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Abstract—A differential space-time shift keying (DSTSK)-
aided successive-relaying-assisted multiuser decode-and-forward
(DF) cooperative system is proposed. We employ low-complexity
noncoherent detection, which requires channel state information
(CSI) at neither the relay nodes (RNs) nor at the destination node
(DN). More explicitly, the source nodes (SNs) employ differen-
tially encoded phase-shift keying (PSK) modulation, whereas the
RNs perform soft-input—soft-output multiple-symbol differential
sphere decoding (SISO-MSDSD)-based DF relaying during the
relaying phase. Similarly, DSTSK transmission is employed at
the RNs, which is detected with the aid of SISO-MSDSD at
the DN. More explicitly, three-stage serial-concatenated turbo
encoding/decoding is employed throughout the system to enhance
the attainable performance. Additionally, a maximum-minimum
determinant-based configuration selection (MMBCS) algorithm is
proposed to select the optimal DSTSK configuration for support-
ing a specific number of users. Moreover, we adopt a successive-
relaying architecture for recovering the conventional 50%
half-duplex relaying-induced throughput loss at the cost of sup-
porting less users.

Index Terms—Differential space-time shift keying (DSTSK),
multiple-symbol differential sphere decoding (MSDSD), mul-
tiusers, successive-relaying cooperation, virtual antenna array
(VAA).

I. INTRODUCTION
A. MIMO Overview

N RECENT years, mobile communication techniques hav-

ing an increased reliability and bandwidth efficiency have
been conceived. multiple-input—multiple-output (MIMO) tech-
niques have attracted substantial attention due to their capabil-
ity of providing both spatial diversity and multiplexing gains
[1], [2]. As a more recent concept of MIMO systems, spatial
modulation (SM) [3], [4] and space shift keying (SSK) [5]
were proposed, where the basic idea is to activate only a single
one of the M antenna elements (AEs) during the transmission
of each symbol, leading to a novel technique of conveying
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source information. Furthermore, the interantenna Interfer-
ence (IAI) is eliminated, and no interantenna synchronization
is required. Therefore, low-complexity single-antenna-based
maximum-likelihood (ML) detection becomes feasible. How-
ever, since SM/SSK was designed for achieving a high multi-
plexing gain, rather than a diversity gain, combating the effects
of fading channels has to rely on the employment of multiple
AEs at the receiver, which becomes extremely challenging in
downlink scenarios owing to the limited size of shirt-pocket
mobile devices. Additionally, the total number of transmit
antennas required by SM/SSK to convey m information bits
is 2™, implying that the number of transmit antennas increases
exponentially for a linear increase in the transmission rate [6].
Inspired by the concepts of SM/SSK, space—time shift keying
(STSK) was proposed in [6], which is shown to have the
following advantages over conventional SM/SSK schemes.

1) In the STSK scheme, one of the () appropriately indexed
space—time dispersion matrices is activated within each
STSK signal block duration, rather than activating a
specific antenna at each symbol duration, which was the
case in SM/SSK schemes. As a result, STSK beneficially
exploits both the spatial and time dimensions.

2) Due to the high degree of design freedom, a flexible
diversity versus a multiplexing gain tradeoff can be struck
by optimizing both the number and size of the dispersion
matrices, as well as the number of receive antennas.
Moreover, according to [6], STSK schemes are capable of
achieving both transmit and receive diversity gains, which
eliminates the lack of transmit diversity gain experienced
by conventional SM/SSK schemes, where only receive
diversity gains can be attained.

Similar to SM/SSK systems, the IAI of the STSK system is also
eliminated, and consequently, the adoption of low-complexity
single-antenna-based ML detection becomes realistic.

B. Cooperative Systems Overview

Since achieving MIMO-aided transmit diversity in the mo-
bile uplink becomes impractical due to the limited size of
mobile handsets, as a more recent concept, cooperative com-
munication was proposed for allowing the nodes to assist each
other by forwarding messages to the destination [7], either in
amplify-and-forward (AF) or decode-and-forward (DF) mode
[8]. In [9], dual-hop relaying was proposed for SM systems,
which was shown to result in an improved end-to-end system
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performance. An AF relaying cooperative system was proposed
for SSK systems in [10] for achieving a transmit diversity gain
by forming a virtual antenna array (VAA) [11], where several
single-antenna-aided RNs cooperatively share their antennas.
As a benefit, their random locations will result in mutually
uncorrelated Rayleigh fading. In conventional two-phase co-
operative communication systems [12]-[15], a multiplexing
loss of 50% is encountered due to the half-duplex transmit-
and-receive constraint of practical transceivers. In [16] and
[17], an information-guided relaying system was proposed for
increasing the throughput of the half-duplex relaying systems.
Additionally, the concept of successive relaying was proposed
in [18] for recovering the half-duplex multiplexing loss.

The performance of coherent MIMO systems relying on re-
alistic imperfect channel state information (CSI) was analyzed
n [19]-[22] to quantify the system’s performance degradation,
owing to imperfect CSI. Cooperative communication systems
employing coherent detectors require accurate CSI at the re-
ceivers. Since channel estimation (CE) techniques [23], [24]
exploit the fact that the consecutive time-domain samples of
each of the channel impulse response (CIR) taps are correlated,
obeying a correlation, which is commensurate with the velocity
of the vehicle, both the pilot symbol overhead and the CE
complexity increase, as the vehicular speed increases. This
implies having more rapidly fluctuating CIR taps. Additionally,
in cooperative communication systems, as the number of source
nodes (SNs) and relay nodes (RNs) increases, the acquisition
of accurate CSI for the increasing number of mobile-to-mobile
channels becomes unrealistic while imposing excessive CE
complexity [13]. In contrast to classic coherent detectors, the
family of differentially encoded noncoherent detectors requires
no CSI at the receivers; hence they constitute an attractive
design alternative [25], [26]. Furthermore, since noncoherent
receivers usually suffer from the well-known SNR penalty of
3 dB, the multiple-symbol differential decoding (MSDD) algo-
rithm [27] can be applied for mitigating the performance degra-
dation, albeit at the cost of exponentially increased complexity
upon extending the MSDD detection window size. The concept
of multiple-symbol differential sphere decoding (MSDSD) was
proposed by Lampe et al. [28] for reducing the detection com-
plexity, while enhancing the attainable bit-error-ratio (BER)
performance. As a further advance, the soft-input—soft-output
MSDSD (SISO-MSDSD) is capable of achieving substantial
iteration gains [29].

Direct-sequence code-division multiple-access (DS-CDMA)
schemes are capable of achieving high capacity and flexibil-
ity; hence, they have found favor in both the second- and
third-generation wireless communication systems [30], [31].
Additionally, multicarrier CDMA (MC-CDMA) is capable of
achieving a potentially better performance than orthogonal
frequency-division multiplexing (OFDM) because, if a few
chips of a spreading code are corrupted, MC-CDMA may still
be capable of recovering the related subcarrier signal. By con-
trast, in OFDM systems, the subcarrier’s symbol is irreversibly
corrupted if the subcarrier is attenuated by frequency-domain
fading. Hence, it is anticipated that the future evolution of
high-speed packet access and Long Term Evolution is likely to
witness the return to MC-CDMA transceivers [30], [32], [33].
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C. Our Novel Contributions

Against this background, the novel contribution of this paper
is that we first propose a DSTSK-aided multiuser successive-
relaying cooperative system (MUSRC). By exploiting the flex-
ibility of the concept of DSTSK, our system is capable of
supporting different numbers of users by appropriately adjust-
ing the constellation size of the phase-shift keying (PSK) mod-
ulation scheme employed by DSTSK. Then, we opted for using
binary PSK (BPSK), quadrature PSK (QPSK), 8-PSK, etc.,
conceived with a variable number of dispersion matrices. Addi-
tionally, our system is capable of activating a different number
of relays by adjusting the dimensions of each dispersion matrix.
We also proposed a novel maximum-minimum determinant-
based configuration selection (MMBCS) algorithm activating
the most appropriate DSTSK configuration in support of a spe-
cific number of users. Furthermore, since we adopted a SISO-
MSDSD-aided noncoherent detector in the proposed multiuser
cooperative system, the system’s complexity is significantly re-
duced, whereas a good BER performance is attained as a benefit
of the powerful three-stage serial-concatenated turbo encoding/
decoding regime employed. Since we apply the successive-
relaying philosophy of [18] in our system, the 50% throughput
loss of conventional two-phase relaying is recovered at the
cost of supporting less users. Finally, the DS-CDMA system is
adopted throughout our system to suppress the multiple-access
interference.

The rest of this paper is organized as follows. The pro-
posed DSTSK-aided MUSRC system is detailed in Section II,
whereas the proposed MMBCS algorithm is presented in
Section III. The system achievable performance is investigated
in Section IV. Our conclusions are presented in Section V.

The following notational conventions are adopted in our
discussions. A DSTSK system employing an £-PSK modu-
lation scheme is denoted as DSTSK(N,., N, T, Q, L), where
N, indicates the number of relays in each VAA and N is the
number of receive antennas at the DN, whereas 71" denotes the
number of time slots occupied by the signal block and @ is
the number of dispersion matrices employed. The transpose
and conjugate transpose operators are represented by ()7 and
(\)H, respectively, whereas | - || and | - | denote the norm and
magnitude operators, respectively. The Kronecker product is
denoted by ®, the conjugate operator by (-)*, and the (M x M)
identity matrix by I,,. Finally, diag{s} is the diagonal matrix
having the elements of s as its diagonal elements, £{-} is the
expectation operator, tr[-] is referred to as the trace operator,
and det]-] is the determinant operator.

II. DIFFERENTIAL SPACE-TIME SHIFT KEYING-AIDED
MULTIUSER SUCCESSIVE-RELAYING
COOPERATIVE SYSTEM

The block diagram of the proposed DSTSK-aided MUSRC
system is depicted in Fig. 1, where the two-phase relaying
network consists of X SNs (users), 2N, RNs, and a destination
node (DN). Due to the limited size of the shirt-pocket mobile
devices, the SNs and RNs are all limited to have a single
antenna. By contrast, the number of AEs at the DN depends on
the configuration of the DSTSK scheme adopted. DS-CDMA is
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Fig. 1. Block diagram of the DSTSK-aided MUSRC that implements the two-phase successive relaying with the aid of two VAAs. In this example, the number

of relays in each VAA is N, = 2, implying that the number of time slots is 7" =

adopted as the multiple-access technique [30]. Since two-phase
successive relaying is employed, the number of VAAs in the
network is Nyaa = 2. The number of RNs in each of the two
VAA groups is N,, = T' since the number of transmit antennas
should be equal to the number of time slots for DSTSK for the
sake of achieving the maximum attainable transmit diversity
gain [34].

A. System Overview

The operation of our MUSRC system is based on a two-phase
(Phase I and Phase 2) alternating principle, where each operat-
ing phase contains two concurrent transmissions referred to as
broadcasting and relaying transmissions, which are outlined as
follows.

1) Phase 1: The operation of Phase [ is represented in
Fig. 1 by the solid-line arrows. During the broadcast phase,
the information bits of each of the K SNs are first chan-
nel encoded by the two-stage serial-concatenated recursive-
systematic-code—unity-rate-code (RSC-URC) encoder in Fig. 2
at the SNs. The channel-coded bits are mapped to the dif-
ferential PSK (DPSK) constellation symbols for generating
K differentially encoded symbol sequences, which are spread
by the K user-specific spreading codes. The CDMA-spread
signals are transmitted from each of the K SNs to the first
VAA (VAA1), which is formed by N, RNs. At the RNs of
VAAL, the signals received from the SNs are first despread, and
then decoded by the three-stage serial-concatenated decoder in
Fig. 2, generating the K decoded signals of the K users.

During the relaying transmission, the decoded users’ signals,
which are acquired from the most recent broadcast slot, are en-
coded by the two-stage RSC—URC encoder of Fig. 2 at VAA2,
which are further modulated by the DSTSK modulator before
being spread by the VAA-specific spreading codes, and finally
transmitted to the DN. At the DN, the signal received from
VAA? is despread and then decoded by the three-stage serial-
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Fig. 2. Structure of three-stage serial-concatenated turbo encoder/decoder. (a)
Three-stage turbo encoder. (b) Three-stage turbo decoder.

concatenated decoder of Fig. 2. Finally, the hard decisions are
generated for the K users to complete Phase 1.

2) Phase 2: The operations of Phase 2 are depicted in Fig. 1
by the dashed-line arrows, which are exactly identical to those
in Phase 1, except for the roles of VAA1 and VAA2, which
are swapped. More explicitly, in Phase 2, VAA2 is in the
broadcast mode, whereas VAAL1 is in the relaying transmission
mode. This way, the successive relaying becomes capable of
recovering the conventional 50% throughput loss.

To suppress the successive-relaying-induced inter-VAA in-
terference (IVI), the classic DS-CDMA technique is adopted
at the RNs, where each VAA is assigned a specific spreading
code, which implies that Ny o spreading codes will be adopted
by the VAAs in the network. As a result, the number of users
supported is reduced by Nvyaa, albeit in reality, only the users
roaming at the cell edge will rely on relaying.

B. Three-Stage Turbo Encoder/Decoder

The structure of the three-stage serial-concatenated turbo
encoder employed at the SNs and RN is shown in Fig. 2, where
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Fig. 3. Topology of the proposed MUSRC system. The system is symmetric
in the sense that the distance from the SN to the VAA1 is approximately equal
to the distance from the SNs to the VAA2, whereas the distance between the
VAAT and the DN is approximately equal to the distance between the VAA2
and the DN.

the two-stage inner encoder is formed by a differential modu-
lator (DM) combined with a URC encoder. The explicit benefit
of incorporating a low-complexity memory-1 URC is that it has
an infinite impulse response (IIR), which allows the system to
spread the extrinsic information beneficially across the iterative
decoder components without increasing its delay. As a result, a
vanishingly low BER may be attained. Additionally, a half-rate
RSC is employed as the outer encoder. This way, a three-stage
RSC-URC-DM encoder is created.

The schematic of the corresponding three-stage turbo de-
coder adopted at the RNs and the DN is also portrayed in Fig. 2,
which consists of a DPSK/DSTSK SISO-MSDSD detector, a
URC decoder, and an RSC decoder. More explicitly, the com-
posite inner decoder is formed by the combined SISO-MSDSD
detector and the URC decoder, where the associated a priori
information and extrinsic information are first interleaved and
exchanged at [, times. The outer decoder is constituted by
the RSC decoder, where the information gleaned from the inner
decoder is iteratively exchanged at /,,te; times. Due to the IIR
of the URC decoder, the extrinsic information transfer (EXIT)
curve is capable of reaching the (1.0, 1.0) point of perfect
convergence to a vanishingly low BER in the EXIT charts
(e.g., Figs. 6 and 11 in our simulation results), implying that
no error floor occurs [35]. Therefore, again, the convergence
performance of the system is improved by the URC decoder.

C. Relay Architecture Overview

We assume that the proposed MUSRC has a symmetric
topology, as shown in Fig. 3. By exploiting the fact that the
RNs in each VAA are geometrically close to each other and
the distances between them are significantly smaller than the
distances from the SNs to RNs and the RNs to DN, we can
reasonably assume that the distances from the SNs to the RNs
in a VAA are equal, and the distances spanning from the RNs in
a VAA to the DN are also equal, which are denoted as Dy, and
D,.4, respectively. Then, the average path-loss reduction of the
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source-to-relay (SR) links and relay-to-destination (RD) links
can be expressed as

Dsd ¢ Dsd “
G = (Dsr) and G,q= (Drd>
respectively, where Dy, is the distance between the SNs and

DN, which is normalized to unity. Additionally, the average
path-loss reduction between the two VAAs is denoted as

D sd “
GU'U - <va)
where D, is the distance between the two VAAs. Throughout
this paper, the path-loss exponent is given by o« = 3, which rep-
resents a typical urban area. Naturally, the given assumptions
do not affect the general applicability of our analysis.

Since the direct signals transmitted from the SNs to the
DN are attenuated by the pathloss, particularly in high-carrier-
frequency mobile broadband systems, such as millimeter-wave
communication and free-space optical mobile systems [36],
[37], we only consider the SR and RD transmissions. For
the SR transmission, we adopt DPSK signaling (e.g., DBPSK
and DQPSK), while for the RD transmission, we adopt the
DSTSK(N,., N, T, Q, L) system associated with N,, = T Nat-
urally, increasing 7" improves the achievable BER performance
at the cost of reducing the system throughput while imposing
higher complexity in forming a VAA [34]. Having higher com-
plexity is due to the fact that, since N,. = T', the designer has
to choose more RNs, and the synchronization of the RNs also
becomes more of a challenge. Therefore, we limit the number
of the time slots to 7" = 2 and mainly consider two configura-
tions, namely DSTSK(2, 1,2, @, £) and DSTSK(2,2,2,Q, L),
associated with N = 1 and N = 2 receive antennas at the DN,
respectively.

Since no CSI is required by our MUSRC, no CSI is available
for selecting RNs. Hence, the selection of RNs can only be
based on their geometric location information [11]. With refer-
ence to Fig. 3, let us now discuss how to select the RNs and how
to arrange the selected RNs into the two VAAs, based on the
RNs’ geometric location information. It is plausible that having
a symmetric topology, as shown in Fig. 3, is reasonable, because
the two VAAs may be identically treated. In this symmetric
topology, we can denote the distance from the SNs to each
of the two VAAs as D,, while denoting the distance between
each of the two VAAs and the DN as D,4. To benefit from
collaborative relaying, we have

Dg. < Dgg and D,gq < Dgy. (1)
The distance between any pair of RNs in a VAA, which is
denoted as D,.., satisfies

D,. < Dg. and D,, < D,q4. 2)

Furthermore, we should have D,, > 10 x A\, where A is the
carrier’s wavelength, to ensure that we fully exploit the spatial
diversity, but this condition is usually automatically met for
the mobile relays. Regarding how to divide the selected RNs
into two VAAs, we note that the distance between the two
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VAAs, which is denoted as D,,,, should be sufficiently high,
so that the IVA is minimized. On the other hand, D,, should
not be excessive so that the condition (1) is satisfied. Finally,
the question of whether we should place a VAA closer to the
SNs or closer to the DN arises. Since the RD links employ
DSTSK, which has an inherent diversity capability and it is
more powerful than the DPSK scheme employed by the SR
links, therefore, we may appoint a VAA closer to the SN,
for the sake of achieving a balance of performance for the SR
and RD links. This would also mitigate the error propagation
inflicted by the DF scheme. More explicitly, we arrange for

Dsr < Drd- (3)

Let us now detail the operations involved in SNs, RNs, and DN.

D. SNs

During the broadcast interval, the information bit sequence
b* of the kth user is encoded by the two-stage serial-
concatenated channel encoder of Fig. 2, and the encoded bit
sequence u” is mapped to a PSK symbol sequence x* = {zF},
which is then differentially encoded according to

Sk o 17 TL:O
=9 k. ok
" Ly = Sp—1>»

n > 0.
The system employs a set of spreading codes
each having a spreading factor of L,, where Nyaa = 2 is the
number of VAAs. The first K spreading codes are used for
supporting the K users, and the spreading operation at the kth
SN is expressed as

“)

K+ N-
{ck}k:_l VAA

. 1<E<K. )

E. RNs

We assume that the CDMA up-link is synchronized, so that
all the signals arrive at a RN with the same delay; hence, the
near-zero cross-correlation property of the DS-CDMA system
may be exploited for reducing the multiuser interference (MUI).
Additionally, the Rayleigh fading channel is considered to be
quasi-static, yielding a constant fading envelope and phase
within an L¢-chip transmission period. Let the two VAAs be
denoted by V7 and Vs, respectively. In the sequel, a column-
vector-based notation will be adopted.

1) Decoding: The signal received at the mth RN of the VAA
V1 may be expressed as

= Ggr Ze nV1

+1/ Gy {first-Ly-elements (A, H{} ) } + v, (6)

where y, € CL=*1, hF72 € Cis the nth Rayleigh distributed
channel coefficient between the kth SN and the mth RN of the
VAA Vi, and Ay, € CTL:xNr is the received CDMA-spread

DSTSK signal block from the VAA V2. Hy, € CN-*1 is the

m
y n V1

equivalent channel matrix between the VAA V5 and the mth
RN of the VAA Vi, whereas v}, € CL=*! is the equivalent
additive white Gaussian noise (AWGN) vector. Despreading
Yoy, for the kth user yields

it = VI ey,

\/G
(M) e, ki -k,

=/ GarsEh + i + 05 (7)

where nﬁ’(}l denotes the MUI and IVI terms, which may be
substantially reduced as a benefit of the near-orthogonality of
the spreading code family employed [30], and @f]‘z is the noise
term having a zero mean and a variance of Ny /2 per dimension.
When considering a detection window of N,, received samples,
(7) may be expressed as

r =+/Ggdiag{sth+v =G, Sh+v (8)

where © = [rf" \ 0T N Loy, o] includes the
N,, consecutive signals received within the detection window
of N, samples, s = [sF_ sk \ - sk]T is the corre-
sponding differentially encoded symbol vector, S = diag{s},
h € CN»*! is the Rayleigh fading channel vector, and v €
CNwx1 the AWGN vector. Note that S is a unitary matrix, and
any small residual MUI and IVI term in (7) is assumed to be
included in v.

The SISO-MSDSD is based on the Log-MAP algorithm [35],
where the multiple-symbol decisions depend on the evaluation
of the conditional probability density function (pdf) p(r|s),
which satisfies the following relation [29]:

—In(p(r|s)) x rR 1 r. )
If we define the channel’s correlation matrix as Ry, =
e{hh"}, the noise correlation matrix as R, = e{vv} and
the combined correlation matrix C = Rp;, + (1/Gsr )Ry,
then the power normalized conditional correlation matrix R,
of the received signal vector r in (9) may be expressed as

R,, = SCS™.
(10)

1
HY — SR, S +

Rrr = —_—
Gy G

Upon applying the Cholesky factorization, we have C~! =
LLY, where L is a lower triangular matrix. By defining the
upper triangular matrix of

_ 1 H 3 '
U= (mL dlag{r}) (11)
we arrive at
—1In (p(r|s)) | Us|*. (12)

Note that a common phase shift of all the elements in the
differential symbol vector s has no effect on the ML metric of



(12). If we define the accumulated differential symbol as [38]
N,—1
[T ()",
Jj=t

1, i = Ny

B {:EZ*»am, 1<i< N, —
=7

i = Ny.
the following relationship may be obtained:

<< —
4 = 1 <i< N,

13)

—In (p(r|s)) o [|Ual|? (14)

where a = [ajas---ay,]? is the accumulated differential
symbol vector. Note that the user index ¥ has been omitted
from a; and x; for notational simplicity Sphere decoding (SD)
examines the set of candidates {xj} ! that lie within the
decoding sphere radius R, i.e., within

|Ua|? < R (15)

The SISO-MSDSD accepts the a priori soft information from
the URC decoder of Fig. 2 and produces the corresponding soft
outputs. Assuming that the symbols {x]} A Lare independent,
their a priori information may be expressed as

-1

n (Pr{x}) = Z In (Pr{xz;}) (16)
and we may further manipulate (15) to yield
[Ual|* —In (Pr{x})
Ny—1
=Y Z wja;| —In(Pr{z;}) | < R% (17)
j=1

The partial-Euclidean-distance (PED) contribution of each bit
of the DSTSK symbol may then be defined as

Ny—1 [ |Ny—
d? = Z Z uja| —In(Pr{z;}) | =d7,, + A7
j=i
(18)
where the PED increment may be expressed as
Ny—1 2
A? = |ugaina; + Y ugar| —In(Pr{z;}). (19
l=i+1

Assuming that the symbol x,, is detected, the a posteriori
probability for the SISO-MSDSD may be calculated by the
Max-Log-MAP algorithm [35], which is expressed as

Ly(by|r) = In (W) ~—

Joatizs |
Pr{b, = 0|r} MAP

2
+ In (Pr {zi,’f;é}) + HUaMLKSH

oo (st}

— dbn—l

MAP (20)

b, =0
dMAP
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TABLE 1
COMBINATIONS OF Q ANDL FOR SUPPORTING DIFFERENT NUMBERS OF
USERS K AND THE CORRESPONDING LOWER BOUND COMPLEXITY N,
[28] ASSOCIATED WITH N, = 4, DBPSK AT SNS, AND
N = 1 RECEIVE ANTENNA AT THE DN

K=2 K=3 K= K=5
Q=2.L=2 | Q=2.L=1 | Q=2L=8| Q=2.L=16
(N, = 180) (N, = 200) (N = 250) (N = 360)
N/A Q=4L=2 | Q=4 L=4| Q=4 L=8

(N, = 200) (N = 250) (N, = 360)
N/A N/A Q=8L=2] Q=8.L=1

(N, = 250) (N, = 360)
N/A N/A N/A Q=16L=2
(Nc = 360)

where di}f Ap and di}f[fg indicate the minimum PEDs estimated
by the SD when the bit of interest b, is set to 1 and 0,
respectively. Again, the user index * has been omitted from b,,.

The extrinsic information of b,, may be calculated by sub-
tracting the a priori information of (16) from the a posteriori
probability of (20), which can then be fed to the URC decoder to
form an decoding inner loop, as portrayed in Fig. 2. Finally, af-
ter the termination of the three-stage MSDSD-URC-RSC turbo
decoding process depicted in Fig. 2, the hard-decision outputs
of the three-stage turbo decoder recover the bit sequences of
the K users at the mth RN, each having the length L ¢, to form

the decision matrix B™ = [Blmgzm - bE ™], where we have
m € {1,..., N, } in our system. The details of the three-stage
turbo decoding process can be found in [35].

2) Forwarding: To perform the three-stage serial-
concatenated RSC-URC-DSTSK encoding, as shown in Fig. 2,
the decision matrix B™ € CFs*K is first parallel-to-serial con-
verted to form the decision vector b:”ec € CKLs*1 Then, this
decision vector is encoded by the half-rate RSC—URC encoder
to generate a coded sequence U™ € C2KLsx1, which is
then serial-to-parallel converted to the coded matrix U™ e
C2?Ls*K and then transmitted by the DSTSK modulator [39].

To support K users, the number of bits conveyed by each
DSTSK signal block and the number of users has to meet the
following condition:

= log,(Q) + logy (L) 21
where log, (@) bits are used for choosing a specific dispersion
matrix D, € CT*Nr from the set of () dispersion matrices,
and log, (L) bits are adopted to unambiguously represent a
specific constellation point s;(n) of the conventional £-PSK
modulation scheme. To elaborate a little further, supporting
different numbers of users can be realized by appropriately
modifying the values of () and £, without changing the system
configuration. For example, we may have Q =2 and £ =2
for a system supporting K = 2 users, whereas we may opt
for the values of Q =4 and £ =4 for supporting K =4
users. Additionally, given a specific number of users, various
combinations of () and £ may be used, provided that the
relation (21) is satisfied, which are summarized in Table I for
different values of K. The most beneficial DSTSK combination
selection is detailed in Section III.

After obtaining the dispersion matrix D, and the correspond-
ing conventional £-PSK symbol s;(n), the STSK signal block
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is generated as

X = s1(n)Dy. (22)
The number of transmit antennas and the number of time slots
should be identical for the DSTSK scheme [34], i.e., N, =T.
With this constraint, the DSTSK symbol block is given by

gm — IT, n=20
n XS > 0.

(23)
which is spread by the spreading code cy, of the VAA V; to
yield

m l m
V1 = STL ® CVl

VL

where the spread DSTSK signal block obeys A} € CTLe*Nr,
Since, in our proposed MUSRC system, N,- RNs form a VAA,
if we denote the equivalent signal block transmitted by the VAA
Vi to the DN as Ay, € CTL=*Nrthen the mth column of Ay,
is contributed by the mth column of AT} . To be more specific,
the mth column of Af} is transmitted by the corresponding
mth RN to the DN. This corresponds to the system block
diagram shown in Fig. 1, where for example, the first RN in the
VAAL extracts and transmits the first column of the DSTSK-
modulated and spread signal block matrix formulated in (24).
Note that the allocation of the total transmission power to the
RNs in a VAA is automatically performed. This is because ev-
ery dispersion matrix D, is designed to have the same constant
power [34]; therefore, every equivalent signal matrix Ay, has
the same constant power. Since the mth RN transmits the mth
column of Ay, where 1 < m < N,, the transmit power of all
the N,, RNs adds up to the total transmit power. Interestingly,
the DSTSK scheme of (23) may be viewed as the generalization
of the DPSK arrangement of (4) by replacing the scalars in (4)
with matrices.

(24)

F. DN

All the RNs are assumed to be perfectly synchronized, imply-
ing that during the 7" time slots, the N, RNs in a specific VAA
group transmit their signal blocks simultaneously. Furthermore,
the Rayleigh fading channel is assumed to be quasi-static so that
the fading envelope and phase remain constant within the time
duration of L,T'. The despread signal block received at the DN
with the aid of N receive antennas over 7 time slots may be
expressed as [34]

Rn =V GrdSan + Vn

where we have R,, € CT*V; S, € CT*Nr is the equivalent
differential signal block received from the transmitting VAA,
whose mth column is identical to the mth column of SI*;
H, € CV~*N denotes the fading channel matrix between the
transmitting VAA and the DN; and V,, € CT*V is the corre-
sponding AWGN matrix. Note the “similarity” between (25)
and (7), where the scalar elements in (7) are replaced by

(25)

matrices in (25). Unlike (7), however, there exists no MUI or
IVIin (25).

Similar to the RNs, the three-stage MSDSD-URC-RSC
turbo decoder detects the signal blocks received at the DN.
More explicitly, the URC and RSC decoders of Fig. 2 used
at the DN are exactly identical to those employed in the RNs,
whereas the SISO-MSDSD of the RN is extended for detecting
the DSTSK signal blocks. In particular, over the N,, DSTSK
signal blocks, (25) can be expressed as

R=+G4 ,SH+V (26)

R - mRT T 1T
where wehave R = [R;, 1R, n .o Ry

STL—Nw+1 0 e 0
§ _ 0 Sn—Nw+2
0 0 S,

H= [HZ—N,w+1H£—Nw+2 : HE]T and V= [VrTL—Nw+1
V}:_Nw 4o VI]T. We emphasize again the “similarity”
between (26) and (8), where the essential operational
difference of the SISO-MSDSD invoked for DPSK and for
DSTSK is in the mapping of bits to DPSK symbols s, and
the mapping of bits to the DSTSK signal blocks S,,. In other
words, apart from this difference, the operation of the three-
stage MSDSD-URC-RSC turbo decoding process invoked
for the DSTSK scheme may be considered to be identical
to that of DPSK, as detailed in Section II-B. We point out
furthermore that the three-stage MSDSD-URC-RSC turbo
decoding algorithm of DSTSK employed by the DN has the
same form as that of the three-stage MSDSD-URC-RSC turbo
decoder conceived for the single-user differential-space—time-
block-code-based relaying system [38]. The DN applies this
three-stage MSDSD-URC-RSC turbo decoding algorithm for
generating the bit decisions for the K users.

III. DIFFERENTIAL SPACE-TIME SHIFT KEYING
CONFIGURATION SELECTION

In DSTSK schemes, the choice of the dispersion matrix set
D,, 1 < ¢ < Q has significant effects on the system’s achiev-
able performance [34].

A. Dispersion Matrix Generation

The design or generation of a near-optimum DSTSK dis-
persion matrix set was proposed in [39], which is based on a
carefully conducted random search. To elaborate a little further,
the dispersion matrices D,, 1 < ¢ < @ are first randomly
generated as unitary matrices, which obey the power con-
straint of

tr [DYD,] =T, 1<¢g<Q (27)
hence leading to a unity average transmission power for each
DSTSK symbol duration. Then, these initial DSTSK symbol

matrices are optimized using a random search algorithm to
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TABLE 1I
MAXIMUM-MINIMUM-DETERMINANT dypax — min (@, £) FOR DIFFERENT COMBINATIONS OF (Q, £)

DBPSK at SNs and N = 1 receive antenna at DN
Q=2 Q=4 Q=238 Q=16
L=2 dmax—min(2,2) = 1.99846 dmax—min(4,2) = 1.41065 | dmax—min(8,2) = 0.47171 | dmax—min(16,2) = 0.092138
L=4 dmax—min(2,4) = 1.21914 dmax—min(4,4) = 0.75919 | dmax—min(8,4) = 0.21126 N/A
L=28 dmax—min(2,8) = 0.58578 dmax—min (4, 8) = 0.40317 N/A N/A
L =16 | dpax—min(2,16) =0.15224 N/A N/A N/A
DQPSK at SNs and N = 2 receive antennas at DN
Q=2 Q=41 Q=38 Q=16
L=2 dmax—min (2, 2) = 1.99822 dmax—min(4,2) = 1.41172 | dmax—min(8,2) = 0.42625 dmax—min(16,2) = 0.10477
L=4 dmax—min(2,4) = 1.36047 dmax—min(4,4) = 0.80871 | dmax—min(8,4) = 0.20731 N/A
L=28 dmax—min(2,8) = 0.58579 dmax—min (4, 8) = 0.42085 N/A N/A
L =16 | dmax—min(2,16) =0.15224 N/A N/A N/A

minimize the pairwise symbol error probability (PSEP) ex-
pressed as [39]
. 1
p(X — X) <
det (ITN + 4%0 Rx ® IN>

(28)

where 1" and N are the numbers of time slots and receive
antennas, respectively; Es denotes the symbol energy; and Ny
the AWGN power. Additionally, Rx in (28) is the codeword
difference matrix, which may be expressed as Rx = (X —
X)H# (X — X), where X and X are an arbitrary pair of the
legitimate codewords selected from the DSTSK symbol set
having a size of Q) - L.

In the PSEP expression, if Rx has full rank, the error
probability will be determined by the minimum value of the
determinant of Rx [40]. As a result, by ensuring that Rx has
full rank, the DSTSK dispersion matrix set may be optimized
by maximizing the minimum determinant d,,;,, of Rx for any
pair of legitimate codewords, where d,y;y, is the function of D,
1 < ¢ < Q,and L, which can be expressed as

dwin(Dg, 1 < ¢ < Q; L) =min{det[Rx], VRx}. (29)
In other words, given a legitimate configuration ) and L,
the set of near-optimum DSTSK dispersion matrices can be
determined by solving the optimization

dmax —min (Q? E) =

max
Dg,1<g<Q

loga(Q-L)=K

dmin(Dq7 1 S q S Qv [’)

(30)

B. MMBCS

It has been mentioned in Section II-E2 that the proposed
MUSRC system is capable of supporting the same number of
users by different DSTSK configurations. To be more explicit,
according to (21), for a given number of users K, we may
opt for different combinations of () and L. For example, if
we have K = 4 users, the possible combinations of ) and £
are (Q, L) =1(2,8), (Q,L£) =(4,4), and (Q,L) = (8,2). A
detailed DSTSK configuration list is shown in Table I. Since
different configurations (@, £) for the same number of users K
may have different dy,ax — min (@, £), the resultant BERs may
also be different. The most appropriate DSTSK configuration

TABLE III
OPTIMAL COMBINATIONS (Qopt, Lopt) FOR SUPPORTING DIFFERENT
NUMBERS OF USERS K, ASSOCIATED WITH DBPSK OR DQPSK AT
SNS AND N = 1 OR TWO RECEIVE ANTENNAS AT THE DN

K=2 K=3 K=4 K=5
(Qopty Eopt) (Qoph Lopt) (Qopt-, Eopt) (Qopt, £opt)
=(2,2) =(4,2) =(4,4) =(48)

is obviously the one that yields the lowest BER. One way to
choose the best configuration is to perform the Monte Carlo-
simulation-based BER calculations for all the legitimate con-
figurations of the DSTSK system for a fixed number of users /'
(i.e., a fixed throughput). However, the associated Monte Carlo
simulations are very time-consuming. Therefore, we avoid such
a Monte-Carlo-simulation-based approach and select the best
DSTSK configuration based on the maximum-minimum de-
terminant d,,;,, detailed in Section III-A, which leads to our
proposed MMBCS algorithm.

More explicitly, given a fixed throughput, for each of the
legitimate DSTSK configuration (@, £), the near-optimum set
of dispersion matrices is generated by solving the optimiza-
tion (30), which also records the corresponding maximum-—
minimum-determinant value dpax — min(Q, £). The optimal
DSTSK configuration (Qopt, Lops) is then simply chosen as

(Qoptv ﬁopt) = arg

max
Q.Lilog, (Q-L)=K

dmax — min (Q7 ‘C) (3 1)
The maximum-minimum-determinant values of dyax—min (@,£)
for various DSTSK configurations (@), £) are listed in Table II
for the DBPSK system at the SNs with an NV =1 receive
antenna at the DN and the DQPSK system at the SNs with
N = 2 receive antennas at the DN. Further taking into account
the results of Table I, we arrive at the optimal DSTSK configu-
rations (Qopt, Lopt ) to support the various numbers of users i,
which are summarized in Table III. In the following simulation
study, we will demonstrate that the most appropriate DSTSK
configuration selected by our proposed MMBCS algorithm is
capable of outperforming other DSTSK configurations, in terms
of their maximum achievable rate.

IV. SIMULATION RESULTS

A quasi-static Rayleigh fading environment having a nor-
malized Doppler frequency f; = 0.01 was considered, and an
interleaver length of 10000 bits was used by the three-stage
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serial-concatenated turbo encoder/decoder. The generator poly-
nomials of the RSC encoder were Ggrsc = [1,0,1]2 and

kse = [1,1, 1]o, whereas the generator polynomials of the
URC encoder were Guyrc = [1,0]2 and G{jp = [1, 1]2, where
GhRgc and Gy are the feedback polynomials of the RSC and
URC encoders, respectively. The numbers of inner iterations
and outer iterations were Iinner = 2 and Iouter = 4. Unless
otherwise stated,! the distance between the two VAAs was
D,, = (1/4). N, = 2 RNs were employed in each of the two
VAA groups, leading to a total of 2N, = 4 relays. Since the
transmit signal power of all the simulated systems (SNs to RNs
and RNs to DN) was normalized to unity, the equivalent SNR
of the overall system was defined as 1/Ny, with Ny being the
equivalent system’s AWGN power. Taking into account the path
losses in (7) and (25), the noise power at an RN was set to
No/Gsp, whereas the noise power at the DN was given by
No/Grq. The set of K + 2 nonorthogonal random codes with
the spreading factor L, = 256 was used to support multiple K
users and the two VAAs.

A. DBPSK for SR Transmission and DSTSK (2,1,2,Q, L)
for RD Transmission

We first consider the proposed DSTSK-aided MUSRC sys-
tem employing DBPSK for the SR transmission and a DSTSK
scheme of DSTSK(2, 1,2, @, £) for the RD transmission, as-
sociated with N,. = 2 relays in each of the two VAA groups
and a DN equipped with N =1 receive antenna. Various
number of () dispersion matrices and £-PSK constellations
may be adopted by the DSTSK scheme at the RNs, depending
on the number of users K, as listed in Table I. The most
appropriate or optimal combination (Qopt, Lopt) can be deter-
mined using the proposed MMBCS algorithm, as presented in
Section III-B. The optimal combinations (Qopt, Lopt) cOITe-
sponding to various K can be found in Table III. Therefore,
we commenced our investigations with the aid of the maximum
achievable rate to verify the facts that the different combina-
tions of (@, £) lead to different system performances, and the
optimal combination (Qopt, Lopt) found by the MMBCS algo-
rithm indeed offers the optimal performance. The simulation
results obtained are shown in Fig. 4, where the DSTSK-aided
MUSRC systems supporting K € {3,4} users were consid-
ered, in conjunction with an MSDSD window size of N,, = 4.
The SR distance was chosen as D, = 0.51, which will be
shown to be the optimal distance for the system configurations
used here.

It is shown in Table I that, for K = 3 users, there are
two legitimate combinations of (@, £) = (4,2) and (Q, L) =
(2,4). The corresponding maximum achievable rates of these
two configurations are shown in Fig. 4 as two dashed curves,
where it is seen that both these two DSTSK combinations are
capable of achieving the system throughput of 3 bits/symbol at
approximately SNR = 7 dB. However, based on the fact that
for near-capacity systems, a vanishingly low BER may occur

lNormally, the closer the two VAAs, the stronger IVI, and the poorer the
achievable system performance.

441 £;=0.01

4.0} 1 inner iteration

4 outer iterations

3.6H Dy=0.51,D,,=0.25
DBPSK at SNs, N =1 at DN

32f
28}
241

K=4-user system’s half-rate throughput

K=3-user system’s half-rate throughput

Maximum achievable rate [bits/DSTSK symbol]

0 — K=4, (Q, L)=(2, 8)
A —K=4,(Q L)=(4,4)
© — K=4,(Q,L)=(8,2)
© ---- K=3,(Q, L)=(4,2)
0 ---- K=3, (Q. L)=(2, 4)

2 -1 0 1 2 3 4 5 6 7

SNR (dB)

Fig. 4. Maximum achievable rates of different combinations (Q, L) for
supporting K = 3 and 4 users, associated with DBPSK at SNs and N =1
receive antenna at DN.

a few decibels beyond the system’s capacity, as exemplified
latter by the BER simulation results of Fig. 7, and we may focus
our attention on the system’s capacity point and its immediate
vicinity. It can be seen that the combination of (Q, £) = (4,2)
reach the half-rate throughput of 1.5 bits/symbol at SNR =
—3.8 dB, whereas the combination of (Q, £) = (2,4) reach the
half-rate throughput at SNR = —3.4 dB. Beyond this point, the
combination (Q, L) = (4,2) still outperforms the other com-
bination (@, L) = (2,4). Clearly, the combination (Q, L) =
(4,2) is the best configuration based on the system’s maximum
achievable rate. This agrees with the results produced by the
proposed MMBCS algorithm as listed in Table III, which also
confirms that (Qopt, Lopt) = (4,2) is the best configuration to
support K = 3 users.

The three maximum achievable rates for the system with
K = 4 users are shown in Fig. 4 as solid curves, where we ob-
serve that the combination (Q, £) = (4, 4) reaches the half-rate
throughput point at approximately SNR = —3.7 dB, whereas
the other two combinations require about SNR = —3 dB. Ad-
ditionally, beyond its half-rate SNR point, the combination
(Q, L) = (4,4) outperforms the other two combinations, in
terms of the maximum achievable rate. Therefore, (Q, L) =
(4,4) can be regarded as the optimal combination, which
again agrees with the results of Table III, provided by the
proposed MMBCS algorithm. It is worth pointing out that all
the legitimate DSTSK configurations (Q, £) associated with
the same number of users K have the same system complexity.
According to the operational principle of our SISO-MSDSD
invoked for DSTSK, the size of the search set is determined
by the product @ - £, which in fact depends on the number of
users K. Note that all the combinations have the same product
Q- Laslogy(Q - L) = K. In other words, given the number of
users K, the lower bounded complexity of our SISO-MSDSD-
aided cooperative system is determined. This lower bounded
complexity is given in Table I as N., where the complexity
is quantified in terms of the number of complex additions,
multiplications, and absolute value calculations per user.
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Fig.5. Effects of different SR distances on the system’s maximum achievable
rate for the systems (Qopt,Lopt) = (4,2) and (Qopt, Lopt) = (4,4) to
support K = 3 and K = 4 users, respectively.

Fig. 5 depicts the effects of the different SR distances
Dg, on the maximum achievable rate for the DSTSK sys-
tems (Qopt, Lopt) = (4,2) to support K = 3 users and (Qopt .,
Lopt) = (4,4) to support I = 4 users, respectively, where the
SR distances are chosen as Dy, € {0.25,0.40,0.51,0.75}. The
maximum achievable rates associated with the system of K = 3
users are shown as dashed curves, where it can be seen that,
although the curve of Dy, = 0.51 exhibits a lower throughput
in the low-SNR region, it reaches the half-rate throughput
point at SNR = —3.8 dB, which is smaller than the SNR
values required by the other three SR distances. Additionally,
the Dg,. = 0.51 scenario outperforms the others beyond its
half-rate SNR point and up to about SNR = 2 dB, where a
vanishingly low BER is achieved, as shown in Fig. 7. The four
solid curves in Fig. 5 correspond to the maximum achievable
rates associated with the four SR distances D, for the system
of K = 4 users. It can be seen that, similar to the three-user
system, in the low-SNR region, the curve of the Dy, = 0.51
case for the four-user system is relatively low, but it reaches
the half-rate point at SNR = —3.7 dB, which is earlier than
the other three SR distance cases. Furthermore, the D, = 0.51
scenario outperforms the other three cases up to SNR = 3 dB.
Therefore, we can conclude that the SR distance D,, = 0.51
is optimal for this system configuration to support both K =
3 and 4 users, in terms of the system maximum achieva-
ble rate.

Fig. 6 portrays the EXIT chart [35] of the DSTSK-aided
MUSRC system (Qopt, Lopt) = (4,4) supporting ' = 4 users
and relying on a detection window size of NV,, = 4. It can be
seen that an open tunnel exists between the EXIT curves of
the inner MSDSD-URC decoder and of the outer RSC decoder
at SNR = —0.8 dB. The Monte-Carlo-simulation-based stair-
case-shaped decoding trajectory, which closely matched the
EXIT curves, is also provided at SNR = —0.8 dB. This trajec-
tory shows that the point of perfect convergence at (1.0, 1.0)
is reached with the aid of I,y = 4 iterations, implying that
our system supporting K = 4 users and relying on an MSDSD
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Fig. 6. EXIT characteristics and the corresponding decoding trajectory of the
proposed cooperative system (Qopt, Lopt) = (4,4) for the given number of
K = 4 users at SNR = —0.8 dB.
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Fig. 7. BER performance of the proposed cooperative system supporting

K =1, 2, 3, and 4 users and the corresponding system capacity. The system
employs DBPSK at SNs and N = 1 receive antenna at the DN.

detection window size of N,, =4 is capable of achieving a
vanishingly low error probability beyond the point of SNR =
—0.8 dB, as is confirmed by the BER curves of the K = 4-user
system characterized in Fig. 7.

In a multiuser system exhibiting fairness, the quality of
service (QoS) should be identical for each user. We plot the
BER performance of the individual users in Fig. 7 for the
cases of K =2, 3, and 4. The BER curve group indicated
by “K =4 users” contains the four individual users’ BERs,
whereas the BER curve group of “K = 3 users” represents
the three individual users’ BERs. Finally, the two BER curves
of the two-user system and of the single-user benchmark are
grouped under the labels of “K = 2 users” and “K = l-user
benchmark”, respectively. It is shown in Fig. 7 that, for the
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Fig. 8. Effects of MSDSD window size /N, on the BER performance of the
proposed DSTSK-aided MUSRC system, which employs DBPSK at SNs and
N = 1 receive antenna at the DN, and the BER performance comparison with
the DSTSK noncooperative direct transmission system and the conventional
DPSK-aided MUSRC system.

system supporting K € {2,3,4} users, all the users in each
case share the same BER performance, implying that the same
QoS is guaranteed for each of the K users. Additionally,
the system throughput for each of the K =1, 2, 3, and 4
scenarios are also plotted in Fig. 7, where it can be seen
that the differences between the capacity lines and “Turbo
cliffs” are usually less than 3 dB, implying that our proposed
DSTSK-aided MUSRC scheme is indeed capable of achieving
near-capacity performance with the aid of three-stage serial-
concatenated coding scheme.

Fig. 8 shows the effects of the MSDSD detection window
size IN,, on the attainable BER performance of our proposed
system supporting K € {2,3,4} users. It can be seen from
the results shown in Fig. 8 that the BER performance is
improved as the window size increases from N,, =2 to 4,
at the cost of higher complexity. However, the complexity of
the proposed MSDSD scheme does not increase exponentially;
hence, the system’s complexity remains acceptable for a de-
tection window size of N,, = 4. The BER performances of
noncooperative three-stage serial-concatenated turbo-coding-
aided DSTSK schemes relying on an MSDSD window size of
N,, =4 are also included in Fig. 8 for comparison with our
proposed DSTSK-aided MUSRC system. Observe in Fig. 8
that the proposed DSTSK-aided MUSRC system significantly
outperforms the noncooperative DSTSK scheme. We also sim-
ulated a DPSK-aided MUSRC system, where the DSTSK
scheme based on N, =2 RNs per VAA invoked for relaying
in our proposed DSTSK-aided MUSRC was replaced by the
conventional DPSK-based relaying relying on a single RN per
VAA. The performance of this DPSK-aided MUSRC system
supporting K =4 users and with an MSDSD window size
of N, =4 is also included in Fig. 8. Observe in Fig. 8
that the proposed DSTSK-aided MUSRC offers a performance
gain of about 3 dB over this DPSK-aided MUSRC, which is
achieved at the cost of imposing slightly higher complexity

than the DPSK-aided MUSRC system, as confirmed by the
complexity bounds N, of the two MUSRC systems given in
Table IV.

B. DQPSK for SR Transmission and DSTSK (2,2,2,Q, L)
for RD Transmission

We also considered the proposed DSTSK-aided MUSRC
system employing DQPSK for the SR transmission and a
DSTSK scheme of DSTSK(2,2,2, @, £) for the RD transmis-
sion, associated with N, = 2 relays in each of the two VAA
groups and a DN equipped with N =2 antennas. We first
quantified the maximum achievable rates for all the legitimate
DSTSK configurations (@, L) supporting K € {3,4} users,
respectively, in conjunction with an MSDSD window size of
N,, = 4. The SR distance was chosen as D, = 0.4, which
will be shown to be the optimal distance for this DSTSK-
aided MUSRC system. The simulation results obtained are
shown in Fig. 9, where the maximum achievable rates of the
two DSTSK configurations supporting K = 3 users are de-
picted as dashed cures, whereas the maximum achievable rates
of the three DSTSK configurations supporting K = 4 users
are shown as solid curves. The results in Fig. 9 demonstrate
that configuration (@, £) = (4,2) is optimal for the three-user
system, whereas the configuration (Q, L) = (4,4) is optimal
for the four-user system, in terms of the maximum achievable
rate. This observation agrees with the results provided by the
proposed MMBCS algorithm listed in Table III, which again
demonstrates the power of the MMBCS algorithm in selecting
the optimal DSTSK configuration (Qopt, Lopt) for the given
number of users K.

The effects of SR distances Dy, on the maximum achievable
rate of the proposed cooperative system for the optimal com-
binations of (Qopt, Lopt) = (4,2) and (Qopt, Lopt) = (4,4)
supporting K € {3,4} users, respectively, are portrayed in
Fig. 10, where the SR distances chosen for our simulation were
D, €{0.2,0.3,0.4,0.50}. The four dashed curves in Fig. 10
depict the maximum achievable rates for the K = 3-user
scenario, where it can be seen clearly that the D, = 0.4 sce-
nario outperforms the other three distances. The four maximum
achievable rates for the ' = 4-user system are shown in Fig. 10
as solid curves, and it is clearly that the case of Dy, = 0.4
outperforms the other three cases. Hence, for the DSTSK-
aided MUSRC system employing the DQPSK for the SR
transmission and the DSTSK scheme of DSTSK(2,2,2,Q, L)
for the RD transmission, the SR distance of Dg,. = 0.4 is
optimal.

Fig. 11 portrays the EXIT chart for the DSTSK-aided
MUSRC system (Qopt; Lopt) = (4,4) supporting K = 4 users
and relying on a detection window size of NV, = 4. It can be
seen that an open tunnel exists at SNR = —2.4 dB. The Monte-
Carlo-simulation-based stair-case-shaped decoding trajectory
shows that the point of perfect convergence at (1.0, 1.0) is
reached with the aid of I, = 4 iterations. Hence, our system
supporting K = 4 users with an MSDSD detection window
size of N,, = 4 is capable of achieving a vanishingly low error
probability beyond the point of SNR = —2.4 dB, which is
also confirmed by the BER curves of the K = 4-users system
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TABLE IV
COMPARISON OF THE COMPLEXITY BOUNDS N, [28] FOR THE DSTSK-AIDED MUSRC SYSTEM AND THE CONVENTIONAL DPSK-AIDED
MUSRC SYSTEM, BOTH ASSOCIATED WITH N,, = 4, DBPSK AT SNS AND N = 1 RECEIVE ANTENNA AT THE DN

Users K =2 K =3 K =4 K =5
DSTSK aided MUSRC (N, = 2 per VAA) | N, =180 | N. =200 | N, =250 | N, =360
DPSK aided MUSRC (N, = 1 per VAA) Ne =35 N¢ = 46 Ne =170 N¢ = 150

K=4 Users

441 £3=0.01

4.0} 1 inner iteration

4 outer iterations
3.6 Dy=0.4,D,,=0.25 ]
DQPSK at SNs, N =2 at DN

321 1
"0 G 1 R 1)
ol gl ey
e K=3 Users
2.4} - 1

K=4-user system’s half-rate throughput E

K=3-user system’s half-rate throughput

0 — K=4,(Q, L)=(2, 8)
& —— K=4,(Q, L)=(4,4)
© — K=4,(Q,L)=(8,2)
© ---- K=3,(Q, 1)=(4,2)

O---- K=3,(Q, L)=(2, 4)

2 -1 0 1 2 3 4 5 6 7
SNR (dB)

Maximum achievable rate [bits/DSTSK symbol]

Fig. 9. Maximum achievable rates of different combinations (Q, L) for
supporting K = 3 and 4 users, associated with DQPSK at SNs and N = 2
receive antennas at DN.

Y
---- K=3,Q=4, BPSK
4.0 — K=4,Q=4, QPSK

0 Dy=0.5
3.6[ 5 D

© Dy=04
32|l © Dy=03
5 Dy=02

2.8+
3 Users

K=4-user system’s half-rate throughput 4

K=3-user system’s half-rate throughput |

fg=0.01, Dy, =0.25

1 inner iteration

4 outer iterations

DQPSK at SNs, N =2 at DN

1 2 3 4 5 6 7
SNR (dB)

Maximum achicevable rate [bits/DSTSK symbol]
[3e]
B

Fig. 10. Effects of different SR distances on the system’s maximum achiev-
able rate for the systems (Qopt, Lopt) = (4,2) and (Qopt, Lopt) = (4,4) to
support K = 3 and K = 4 users, respectively.

provided in Fig. 12. In Fig. 12, we plot the BER performance
of the individual users for the systems supporting K = 2, 3,
and 4 users, respectively, where it can be seen clearly that all
the users in each system exhibit an identical BER performance,
indicating that the same QoS is guaranteed for each of the K
users. The K = 1 user performance is included as a benchmark.
By comparing the BER “Turbo cliffs” with their corresponding
capacity lines in Fig. 12, we observe that our DSTSK-aided
MUSRC scheme is capable of achieving near-capacity perfor-

DQPSK at SNs, N =2 at DN
| K=4,Q=4,QPSK
SNR =-2.4 dB
fd = 001
2 inner iterations
| 4 outer iterations
D,=04
D,,=0.25

0.

Nl

0.8F

0.7

0.6

0.5

0.4
03[ ]

0.2 <& — Relay-Aided-SISO-MSDSD-URC H
RSC, Memory length = 3, half rate

01 Trajectory

Ig(Relay-Aided-SISO-MSDSD-URC), I,(RSC)

0~0 L 1 L 1 L 1 L 1 L
00 01 02 03 04 05 06 07 08 09 1.0

I,(Relay-Aided-SISO-MSDSD-URC), Ig(RSC)

Fig. 11. EXIT characteristics and the corresponding decoding trajectory of
the proposed cooperative system (Qopt, Lopt) = (4, 4) for the given number
of K = 4 users at SNR = —2.4 dB.
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Fig. 12. BER performance of the proposed cooperative system supporting
K =1, 2, 3 and 4 users and the corresponding system capacity. The system
employs DQPSK at SNs and /N = 2 receive antennas at the DN.

mance with the aid of three-stage serial-concatenated coding
scheme.

V. CONCLUSION

We have proposed a DSTSK-aided MUSRC system, which
is capable of supporting multiple users by exploiting the flex-
ibility of the DSTSK MIMO scheme relying on VAA-based
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cooperative relaying. By adopting the two-phase successive-
relaying architecture, the conventional 50% throughput loss
has been recovered at the cost of supporting fewer users.
We have also proposed the MMBCS algorithm for selecting
the most appropriate or optimal DSTSK configuration for
supporting different number of users, and the effectiveness
of this optimal DSTSK configuration selection algorithm has
been verified by the maximum-achievable-rate-based simu-
lation results. Additionally, three-stage MSDSD-URC-RSC
turbo encoding/decoding has been conceived for multiuser
DSTSK-based cooperative relaying, and the relevant simulation
results have shown that the proposed system is capable of
achieving a near-capacity performance, while maintaining low
complexity.
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