c̄)

]

+ w

[

m̄
(3)
(c,c̄)

])

(18)

whereH (x) =
∫ +∞
0 δ (ξ − x) dξ is the Heaviside function:H (x) = 1 if x > 0 andH (x) = 0 elsewhere.

The PEP in (18) can be simplified and can be written in a form that is more useful to compute the average

over fading statistics. The main considerations to this endare as follows: i) since, by definition (see (6)),

w [m] > 0 for m = 1, 2, . . . , dH (c, c̄), thenH
(

−∑dH(c,c̄)
k=1 w

[

m̄
(k)
(c,c̄)

])

= 0 andH
(

∑dH(c,c̄)
k=1 w

[

m̄
(k)
(c,c̄)

])

=

1 for any dH (c, c̄) and for anym̄(c,c̄); and ii) in the high–SNR regime, the BEP in (18) can be tightly

upper–bounded by recognizing that1−P [m] → 1 for m = 1, 2, . . . , dH (c, c̄). Furthermore, by exploiting

i) and ii), the resulting terms containing the Heaviside function can be grouped in three pairs of two addends

each. For example, a pair in (18) isZ = Z1 + Z2 with:






Z1 = P
[

m̄
(1)
(c,c̄)

]

P
[

m̄
(2)
(c,c̄)

]

H
(

w
[

m̄
(1)
(c,c̄)

]

+w
[

m̄
(2)
(c,c̄)

]

−w
[

m̄
(3)
(c,c̄)

])

Z2 = P
[

m̄
(3)
(c,c̄)

]

H
(

−w
[

m̄
(1)
(c,c̄)

]

−w
[

m̄
(2)
(c,c̄)

]

+w
[

m̄
(3)
(c,c̄)

]) (19)

while the other two pairs can be obtained by direct inspection of (18) accordingly.

For genericdH (c, c̄), pairs as shown in (20) can be obtained:






















Z1 =
∏

k∈A

{

P
[

m̄
(k)
(c,c̄)

]

H
(

∑

k∈A
w
[

m̄
(k)
(c,c̄)

]

− ∑

k∈Ā
w
[

m̄
(k)
(c,c̄)

]

)}

Z2 =
∏

k∈Ā

{

P
[

m̄
(k)
(c,c̄)

]

H
(

− ∑

k∈A
w
[

m̄
(k)
(c,c̄)

]

+
∑

k∈Ā
w
[

m̄
(k)
(c,c̄)

]

)} (20)

whereA andĀ are two sets of indexes such thatm̄(c,c̄) = A ∪ Ā andA ∩ Ā = ∅.

By taking into account that, for high–SNR, we havew [m] = ln [(1−P [m])/P [m]] → − ln (P [m]),

and from the definition of Heaviside function,H (·), Z1 andZ2 in (20) simplify as:

Z1 →















∏

k∈A
P
[

m̄
(k)
(c,c̄)

]

if
∏

k∈Ā
P
[

m̄
(k)
(c,c̄)

]

>
∏

k∈A
P
[

m̄
(k)
(c,c̄)

]

0 elsewhere

; Z2 →















∏

k∈Ā
P
[

m̄
(k)
(c,c̄)

]

if
∏

k∈Ā
P
[

m̄
(k)
(c,c̄)

]

<
∏

k∈A
P
[

m̄
(k)
(c,c̄)

]

0 elsewhere

(21)
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Thus, for high–SNR,Z = Z1 + Z2 can be re–written as follows:

Z →















∏

k∈A
P
[

m̄
(k)
(c,c̄)

]

if
∏

k∈A
P
[

m̄
(k)
(c,c̄)

]

<
∏

k∈Ā
P
[

m̄
(k)
(c,c̄)

]

∏

k∈Ā
P
[

m̄
(k)
(c,c̄)

]

if
∏

k∈Ā
P
[

m̄
(k)
(c,c̄)

]

<
∏

k∈A
P
[

m̄
(k)
(c,c̄)

] = min







∏

k∈A
P
[

m̄
(k)
(c,c̄)

]

,
∏

k∈Ā
P
[

m̄
(k)
(c,c̄)

]







(22)

In conclusion, by exploiting the properties of the Heaviside function,H (·) and the high–SNR approxi-

mation in (21), the PEP in (18) can be tightly upper–bounded as follows:

PEP (c → c̄) → P
[

m̄
(1)
(c,c̄)

]

P
[

m̄
(2)
(c,c̄)

]

P
[

m̄
(3)
(c,c̄)

]

+min
{

P
[

m̄
(1)
(c,c̄)

]

,P
[

m̄
(2)
(c,c̄)

]

P
[

m̄
(3)
(c,c̄)

]}

+min
{

P
[

m̄
(2)
(c,c̄)

]

,P
[

m̄
(1)
(c,c̄)

]

P
[

m̄
(3)
(c,c̄)

]}

+min
{

P
[

m̄
(3)
(c,c̄)

]

,P
[

m̄
(1)
(c,c̄)

]

P
[

m̄
(2)
(c,c̄)

]}
(23)

The result in (23) represents the first part of our proof, and allows us to explain two main aspects of (17):

i) its validity and accuracy for high–SNRs only, as some approximations are used; and ii) the presence of the

min {·, ·} function, which comes from grouping pairs of addends, and byexploiting definition and properties

of the Heaviside function. The second step is to provide a justification of (17) for arbitrarydH (c, c̄). First, let

us emphasize that, when possible, the proof fordH (c, c̄) = 3 has been given for arbitrarydH (c, c̄), which

provides a first sound proof of the generality of our approach. Second, we emphasize that the interested reader

might repeat the same steps as for the case study withdH (c, c̄) = 3 for arbitrarydH (c, c̄) and eventually

lead to (17). The only difficulty if the large number of terms arising when computing the convolution in

(16). So, here we provide only some guidelines to understand(17). The first thing to observe is that (23)

can be obtained from (17), and, more specifically, it is givenby the first two addends in the right–hand side

of (17). The other terms come from the fact that, fordH (c, c̄) > 3, in (22) we have to consider all possible

combinations of the indexes̄m(c,c̄) taken in sets of1, 2, 3, etc., sinceA andĀ in (20) are a partition of the

dH (c, c̄) indexes inm̄(c,c̄). This explains the presence of all the other summations in (17), along with the

upper limit of each of them. The reason why the upper limit of the last summation is
( dH(c,c̄)
⌊dH(c,c̄)/2⌋

)

is due

to the equalitymin
{

∏

k∈AP
[

m̄
(k)
(c,c̄)

]

,
∏

k∈ĀP
[

m̄
(k)
(c,c̄)

]}

= min
{

∏

k∈ĀP
[

m̄
(k)
(c,c̄)

]

,
∏

k∈AP
[

m̄
(k)
(c,c̄)

]}

,

and because only one of these latter terms is explicitly present in (16). Furthermore, the need to compute

all possible combinations of the indexes̄m(c,c̄) clearly explains the definition ofΦn (c, c̄) in (17). The

only thing left is to understand why in each summation the index k must belong to the setΨn (c, c̄). The

motivation is as follows. When computing the convolution in(16), the total number of addends in the final

result is2dH(c,c̄). In fact, the convolution of2dH(c,c̄) PDFs is computed, each one given by the summation of

two terms. Among all these2dH(c,c̄) terms,
∏dH(c,c̄)

k=1 P
[

m̄
(k)
(c,c̄)

]

and
∏dH(c,c̄)

k=1

(

1−P
[

m̄
(k)
(c,c̄)

])

are treated

separately in (17). More specifically,
∏dH(c,c̄)

k=1 P
[

m̄
(k)
(c,c̄)

]

is explicitly shown in (17) as the first addend,

while
∏dH(c,c̄)

k=1

(

1−P
[

m̄
(k)
(c,c̄)

])

in zero because of the properties of the Heaviside function.The remaining

2dH(c,c̄)−2 are grouped in pairs of two addends, as shown in (20). Furthermore, each pair reduces to only one

addend as shown in (22). Accordingly, the number of terms in (17) cannot be larger than
(

2dH (c,c̄) − 2
)/

2 =

2dH(c,c̄)−1 − 1. In other words, when the cumulative inequality inΨn (c, c̄) is no longer satisfied, we can

stop computing the summations in (17). This concludes the proof. �
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Proposition 2is very general and can be applied to anydH (c, c̄). However, it is not an exact result, as it

holds for high–SNR only. For the special casedH (c, c̄) = 2, an exact expression of the PEP in (14) can be

obtained, which, in general, has to be preferred as it is accurate for any SNR. InCorollary 1, we provide

the exact expression of the PEP in (14) without any high–SNR approximations.

Corollary 1: If dH (c, c̄) = 2, thenm̄(c,c̄) =
{

m̄
(1)
(c,c̄)

, m̄
(2)
(c,c̄)

}

and the PEP in (14) is equal to:

PEP (c → c̄) = min
{

P
[

m̄
(1)
(c,c̄)

]

,P
[

m̄
(2)
(c,c̄)

]}

(24)

Proof: The proof follows from analytical steps similar to (18) inProposition 2. In particular, we have:

PEP (c → c̄) = P
[

m̄
(1)
(c,c̄)

]

P
[

m̄
(2)
(c,c̄)

]

+P
[

m̄
(1)
(c,c̄)

] (

1−P
[

m̄
(2)
(c,c̄)

])

H
(

w
[

m̄
(1)
(c,c̄)

]

−w
[

m̄
(2)
(c,c̄)

])

+P
[

m̄
(2)
(c,c̄)

] (

1−P
[

m̄
(1)
(c,c̄)

])

H
(

−w
[

m̄
(1)
(c,c̄)

]

+w
[

m̄
(2)
(c,c̄)

])
(25)

Unlike Proposition 2, there is no need to exploit the high–SNR approximation1 − P [m] → 1. On the

contrary, by using the properties of the Heaviside function, (21), and (22), we get:

PEP (c → c̄) =











P
[

m̄
(1)
(c,c̄)

]

P
[

m̄
(2)
(c,c̄)

]

+
(

1−P
[

m̄
(1)
(c,c̄)

])

P
[

m̄
(2)
(c,c̄)

]

= P
[

m̄
(2)
(c,c̄)

]

if P
[

m̄
(2)
(c,c̄)

]

< P
[

m̄
(1)
(c,c̄)

]

P
[

m̄
(1)
(c,c̄)

]

P
[

m̄
(2)
(c,c̄)

]

+
(

1−P
[

m̄
(2)
(c,c̄)

])

P
[

m̄
(1)
(c,c̄)

]

= P
[

m̄
(1)
(c,c̄)

]

if P
[

m̄
(1)
(c,c̄)

]

< P
[

m̄
(2)
(c,c̄)

]
(26)

which clearly leads to (24). This concludes the proof. �

We note that the main difference between (17) and (24) is the absence in (24) of the first addend in (17).

In fact, this addend simplifies if the high–SNR approximation 1 − P [m] → 1 is not used in (26). This

provides a better (and exact) estimate of the PEP. However, this procedure cannot be readily generalized to

network codes withdH (c, c̄) ≥ 3, without having a more complicated expression of the PEP, which is not

useful for further analysis, and, more specifically, to remove the conditioning over fading statistics.

B. Computation ofAPEP (c → c̄)

The aim of this section is to provide a closed–form and insightful expression of the APEP,i.e., to average

the PEP in (17) over fading channel statistics. In spite of the apparent complexity of (17),Proposition 3

shows that a surprisingly simple, compact, and insightful result can be obtained for i.n.i.d. fading.

Proposition 3: Let us consider the Rayleigh fading channel model introduced in Section II. The APEP,

APEP (c → c̄) = Eh {PEP (c → c̄)}, is as follows:

APEP (c → c̄) →
(

4
Em

N0

)−dH (c,c̄)


1 + 2
√
πΓ

(

dH (c, c̄) +
1

2

) ⌊dH (c,c̄)/2⌋
∑

d=1

N (dH(c,c̄))
d

Γ
(

d+ 1
2

)

Γ
(

dH (c, c̄)− d+ 1
2

)





×
NS+NR
∏

m=1

χ
{

∆c,c̄ [m] Σ̄
(G)
SRD [m]

}

(27)

where:

N (dH(c,c̄))
d

=















(

dH(c,c̄)
d

)

if
d
∑

e=1

(

dH (c,c̄)
e

)

≤ 2dH(c,c̄)−1 − 1

2dH(c,c̄)−1 − 1−
d−1
∑

e=1

(

dH(c,c̄)
e

)

if
d
∑

e=1

(

dH (c,c̄)
e

)

> 2dH(c,c̄)−1 − 1

(28)

and: i) Eh {·} denotes the expectation operator computed over all fading gains of the network model
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introduced in Section II; ii)χ {ξ} = 1 if ξ = 0 andχ {ξ} = ξ if ξ 6= 0; iii) ∆c,c̄ = c ⊕ c̄ = (G⊙ b) ⊕
(

G⊙ b̄
)

; iv) Σ̄
(G)
SRD = Σ̄SD + Σ̄RD + Σ̄

(G)
SR ; v) ΣSD =

[

1
/

σ2
S1D

, 1
/

σ2
S2D

, . . . , 1
/

σ2
SNS

D

]T
and Σ̄SD =

[

ΣT
SD,01×NR

]T
, where01×n is a1×n all–zero vector; vi)ΣSRq

=
[

1
/

σ2
S1Rq

, 1
/

σ2
S2Rq

, . . . , 1
/

σ2
SNS

Rq

]T
,

Σ
(G)
SR =

[

gT
R1
ΣSR1

,gT
R2
ΣSR2

, . . . ,gT
RNR

ΣSRNR

]T
, and Σ̄

(G)
SR =

[

01×NS
,
(

Σ
(G)
SR

)T
]T

; and vii) ΣRD =
[

1
/

σ2
R1D

, 1
/

σ2
R2D

, . . . , 1
/

σ2
RNR

D

]T
and Σ̄RD =

[

01×NS
,ΣT

RD

]T
. Finally, we emphasize that inΣ(G)

SR

usual matrix operations are used and arithmetic is not in GF(2).

Proof: From the definition of APEP,i.e., APEP (c → c̄) = Eh {PEP (c → c̄)} and the linearity property

of the expectation operator, it follows that two types of terms in (17) have to be analyzed:

T1 = Eh







dH (c,c̄)
∏

k=1

P
[

m̄
(k)
(c,c̄)

]







and T2 = Eh







min







∏

k∈A
P
[

m̄
(k)
(c,c̄)

]

,
∏

k∈Ā
P
[

m̄
(k)
(c,c̄)

]













(29)

An asymptotically–tight (forEm/N0 → ∞) approximation ofT1 andT2 in (29) can be obtained by using

Lemma 1andLemma 2in Appendix I. In particular, for high–SNR, (29) simplifies as follows:


















T1 →
(

4Em
N0

)−dH(c,c̄) NS+NR
∏

m=1
χ
{

∆c,c̄ [m] Σ̄
(G)
SRD [m]

}

T2 →
(

4Em
N0

)−dH(c,c̄)
[

2
√

πΓ(dH(c,c̄)+ 1
2 )

Γ(d+ 1
2 )Γ(dH(c,c̄)−d+ 1

2 )

]

NS+NR
∏

m=1
χ
{

∆c,c̄ [m] Σ̄
(G)
SRD [m]

}

(30)

whered = card {A} denotes the cardinality of setA.

From (30), equation (27) can be obtained from (17) as follows: i) the first addend in (17) isT1 in (29)

and, thus, it can directly be obtained from (30); ii) eachmin {·, ·} term in (17) corresponds toT2 in (29) and,

thus, it can directly be obtained from (30); and iii) by carefully studyingT2 in (30), it can be noticed that it is

independent of the particular sub–set of indexes inA andĀ, as defined in (29). The only thing which matters

is the number of indexes inA and inĀ, i.e., their cardinalitycard {A} = d andcard
{

Ā
}

= dH (c, c̄)− d,

respectively. For example, ifdH (c, c̄) = 3 in (23), thenEh

{

min
{

P
[

m̄
(1)
(c,c̄)

]

,P
[

m̄
(2)
(c,c̄)

]

P
[

m̄
(3)
(c,c̄)

]}}

=

Eh

{

min
{

P
[

m̄
(2)
(c,c̄)

]

,P
[

m̄
(1)
(c,c̄)

]

P
[

m̄
(3)
(c,c̄)

]}}

= Eh

{

min
{

P
[

m̄
(3)
(c,c̄)

]

,P
[

m̄
(1)
(c,c̄)

]

P
[

m̄
(2)
(c,c̄)

]}}

. This

remark holds for generic i.n.i.d. channels, and it implies the identity (forn = 1, 2, . . . , ⌊dH (c, c̄) /2⌋):

Eh



























(

dH (c,c̄)
n

)

∑

k=1
k∈Ψn(c,c̄)
vk∈Φn(c,c̄)

min







∏

h∈A

P
[

m̄
(vk [h])
(c,c̄)

]

,
∏

h∈Ā

P
[

m̄
(vk [h])
(c,c̄)

]

































= N (dH(c,c̄))
d

T2 (31)

whereT2 is given in (30), andN (dH(c,c̄))
d is the number of terms in (28) that are actually summed in (31).

By putting together these considerations, and by taking into account that there are⌊dH (c, c̄) /2⌋ summa-

tions with differentcard {A} = d in (17), we obtain (27). The only missing thing in our proof isto show that

N (dH(c,c̄))
d has the closed–form expression given in (28). This result follows from the definition ofΨn (c, c̄)

for n = 1, 2, . . . , ⌊dH (c, c̄) /2⌋ in (17). In fact, sinceΨn (c, c̄) =
{

k| k +
∑n−1

h=1

(dH(c,c̄)
h

)

≤ 2dH(c,c̄)−1 − 1
}

,

the number of elements in each summation in (31) is: i) either
(dH(c,c̄)

d

)

, if we have not reached the maximum

number of indexes that can be summed,i.e., 2dH(c,c̄)−1 − 1; ii) or, in the last summation, the remaining
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indexes if the cumulative summation inΨn (c, c̄) exceeds this maximum number of indexes. Equation (28)

summarizes in formulas these two cases. This concludes the proof. �

Similar to Proposition 2, the exact APEP can be obtained ifdH (c, c̄) = 2, as given inCorollary 2.

Corollary 2: Let us consider the Rayleigh fading channel model introduced in Section II. Then,APEP (c → c̄) =

Eh {PEP (c → c̄)} with PEP (c → c̄) given in (24) fordH (c, c̄) = 2 is as follows:

APEP(c → c̄) =

(√
2
Em

N0

)−2 NS+NR
∏

m=1

χ
{

∆c,c̄ [m] Σ̄
(G)
SRD [m]

}

(32)

where the same symbols and notation as inProposition 3are used.

Proof: It follows from (27) with dH (c, c̄) = 2, by neglecting the “1” term as shown inCorollary 1. �

C. Particular Fading Channels

Proposition 3is general and it can be applied to arbitrary i.n.i.d fading channels and network topologies

with generic binary NC. However, it is interesting to see what happens to the network performance for some

special channel models and operating conditions, which areoften studied to shed lights on the fundamental

behavior of complex systems. In this section, we are interested in providing some simplified results for

three notable scenarios of interest: i) i.i.d. fading, where we haveσ2
XY = σ2

0 for every wireless link; ii)

i.n.i.d. fading with high–reliable source–to–relay links, which is often assumed to simplify the analysis, but,

as described inProposition III-A, it does not account for the error propagation effect due to NC; and iii)

i.i.d. scenario with high–reliable source–to–relay links. The end–to–end APEP of these three scenarios is

summarized inCorollary 3, Corollary 4, andCorollary 5, respectively.

Corollary 3: If the fading channels are i.i.d. withσ2
XY = σ2

0 , then the APEP inProposition 3and in

Corollary 2 can be simplified by taking into account the following identity:

NS+NR
∏

m=1

χ
{

∆c,c̄ [m] Σ̄
(G)
SRD [m]

}

=
(

σ2
0

)−dH(c,c̄)
NS+NR
∏

m=1

χ
{

∆c,c̄ [m]g(0) [m]
}

(33)

where: i)11×NS
is a1×NS all–one vector; ii)g(0)Rq

= 1+
∑NS

t=1 gStRq
= 1+N

(eff ,Rq)
S for q = 1, 2, . . . , NR,

whereN (eff ,Rq)
S is the number of sources whose data is network–coded at relaynodeRq; and iii) g(0) =

[

11×NS
, g

(0)
R1

, g
(0)
R2

, . . . , g
(0)
RNR

]T
.

Proof: It follows from Proposition 3with σ2
XY = σ2

0 . In particular,ΣSD andΣRD simplify to all–one

vectors multiplied by1
/

σ2
0, and each entry ofΣ(G)

SR reduces to the summation of the elements of the binary

encoding vector used at each relay, which is equal to the number of network–coded sources. �

The result in (33) is very interesting as it clearly shows, throughN (eff ,Rq)
S , that the larger the number of

network–coded sources is, the more pronounced the error propagation problem might be. Thus, depending

on the quality of the fading channels, it might be more or lessconvenient to mix at each relay the data

packets transmitted from all the sources. Further commentsare postponed to Section V-A.

Corollary 4: Let us assume that the source–to–relay channels are very reliable,i.e., no demodulation errors

at the relays. For example, this can be achieved either by using very powerful error correction codes on the
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source–to–relay links, or when the relays are located very close to the sources. Then,Σ̄(G)
SRD in Proposition 3

andCorollary 2 simplifies toΣ̄(G)
SRD = Σ̄SD + Σ̄RD =

[

1
/

σ2
S1D

, . . . , 1
/

σ2
SNS

D, 1
/

σ2
R1D

, . . . , 1
/

σ2
RNR

D

]T
.

Proof: If the source–to–relay channels are very reliable, we haveσ2
StRq

→ ∞ for t = 1, 2, . . . , NS and

q = 1, 2, . . . , NR. Thus, by definition,̄Σ(G)
SR → 0((NS+NR)×1). So, the simplified expression of̄Σ(G)

SRD follows

by taking into account the definition of̄ΣSD andΣ̄RD as block matrices. This concludes the proof. �

Two important conclusions can be drawn fromCorollary 4. First, we notice that the APEP is affected

by the encoding operations performed at the relays only through the codeword’s distancedH (c, c̄), which

is the number of distinct elements betweenc and c̄. This provides a very simple criterion to choose the

network code for performance optimization. Second, sinceΣ̄
(G)
SRD [m]

∣

∣

∣

σ2
StRq

→∞
≤ Σ̄

(G)
SRD [m]

∣

∣

∣

σ2
StRq

<∞
for

m = 1, 2, . . . , (NS +NR), thenAPEP (c → c̄)|σ2
StRq

→∞ ≤ APEP (c → c̄)|σ2
StRq

<∞, which is an expected

result, and it confirms that, to limit the error propagation due to NC operations, the source–to–relay links

should be as reliable as possible. Further comments are postponed to Section V-A.

Corollary 5: If the fading channels on the source–to–destination and relay–to–destination links are i.i.d.

with σ2
XY = σ2

0, and the source–to–relay channels are very reliable with nodecoding errors at the relays,

thenProposition 3andCorollary 2 can be simplified by taking into account the identity:

NS+NR
∏

m=1

χ
{

∆c,c̄ [m] Σ̄
(G)
SRD [m]

}

=
(

σ2
0

)−dH(c,c̄)
(34)

Proof: It follows from Corollary 4, which for i.i.d. source–to–destination and relay–to–destination links

givesΣ̄(G)
SRD =

(

1
/

σ2
0

)

1((NS+NR)×1). Since there aredH (c, c̄) non–zero terms in∆c,c̄, we get (34). �

V. A NALYSIS OF DIVERSITY ORDER AND CODING GAIN

To better understand the performance of the cooperative network under analysis, and to clearly showcase

the impact of the distributed network code on the end–to–endperformance, in this section we study diversity

order and coding gain according to the definition given in [61]. In particular, we are interested in re–writing

the end–to–end ABEP in (12) asABEPSt
→

[

(Em/N0)G
(St)
c

]−G
(St)
d

, whereG(St)
c andG

(St)
d are coding

gain and diversity order ofSt for t = 1, 2, . . . , NS , respectively. This result is summarized inProposition

4.

Proposition 4: Given the ABEP in (12) and the APEP in (27), diversity order and coding gain ofSt are:


































G
(St)
d

= SV [t]

G
(St)
c = 4























1

2NS

∑

b,b̄
dH(c,c̄)=SV[t]













(

1 + 2
√
πΓ
(

dH (c, c̄) + 1
2

)

⌊dH(c,c̄)/2⌋
∑

d=1

N (dH (c,c̄))
d

Γ(d+ 1
2 )Γ(dH(c,c̄)−d+ 1

2 )

)

×
(

NS+NR
∏

m=1
χ
{

∆c,c̄ [m] Σ̄
(G)
SRD [m]

}

)

∆̄ (c [t] , c̄ [t])



































− 1

G
(St)
d

(35)

whereSV is known, in coding theory, as “Separation Vector” (SV) [63,Def. 1], and, for a given codebook

C = {c| c = Gb, ∀b}, its t–th entry, i.e., SV [t], is defined as the minimum Hamming distance between

any pair of codewordsc = Gb ∈ C and c̄ = Gb̄ ∈ C with different t–th bit, i.e., with b [t] 6= b̄ [t].



18

Proof: First of all, let us studyG(St)
d . From (27) inProposition 3we notice that the APEP has diversity

orderdH (c, c̄) [61], which is the Hamming distance between the pair of codewordsc and c̄. Furthermore,

from (12) we know that this APEP contributes to the ABEP of source St if and only if the t–th bits ofc

and c̄ are different,i.e., if and only if c [t] 6= c̄ [t]. Since the network codes studied in this paper can be

seen as systematic linear block codes, as explained in Section II, the latter condition impliesb [t] 6= b̄ [t].

Accordingly, in (27) only the APEPs having a diversity order, i.e., a Hamming distance, equal to:

d
(min)
H

(t) =
{

dH (c, c̄)| dH (c, c̄) ≤ dH

(

c
′
, c̄

′
)

∀c, c̄, c′
, c̄

′ ∈ C with c [t] 6= c̄ [t] and c
′
[t] 6= c̄

′
[t]
}

(36)

will dominate the performance for high–SNR. In fact, all theother APEPs will decay much faster with the

SNR, thus providing a negligible contribution. In formulas, the ABEP in (12) can be re–written as:

ABEPSt ≤ 1

2NS

∑

b

∑

b̄

[

APEP (c → c̄) ∆̄ (c [t] , c̄ [t])
]

→ 1

2NS

∑

b,b̄

dH(c,c̄)=d
(min)
H

(t)

[

APEP (c → c̄) ∆̄ (c [t] , c̄ [t])
]

(37)

From (36) and (37), by definition [63, Def. 1],d(min)
H (t) is exactly thet–th entry of SV,i.e., d(min)

H (t) =

SV [t]. Thus, we have proved that the end–to–end diversity order ofsourceSt is equal to its SV. This result

showcases that, depending on the used network code, different sources in the network have, in general,

different diversity orders. This observation has important applications, as described in Section V-A. Finally,

the coding gain,G(St)
c , can be obtained through algebraic manipulations by substituting (27) in (37), and

equating the resulting expression toABEPSt
→

[

(Em/N0)G
(St)
c

]−G
(St)

d

. This concludes the proof. �

A. Insights from the Analytical Framework

Even though the overall analytical derivation and proof to get (27) inProposition 3are quite analytically

involving, the final expression of the APEP turns out to be very compact, elegant, and simple to compute.

In Section VI, via Monte Carlo simulations, we will substantiate its accuracy for high–SNR. In addition,

the framework is very insightful, as it provides, via directinspection, important considerations on how the

network code affects the performance of the cooperative network, as well as how it can be optimized to

improve the end–to–end performance. Important insights from the analytical framework are as follows.

• End–to–end diversity order. As far as diversity is concerned, inProposition 4we have proved that each

source can achieve a diversity order that is equal to the separation vector of the network code. This is a

very important result as it shows that even though a dual–hopnetwork is considered, which is prone to error

propagation due to relaying and to demodulation errors thatmight happen at each relay node, the distance

properties of the network code are still preserved as far as the end–to–end performance is concerned. This

result allows us to conclude that, if we want to guarantee a given diversity order for a given source, we can

use conventional linear block codes as network codes, and besure that the end–to–end diversity order (and,

thus, the error correction capabilities [49], [50], [63]) of these codes is preserved even in the presence of

error propagation due to relaying and NC operations. This result and its proof is, to the best of the authors
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knowledge, new, as it is often assumed a priori that the presence of error propagation does not affect the

diversity properties of the network code [34]. On a practical point view, this result suggests that, as far as

only the diversity order is concerned, the network codes canbe designed by using the same optimization

criteria as for single–hop networks. Finally, we note that the result obtained in this paper is more general

than [18], as our proof is not based on the Singleton bound, and, more important, noad hoc interleavers

are needed to achieve a distributed diversity equal to the SV.

• Comparison with single–hop network and classical coding theory. It is interesting to compare the result

about the achievable diversity order inProposition 4with the diversity order that is achievable in single–

hop networks. From [52, Sec. 14–6–1)], [53, Ch. 12], and [59,Sec. II], we know that single–hop networks

operating in fully–interleaved fading channels and using soft–decision decoding have a diversity order that is

equal to the minimum distance of the linear code. The result in Proposition 4can be seen as a generalization

of the analysis of single–hop networks in [52], [53], [59] todual–hop networks with NC. It is important to

emphasize that in our analysis we have taken into account realistic communication and channel conditions,

which include demodulation errors at the relays and practical forwarding mechanisms. Also, our results are

in agreement with [64], where the error correction properties of network codes for the single–source scenario

have been studied, and a strong connection with classical coding theory has been established. Our analysis

extends the analysis to multi–source networks, provides closed–form expressions of important performance

metrics, and accounts for practical communication constraints. Finally, we note that even though relays and

destination compute hard–decision estimates of the incoming signals and send them to the network–layer to

exploit the redundancy introduced by cooperation and NC, the diversity order is the same as in single–hop

networks with soft–decision decoding. The reason is that atthe network–layer we take into account the

reliability of each bit through a demodulator that resembles the Chase combiner [48] (see also Section V-B).

• Comparison with adaptive NC solutions. In Section I, we have mentioned that another class of network

code designs aims at guaranteeing a given end–to–end diversity order without injecting erroneous packets

into the network. In these solutions, the network code changes according to the detection outcome at each

relay node. Results and analysis in [23], [27], and [28] haveestablished a strong connection between the

design of diversity–achieving network codes and linear block codes for erasure channels. More specifically,

[23], [27], and [28] have shown that MDS codes can be used as network codes to achieve distributed diversity

for erasure channels. The analysis conducted in the presentpaper complements design and optimization of

network codes forerasure channelsto the performance analysis and design of such codes forerror channels,

where all the bits are forwarded to the destination regardless of their reliability.

• End–to–end coding gain. As far as the coding gain inProposition 4is concerned, and unlike the analysis

of the diversity order, there are differences between single– and dual–hop networks with and without NC.

In fact, in Corollary 4, we have shown that both demodulation errors at the relays and dual–hop relaying

introduce a coding gain loss if compared to single–hop transmissions. Thus, even though NC and relaying, via
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a proper receiver design, do not reduce the diversity order inherently provided by the distributed network

code, they do reduce the coding gain, which results in a performance degradation that depends on the

quality of the source–to–relay channels. However, this performance degradation might be reduced, and even

completely compensated, through adequate network code optimization and design. In fact,Proposition 4

and Corollary 4 provide closed–form expressions of the coding gain for bothscenarios where we account

for realistic and ideal source–to–relay channels. A good criterion to design the network code,i.e., to exploit

the inherent redundancy introduced by NC, might be to choosethe generator matrix of the network code

such that the following condition, for each source node, is satisfied:

Gopt =











G|

∣

∣

∣

∣

∣

∣

∣

G
(St)
c

∣

∣

∣

σ2
StRq

<∞
−G

(St)
c

∣

∣

∣

∣

∣

σ2
StRq

→∞

∣

∣

∣

∣

∣

∣

∣

→ 0 ∀t = 1, 2, . . . , NS and ∀q = 1, 2, . . . , NR











(38)

It is worth being mentioned that, in general, the most important criterion to satisfy is the diversity order

requirement, as it has a more pronounced effect on the systemperformance. The optimization condition in

(38) can be taken into consideration if there is no reductionon the achievable diversity order for a given rate.

Finally, we emphasize that both diversity order and coding gain can be adjusted by adding or removing relay

nodes from the network, which, however, has an effect on the achievable rate as shown in Section II. The

framework proposed in this paper can be exploited for many network optimizations, such as: i) designing

the network code to achieve the best diversity order and coding gain for a given number of sources and

relays (i.e., for a given rate); or ii) designing the network code to have the minimum number of source and

relay nodes (i.e., to maximize the rate), for a given diversity order and coding gain.

• EEP/UEP Capabilities. The diversity analysis inProposition 4has pointed out that each source of the

network can achieve a diversity order that is given by the separation vector of the network code. In other

words, each source can achieve a different diversity order.In coding theory, this class of codes is known

as UEP codes [49], and it can be very useful when different sources have to transmit data with a different

quality–of–service requirement or priority. In other words, the network code might be designed to take into

account the individual requirement of each source, insteadof being designed by looking at the worst–case

scenario only. For example, let us consider a network with three sources, with one of them having data to be

transmitted with very low ABEP. Looking at the worst case scenario, we should optimize the system, and,

thus, the network code as well, such that this source has, fora fixed transmit–power, a very high diversity

order. If we cannot tune the diversity order of each source individually, we are forced to adopt a network

code that provides the same high diversity order for all the sources of the network, which might have an

impact on the achievable rate (see Section II). Our analysisshowcases that UEP codes usually exploited in

classical coding theory could be used to find the best trade–off between the diversity order achieved by each

source and the rate of the network. In our opinion, this provides design flexibility, and introduces a finer

level of granularity for system optimization, which has notbeen investigated yet for adaptive NC schemes.

In fact, in general, network codes are designed such that allthe sources have the same diversity order [23],
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[27], [28]. Our framework provides a systematic way to guarantee unequal diversity orders for each source.

Another interesting application that might benefit from UEPcapabilities provided by NC can be found in

[65] and [66, Ch 3 and Ch. 5]. More specifically, in [65], UEP capability is called “incremental diversity”.

The idea is that energy consumption can be reduced if source nodes located farther from the destination

can transmit with the same power as closer source nodes, and exploit UEP properties to achieve the same

end–to–end performance. In other words, the incremental diversity offered by UEP network codes might

be used to have even energy consumption among the nodes of thenetwork with important implications for

green applications [67]. Another application for energy saving is the exploitation of the proposed framework

as an utility function for energy efficient network formation through coalition formation games [66, Ch. 5].

• Generalization of the performance analysis of dual–hop cooperative protocols. The framework proposed

in this paper for can be thought as a generalization of the many results available in the literature for

cooperative networks without NC. Among the many papers described in Section I, let us consider, as an

example, [16]. In [16], it is shown that a dual–hop three–node network using the DemF protocol can achieve

full–diversity equal to2 if the receiver has a reliable estimate of the instantaneouserror probability at the

relay. This result is included, as a byproduct, in our analysis, which is more general as it accounts for

arbitrary sources, relays, and binary encoding vectors at each relay. In fact, under the classical coding theory

framework, the distributed code used in [16] can be seen a repetition code with Hamming distance equal to

2 for the single source of the network. Accordingly, fromProposition 4we know that the diversity order is

equal to2, which confirms the analysis in [16] under a much broader perspective. In summary, the proposed

framework can be used to study the end–to–end performance ofdual–hop cooperative networks without NC,

since a repetition code is a special network code.

B. Impact of Receiver (Network) CSI on the Achievable Diversity

In this section, we are interested in analyzing the importance of CSI at the receiver to achieve the full–

diversity inherently available in the structure of the network code, which is given by its SV. In fact, it is

important to emphasize that the conclusions drawn in Section V-A hold if the receiver has perfect knowledge

of the cross–over probabilities computed in Section III-A.This implies that the receiver knows the encoding

vectors used at each relay node, along with the CSI of all the wireless links of the network. In general, the

network code can be agreed during the initialization of the network or transmitted by each relay node over

the control plane (at the cost of some overhead). On the otherhand, CSI must be estimated at the receiver.

In this section, we are aimed at showing the importance, to achieve full–diversity, of the knowledge of these

cross–over probabilities. To this end, we assume that each receive node, including the destination, has access

to the CSI of the wireless links that are directly connected to it (single–hop). In other words, the destination

knows only the fading gains over the source–to–destinationand relay–to–destination links, while it is not

aware of the fading gains over the source–to–relay links. Onthe other hand, we assume that the destination

is aware of the network code used at the relays. This is a requirement for any NC design.
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With these assumptions, the destination is unable to compute the cross–over probabilities in (7), and, thus,

the received bits cannot be properly weighted according to their reliability. In such a worst–case scenario,

the destination can only assign the same reliability to eachreceived bit. This corresponds to set all the

weights in (6) equal to 1,i.e., w [m] = 1 for m = 1, 2, . . . , (NS +NR). Accordingly, the demodulator in

(6) is no longer ML–optimum, and it simplifies to:

[

b̂S1
, b̂S2

, . . . , b̂SNS

]

∝ argmin
b̃S1

∈{0,1},...,b̃SNS
∈{0,1}







NS
∑

t=1

∣

∣

∣b̂StD − b̃St

∣

∣

∣+

NR
∑

q=1

∣

∣

∣b̂RqD − b̃Rq

∣

∣

∣







(39)

By using the connection between network code design and classical coding theory described in Section

V-A, the decoder in (39) can be interpreted as a distributed Minimum Distance Decoder (MDD) applied to

the overall network code [52]. The fundamental difference with classical coding theory is that, even though

the receiver is not aware of CSI on the source–to–relay links, demodulation errors at the relay always

take place and propagate through the network because of NC and forwarding operations. The demodulator

in (39) simply cannot counteract these effects. Of course, this is a worst–case scenario as the destination

has no estimates, even imperfect, of this CSI. The goal here is to understand the diversity order of this

low–complexity but sub–optimal demodulator.Proposition 5provides an answer to this question.

Proposition 5: Given the network model described in Section II, the demodulator in (39) provides an

end–to–end diversity order equal to (t = 1, 2, . . . , NS):

G
(St)
d

= SV [t]−
⌊

SV [t]

2

⌋

(40)

Proof: It follows by using the same steps as in Section IV by settingw [m] = 1 for m = 1, 2, . . . , (NS +NR).

Due to space limitations, we describe only the main modifications of the proof that lead to (40). In particular,

whenw [m] = 1 for m = 1, 2, . . . , (NS +NR), (22), (29), and (30) simplify as follows:

Z →
∏

k∈Ā
P
[

m̄
(k)
(c,c̄)

]

and T2 → Eh







∏

k∈Ā
P
[

m̄
(k)
(c,c̄)

]







(a)→
(

4
Em

N0

)−(dH(c,c̄)−d)

G̃
(T2)
d

(41)

where: i) the large–SNR approximation in
(a)→ is obtained by using the same development as in Appendix I-B.

More specifically, in (47) we have proved thatZ can be seen as the error probability of a Maximum Ratio

Combining (MRC) scheme withcard
{

Ā
}

= dH (c, c̄)− d branches, whered = card {A}; and ii) G̃(T2)
d it

related to the coding gain ofT2, which is not shown here due to space limitations. By comparing (45) and (41),

it follows thatT2 undergoes a reduction of the diversity order fromdH (c, c̄) to card
{

Ā
}

= dH (c, c̄)− d.

From (27), because of the summation overd, each term of the APEP has no longer the same diversity order

equal todH (c, c̄), but the allowed diversity orders fall in the range[dH (c, c̄)− ⌊dH (c, c̄)/2⌋ , dH (c, c̄)].

Since end–to–end diversity is given by the addend having thesmallest diversity order, we conclude that

DIVAPEP = dH (c, c̄) −max {d} = dH (c, c̄)− ⌊dH (c, c̄)/2⌋. Finally, by taking into account the relation

between Hamming distance and SV given in Section V, (40) is obtained. This concludes the proof. �

Proposition 5brings to our attention the importance of the CSI of the source–to–relay links. In fact,
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the demodulator in (39) loses approximately half of the potential diversity order inherently available in the

network code. This result is in agreement with some studies available in the literature for simple cooperative

networks without NC, such as [14], [16], and [22], where a similar diversity loss due to either non–coherent

demodulation or imperfect CSI has been observed. Furthermore, this result seems to agree with the diversity

that can be achieved by linear block codes over single–hop networks with hard–decision decoding [52, Sec.

14–6–2]. However, it should be emphasized that in our case the diversity loss is not due to hard–decision

demodulation at the physical layer, which is actually used for both demodulators in (6) and (39), but it

originates from the distributed nature of the network code,from demodulation errors at the relays, and from

the demodulator that does not adapt itself to the reliability of the source–to–relay links.

VI. N UMERICAL AND SIMULATION RESULTS

The aim of this section is to show some numerical examples to substantiate analytical derivations, claims,

and conclusions of the paper. More specifically, we are interested in: i) showing the accuracy of the

proposed framework for high–SNR, as well as the accuracy of diversity order and coding gain analysis; ii)

understanding the impact of assuming ideal source–to–relay links, as it is often considered in the literature,

and bringing to the attention of the reader that this might lead to misleading conclusions about the usefulness

of NC over fading channels; iii) studying the impact of the network geometry on the end–to–end performance,

and, more specifically, the role played by the positions of the relays; and iv) verifying the diversity reduction

caused when the reliability of the source–to relay links is not properly taken into account at the destination.

The analytical frameworks are compared to Monte Carlo simulations, which implements (6) and (39) with

no high–SNR approximations. Simulation parameters are summarized in the caption of each figure.

a) Accuracy of the Framework for i.i.d. Fading Channels:Figs. 1–8 show the end–to–end ABEP for

three network topologies (NS = 2 andNR = 2; NS = 3 andNR = 3; NS = 2 andNR = 5) and for different

network codes. In particular, the network codes are chosen according to three criteria: i) NC is not used and

only cooperation is exploited to improve the performance; ii) all the relay nodes implement binary NC on

all the received data, as it is often assumed in the literature [25]; and iii) only some relay nodes perform

NC on a subset of receiver packets. The first class of codes provides the reference scenario to understand

the benefit of NC over classical cooperative protocols. The second class of codes represents the baseline

scenario for network–coded cooperative networks. Finally, the third class of codes is important to highlight

UEP capabilities, and to show that a non–negligible improvement can be obtained if the network code is

properly designed and only some sources are network–coded.Numerical examples confirm the tightness of

our framework for high–SNR, and that both diversity order and coding gain can be well estimated with

our simple framework. Furthermore, the UEP behavior of manynetwork codes can be observed as well. In

particular, by comparing the SVs summarized in the caption of each figure with the slope of each curve,

we can notice a perfect match, as predicted in Section V. Finally, we note that by comparing the results of

the 2–source 2–relay network with the results of the 2–source 5–relay network, we can notice that if the
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network code is not properly chosen, having multiple relaysdoes not necessarily lead to a better diversity

order. Since the rate of the system is smaller for larger networks (more relays), we can conclude that small

networks with well–optimized network codes can outperformlarge networks where the network code is not

adequately chosen. What really matters to optimize the performance of multi–source multi–relay networks

is the SV of the network code, and, thus, the way the packets received at the relays are mixed together.

b) Impact of the Source–to–Relay Links on the Achievable Performance: In Table I, we show a

comparative study of the performance of three network topologies for realistic source–to–relay links, along

with the scenario whereσ2
StRq

→ ∞ for t = 1, 2, . . . , NS andq = 1, 2, . . . , NR, which is denoted as “ideal”

in the table. The results have been obtained from the analytical models and have been verified through Monte

Carlo simulations. The accuracy between model and simulation for the “realistic” scenario can be verified

in Figs. 1–8, since the same simulation setup is used. On the other hand, due to space limitations, similar

curves for the “ideal” case are not shown, but similar accuracy has been obtained. The framework used for

this latter scenario is given inCorollary 4. As discussed in Section IV-C, Table I confirms that there is no

diversity loss between the two scenarios, but only a coding gain loss can be expected. This is because for

both scenarios the ML–optimum demodulator is used. However, the conclusions about the usefulness of NC

for both scenarios can be quite different. Let us consider, for example, the 2–source 2–relay network. In

the “ideal” setting, there is no doubt that NC–3 and NC–4 should be preferred to NC–1 (no NC) and to

NC–2 (all received data packets are network–coded), as one user achieves a higher diversity order while the

other has the same ABEP as NC–1 and NC–2. On the other hand, theconclusion in the “realistic” setting

is different. In this case, we observe that the higher diversity order achieved by one user is compensated by

a coding gain loss for the second user. In other words, a coding/diversity gain tradeoff exists. However, this

behavior is in the spirit of cooperative networking: one user might tolerate a performance degradation in a

given communication round and wait for a reward during another communication round. Properly choosing

the network code enables this possibility. Furthermore, bycomparing NC–1 and NC–2, we can notice that

different conclusions can be drawn about the usefulness of NC in the analyzed scenarios. In the “ideal”

setting, a cooperative network with NC (NC–2) has the same ABEP as a cooperative network without NC

(NC–1). The conclusion is that NC is useless in this case. On the other hand, the situation changes in the

“realistic” setting. In this case, we can see that NC–2 is superior to NC–1, and, thus, we conclude that the

redundancy introduced by NC can be efficiently exploited at the receiver when it operates in harsh fading

scenarios. In fact, in the “realistic” setting, NC–2 can counteract the error propagation due to the dual–hop

protocol, even though this network code is not strong enoughto achieve a higher diversity order. Another

contradictory behavior can be found when analyzing the 3–source 3–relay network. By comparing NC–1

(no NC) and NC–2 (the relays apply NC to all received packets), we notice that in the “ideal” setting

NC turns out to be harmful, as NC–2 provides worse performance than NC–1. On the other hand, in the

“realistic” setting we notice that NC–1 and NC–2 provides the same ABEP. In other words, NC does not
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help but at least it is not harmful. These examples, even though specific to particular networks and codes,

clearly illustrate the importance of considering realistic source–to–relay links to draw sound conclusions

about merits and demerits of NC for multi–source multi–relay networks over fading channels. Furthermore,

we mention that, for all the network topologies studied in Table I, NC–2 is representative of a network

code that has been designed by keeping (38) in mind, as it provides the same high–SNR diversity order and

coding gain for both “ideal” and “realistic” settings. Finally, we emphasize that our conclusions and trends

depend on the coding gain of the network, whose study is oftenneglected due to its analytical intractability

[16], [18], [19], [25]. In this paper, we succeeded to provide an accurate estimate of the coding gain as well.

c) Accuracy of the Framework for i.n.i.d. Fading Channels and Impact of Relay Positions:In Fig. 9

and Fig. 10, we analyze the accuracy of the framework for i.n.i.d. fading channels. We consider a 2–source

2–relay network with nodes located as described in the caption of the figures. We consider five network

topologies where the relay nodes can occupy different positions with respect to source and destination nodes.

We observe a good accuracy of the framework, and notice that the positions of the relays can affect the

end–to–end performance. This example shows that the proposed framework can be used, for arbitrary fading

parameters, for performance optimization via optimal relay placement.

d) Impact of Receiver CSI on the Diversity Order:In Fig. 11 and Fig. 12, we study the impact

of using the sub–optimal non–ML demodulator in (39). In particular, the ABEP of this demodulator is

computed by using Monte Carlo simulations, and it is compared to the analytical investigation in Section

V-B. For comparison, the ABEP (analytical framework and Monte Carlo simulations) of the ML–optimum

demodulator in (6) is shown as well. The non–negligible dropof the diversity order can be observed, and,

by direct inspection, it can be noticed that the curves have the slope predicted in (40). This confirms the

importance of CSI about the source–to–relay links in order to avoid substantial performance degradation.

VII. C ONCLUSION

In this paper, we have proposed a new analytical framework tostudy the performance of multi–source

multi–relay network–coded cooperative wireless networksfor generic network topologies and binary encod-

ing vectors. Our framework takes into account practical communication constraints, such as demodulation

errors at the relay nodes and fading over all the wireless links. More specifically, closed–form expressions

of the cross–over probability at each relay node are given, and end–to–end closed–form expressions of

ABEP and diversity/coding gain are provided. Our analysis has pointed out that the achievable diversity

of each source node coincides with the separation vector of the network code, which shows that NC can

offer unequal diversity capabilities for different sources. Also, the importance of CSI about the source–

to–relay channels has been studied, and it has been proved that half of the diversity might be lost if the

reliability of the source–to–relay links is not properly taken into account at the destination. Monte Carlo

simulations have been used to substantiate analytical modeling and theoretical findings for various network

topologies and network codes. In particular, numerical examples have confirmed that the proposed framework
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is asymptotically–tight for high SNRs. Finally, by comparing the performance of various network topologies,

with and without taking into account decoding errors at the relays, we have shown that wrong conclusions

about the effectiveness and potential gain of NC for cooperative networks might be drawn when network

operations are oversimplified. This highlights the importance of studying the performance of network–coded

cooperative wireless networks with practical communication constraints for a pragmatic assessment of the

end–to–end performance and to enable the efficient optimization of these networks. The framework proposed

in this paper provides an answer to this problem.

APPENDIX I

PROOFS OFLEMMA 1, LEMMA 2, AND LEMMA 3

A. Proof of Lemma 1

Lemma 1:LetT1 = Eh

{

∏dH(c,c̄)
k=1 P

[

m̄
(k)
(c,c̄)

]}

, with P =
[

PS1D, . . . , PSNS
D, PS1:NS

R1D, . . . , PS1:NS
RNR

D

]T

andP [m], for m = 1, 2, . . . , NS+NR, given in Section III and inProposition 1. Then, over i.n.i.d. Rayleigh

fading channels and for high–SNR,T1 has closed–form expression as follows:

T1 →
(

4
Em

N0

)−dH (c,c̄) NS+NR
∏

m=1

χ
{

∆c,c̄ [m] Σ̄
(G)
SRD [m]

}

(42)

where all symbols are defined inProposition 3.

Proof: Owing to the assumption of independent fading channels, itfollows, by direct inspection, that

P [m] for m = 1, 2, . . . , NS + NR are independent RVs, and, thus,T1 =
∏dH(c,c̄)

k=1 Eh

{

P
[

m̄
(k)
(c,c̄)

]}

=
∏dH(c,c̄)

k=1 P̄
[

m̄
(k)
(c,c̄)

]

, whereP̄
[

m̄
(k)
(c,c̄)

]

= Eh

{

P
[

m̄
(k)
(c,c̄)

]}

. Furthermore, from the definition ofP [m] in

Section III andProposition 1, for high–SNR we have:

P̄StD →
(

4
Em

N0
σ2
StD

)−1

and P̄S1:NS
RqD →

NS
∑

t=1

[

gStRq

(

4
Em

N0
σ2
StRq

)−1
]

+

(

4
Em

N0
σ2
RqD

)−1

(43)

The results in (43) can be obtained from the following chain of equalities and high–SNR approximations:






























P̄XY = Eh

{

Q

(

√

2 (Em/N0) |hXY |2
)}

(a1)
= 1

2

[

1−
√

(Em/N0)σ
2
XY

1+(Em/N0)σ
2
XY

]

(a2)→
(

4Em
N0

σ2
XY

)−1

P̄S1:NS
RqD = Eh

{

PS1:NS
Rq + PRqD − 2PS1:NS

RqPRqD

} (b1)
= P̄S1:NS

Rq + P̄RqD − 2P̄S1:NS
Rq P̄RqD

(b2)→ P̄S1:NS
Rq + P̄RqD

P̄S1:NS
Rq =

NS
∑

t=1

[

gStRq P̄StRq

NS
∏

r=t+1

(

1− 2gSrRq P̄SrRq

)

]

(c1)→
NS
∑

t=1
gStRq P̄StRq

(c2)→
NS
∑

t=1

[

gStRq

(

4Em
N0

σ2
StRq

)−1
]

(44)

where: i)
(a1)
= comes from [52, Eq. (14–3–7)]; ii)

(a2)→ is the high–SNR approximation of
(a1)
= in [52, Eq.

(14–3–13)]; iii)
(b2)→ is the high–SNR approximation of

(b1)
= , which simply neglects the term̄PS1:NS

Rq
P̄RqD,

as it decays faster for high–SNR; iv)
(c1)→ follows by noticing that1− 2gSrRq

P̄SrRq
→ 1 for high–SNR; and

v)
(c2)→ is, similar to

(a2)→ , is the high–SNR approximation of
(c1)→ . From (44), (42) follows by using notation

and vector representation inProposition 3. More specifically, the vector∆c,c̄ takes into account that only the

indexes in the setΘ(c, c̄) = {m|c [m] 6= c̄ [m]} have to be included inT1, and the vector̄Σ(G)
SRD accounts

for the dual–hop relaying protocol and the specific network code. This concludes the proof. �
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Two important remarks are worth being made aboutLemma 1. First, we would like to emphasize that,

for ease of presentation and to stay focused on the most important issues of our analysis,i.e., dual–hop

networking and NC, the results in (42) and (43) are here givenfor Rayleigh fading only. However, they can

be generalized to other fading distributions for which the high–SNR approximation in [61] exists. In this

paper, Rayleigh fading is studied for illustrative purposes only. Second, by comparing
(c2)→ and [62, Eq. (40)],

it follows that, for high–SNR, the effect, on the error probability at the relays, of performing NC on noisy

and faded received data is equivalent to an Amplify–and–Forward (AF) relay protocol with CSI–assisted

relaying [60] and with a number of hops equal to the number of sources that are network–coded at each relay.

This conclusion is in agreement with the equivalence between the error probability at the relays and the error

performance of DemF relay protocols already highlighted inSection III-A. In fact, in [58] it has been shown

that, except when the number of hops is very large and the fading severity is very small, the performance

of AF and DemF protocols is very close, for high–SNR, to each other. As the number of sources that can

be network–coded is, for practical applications, not very large, this high–SNR approximation can be very

useful to get formulas that provide insights on the system behavior. The high–SNR equivalency between

(43) and AF relaying is exploited inLemma 2to get high–SNR but closed–form and accurate formulas.

B. Proof of Lemma 2

Lemma 2:Let us consider the termT2 = Eh

{

min
{

∏

k∈AP
[

m̄
(k)
(c,c̄)

]

,
∏

k∈ĀP
[

m̄
(k)
(c,c̄)

]}}

, with P =
[

PS1D, . . . , PSNS
D, PS1:NS

R1D, . . . , PS1:NS
RNR

D

]T
andP [m] for m = 1, 2, . . . , NS+NR given in Section III

and inProposition 1. Then, over i.n.i.d. Rayleigh fading and for high–SNR,T2 has closed–form expression:

T2 →
(

4
Em

N0

)−dH(c,c̄)
[

2
√
πΓ
(

dH (c, c̄) + 1
2

)

Γ
(

d+ 1
2

)

Γ
(

dH (c, c̄)− d+ 1
2

)

]

NS+NR
∏

m=1

χ
{

∆c,c̄ [m] Σ̄
(G)
SRD [m]

}

(45)

where all symbols are defined inProposition 3.

Proof: The computation ofT2 is very analytically involving. To get accurate, but closed–form and insightful

formulas that can shed lights on the network behavior, we exploit some high–SNR approximations. More

specifically, the starting point is the following high–SNR approximation:






















PStD = Q
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RqPRqD
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


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√2 (Em/N0)

[

∣

∣hRqD

∣

∣

−2
+

NS
∑

t=1
gStRq

∣

∣hStRq

∣

∣

−2

]−1




(46)

The approximation in
(a)→ follows from the closing comment inLemma 1, where we have proved that

for high–SNR the cumulative error due to performing NC on wrong demodulated bits at the relays can

be well–approximated by an equivalent AF multi–hop relay network with a number of hops that is equal

to the number of network–coded sources. In particular, from[60] we can recognize that the argument of

the Q–function in
(a)→ is the end–to–end SNR of an AF relay network, which takes intoaccount the relay–

to–destination link and the cumulative error due to combining, at the most,NS source. The number of
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sources that are actually network–coded depends on the number of non–zero NC coefficientsgStRq
. Let

us emphasize that the formula for the direct source–to–destination link is exact, but we have decided to

re–write it to better understand that high–SNR approximation applies only to the signals forwarded from

the relays. Thus, inT2, we haveP
[

m̄
(k)
(c,c̄)

]

→ Q
(
√

2 (Em/N0) SNR
(k)
(c,c̄)

)

, where: i)SNR(k)
(c,c̄) = |hStD|2

for the source–to–destination links, and by bearing in mindthat in this case we have a true equality; and ii)

SNR
(k)
(c,c̄) =

[

∣

∣hRqD

∣

∣

−2
+
∑NS

t=1 gStRq

∣

∣hStRq

∣

∣

−2
]−1

for the relay–to–destination links. Thus,T2 simplifies:
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(47)

where: i) the approximation in
(a)→ is proved inLemma 3; ii) Υ1 andΥ2 are two constant factors whose

closed–form expression is given inLemma 3; and iii) the equality in
(b)
= comes from the fact that the

Q–function is monotonically decreasing for increasing values of its argument.

The last expression in (47) has a convenient structure that can be averaged over fading channel statistics.

To this end, the following considerations can be made: i)T2 can be seen as the ABEP of a dual–branch

Selection Combining (SC) scheme, where the equivalent SNR of first and second branch is [53]SNR1 =

2 (Em/N0)Υ1
∑

k∈A SNR
(k)
(c,c̄) and SNR2 = 2 (Em/N0)Υ2

∑

k∈Ā SNR
(k)
(c,c̄), respectively; ii) bothSNR1

and SNR2 can be seen as the equivalent SNR of a Maximum Ratio Combining(MRC) scheme with a

number of branches given bycard {A} = d and card
{

Ā
}

= dH (c, c̄) − d, respectively; and iii) the

“virtual” SC and MRC branches contain independent RVs, as itcan be verified via direct inspection. Thus,

a closed–form and high–SNR approximation ofT2 in (47) can be obtained by using the method in [61].

More specifically, by considering: i) the definition ofSNR(k)
(c,c̄) in (47); ii) the closed–form expressions of

Υ1 and Υ2 in Lemma 3; and iii) the general parametrization in [61, Prop. 1, Prop.4] for systems with

receive–diversity, we can obtain, after lengthly algebraic manipulations, the final result shown in (45). In

particular,∆c,c̄ andΣ̄(G)
SRD have the same meaning as inLemma 1, while the term into the square brackets

accounts for the SC/MRC high–SNR approximation of
(b)
= in (47). This concludes the proof. �

Finally, similar to Lemma 1we emphasize once again that the closed–form solution in (45) can be

generalized to other fading channel models by using [61] and[62].
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C. Proof of Lemma 3

Lemma 3:Let λ =
∏

k∈AQ
(
√

2 (Em/N0) SNR
(k)
(c,c̄)

)

with SNR
(k)
(c,c̄) defined inLemma 2. Then, for

high–SNR and Rayleigh fading,λ can be tightly approximated as follows:

λ =
∏

k∈A
Q

(

√

2 (Em/N0) SNR
(k)
(c,c̄)

)

→ Q





√

2 (Em/N0)Υ
∑

k∈A
SNR

(k)
(c,c̄)



 (48)

whereΥ =

[

2d−1π
d−1
2 Γ(d+ 1

2)
Γ( 3

2)
d
Γ(d+1)

]1/d

andd = card {A}.

Proof: From the Chernoff bound,i.e., Q (x) ≤ (1/2) exp
(

−x2
/

2
)

≤ exp
(

−x2
/

2
)

, which is accurate for

x ≫ 1 that in our case implies high–SNR (Em/N0 ≫ 1), the following approximation holds:

∏

k∈A
Q (

√
xk) → Q





√

Υ
∑

k∈A
xk



 (49)

whereΥ is a constant correction term, which is introduced to recover the coding gain inaccuracy that might

arise when using the Chernoff bound [16]. The high–SNR approximation in (49) can be explained as follows.

By direct inspection, left– and right–hand side terms can beshown to have both diversity order equal to

d = card {A}. In fact, the left–hand side is the product ofd terms each one having diversity one. On the

other hand, the right–hand side term is the error probability of a MRC scheme [53] withd diversity branches

at the receiver, which is known to have diversityd [61]. The constant (correction) factorΥ is introduced

only to avoid coding gain inaccuracies, which are always present when using the Chernoff bound. Since the

goal of this paper is to accurately estimate both coding gainand diversity order, the accurate evaluation of

Υ is instrumental to estimate the end–to–end performance of the system.

To get an accurate, but simple and useful for further analysis, approximation we use first–order moment

matching to estimateΥ in (49). The motivation is that, as we will better substantiate at the end of this proof,

it allows us to have a closed–form estimate ofΥ that depends only ond in (48), while it is independent of

the fading parameters. In formulas, we seek to findΥ such that the following equality is satisfied:

Eh







∏

k∈A
Q

(

√

2 (Em/N0) SNR
(k)
(c,c̄)

)







= Eh







Q





√

2 (Em/N0)Υ
∑

k∈A
SNR

(k)
(c,c̄)











(50)

To this end, we need closed–form expressions of both averages in (50). Once again, we use the high–SNR

parametrization in [61], which leads to the following result:






































Eh

{

∏

k∈A
Q

(

√

2 (Em/N0) SNR
(k)
(c,c̄)

)

}

(a)→
(

4Em
N0

)−d
∏

k∈A

[

1
σ2
RqD

+
NS
∑

t=1

gStRq

σ2
StRq

]

Eh

{

Q

(

√

2 (Em/N0)Υ
∑

k∈A
SNR

(k)
(c,c̄)

)}

(b)→
(

4Em
N0

Υ
)−d











2d−1π
d−1
2 Γ(d+ 1

2 )

Γ( 3
2 )

d
Γ(d+1)

∏

k∈A









1
σ2
RqD

+
NS
∑

t=1

gStRq

σ2
StRq





−1













(51)

where: 1)
(a)→ is obtained by taking into account that (i)SNR(k)

(c,c̄) are statistically independent fork ∈ A;

(ii) according toLemma 2, SNR(k)
(c,c̄) can be seen as the end–to–end SNRs of an equivalent multi–hopAF

relay protocol; and (iii) by using asymptotic analysis for multi–hop AF relay networks in [62]; and 2)
(b)→
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is obtained from [61] and [62] by recognizing that we have to compute the average of an equivalent MRC

scheme where each branch is an equivalent multi–hop networkthat uses the AF relay protocol. Finally, by

equating the two terms in (51),Υ in (48) can be obtained. As mentioned above,Υ is independent of channel

statistics. Similar toLemma 1andLemma 2we mention that the proposed procedure can be applied to any

fading channel model, for which the parametrization in [61]is available. This concludes the proof. �
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TABLE I

ABEPSt =
(

G
(St)
c γ̄m

)−G
(St)
d , WHEREG

(St)
d

IS THE DIVERSITY ORDER, G(St)
c IS THE CODING GAIN, AND WE HAVE DEFINED

γm = Em/N0 . 2–SOURCE, 2–RELAY NETWORK. NC–1:bR1
= b̂S1R1

, bR2
= b̂S2R2

; NC–2:bR1
= b̂S1R1

⊕ b̂S2R1
,

bR2
= b̂S1R2

⊕ b̂S2R2
; NC–3:bR1

= b̂S1R1
⊕ b̂S2R1

, bR2
= b̂S2R2

; NC–4:bR1
= b̂S1R1

, bR2
= b̂S1R2

⊕ b̂S2R2
. 3–SOURCE, 3–RELAY

NETWORK. NC–1:bR1
= b̂S1R1

, bR2
= b̂S2R2

, bR3
= b̂S3R3

; NC–2:bR1
= b̂S1R1

⊕ b̂S2R1
⊕ b̂S3R1

, bR2
= b̂S1R2

⊕ b̂S2R2
⊕ b̂S3R2

,

bR3
= b̂S1R3

⊕ b̂S2R3
⊕ b̂S3R3

; NC–3:bR1
= b̂S1R1

, bR2
= b̂S2R2

, bR3
= b̂S1R3

⊕ b̂S2R3
⊕ b̂S3R3

. 2–SOURCE, 5–RELAY NETWORK.

NC–1:bR1
= b̂S1R1

, bR2
= b̂S1R2

, bR3
= b̂S1R3

, bR4
= b̂S2R4

, bR4
= b̂S2R5

; NC–2:bR1
= b̂S1R1

⊕ b̂S2R1
, bR2

= b̂S1R2
⊕ b̂S2R2

,

bR3
= b̂S1R3

⊕ b̂S2R3
, bR4

= b̂S1R4
⊕ b̂S2R4

, bR5
= b̂S1R5

⊕ b̂S2R5
; NC–3:bR1

= b̂S1R1
, bR2

= b̂S1R2
, bR3

= b̂S1R3
⊕ b̂S2R3

,

bR4
= b̂S1R4

⊕ b̂S2R4
, bR5

= b̂S2R5
. FINALLY , I .I .D. FADING WITH σ2

0 = 1 IS CONSIDERED.

Network: 2–source, 2–relay

Ideal source–to–relay channels Realistic source–to–relay channels

ABEP
(S1)∞ ABEP

(S2)∞ ABEP
(S3)∞ ABEP

(S1)∞ ABEP
(S2)∞ ABEP

(S3)∞

NC-1 0.3750γ−2
m 0.3750γ−2

m - 0.7500γ−2
m 0.7500γ−2

m -

NC-2 0.3750γ−2
m 0.3750γ−2

m - 0.3750γ−2
m 0.3750γ−2

m -

NC-3 0.3750γ−2
m 0.9688γ−3

m - 1.1250γ−2
m 3.8750γ−3

m -

NC-4 0.9688γ−3
m 0.3750γ−2

m - 3.8750γ−3
m 1.1250γ−2

m -

Network: 3–source, 3–relay

Ideal source–to–relay channels Realistic source–to–relay channels

ABEP
(S1)∞ ABEP

(S2)∞ ABEP
(S3)∞ ABEP

(S1)∞ ABEP
(S2)∞ ABEP

(S3)∞

NC-1 0.3750γ−2
m 0.3750γ−2

m 0.3750γ−2
m 0.7500γ−2

m 0.7500γ−2
m 0.7500γ−2

m

NC-2 0.7500γ−2
m 0.7500γ−2

m 0.7500γ−2
m 0.7500γ−2

m 0.7500γ−2
m 0.7500γ−2

m

NC-3 0.9688γ−3
m 0.9688γ−3

m 0.3750γ−2
m 4.8438γ−3

m 4.8438γ−3
m 1.5000γ−2

m

Network: 2–source, 5–relay

Ideal source–to–relay channels Realistic source–to–relay channels

ABEP
(S1)∞ ABEP

(S2)∞ ABEP
(S3)∞ ABEP

(S1)∞ ABEP
(S2)∞ ABEP

(S3)∞

NC-1 0.4961γ−4
m 0.4844γ−3

m - 3.9688γ−4
m 1.9375γ−3

m -

NC-2 0.3750γ−2
m 0.3750γ−2

m - 0.3750γ−2
m 0.3750γ−2

m -

NC-3 0.9980γ−5
m 0.4961γ−4

m - 21.9570γ−5
m 8.9297γ−4

m -



34

−10 0 10 20 30 40
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

A
B

E
P

E
m

/N
0
 [dB]

  

S1
S2

Fig. 1. ABEP of a 2–source 2–relay network. Markers show Monte
Carlo simulations and solid lines show the analytical framework. Setup:
i) i.i.d. fading with σ2

0 = 1; and ii) bR1
= b̂S1R1

⊕ b̂S2R1
, bR2

=

b̂S1R2
⊕ b̂S2R2

. The Separation Vector isSV = [2, 2].
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Fig. 2. ABEP of a 2–source 2–relay network. Markers show Monte
Carlo simulations and solid lines show the analytical framework. Setup: i)
i.i.d. fading withσ2

0 = 1; and ii) bR1
= b̂S1R1

, bR2
= b̂S1R2

⊕b̂S2R2
.

The Separation Vector isSV = [3, 2].
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Fig. 3. ABEP of a 3–source 3–relay network. Markers show Monte
Carlo simulations and solid lines show the analytical framework. Setup:
i) i.i.d. fading with σ2

0 = 1; and ii) bR1
= b̂S1R1

, bR2
= b̂S2R2

,
bR3

= b̂S3R3
. The Separation Vector isSV = [2, 2, 2].
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Fig. 4. ABEP of a 3–source 3–relay network. Markers show Monte
Carlo simulations and solid lines show the analytical framework. Setup:
i) i.i.d. fading with σ2

0 = 1; and ii) bR1
= b̂S1R1

⊕ b̂S2R1
⊕ b̂S3R1

,
bR2

= b̂S1R2
⊕ b̂S2R2

⊕ b̂S3R2
, bR3

= b̂S1R3
⊕ b̂S2R3

⊕ b̂S3R3
.

The Separation Vector isSV = [2, 2, 2].
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Fig. 5. ABEP of a 3–source 3–relay network. Markers show Monte
Carlo simulations and solid lines show the analytical framework. Setup: i)
i.i.d. fading withσ2

0 = 1; and ii) bR1
= b̂S1R1

, bR2
= b̂S2R2

, bR3
=

b̂S1R3
⊕ b̂S2R3

⊕ b̂S3R3
. The Separation Vector isSV = [3, 3, 2].
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Fig. 6. ABEP of a 2–source 5–relay network. Markers show Monte
Carlo simulations and solid lines show the analytical framework. Setup:
i) i.i.d. fading with σ2

0 = 1; and ii) bR1
= b̂S1R1

, bR2
= b̂S1R2

,
bR3

= b̂S1R3
, b̂R4

= b̂S2R4
, b̂R5

= b̂S2R5
. The Separation Vector is

SV = [4, 3].
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Fig. 7. ABEP of a 2–source 5–relay network. Markers show Monte
Carlo simulations and solid lines show the analytical framework. Setup:
i) i.i.d. fading with σ2

0 = 1; and ii) bR1
= b̂S1R1

⊕ b̂S2R1
, bR2

=

b̂S1R2
⊕ b̂S2R2

, bR3
= b̂S1R3

⊕ b̂S2R3
, bR4

= b̂S1R4
⊕ b̂S2R4

,
bR5

= b̂S1R5
⊕ b̂S2R5

. The Separation Vector isSV = [2, 2].
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Fig. 8. ABEP of a 2–source 5–relay network. Markers show Monte
Carlo simulations and solid lines show the analytical framework. Setup:
i) i.i.d. fading with σ2

0 = 1; and ii) bR1
= b̂S1R1

, bR2
= b̂S1R2

,
bR3

= b̂S1R3
⊕ b̂S2R3

, bR4
= b̂S1R4

⊕ b̂S2R4
, bR5

= b̂S2R5
. The

Separation Vector isSV = [5, 4].
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Fig. 9. ABEP of a 2–source 2–relay network. Markers show Monte
Carlo simulations and solid lines show the analytical framework. Setup.
i) i.n.i.d. scenario withα = 3, σ2

XY = d−α
XY

, ii) the nodes are located
at positions (in meters):S1 = (0, 25), S2 = (0,−25), D = (50, 0),
R1 =

(

xR1
, 12.5

)

, R2 =
(

xR2
,−12.5

)

; and iii) bR1
= b̂S1R1

⊕
b̂S2R1

, bR2
= b̂S2R2

. Furthermore, we have: i)xR1
= 25 andxR2

=
25 in Scenario 1; ii)xR1

= 5 andxR2
= 5 in Scenario 2; iii)xR1

= 45
andxR2

= 45 in Scenario 3; iv)xR1
= 5 andxR2

= 45 in Scenario
4; v) xR1

= 45 andxR2
= 5 in Scenario 5.
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S1/S2 − Scenario 1
S1/S2 − Scenario 2−5

Fig. 10. ABEP of a 2–source 2–relay network. Markers show Monte
Carlo simulations and solid lines show the analytical framework. Setup.
i) i.n.i.d. scenario withα = 3, σ2

XY
= d−α

XY
, ii) the nodes are located

at positions (in meters):S1 = (0, 25), S2 = (0,−25), D = (50, 0),
R1 =

(

xR1
, 12.5

)

, R2 =
(

xR2
,−12.5

)

; and iii) bR1
= b̂S1R1

,
bR2

= b̂S2R2
. Furthermore, we have: i)xR1

= 25 andxR2
= 25 in

Scenario 1; ii)xR1
= 5 and xR2

= 5 in Scenario 2; iii)xR1
= 45

andxR2
= 45 in Scenario 3; iv)xR1

= 5 andxR2
= 45 in Scenario

4; v) xR1
= 45 andxR2

= 5 in Scenario 5.
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S1/S2 − ML
S1/S2 − non−ML
S3 − ML
S3 − non−ML

Fig. 11. ABEP of a 3–source 3–relay network. Markers show
Monte Carlo simulations for the ML demodulator, dashed lines show
the analytical framework for the ML demodulator, and solid lines with
markers show Monte Carlo simulation of the non–ML demodulator.
Setup: i) i.i.d. fading withσ2

0 = 1; and ii) bR1
= b̂S1R1

, bR2
= b̂S2R2

,
bR3

= b̂S1R3
⊕ b̂S2R3

⊕ b̂S3R3
.
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S1 − non−ML
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Fig. 12. ABEP of a 2–source 5–relay network. Markers show
Monte Carlo simulations for the ML demodulator, dashed lines show
the analytical framework for the ML demodulator, and solid lines with
markers show Monte Carlo simulation of the non–ML demodulator.
Setup: i) i.i.d. fading withσ2

0 = 1; and ii) bR1
= b̂S1R1

, bR2
= b̂S1R2

,
bR3

= b̂S1R3
⊕ b̂S2R3

, bR4
= b̂S1R4

⊕ b̂S2R4
, bR5

= b̂S2R5
.
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