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Abstract

In this paper, we analyze the symbol error rate (SER) of space-time network coding (STNC) in

a distributed cooperative network over independent but notnecessarily identically distributed (i.n.i.d.)

Nakagami-m fading channels. In this network, multiple sources communicate with a single destination

with the assistance of multiple decode-and-forward (DF) relays. We first derive new exact closed-form

expressions for the SER withM -ary phase shift-keying modulation (M -PSK) andM -ary quadrature

amplitude modulation (M -QAM). We then derive new compact expressions for the asymptotic SER to offer

valuable insights into the network behavior in the high signal-to-noise ratio (SNR) regime. Importantly, we

demonstrate that STNC guarantees full diversity order, which is determined by the Nakagami-m fading

parameters of all the channels but independent of the numberof sources. Based on the new expressions,

we examine the impact of the number of relays, relay location, Nakagami-m fading parameters, power

allocation, and nonorthogonal codes on the SER.
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I. INTRODUCTION

Cooperative communication has been recognized as a promising low-cost solution to combat

fading and to extend coverage in wireless networks [1, 2]. The key idea behind this solution is to

employ relays to receive and transmit the source information to the destination, which generates a

virtual multiple-input and multiple-output (MIMO) systemto provide spatial cooperative diversity

[3, 4]. Apart from diversity, throughput enhancement is another critical challenge for wireless

networks. Against this background, network coding (NC) is proposed as a potentially powerful

tool to enable efficient information transmission, where data flows coming from multiple sources

are combined to increase throughput [5–7].

Recently, the joint exploitation of cooperative diversityand NC has become a primary design

concern in distributed networks with multiple users and multiple relays [8–11]. Motivated by

this, [8] investigated various sink network decoding approaches for the network with intermediate

node encoding. In [9], linear network coding (LNC) was applied in distributed uplink networks to

facilitate the transmission of independent information from multiple users to a common base station.

In [10], low-density parity-check (LDPC) code and NC was jointly designed for a multi-source

single-relay FDMA system over uniform phase-fading Gaussian channels. In [11], cooperative

network coding strategies were proposed for a relay-aided two-source two-destination wireless

network with a backhaul connection between the sources.

In order to increase the capacity and transmission reliability of wireless cooperative networks,

multiple antennas are deployed to gain the merits of MIMO processing techniques [12–17]. In this

strategy, distributed space-time coding (DSTC) was proposed to further boost network performance,

where the antennas at the distributed relays are utilized astransmit antennas to generate a space-time

code for the receiver [18, 19]. A differential DSTC was proposed in [20] to eliminate the requirement

of channel information at the relays and the receiver. The combined benefits of maximum-ratio

combining (MRC) and DSTC were investigated in [21]. In [22],the impact of DSTC in two-way

amplify-and-forward relay channels was characterized.

One of the principal challenges in distributed cooperativenetworks is to leverage the benefits

from both NC and DSTC. A promising solution that addresses this challenge is space-time network
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coding (STNC), which was proposed in [23]. Fundamentally, STNC combines the information from

different sources at a relay, which involves the concept of NC. Moreover, STNC transmits the

combined signals in several time slots using a set of relays,which involves the concept of DSTC.

Based on these, STNC achieves spatial diversity with low transmission delay under the impact of

imperfect frequency and timing synchronization. We note that in [23], the performance of STNC

was evaluated for Rayleigh fading channels, where no closed-form expression was presented.

In this paper, we consider a distributed cooperative network using STNC over independent but

not necessarily identically distributed (i.n.i.d.) Nakagami-m fading channels, which generalizes the

result in [23]. In this network, multiple sources communicate with a single destination with the

assistance of multiple relays. Here, we focus on decode-and-forward (DF) protocol at the relays,

which arises from the fact that this protocol has been successfully deployed in practical wireless

standards, e.g., 3GPP Long Term Evolution (LTE) and IEEE 802.16j WiMAX [24]. Different from

[23], we examine two fundamental questions as follows: “1) What is the impact of STNC on

the symbol error rate (SER) in general Nakagami-m fading channels?” and “2) Can we provide

closed-form expressions for the SER in Nakagami-m fading to alleviate the burden of Monte

Carlo simulations?” The rationale behind these questions is that Nakagami-m fading covers a

wide range of typical fading scenarios in realistic wireless applications via them parameter.

Notably, Nakagami-m fading encompasses Rayleigh fading (m = 1) as a special case [25]. To

tackle these questions, we first derive new closed-form expressions for the exact SER, which

are valid for multiple phase shift-keying modulation (M-PSK) andM-ary quadrature amplitude

modulation (M-QAM). To further provide valuable insights at high signal-to-noise ratios (SNRs),

we derive new compact expressions for the asymptotic SER, from which the diversity gain is

obtained. Specifically, it is demonstrated that the diversity order is determined by the Nakagami-m

fading parameters of all the channels, but independent of the number of sources. Various numerical

results are utilized to examine the impact of the number of relays, relay location, Nakagami-m

fading parameters, power allocation, and nonorthogonal codes on the SER. Importantly, it is shown

that nonorthogonal codes provide higher throughput than orthogonal codes, while guaranteeing full

diversity over Nakagami-m fading channels. Our analytical expressions are substantiated via Monte
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Carlo simulations.

II. SYSTEM MODEL

Fig. 1 depicts a distributed cooperative network whereL sources,U1, U2, . . . , UL, transmit their

own information to a common destinationD with the aid ofQ relays,R1, R2, . . . , RQ. In this

network, each node is equipped with a single antenna. We consider a practical and versatile

operating scenario where the source-relay, the relay-destination, and the source-destination channels

experience i.n.i.d. Nakagami-m fading. As such, we denote the Nakagami-m fading parameter

betweenUl andRq asmlq, the Nakagami-m fading parameter betweenRq andD asmqd, and the

Nakagami-m fading parameter betweenUl andD asmld. We further denote the channel coefficient

betweenUl and Rq as hlq, the channel coefficient betweenRq and D as hqd, and the channel

coefficient betweenUl andD as hld, where1 ≤ l ≤ L and 1 ≤ q ≤ Q. Throughout this paper,

we define the variances of these channel coefficients ashφϕ ∼ CN
(
0, d−α

φϕ

)
, whereφ ∈ {l, q},

ϕ ∈ {q, d}, andφ 6= ϕ. Here, we incorporate the path loss in the signal propagation such thatdφϕ

denotes the distance betweenφ andϕ andα denotes the path loss exponent.

In this network, the STNC transmission between the sources and the destination is divided into

two consecutive phases: 1) source transmission phase and 2)relay transmission phase. In the source

transmission phase, the sources transmit their symbols in the designated time slots. In this phase,

the relays receive a set of overheard symbols from the sources. In the relay transmission phase,

each relay encodes the set of overheard symbols to a single signal and then transmits it to the

destination in its designated time slot. As illustrated in Fig. 2, (L+Q) time slots are required to

complete the STNC transmission to eliminate the detrimental effects of imperfect synchronization

on any point-to-point transmission in this network at any time slot.

We proceed to detail the transmission in the two phases, as follows:

In the source transmission phase, the signals received at the destination fromUl in the time slot

l is given by

yld (t) = hld

√

Plxlsl (t) + wld (t) , (1)

wherePl denotes the transmit power atUl, xl denotes the symbol transmitted byUl, sl (t) denotes the
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spreading code ofxl, andwld is the additive white Gaussian noise (AWGN) with zero mean and the

variance ofN0. The cross correlation betweensp (t) andsq (t) are expressed asρpq = 〈sp (t) , sq (t)〉,

where 〈f (t) , g (t)〉 , 1
T

∫ T

0
f (t) g∗ (t) dt is the inner product betweenf (t) and g (t) during the

symbol intervalT . Moreover, we assume thatρll = ‖sl (t)‖2 = 1. The signals received atRq from

Ul is given by

ylq (t) = hlq

√

Plxlsl (t) + wlq (t) , (2)

wherewlq (t) is AWGN with zero mean and the variance ofN0.

In the relay transmission phase, the signal received at the destination fromRq is given by

yqd (t) = hqd

L∑

l=1

βql

√

Pqlxlsl (t)

︸ ︷︷ ︸

fq(x)

+wqd (t) , (3)

wherePql denotes the transmit power atRq andwqd is AWGN with zero mean and the variance

of N0. In (3), the scalarβql denotes the state whetherRq decodesxl correctly. Specifically,βql is

equal to1 if Rq decodesxl correctly, but0 otherwise.

For the detection of the received signals at the destination, we assume that the full knowledge

of the channel state information are available at the receivers with the aid of a preamble in the

transmitted signal. We also assume that the destination hasthe detection states at the relays, which

can be obtained via an indicator in the relaying signal. At the destination, the spreading codessl is

employed such that the information symbolsxl is separated fromyld andyqd, wherel ∈ {1, · · · , L}.

For any desired symbolxl, the destination combines the information ofxl from Ul and theQ relays

using maximum ratio combining (MRC). Therefore, the instantaneous signal-to-noise ratio (SNR)

of xl is expressed as [23]

γl =
Pl |hld|2

N0
+

Q
∑

q=1

βqlPlq |hqd|2
N0εl

, (4)

whereεl is the lth diagonal element of matrixR−1 associated with symbolxl andR is given by

R =












1 ρ21 · · · ρQ1

ρ12 1 · · · ρQ2

...
...

. . .
...

ρ1Q ρ2Q · · · 1












. (5)
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To facilitate the performance analysis in the following section, we re-express (4) as a unitary

expression given by

γl = c0 |h0|2 +
Q
∑

q=1

βqlcq |hq|2 , (6)

wherec0 = Pld
−α
dl /N0 denotes the equivalent SNR atD received fromUl, h0 denotes the unitary

Nakagami-m fading coefficient betweenUl andD with variance one,cq = Pld
−α
ql /N0εl denotes

the qth equivalent SNR received atD from Rq, andhq denotes the unitary Nakagami-m fading

coefficient betweenRq andD with variance one.

III. SER ANALYSIS OVER NAKAGAMI -m FADING CHANNEL

In this section, we first derive new closed-form expressionsfor the exact SER withM-PSK and

M-QAM. We then derive new compact expressions for the asymptotic SER, which will allow us

to examine the network behavior in the high SNR regime.

A. Exact SER

In DF protocol,βql denotes the decoding state atRq associated withxl. Based on the values of

all βql’s, we define a decimal number asSl = [β1l β2l · · · βQl]2 to represent one of2Q network

decoding states atQ relays associated withxl. Since all the channels in this network are mutually

independent, the events that whetherRq correctly decodes the received signal are independent. It

follows thatβql’s are independent Bernoulli random variables, the distribution of which is written

as

G (βql) =







1− SERql, if βql = 1

SERql, otherwise,
(7)

whereSERql denotes the SER of detectingxl atRq. Therefore, the joint probability of a particular

combination ofxl in Sl is written as

Pr (Sl) =

Q
∏

q=1

G (βql). (8)

Applying Bayesian rule, the SER of detectingxl at D is derived as

SERl =
2Q−1∑

Sl=0

SERγl|Sl
Pr (Sl) =

2Q−1∑

Sl=0

SERγl|Sl

Q
∏

q=1

G (βql), (9)
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whereSERγl|Sl
denotes the SER of detectingxl atD conditioned onSl. To facilitate the calculation

of (9), we present the exact closed-form results forSERγl|Sl
andG (βql), as follows.

1) Exact Results forSERγl|Sl
: We commence the derivation ofSERγl|Sl

by presenting the PDF

of γl|Sl
, fγl|Sl

(v). If there areN “1” elements in one setSl, let a1, a2, · · · , aN ∈ {c1, c2, · · · , cQ}

denote the equivalent SNRs of theN relays which decodexl successfully, whereN ≤ Q. We then

definea0 = c0 to make the source equivalent to the zeroth relay. As such, the SNR atD to one

desired symbolxl can be rewritten as

γl|Sl
= a0 |h0|2 +

N∑

n=1

an |hn|2 =
N∑

n=0

an |hn|2
︸ ︷︷ ︸

Yn

. (10)

According to [25], the PDF ofYn in Nakagami-m fading is given by

fYn
(y) =

mn
mnymn−1

anmnΓ (mn)
exp

(

−mny

an

)

, (11)

wheremn is the Nakagami-m fading parameter between thenth successful relay and the destination.

For example, if the first and the second relays out of three relays successfully decode the information

from Ul, we havem1 = m1d andm2 =2d. Using Fourier transform together with [26, eq. (3.351.3)],

the characteristic function (CF) ofYn is calculated as

CYn
(u) =

∫ ∞

−∞

fYn
(y) ejuydy =

(

1− juan
mn

)−mn

. (12)

Given thatγl|Sl
is the sum ofYn’s, the CF ofγl|Sl

is obtained as

Cγl|Sl
(u) =

N∏

n=0

CYn
(u) =

N∏

n=0

(

1− juan
mn

)−mn

. (13)

Applying inverse Fourier transform, the PDF ofγl|Sl
is derived as

fγl|Sl
(v) =

1

2π

∫ ∞

−∞

Cγl|Sl
(u) e−juvdu

=
1

2π

∫ ∞

−∞

(
N∏

n=0

(

1− juan
mn

)−mn

)

e−juv

︸ ︷︷ ︸

g(u)

du.
(14)

We next seek the solution forg (u). Due to the randomicity of the wireless channels, we note that

g(u) hasN + 1 different polesz0 = −jm0/a0, z1 = −jm1/a1, · · · , zN = −jmN/aN in complex
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field. As such, based on residue theorem [27], the residue ofkth pole of g(u) in complex field can

be expressed as

Res [g (zk) , zk] =
1

(mk − 1)!
lim
u→zk

dmk−1

dumk−1
[(u− zk)

mk g (u)]

=
mk

mk

(−j)mkakmk (mk − 1)!
lim
u→zk

dmk−1

dumk−1

[

e−juv

(
N∏

n=0,n 6=k

(

1− juan
mn

)−mn

)]

.

(15)

As per the general Leibniz’s rule, we deriveRes [g (zk) , zk] in (15) as

Res [g (zk) , zk]

=
mk

mk

(−j)mkamk

k (mk − 1)!
lim
u→zk

mk−1∑

i=0

[

(−jv)mk−1−i e−juv
] i∑

i0=0

i0∑

i1=0

· · ·
ik−2∑

ik−1=0

ik−1∑

ik+1=0

· · ·
iN−2∑

iN−1=0

×
(
mk − 1

i

)(
i

i0

)(
i0
i1

)

· · ·
(
ik−2

ik−1

)(
ik−1

ik+1

)

· · ·
(
iN−2

iN−1

)[

diN−1

duiN−1

(

1− juaN
mN

)−mN

]

×
[

diN−2−iN−1

duiN−2−iN−1

(

1− juaN−1

mN−1

)−mN−1

]

· · ·
[

dik−1−ik+1

duik−1−ik+1

(

1− juak+1

mk+1

)−mk+1

]

×
[

dik−2−ik−1

duik−2−ik−1

(

1− juak−1

mk−1

)−mk−1

]

· · ·
[

di0−i1

dui0−i1

(

1− jua1
m1

)−m1
][

di−i0

dui−i0

(

1− jua0
m0

)−m0
]

.

(16)

Upon close observation, we simplify (16) as

Res [g (zk) , zk] =

mk−1∑

i=0

jBN,k,iv
mk−1−i exp

(

−mkv

ak

)

, (17)

whereBN,k,i is defined as

BN,k,i (18)

=
mk

mk(−1)−i

amk

k (mk − 1)!

i∑

i0=0

i0∑

i1=0

· · ·
ik−2∑

ik−1=0

ik−1∑

ik+1=0

· · ·
iN−2∑

iN−1=0

(
mk − 1

i

)(
i

i0

)(
i0
i1

)

· · ·
(
ik−2

ik−1

)(
ik−1

ik+1

)

· · ·
(
iN−2

iN−1

)

×
(

aN
mN

)iN−1
(

aN−1

mN−1

)iN−2−iN−1

· · ·
(

ak+1

mk+1

)ik−1−ik+1
(

ak−1

mk−1

)ik−2−ik+1

· · ·
(

a1
m1

)i0−i1 ( a0
m0

)i−i0

× (mN)iN−1
(mN−1)iN−2−iN−1

· · · (mk+1)ik−1−ik+1
(mk−1)ik−2−ik−1

· · · (m1)i0−i1
(m0)i−i0

×
(

1− mkaN
mNak

)−mN−iN−1
(

1− mkaN−1

mN−1ak

)−mN−1−iN−2+iN−1

· · ·
(

1− mkak+1

mk+1ak

)−mk+1−ik−1+ik+1

×
(

1− mkak−1

mk−1ak

)−mk−1−ik−2+ik−1

· · ·
(

1− mka1
m1ak

)−m1−i0+i1 (

1− mka0
m0ak

)−m0−i+i0

, (19)
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and(mn)i = Γ (mn + i) /Γ (mn) is the Pochmann symbol. Based on the residues of the poles, we

confirm thatg(u) is available for the residue theorem. Specifically, using the residue ofkth pole

of g(u) in complex field, we obtain
∫ ∞

−∞

g (u)du = −2πj

N∑

k=0

Res [g (zk) , zk]. (20)

The proof of (20) is shown in Appendix A. Based on (17) and (20), the PDF ofγl|Sl
in (14) is

derived as

fγl|Sl
(v) =

N∑

k=0

mk−1∑

i=0

BN,k,iv
mk−1−i exp

(

−mkv

ak

)

. (21)

With the aid offγl|Sl
(v) in (21), we are capable to deriveSERγl|Sl

for M-PSK andM-QAM.

First, SERγl|Sl
for M-PSK is derived as

SERγl|Sl
,MPSK =

1

π

∫ (M−1)π/M

0

∫ ∞

0

α exp

(

− bγ

sin2 θ

)

fγl|Sl
(γ)dγdθ

=
α

π

N∑

k=0

mk−1∑

i=0

BN,k,i

∫ (M−1)π/M

0

∫ ∞

0

γmk−1−i exp

((

− b

sin2 θ
− mk

ak

)

γ

)

dγdθ,

(22)

whereα and b are modulation specific constants. ForM-PSK, α = 1 and b = sin2(π/M). With

the aid of [26, eq. (3.351.3)] and [28, eq. (5A.17)], (22) is derived as

SERγl|Sl
,MPSK

=
α

π

N∑

k=0

mk−1∑

i=0

BN,k,iΓ (mk − i)

∫ (M−1)π/M

0

(
b

sin2 θ
+

mk

ak

)−mk+i

dθ

=α

N∑

k=0

mk−1∑

i=0

BN,k,iΓ (mk − i)

(
ak
mk

)mk−i
[

M − 1

M
− 1

π

√

akb

akb+mk

(
(π

2
+ tan−1 ω

)mk−i−1∑

p=0

(
2p

p

)

×
(

4

(

1 +
akb

mk

))−p

+ sin
(
tan−1 ω

)
mk−i−1∑

p=1

p
∑

t=1

Tp,t

(

1 +
akb

mk

)−p
(
cos
(
tan−1 ω

))2(p−t)+1

)]

,

(23)

whereω =
√

akb
akb+mk

cot π
M

andTp,t =
(2pp )

(2(p−t)
p−t )4t[2(p−t)+1]

.

We then deriveSERγl|Sl
for M-QAM as

SERγl|Sl
,MQAM =

4

π

∫ π/2

0

∫ ∞

0

α exp

(

− bγ

sin2θ

)

fγl|Sl
(γ)dγdθ

− 4

π

∫ π/4

0

∫ ∞

0

α2 exp

(

− bγ

sin2θ

)

fγl|Sl
(γ)dγdθ, (24)
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whereα = 4
(

1− 1/
√
M
)

andb = 3/ (2 (M − 1)). Calculating the integrals in (24),SERγl|Sl
,MQAM

is derived as

SERγl|Sl
,MQAM

=4α
N∑

k=0

m
k
−1

∑

i=0

Bk,iΓ (mk − i)

(
ak
mk

)mi−i
[

1

2
− 1

π

√

akb

akb+mk

(
(π

2
+ tan−1ω1

)mk−i−1∑

p=0

(
2p

p

)

×
(

4

(

1 +
akb

mk

))−p

+ sin
(
tan−1ω1

)
m−i−1∑

p=1

p
∑

q=1

Tp,q

(

1 +
akb

mk

)−p
(
cos
(
tan−1ω1

))2(p−q)+1

)]

− 4α2

N∑

k=0

m
k
−1

∑

i=0

Bk,iΓ (mk − i)

(
ak
mk

)mi−i
[

1

4
− 1

π

√

akb

akb+mk

(
(π

2
− tan−1ω2

)mk−i−1∑

p=0

(
2p

p

)

×
(

4

(

1 +
akb

mk

))−p

− sin
(
tan−1ω2

)
m−i−1∑

p=1

p
∑

q=1

Tp,q

(

1 +
akb

mk

)−p
(
cos
(
tan−1ω2

))2(p−q)+1

)]

,

(25)

whereω1 =
√

akb
akb+mk

cot π
2

andω2 =
√

akb
akb+mk

cot π
4
.

2) Exact Results forG (βql): We now analyzeG (βql) for M-PSK andM-QAM, respectively.

According to (7), it is equivalent to analyzeSERql. Using (2), the received SNR atRq is written

as

γql =
Pl |hql|2
N0

=
Pld

−α
ql

N0
|h|2 = cql |h|2 , (26)

where cql = Pld
−α
ql /N0 denotes the equivalent SNR atRq received fromUl, and h denotes the

unitary Nakagami-m fading coefficients betweenUl andRq with variance one.

We first deriveSERql for M-PSK as

SERql,MPSK =
α(M − 1)

M
− α

π

√

cqlb

cqlb+mlq

[
(π

2
+ tan−1̟

)mlq−1
∑

p=0

(
2p

p

)(

4

(

1 +
cqlb

mlq

))−p

+ sin
(
tan−1̟

)
mlq−1
∑

p=1

p
∑

t=1

Tp,t

(

1 +
cqlb

mlq

)−p
(
cos
(
tan−1̟

))2(p−t)+1

]

, (27)

where̟ =
√

cqlb

cqlb+mlq
cot π

M
.
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We then deriveSERql for M-QAM as

SERql,MQAM =2α− 4α

π

√

cqlb

cqlb+mk

[
(π

2
+ tan−1̟1

)mk−i−1∑

p=0

(
2p

p

)(

4

(

1 +
cqlb

mk

))−p

+ sin
(
tan−1̟1

)
m−i−1∑

p=1

p
∑

q=1

Tp,q

(

1 +
cqlb

mk

)−p
(
cos
(
tan−1̟1

))2(p−q)+1

]

− α2 +
4α2

π

√

akb

akb+mk

[
(π

2
− tan−1̟2

)mk−i−1∑

p=0

(
2p

p

)(

4

(

1 +
cqlb

mk

))−p

− sin
(
tan−1̟2

)
m−i−1∑

p=1

p∑

q=1

Tp,q

(

1 +
cqlb

mk

)−p
(
cos
(
tan−1̟2

))2(p−q)+1

]

, (28)

where̟1 =
√

cqlb

akb+mlq
cot π

2
and̟2 =

√
cqlb

akb+mlq
cot π

4
.

Substituting (27) and (28) into (7), we obtainG (βql) for M-PSK andM-QAM, respectively.

Therefore, we insert (7) and (23) into (9), which yields the exact closed-form SER forM-PSK,

and substitute (7) and (25) into (9), which gives the exact SER for M-QAM. Observing (23),

(25), (27), and (28), we see that the exact SER expressions for M-PSK andM-QAM are given in

closed-form and are valid to arbitrary numbers of sources and relays.

B. Asymptotic SER

We now provide useful insights into the network behavior in the high SNR regime. In doing so,

new compact closed-form expressions are presented for the asymptotic SER.

We first focus onM-PSK. Based on (10),SERγl|Sl
for M-PSK can be alternatively written as

SERγl|Sl
,MPSK

=
α

π

∫ (M−1)π/M

0

∫ ∞

0

exp

(

− bγl|Sl

sin2 θ

)

f
γl|Sl

(
γl|Sl

)
dγl|Sl

dθ

=
α

π

∫ (M−1)π/M

0

(
∫ ∞

0

∫ ∞

0

· · ·
∫ ∞

0

exp

(

−b
∑N

i=0 yi

sin2 θ

)(
N∏

i=0

fYi
(yi)

)
N∏

i=0

dyi

)

dθ. (29)

Substituting (11) into (29) and using [26, eq. (3.351.3)], we obtainSERγl|Sl
,MPSK as

SERγl|Sl
,MPSK =

α

π

∫ (M−1)π/M

0

N∏

i=0

(∫ ∞

0

mi
miymi−1

i

aimiΓ (mi)
exp

(

−
(

b

sin2 θ
+

mi

ai

)

yi

)

dyi

)

dθ

=
α

π

∫ (M−1)π/M

0

N∏

i=0

(

mi
mi

ami

i

(
b

sin2 θ
+

mi

ai

)−mi

)

dθ. (30)
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We next use [26, eq. (2.513.1)] to develop an asymptotic expression forSERγl|Sl
,MPSK as

SER∞
γl|Sl

,MPSK ≤ α

π

∫ (M−1)π/M

0

N∏

i=0

(

mi
mi

ami

i

(
b

sin2θ

)−mi

)

dθ

=
α

π

(
N∏

i=0

(
mi

aib

)mi

)
∫ (M−1)π/M

0

sin2
∑N

i=0 miθdθ

=
α

πb
∑N

i=0 mi

AM,N

N∏

i=0

(
mi

ai

)mi

(31)

where

AM,N =
1

22
∑N

i=0 mi

(
2
∑N

i=0mi
∑N

i=0mi

)
(M − 1) π

M
+

(−1)
∑N

i=0 mi

22
∑N

i=0 mi−1

×
∑N

i=0 mi−1
∑

k=0

(−1)k
(
2
∑N

i=0mi

k

)sin
((

2
∑N

i=0mi − 2k
)

(M−1)π
M

)

2
∑N

i=0mi − 2k
. (32)

Similarly, an asymptotic expression forSERql,MPSK is obtained as

SER∞
ql,MPSK ≤ α

π

(mlq

b

)mlq AM,mlq ,0

c
mlq

ql

. (33)

Correspondingly, the asymptoticG (βql) for M-PSK is given as

G (βql)
∞
MPSK =







1, if βql = 1

SER∞
ql,MPSK, otherwise.

(34)

Based on (31), (33), and (34), the asymptotic SER forM-PSK is derived as

SER∞
l,MPSK =

2Q−1∑

Sl=0

SER∞
γl|Sl

,MPSK

Q∏

q=1

G (βql)
∞
MPSK . (35)

Following the same procedure outlined forM-PSK, we derive the asymptotic SER forM-QAM

as

SER∞
l,MQAM =

2Q−1∑

Sl=0

SER∞
γl|Sl

,MQAM

Q
∏

q=1

G (βql)
∞
MQAM , (36)

where the asymptoticSERγl|Sl
, for M-QAM is derived as

SER∞
γl|Sl

,MQAM ≤ 4α

πb
∑N

i=0 mi

A2,N

N∏

i=0

(
mi

ai

)mi

− 4α2

πb
∑N

i=0 mi

A4/3,N

N∏

i=0

(
mi

ai

)mi

, (37)

with A2,mi,N andA4/3,mi,N being defined in (32), and the asymptoticG (βql) for M-QAM is derived

as

G (βql)
∞
MQAM =







1, if βql = 1

SER∞
ql,MQAM , otherwise,

(38)
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with

SER∞
ql,MQAM ≤ 4α

π

(mlq

b

)mlq A2,mlq ,0

c
mlq

ql

− 4α2

π

(mlq

b

)mlq A4/3,mlq ,0

c
mlq

ql

. (39)

Based on (35) and (36), we next examine the diversity order ofthe network, which represents

the slope of the SER against average SNR in a log-log scale. According to (35) and (36), the

asymptotic SER ofUl can rewritten as

SER∞
l =

2Q−1∑

Sl=0

ΘSl

[
N∏

i=0

1

ami

i

]
Q
∏

q=1

1

c
mlq

ql

, (40)

whereΘSl
denotes the coefficient independent ofai and cql.in which the diversity order can be

confirmed as

div = mld +
∑Q

q=1
min (mqd, mlq). (41)

It is evident from (41) that the full diversity order is achieved, which is determined by the Nakagami-

m fading parameters of all the channels. Notably, the diversity order is independent of the number

of sources. In particular, this full diversity order is preserved even non-orthogonal STNC codes are

employed.

IV. SIMULATION AND NUMERICAL RESULTS

In this section, simulation and numerical results are presented to examine the impact of network

parameters with STNC (e.g., the number of relays, the relay location, Nakagami-m fading param-

eters, and power allocation) on the SER ofUl. In the figures, we consider a practical scenario

where the relays are placed at different distances fromD andUl with cj 6= ci and cjl 6= cil for

j 6= i. We set the distance betweenUl andD asdld = 1. The cross correlations between different

spread codes, defined in (1), are set to be zero. We also assumeequal transmit power at each node.

Further, our results concentrate on the practical example of a highly shadowed area with the path

loss exponent asα = 3.5 [29]. In the figures, the exact SER forM-PSK is evaluated by substituting

(7), (23), and (27) into (9), and the exact SER forM-QAM is evaluated by substituting (7), (25),

and (28) into (9). The asymptotic SER forM-PSK andM-QAM is calculated from (35) and (36),

respectively.
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A. Impact of Number of Relays and Equal Nakagami-m Fading Parameters

In this subsection, we focus on equal Nakagami-m fading parameters withmi = m. The average

received SNRs are set asc(i+1)l = ci+1 = ci + 0.1γ∆ and c0 = c0l = 0.6γ∆. Fig. 3 plots the exact

and asymptotic SER with 4QAM. Fig. 4 plots the exact and asymptotic SER with 8PSK. From

Figs. 3 and 4, we see that the asymptotic SER curves accurately predict the exact ones in the high

SNR regime. By observing these asymptotic curves, it is evident that the diversity order increases

with Q, which indicates that increasing the number of relays brings an improved performance. It

is also seen that the diversity order increases withm, which indicates that the improvement in

fading channels leads to a reduction in the SER. Moreover, wesee that the simulation points are

in precise agreement with our exact analytical curves, which demonstrates the correctness of our

analysis in Section III. Comparing the SER in Fig. 3 with thatin Fig. 4, we further see a poorer

network performance is achieved by higher order modulationschemes.

B. Impact of Relay Location

In this subsection, we considerdlq 6= dqd, which leads tocq 6= cqd, and consider equal Nakagami-

m fading parameters withmi = m = 2. We further normalizedld to unity with dld = 1. Fig. 5

plots the exact SER with BPSK forQ = 2. In this figure,Cases 1, 2, 3 represent the scenario

where the relays are located close to the source, whileCases 4, 5, 6 represent the scenario where

the relays are located close to the destination.

We first considerCases 1, 2, and3. We see thatCase 1offers a prominent SNR advantage relative

to Case 2. This indicates that the reduction in the distance between the relay and the destination

brings a substantial SER improvement. We also see thatCase 1and Case 3achieve almost the

same SER across the entire SNR range. This indicates that theSER improvement from the reduced

distance between the source and the relay is negligible. These observations are due to the fact that

the network performance is dominant by the relay-destination link when the relays are close to the

source. As such, the quality improvement of the relay-destination link has a higher positive impact

on the SER than that of the source-relay link.

We next considerCases 4, 5, and6. It is seen thatCase 4provides a substantial SNR advantage



15

compared toCase 5. It is also seen thatCase 4achieves a slight SNR advantage compared toCase

6. These observations are explained by the fact that the network performance is dominant by the

source-relay link when the relays are close to the destination.

C. Impact of Unequal Nakagami-m Fading Parameters

We concentrate on unequal Nakagami-m fading parameters and set the average received SNRs

as c(i+1)l = ci+1 = ci + 0.1γ∆ and c0 = c0l = 0.6γ∆. Fig. 6 plots the exact SER with 4QAM for

Q = 2. This figure clearly shows that the diversity order in (41) isaccurate. For example, it is

evident that the asymptotic SER curves ofCases 1, 2, and3 are in parallel, which indicates that

they achieve the same diversity order. As indicated in (41),Cases 1, 2, and 3 achieve identical

diversity order of3. Moreover, we see that the diversity order ofCase 4increases to4, and the

diversity order ofCase 5increases to6. This is predicted by (41), which shows that the diversity

order is determined by the Nakagami-m fading parameters of all the channels.

D. Impact of Power Allocation

We now focus on arbitrary transmit power at each node. We consider equal Nakagami-m fading

parameters withmi = m = 2, set the relay location asdl1 = 0.8, dl2 = 1, d1d = 0.9, andd2d = 0.7,

and normalizedld asdld = 1. We denote the transmit powers atUl, R1, andR2 asP0, P1, andP2,

respectively. Under the total power constraint, we haveP0 + P1 + P2 = 3P . Fig. 7 plots the exact

SER versusξ = P1/(P1+P2) with 4QAM for Q = 2 andP/N0 = 12 dB. We see that the optimal

value ofP1/P2 depends onP0. For example, the optimal power allocation is atP1 = 1.75P and

P2 = 0.75P whenP0 = 0.5P . Moreover, the optimal power allocation is atP1 = P2 = 0.5P when

P0 = 2P . Using our SER expressions with different relay locations,iterative search method can

be used to find the optimal power allocation that minimizes the SER.

E. Impact of Nonorthogonal Codes

We now turn our attention to the impact of nonorthogonal codes. We considerρpq = ρ 6= 0

for all p, q and equal Nakagami-m fading parameters withmi = 2. Fig. 8 plots the exact SER

with 4QAM for Q = 2 and N = 3. The case ofρ = 0 represents orthogonal codes. We see a



16

reduction in the SER asρ increases. We also see that the diversity order is not affected by cross

correlation. As such, the nonorthogonal codes which permitbroader applications can be used for

higher throughput without sacrificing the error rate significantly.

V. CONCLUSIONS

In this paper, we analyzed the SER of STNC in a distributed cooperative network whereL sources

communicate with a single destination with the assistance of Q relays. ForM-PSK andM-QAM

modulation, new exact closed-form expressions of SER over independent but not necessarily iden-

tically distributed Nakagami-m fading channels were derived. Moreover, the asymptotic SERwas

derived to reveal the network performance in the high SNR regime. Specifically, the asymptotic SER

reveals that the diversity order of STNC was determined by the Nakagami-m fading parameters of

all the channels. Simulation results were used to validate our analytical expressions and to examine

the impact of Nakagami-m fading parameters, relay location, power allocation, and nonorthogonal

codes on the SER.

APPENDIX A

PROOF OF(20)

According to Fig. 9, all poles are located in a closed curve. According to the residue theorem,

the integral over a closed curve can be expressed as the linear combination of the residues of the

poles in the curve. Mathematically, we have
∫ −R

R

g (u)du+

∫

CR

g (z) dz = 2πj
N∑

k=0

Res [g (zk) , zk] , (42)

whereCR is the counterclockwise semicircular curve in Fig. 3. The absolute value of
∫

CR
g (z) dz

in (42) can be upper bounded as
∣
∣
∣
∣

∫

CR

g (z) dz

∣
∣
∣
∣
≤
∫

CR

|g (z)| dz

=

∫

CR

∣
∣
∣
∣
∣

(
N∏

n=0

(

1− jzan
mn

)−mn

)

e−jzv

∣
∣
∣
∣
∣
dz

≤
∫

CR

∣
∣
∣
∣
∣

N∏

n=0

1

(1− janz)
mn

∣
∣
∣
∣
∣

∣
∣e−jzv

∣
∣ dz
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=

∫

CR

N∏

n=0

∣
∣
∣
∣

1

(1− janz)
mn

∣
∣
∣
∣
dz. (43)

WhenR → ∞, which indicates that the integral range ofg (u) is from ∞ to −∞, we find the

property of (43) as
∣
∣
∣
∣

∫

CR

g (z) dz

∣
∣
∣
∣
=

∫

CR

N∏

n=0

1

anmn |z|mn +O (zmn)
dz

=

(
N∏

n=0

1

anmn

)
∫

CR

1

|z|
∑N

n=0 mn

dz

=

(
N∏

n=0

1

anmn

)

π

R
∑N

n=0 mn−1

→ 0. (44)

Substituting (44) into (42), we obtain (20) and thus complete this proof.
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Fig. 2. A framework of space-time network coding.
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Fig. 6. Exact SER with 4QAM forQ = 2, c(i+1)l = ci+1 = ci + 0.1γ∆, c0 = c0l = 0.6γ∆ and 6 cases:Case 1: mi = m = 1;

Case 2: ml1 = 1,ml2 = 1, mld = 1,m1d = 2, m2d = 2; Case 3: ml1 = 2,ml2 = 2, mld = 1,m1d = 1, m2d = 1; Case 4:

ml1 = 1, ml2 = 2, mld = 1,m1d = 1, m2d = 2; Case 5: mi = m = 2.
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Fig. 7. Exact SER with 4QAM forQ = 2, m = 2 with dl1 = 0.8, dl2 = 1, d1d = 0.9, d2d = 0.7, and different power allocation

P1, P2, P3.
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Fig. 8. Exact SER with 4QAM forQ = 2, N = 3, mi = 2 and different cross correlationρ with dl1 = 0.6, dl2 = 0.8, d1d = 0.6

andd2d = 0.8, wheredld is normalized asdld = 1.
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Fig. 9. The distribution of the poles.


