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Abstract—In this work, we propose low-complexity adaptive
biased estimation algorithms, called group-based shrinkge esti-
mators (GSEs), for parameter estimation and interference p-
pression scenarios with mechanisms to automatically adjughe
shrinkage factors. The proposed estimation algorithms dide the
target parameter vector into a number of groups and adaptivéy

also employ a bias to accelerate the convergence spekd [32]-
[35].

A class of biased estimator that has been studied in recent
years is known as the biased estimators with a shrinkagerfact
[7]-[14]. These biased estimation algorithms have showveir th

calculate one shrinkage factor for each group. GSE schemes ability to outperform the existing unbiased estimatorseesp

improve the performance of the conventional least squaresLg)
estimator in terms of the mean-squared error (MSE), while
requiring a very modest increase in complexity. An MSE analgis
is presented which indicates the lower bounds of the GSE scines
with different group sizes. We prove that our proposed schems
outperform the biased estimation with only one shrinkage fator
and the best performance of GSE can be obtained with the
maximum number of groups. Then, we consider an application
of the proposed algorithms to single-carrier frequency-dmain
equalization (SC-FDE) of direct-sequence ultra-widebandDS-
UWB) systems, in which the structured channel estimation
(SCE) algorithm and the frequency domain receiver employ tle
GSE. The simulation results show that the proposed algoritins
significantly outperform the conventional unbiased estimgor in
the analyzed scenarios.

cially in low signal-to-noise ratios (SNR) scenarios amdygh

short data record5[9]. For these biased estimators [7]-fié
complexity is much lower than for MMSE algorithms because
the additional number of coefficients to be computed is only
one. The motivation for the group-based shrinkage estimato
(GSE) is to find a generalized estimator with a number of
shrinkage factors that can achieve a better performance and
complexity tradeoff than the biased estimator with only one
shrinkage factor.

In the parameter estimation scenario,some biased estsnato
have been proposed to achieve a smaller estimation error
than the LS solutions by removing the unbiasedness of the
conventional estimators with a shrinkage factor in the para

Index Terms-DS-UWB systems, parameter estimation, ineter estimation scenario. The earliest shrinkage estimétat

terference suppression, biased estimation, adaptiveitigo

I. INTRODUCTION

reduce the MSE over MVUE include the well known James-
Stein estimator[[10] and the work of Thompson][11]. Some
extensions of the James-Stein estimator have been proposed
[12]-[15]. In [16], blind minimax estimation (BME) techniggs

in two common deterministic estimation scenarios in COMeveloped to minimize the worst case MSE among all possible
munications engineering, which are parameter estimath &3)yes of the target parameter vector within a parametetfset
interference suppression| [1]-[5]. It is known that undee thy spherical parameter set is assumed, the shrinkage estimat
assumption of AWGN, the least-square (LS) algorithm cahtained is named spherical BME (SBME) [16].

provide an efficient solution to these estimation problemts a  For the interference suppression scenario, the biased esti
will lead to minimum variance unbiased estimators (MVUE)nators can be employed to achieve a lower estimation error
The unbiasness is usually considered as a good property folgtween the estimated filter and the optimal linear LS estima
estimator because the expected value of unbiased est8ngtoy, The major motivation for adopting the biased algorithm
the true value of the unknown parameter [6]. However, in SOMi@re is to accelerate the convergence rate for the adaptive
scenarios the LS method is not directly related to the megAplementations and provide a better performance withtshor

square error (MSE) associated with the target parameténveggining data support in long filter scenarids|[13].
and it has been found that a lower MSE can be achieved byrg the best of our knowledge, biased estimators with

adding an appropriately chosen bias to the conventional

%ﬁrinkage factors are rarely implemented into real-wagdal

estimators[[]i[31]. Note that some reduced-rank tech#8quyrocessing and have not been considered in the frequency
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domain for communication systems. One possible reason is
that some assumptions required for the signal model may not
be satisfied. For example, in time-hopping UWB (TH-UWB)
systems, the multiple access interference (MAI) cannot be
accurately approximated by a Gaussian distribution foresom
values of the the signal-to-interference-plus-nois@rédiNR)

[17]. Another possible reason is that the existing shriekag
based estimators usually require some statistical infooma
such as the noise variance and the norm of the actual panamete
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vector. In our previous work [13] and_[14], adaptive biaseid presented. The proposed GSE scheme and its adaptive
estimation algorithms with only one shrinkage factor haviemplementations for the parameter estimation scenariclaad
been proposed to fulfill the tasks of interference suppoessiinterference suppression scenario are developed in &ddfio
and parameter estimation. In this work, a novel biased emd Sectiori 1V, respectively. The MSE analysis is shown in
timation technique, named group-based shrinkage estimatBection[¥. The simulation results are shown in Seckioh VI.
(GSE), is proposed. In this algorithm, the target paramet®ection VIl draws the conclusions.
vector is divided into several groups and one shrinkagefact
is calculated for each group. Least mean square (LMS)-based
adaptive estimation algorithms are then developed to tteu Il. SYSTEM MODEL
the shrinkage factors. The GSE estimators are able to ineprov . . . N

In this section, we introduce the channel estimation and

the performance of the recursive least squares (RLS) #fgori éeceiver design tasks in the frequency-domain of DS-UWB

that recursively gomputes the LS estimator. In DS_UWS stems with SC-FDE that represent the parameter estimatio
systems, the estimation tasks are usually very challengm?ée : : . .
nario and the interference suppression scenario, crespe

because the environments include dense multipath. In tlﬁ'vsel
work, in order to test the proposed algorithms, we consider Y-
applications of DS-UWB systems with SC-FDE. Specifically,
we concentrate on the channel estimation and interferelj&:e
suppression with the proposed algorithms. The MSE perfor-
mance of the proposed GSE schemes is then analyzed, a lowérhe linear model for the parameter estimation scenario can
bound of the MSE performance is derived and the relationship expressed as:

between the number of groups and the lower bound is set up. y=Xh+n, (1)

Simulations show that with an additional complexity that is

only linearly dependent on the size of the parameter veatr ayhere the training data matriX € CM*~ and the received
the number of groups, the proposed biased GSE algorithgﬁnaw € CM*1 are givenm is AWGN with zero mean and
outperform the conventional RLS algorithm in terms of MSEariances?. In this scenario, the typical target is to estimate
in low SNR scenarios and/or with short data support. It sthouje parameter vectok € CE*! that leads to the minimum

be noted that the proposed GSE estimator can be employgde. The MSE consists of the estimation variance and the
for applications where a high estimation accuracy is reglir sqyared bias and is given by

These include localization in wireless sensor networkq [28

and in dense cluttered environments with UWB technology{”h_ﬁH?} - E{(ﬁ_E{ﬁ})H(ﬁ_E{iL})}_i_[HE{iL}_h||2]7
[29]. The proposed estimators can also be employed into

emergent multicast and broadcast systems [5], such as WieereE{-} represents expectation of a random variable.
orthogonal frequency-division multiplexing (OFDM) based The conventional LS algorithm estimates the parameter by
multi-user multiple-input multiple-output (MIMO) systesyas minimizing
specified in the IEEE 802.11ac standard and the 3GPP long-
teprm-evolution (LTE) systems. : Jus(h) = lly — Xhl*. (2)

The main contributions of this work are summarized %&ssuming that the matrix 2 X is a full rank matrix. the LS

Problem statement for the parameter estimation scenario

follows: solution is given by
« Novel GSE schemes are proposed to improve the per-
formance of the frequency domain RLS algorithms in his = (XHX)IXHy. (3)
the applications of parameter estimation and interference
suppression in DS-UWB systems. Under the assumption of AWGN with zero mean and variance

e LMS based adaptive a|g0rithms are de\/e|0ped for boﬂ%, the LS estimator is a MVUE that leads to a minimum MSE

scenarios to adjust the shrinkage factors. s . Hoi .
. The MSE analysis is carried out which indicates a lowdpt P —hus|"} = E{(hLs — h)" (ks — h)} = var(h, hus).

bound of the proposed estimator and the relationsf'\}‘pe definev = var(h, hrs) = tr{o>(X 7 X)), wheretr{-}
between the lower bound and the number of groups. represents the tracé oLSeralor [6] ’

« The performance of the proposed biased estimators isrpe gpjective of introducing the biased estimator in the
examined in multiuser SC-FDE for DS-UWB systémsg, ameter estimation scenario is to achieve a lower MSE than

with the IEEE 802.15.4a channel model, convolutiongha nbiased estimator. which can be expressed as
and low-density parity-check (LDPC) codes. '

The rest of this paper is structured as follows. In Sediibn Il E{||h — hp||?} < E{|h — hrs|?}. 4)
we first review the LS solution for the parameter estimation
scenario and present the structured channel estimatiok)(SC Although the objective shown here is similar to MMSE
problem in SC-FDE of DS-UWB systems. Then, the signallgorithms that is to achieve an MSE as small as possible.
model of the frequency domain receiver design for DS-UWB should be noted that the biased algorithm developed & thi
systems that represents the interference suppressioarggenwork adopts a different strategy from MMSE algorithms.
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Fig. 1. Block diagram of SC-FDE schemes in DS-UWB systemsPg@@ameter estimation scenario,(b) Interference supiprescenario.

B. System model for the SCE: parameter estimation scenario 5
h=v MFM,Lhequa (6)

unstructured channel estimation (UCE), the vechore

Mx1 js directly estimated, while in the structured channel
stimation (SCE), the fact thdt < M is taken into account

the vectothequ € CE*1 is the parameter vector to be

estimated. The concept of SCE was proposed_in [20], where
the SCE shows a better performance than the UCE._Ih [21],
adaptive MMSE detection schemes for SC-FDE in multi-
user DS-UWB systems based on SCE are developed, where
the estimatedh.q, is adaptively calculated based on RLS,
least-mean squares (LMS) and the conjugate gradient (CG)
algorithm for the detection and the RLS version performs

. the best. The purpose of developing biased estimation  thi
constructed by the spreading cagezero-padded to the Iengthscenario is to further improve the performance of the RLS

of M. In order to prevent inter block interference (IBI), & |qorithm in terms of the MSE
cyclic-prefix (CP) is added and the length of the CP is assume e consider user 1 as the desired user and omit the subscript

to be larger than the length of the channel impulse responge, . C ;
; . . : .0f this user for simplicity. Note that the frequency domain
(CIR). With the insertion of the CP at the transmitter and IS, ceived signal can Ft))e e);(pressed as g y

removal at the receiver, the equivalent channel is denated a
circulant Toeplitz matrixH ., € CM*M  whose first column y(i) = VMA()F pr,phequ + Me(i), (7)

is composed of a vectdt., zero-padded to length/, where - \here we define a diagonal matri (i) = diag[Fz(i)], the
hequ = [1(0),h(1),...,h(L — 1)] is the equivalent CIR. At npise and interference vectar, (i) consists of the MAI and
the receiver, a ch|p_ matched-filter (CMF)_ls applied and tr}ﬁe noise and is assumed to be AWGN. As showriin (7), the
received sequence is then sampled at chip-rate and organigee problem is an implementation example of the parameter
in an M-dimensional vector. This signal then goes throughstimation problem where a given mattX (i) € CM*Z s

the discrete Fourier transform (DFT). The frequency-domajjefined asx (i) = VMA(i)F ). 1,. The LS solution offeq,

Here, we consider the channel estimation problem of g
synchronous downlink block-by-block transmission DS-UW
system based on SC-FDE witli users. The block diagram
of the parameter estimation scenario is shown as branch
in Fig.[d. For notational simplicity, we assume thafVa-by-

1 Walsh spreading codey, is assigned to thé-th user. The
spreading gain iV, = T,/T., whereT, and T, denote the
symbol duration and chip duration, respectively. At eaateti
instanti, a data vectoby (i) € CV*! is transmitted by thé-th
user. We define the signal after spreadingga&) = Dby (i),
where the block diagonal matri®;, € CM*N (M = N - N,)
performs the spreading of the data block and its first colusnn

received signal is given by is given by
hequ,LS(i) = Rgl(l)ph(z) (8)
K K - PR .. . N
Y(i) = FHequ Y x(i))+Fn(i) = AuF Y 24 (i)+Fn(i), Wf‘iefeRh(Z); Z]—EM TEy AT G AG L, pi(i) =
=1 1 > =1 AT Fy AT (j)z(4) and A is the forgetting factor.

(5) Then the LS solution can be computed recursively by the
where n(i) represents the AWGNAy = FHeunH is a following RLS algorithm [20]
diagonal matrix whose diagonal vector is definedhaand its - . 2 . 1\ H Hy- .
a-th entry is given byh, — 520! by - exp{—j (2n/M)al}, hris(i+1) = hris(i) + Ry, (i) Fyy A7 (D)en(i),  (9)

where @ € {0,1,2,...,M — 1}. F € CM*M repre- where ey(i) = =z(i) — A(i)Fuyphris(i) is the M-
sents the DFT matrix and itga,b)-th entry is F,,= dimensional error vector.
(1/vVM)exp{—j(2n/M)ab}, wherea,b € {0,1,2,..., M — In Section[dll, a novel biased estimation algorithm called

1}. By defining a matrixF',; ;, € CM*L that contains the group-based shrinkage estimator (GSE) is incorporaten int
first L columns of the DFT matri¥’, we obtain the following the unbiased LS estimator that is able to improve the estima-
relationship tion performance in terms of the MSE.



C. System model for the frequency domain receiver design: where the matrixdy” € CM*M js

interference suppression scenario -1

K
. . . . 1
The block diagram of the interference suppression scenarioV = — (F Z AkIeIfAkH + aQIM) A, (18)
is shown as branch (b) in Fidl 1. F?r each tirrze instant VAN € k=1
. . . 1),. N) /.
an N-dimensional data vectdr (i) = [b, UOR ; by ()T wherel ,; € CM*M denotes the identity matrix. Note that the
is transmitted by the:-th user. After the spreading, the/-  matrix V' consists ofN, times N, diagonal matriced/;; €
dimensional transmit signal is given by CN*N wherei,j € {1, N.}. Hence, we take a closer look at
21, (i) = Spbp.e(i), (10) the product ofV and I.:
V171 V1,2 Vlch IN

where the spreading matrig, € CM*M M = N x N, is

a circulant Toeplitz matrix and its first column consiststué t v 7 _ Var Voo oo Voo |1 In
spreading codes and zero-paddihgl [26]. The equivaldnt : : : : :
dimensional expanded data vector is V.1 Ve oo Vaon] [In
N, 2
bk,e(i) = [bl(cl)(i)aOchlabEf)(i)vochla' o abggN)(i)aOchl]Tv 2'21 Vl’j Wl R IN
T . L . Z =1 VQ,]' W Iy -
where (-)* is the transpose. Using this signal expression we = = | =wWI,,
can obtain a simplified frequency domain receiver design. At : :
the receiver, a CMF is applied and the received sequence is Z;V:cl VN Wyl UnN
then sampled at chip-rate and organized im\&rdimensional A N . _
vector. After the DFT, the received signal is given by whereW,; =57V, ;,i=1,..., N, are diagonal matri-
X ces. Hence, the product 8 and I, can be converted into a
. . . . duct of a diagonal matrid¥ € CM*M (Af = Nx N,) and
= Fy(i) = FH.Sibyo(i) + F 11) P© g & ¢
z(7) y(i) ; quSkbre(i) + Fn(i),  (11) I, where the diagonal entries 8% arew;, | = 1,..., M,

_ , and equal the sum of all entries in th¢h row of matrix V.
wheren(i) is the AWGN andF ¢ CY*M represents the Finally, we express the MMSE design as

DFT matrix. Since bothH .., and .S, are circulant Toeplitz

matrices, their product also has the circulant Toeplitanfor Winuse = W, = diag(we) e, (19)
. H . .
This feature maked\, = FH.qSxF" a diagonal matrix. \whereqp, = (1y, s, . .., wyy) is an equivalent filter with/
Hence, we have taps.
K The expression shown i (19) enables us to desigi/an
z(i) = Z ApFbg (i) + Fn(i). (12) dimensional receive filter rather than an-by-N matrix form
k=1 receive filter. The estimated data vector can be expressed as
We can further expan@'by, (i) as [26] B@.) _ FﬁIfWH(z‘)z(i) _ FﬁIfZ(z‘)zb(i), (20)
Fbye(i) = (1/ v Ne) L Fnbi (i), (13)  \where Z(i) = diag(z(i)) andw(i) = w (i) is the weight
whereF y € CN*N denotes the DFT matrix anfl, € CMxN  vector of the adaptive receiver. Sindéy and I.. are fixed,
is structured as we consider the equivalerY-by-) received data matrix as
. Y (i) = FYI Z(i), and express the estimated data vector as
Io=[In,--,IN]". (14)  b(i) = Y (i) (i).
N,
where IN denotes tth_by_N |dent|ty matrix. Fina”y, the D. LS s)lu“on and adaptive RLS a.lgorithm for the interfer-
frequency domain received signaf:) is given by ence suppression scenario
K Here, we detail the LS and RLS designs for the frequency
2(i) = Z(l/ /N AT F by (i) + Fn(i). (15) domain multiuser receivew. The cost function for the devel-
pat i opment of the LS estimation is given by
Note that the expression im_{{15) is an implementation ex- Jis = ||b— Yw|?* (21)

ample of the interference suppression scenario where the . . .
unknown matrix for each time instant is given Wy (i) — e LS design of the linear receiver can be expressed as
(1/+/N.)AiI.F . To fulfill the interference suppression task, wrs = (YIY)7'Yb = Rigpys, (22)

an MMSE filter W (i) € CM*¥ can be developed via the

following cost function: where the matrixR s is defined a& /Y andp; g represents

the vectorY “b. Note that, the data vector can be expressed

Juse(i) = B Hb(i)fF%WH(z’)z(i) ‘1. e as

b=Yw, + e, (23)

The MMSE solution is given by [21 . .
9 w2l where ¢, is the measurement error vector amg, is the

Wumse = VI, (17) optimum tap-weight vector of the receiver (optimum in the



MSE sense). Assuming that, is white and Gaussian with with only one shrinkage factor. 10 [22], the proposed scalgd
zero mean and covariance of Iy, then the LS solution in channel estimator can be considered as a biased estimalor wi
(22) is a MVUE [27]. Now, let us have a look at the followingonly one shrinkage factor, which outperforms the converatio

MSE: LS estimator while it requires a much lower complexity
E . 2 _ [ NN . B R trban the MMSE estimator. The basic idea of the following
{llwo=trs[|"} = E{(wo—tbrs) ™ (wo—tors)} = var(w,, oposed group-based shrinkage estimator (GSE) is to find a

(24) solution with a better tradeoff between the complexity and

the performance than the MMSE estimator and the biased
Vg = tr{gg(YHY)_1}7 (25) estimator with only one shrinkage factor.
The proposed GSE can be expressed as follows:

Defining v, = var(w,,wLs), we have[[6]

whereo? is the variance of the measurement error. )

In the interference suppression scenario, it is possible to [ (14 ai)hrs(1)
introduce the biased estimation to reduce the MSE between :
the optimal receive filtetw, and the LS estimatofu;s. Note oL

. . . . (1+041)th(—)

that, for the interference suppression scenario, the &ypic NS
objective is to minimize the overall performance criterion (1+a2)his(s +1)
which is determined a&{||b — b||?}, rather than to minimize . :
]E{||1_uO —]|?}. The main motivation to i_ntroduce fthe b@ag i_n hy, = (1+ QQ)ELS(?L)
the interference suppression scenario is to provide aralinit i
improvement for the overall performance when the adaptive o
filtering techniques are employed and the training data are (1 +%)th(% +1)
limited. This can also help with tracking problems and with :
robustness against interference. N

The LS solution of the receiver can be computed recursively - (1 +as)his(L)

by the RLS adaptive algorithm. We employ the RLS updaighere I:ILS € CL*S is a block diagonal matrix that is

= His(ls +a) (29)

]

equation that is proposed in_[21] constructed from the elements hfs as well as zerosS is
wris(i +1) = wris(i) + RIOY (ean (i), (26) the number of groups, we define titedimensional column
_ vectorsls = [1,1,...,1]7 anda = [a1,aq,...,as]T. The
where R, (i) = 35 X 7Y (j)Y (j) andeaw(i) = b(i) —  scalara, is a real-valued variable and + «) is defined as
Y (i)w(i). Note thatR,, (i) is an M-by-M symmetric sparse the shrinkage factor for the-th group of coefficients that is
matrix in which the number of nonzero elements equalarger than 0 but smaller than 1, where=1,2,...,S. Here
M N.. Hence, the complexity of each adaptation by using thige propose to use a uniform group size for fhelimensional
algorithm isO(M N2). parameter vector, hence the size of each group/iS. If the
length of the parameter vector divided by the group size is
I1l. PROPOSEDGSEFOR PARAMETER ESTIMATION not an integer, we can perform zero-padding in the parameter
SCENARIO estimation vector to fulfill this requirement. If any stétsl
A. Proposed GSE: Optimal Solution knowledge of the parameter vector is given, the group size

. . . , , could be different from each other. But this approach will
Itis known that the biased estimator with a shrinkage factg{;;oquce a higher complexity because we need to select the
can be expressed as size of each group and choose a suitable one. In this work,
hy = (1+ a)hLs, (27) for notational simplicity, we will focus on the low compléxi

. uniform group size approach.
wherehs € CL*1 is the LS estimator of the parameter vector The goal is to minimize the MSE defined by

andhy, € CL*! is the biased estimator with a shrinkage factor, o R L . . )
« is a real-valued variable and + «) is defined as the real- E{[lh—hs "} = E{(h—E{hs})" (h—E{hp}) } + [ E{hs } —h[|".
valued shrinkage factor that is larger than 0 but smallen tha (30)

1 (i.e.,—1 < a<0). Note that

Actually, fqr the parameter estimation scenario, the MMSE hy — E{h} = (His — H)(1s + @) 31)
estimators with the following expression can also be coensid R
ered as a biased estimator, and we haveH s = H + N where

havse = Ahrs, (28) mo 0 ... 0

where hyvse € CE*! and A € CL*L s a full-rank N — S P (32)
matrix. As in [22] and [[2B], such MMSE channel estimators : S
are developed for MIMO and OFDM systems, respectively. 0 ... ... fg

Although these MMSE estimators can achieve a much lower
MSE than the LS estimator especially in low SNR regime, th@nd n = (X”X)"'X"n = [, n,,...,ns]7 € C**,
experience much higher complexity than the biased estima&ssuming that all the elements in this equivalent noiseovect



are independent and identically distributed (i.i.d.) ramd  Here,2(i) is the estimated equivalent noise variance and

variables. Hence, we have the diagonal matrixf’m(z') is defined as the estimator of
. N VH o~ . . I the matrix H" H, the main diagonal vector of this matrix
E{ (hb - E{hb}) (hb - E{hb})} =0 (15’ +a) (]—S "’i%}) is defined anlag[Pm(Z)] = [Pm1(l), ceey Pm,S(’f)] . In

Note thats? equals the variance of the equivalent noise this work, we adopt the instantaneous estimator8s) —
g 7 . 7. 2 7 . .

) h —h S, where h is the RLS channel

times the length of the group. We also have hrLs (i) — h(i)[%/ re hrs(i)

estimator andh(i) = %2221 hrrs(j) represent the time
|E{hy} — h|?> =" H"Ha (34) averaged channel estimator. Note tHt' H € C5*% is a
. i . o diagonal matrix with itss-th diagonal element equals: ; =
Finally, the optimal solution of the vectax that minimizes ZsL/s Ih(1)[2
(30) is given by I=(s—1)L/S+1 L . .
Hence, the elements in the optimal solution can be expressed
Otope = —52 (620 5 + HHH)ills. (35) @SCopis = —(1+ h;s/gQ)—l. If we use the m.atrime(z')_
to replace the matri# ™ H, the estimated optimal solution
and we have becomes
) . - 41
hb,opt = HLS(lS + aopt) (36) Qopt,s = _5_2 n Pm7s(i). ( )

N(ﬁe tha]E this equzzlrt;]on IS a g{en_?ral fe;;]preslsmn_tr]or (_j'ﬁbreﬂecall that we assume that the shrinkage factors for eacipgro
lnumb ers o gtrr(])ups. € COTP exily 0 d tIS ag:i;orll tr;tls Ver%{rq larger than zero but smaller than one. It can be found that
joW because ne Inverse matrix required to calcura b& if P, s(7) < 0, this assumption no longer holds. In addition, if
is a diagonal matrix. Hence, this estimator combined with t 5 +(i) = oo, the shrinkage factor converges to zero, and the

conventipnal RL.S r-;llgorit.hm will only introduce an additain biased estimator actually converges to the unbiased dstima
complexity that is linear in the length of the parameter 9ECtg e should constrain the values Bf, J(i) into the range

L and the number of groupS. If the group size equalg, 0

. ; X +00).
then the GSE converges to the b|aseq esﬂmato_r with only o qn order to determine the diagonal matricé&(z‘) for each
shrinkage factor. In the following section, adaptive aityns time instant, two approaches are developed in this work. In

will be developed to compute the best GSE with a given 9rOURe first approach, which is named estimator based (GSE-EB)

size. method, the matrice®,, (i) are replaced by the diagonal ma-
. . triceleIgLS (i)Hgys(i), whereH 1.5 (i) is the RLS estimator
B. Proposed GSE: Adaptive Algorithms of H. Note that, when the number of groups is only one, the
It should be noted that the optimal solution of the biased@SE-EB method will lead to an optimal shrinkage factor
estimator requires some prior knowledge of the system, hwhithat has the same expression as the SBME that is proposed
is the matrix H” H and the scalar ternd#? for calculation in [16]. However, the knowledge of the noise variance is not
of the vectora.. In addition, the LS channel estimator igrequired in our work. In the second approach, which is named
also required. The LS channel estimator can be recursivélytomatic tuning (GSE-AT) method, an LMS-based algorithm
calculated by the RLS adaptive algorithm that is detailed I8 proposed to update the diagonal matri@,g(i).
Section[-B. In this work, we propose LMS-based adaptive For the GSE-EB method, the estimation Bf, (i) is only
algorithms that enable us to estimate the veatavithout prior determined by the RLS estimator. If the effective spreading
knowledge of the channel and the noise variance. Subatjtuticodes and the channel information is known, the RLS al-
(34) and [3B) into[(30) and considering the MSE cost functigprithm can be initialized efficiently. Here, we consider a
as a function ofx, we can obtain a new cost function general scenario where all these quantities are unknown and
5 I HoerH the initialization of the RLS algorithm is an all zero vector
fle)=5"(1s + )" (Is + @) + " H " Ha.  (37) \yhich means the beginning stage of the RLS algorithm is not

The gradient off (o) with respect tow is given by very accurate. In order to improve the convergence rate of
the proposed GSE schemes, we develop the following GSE-
go =5*(ls+a)+ H'Ha. (38) AT algorithm. For each time instantP,, (i) is firstly set

Note that, becausa is a real-valued vector, there is a factof® H_RLS(?)HF?LS(Z) as in t_he GSE-EB algorithm, then we
of 2 for this gradient. In what follows, this factor is absed con5|deAer75:(z) as the vgrlables of the MSE cost fupctlon,
into the step size of gradient-type recursions. Hence, MeL Where I (i) are the diagonal elements of the diagonal

based update equation of the vectoffor the (i + 1)-th time Matrix P, (i) ands =1,2,..., 5. Then we develop an LMS
slot can be expressed as adaptive recursion to further adapt these values and ingprov

the estimation accuracy for each time instant. Let us resser
a(i+ 1) = &(i) — pgy (i), (39) the_MSE f:ost_funct!on as shqwn in{30) as follows. Here, we
omit the time index for simplicity
where p is the step size of the LMS algorithm and the . L I "
estimated gradient vector is given by f(Pn)=35"(1s+a)” (1s +a) + o Ppa,  (42)

Ga (i) = %(1) (15 + &(i)) + P (i)éa(i). (40) wherea = —52(62I s+ P,,) 15 is also a function of?,,,.



Expanding this cost function, we have

f([(Pna,---

Hence, for each group, the correspondl?;,gs can be obtained
by the following equation

Pm,s(c + 1) = Pm.,s(c) - ,Upgsa (44)

wherec is the iteration index ang, is the e:stimator of the
gradient of the function[{43) with respect 10,, ;, which is
given by

whered,g € CM*1 is the LS estimator of the receive filter.
The proposed GSE can be expressed as follows:

(14 a,1)wrs(1)

(1 +Oéw.,1.)wLS(%)
(14 aw2)ins(£ + 1)

wp, = = Wis(ls + aw)

(1 + aw,Q)’UAJLS(%)

(1+ s ins (F2E +1)

(1+ aw,s)iLs(L) |
R (47)
whereW g € CM*9 is a block diagonal matrix that is con-
structed by the elements frotia,s and zerosS is the number

of groups. Moreover, we define tl$edimensional column vec-

) Y K 52 ) 52 , lorslg = _[1_,1,...,1]T and a,, = [O(u,7-170éw,2,...,aw’s]T.
s = 207 (1+4vs) P 5+265 P s— R +a5.  The quantitiesy,, , are real-valued variables arfd + o, ;)
(U s (U + m’é) (45) is defined as the shrinkage factor for tleth group of
) ) _ coefficients that is larger than zero but smaller than onerah
In order to obtain a low complexity solution, for the GSE; _ | 9 ¢

AT algorithm, we set the iteration indexto 1, which means
for each time instant we only update the valuesﬁ;ﬂfS once.
As pointed out previously, the values @?,,(i) should be
constrained in the rangg, +-00). Hence, for the GSE-AT

The objective of the GSE is to achieve a smaller MSE than
the LS algorithm, which can be expressed as

Efwo — s |*] < Effjws — wis]?]. (48)

algorithm, if the updated values are negative, then we 8Bt 5,414 be noted that the problem that we want to solve

values to the same values of GSE-EB algorithm. In T@ble I, t

both parameter estimation and interference suppnessio

proposed biased estimators using two approaches to d&@lculd.onarios has a similar form. Hence, we can follow the

P, () are summarized.
Note that the GSE-EB approach (wher®,(i)
Hy; o(i)Hgris(i)) requires2L + 35 + 2 complex multipli-

cations and3L + S complex additions for one update of the

shrinkage factors. For the GSE-AT approach, in whigh(i)

is updated by using equatioh{44), the number of complex

multiplications required to update the shrinkage factor

derivation as shown in Sectign IltA, and the optimal saluti
of the parameter vectax,, is given by

Quopt = =52 (5215 + WHW) 1. (49)
whereW = E[W ], 62 = v,,/S and we have
iS ﬁ)b,opt = WLS(]-S + aw,opt) (50)

2L + 135S + 2 and the number of complex additions required

is 3L + 7S. It will be demonstrated by the simulations thaB. Proposed GSE: Adaptive Algorithms

the performance of the GSE-AT approach is better than thejn this section, the LMS-based adaptive algorithms are
GSE-EB approach, while the GSE-EB approach has a lowstoposed to estimate the vector,. First, we consider the

complexity.

IV. PROPOSEDGSEFOR INTERFERENCE SUPPRESSION
SCENARIO

A. Proposed GSE: Optimal Solution

MSE cost function as a function et,,, i.e.,

flow) = 60 (1s+oaw)? (1s+aw)+a, " W Wa,. (51)

The gradient off («,,) with respect toa, is given byg,,
52 (1s 4 o) + W Wa,,. Hence, the LMS-based update
equation of the vectoe,, for the (i + 1)-th time slot can be
expressed as

(52)

where p,, is the step size of the LMS algorithm and the

G (i 4 1) = Gy (1) — 100Gy, (3),

For the interference suppression scenario, the biased e8gtimated gradient vector is given by

mator with a shrinkage factor is given By [13]

wp, = (1 + a)wrs. (46)

gw(l) = 3—1211(1)(15 + dw(l)) + Pw(l)dw(l)a
whereg? (i) is the estimated equivalent noise variance and the
diagonal matrixP,, (i) € C¥*5 is defined as the estimator of

(53)



TABLE |
GSEFORSCE-RLSIN SC-FDE DS-UWB SSTEMS

Proposed GSE-EB Proposed GSE-AT

1. Initialization: 1. Initialization:

&(l) =0eCsxt &(l)=0¢eC3x1

Set value ofu Set values ofx and p,,

2. Calculate the biased estimator: 2. Calculate the biased estimator:

Fori=1,2,... Fori=1,2,...

hi(i) = Hris(6)(1s + &(i)) hi (i) = Hris(i)(1s + &(i))

3. Calculate the shrinkage factor: 3. Calculate the shrinkage factor:

h(i) =+ 30 _, hris(d) h(i) = 1 35_ hris(i)

52(i) = |lhris(d) — h(D)[?/S 52(i) = |lhris (i) — h()|/S

Po(i) = Hyps() Hrvs () Po(i) = Hyps () Hres ()
Fors=1,2,...,8

90 () = 5%(0)(1s + &(i) + Pm(i)&(i), | Pm,s(i) = Pm,s(i) — pups(i), wheregs (i) is given in [45).
If P, (i) < 0, S€t P, (i) = Hhyo(i)FrLs(i) break;
End For.

i+ 1) = &(i) — pga(i). G0,() = 82()(1s + &(i) + P (i)é(i),
ali+1) = &(i) — pga (D).

the matrix W W, the main diagonal vector of this matrix is In order to obtain a low complexity solution, we set the
defined asliag[P,,(i)] = [Pu.1(7), ..., Pu.s(i)]. The instan- iteration indexc to 1 for the GSE-AT algorithm. Note that if
taneous estimator af2 (i) is given byg2 (i) = (wrrs(i) — the updated values in the GSE-AT algorithm become negative,
wo(i))H(ﬁjRLS(@-)_wo(i» wherew, is replaced by the time then we set these values to the same as obtained in the GSE-

averaged RLS estimator, thatis, (i) = % 2321 wris(5). EB algorithm. In Tabl&]l, the proposed biased estimatots wi

In order to determine the diagonal matric®s, (i) for each IWKI ippr?r?iheti 0 ?ISCEIEISV(” are suhmmarr]lzeéj. N
time instant, the GSE-EB method and the GSE-AT method e‘ a g ) approach  (wher. (i) o
are developed in the interference suppression scenartbeln Wrrs ()W rrs (i), requires2M + 3.5 42 complex multipli-

GSE-EB approach, the matricd3,,(i) are replaced by the cations and3M + S complex additions for one update of the

. coa H . shrinkage factors. For the GSE-AT approach, in whig}(i)
diagonal matricedV ;¢ (¢)WrLs (7). However, because we updated by using equatiof{55), the number of complex

assume that the initialization of the RLS algorithm is an a L ? . )
9 ultiplications required to update the shrinkage factor is

zero vector, the beginning stage of the RLS algorithm is n " .
very accurate. Hence, in order to improve the convergengce +135 42 and the number of complex additions required

rate of the proposed GSE schemes, we develop the G 3M + 7S. It will be demonstrated by the simulations that

AT algorithm. For each time instant, the matrﬁw(i) i e performance of the GSE-AT approach is better than the

) A H o a ) i . GSE-EB approach, while the GSE-EB approach has a lower
firstly set toW ;¢ (i)Wrrs(i) as in the GSE-EB algorithm, complexity.
then we consideJPw,s(i) as the variables of the MSE cost

function, whereAPu“S(z') are the diagonal elements of the V. MSE ANALYSIS
diagonal matrixP,, (i) ands = 1,2,...,S. Then we develop |n this section, we will analyze the MSE performance

an LMS adaptive equation to further adapt these values agdthe proposed GSE. Since the proposed GSE has similar
improve the estimation accuracy for each time instant. Hefgrms in the parameter estimation scenario and the intmter

we omit the time index for simplicity and have suppression scenario, we carried out the following deidwat
. A S S R based on the parameter estimation scenario. Firstly, we wil
f(lPui,- Pus)) =52 Z (1+ ocu,,s)2 + Zai,7sPu,7s. prove that the minimum MSE obtained by the GSE schemes
s=1 s=1 (54) will always be smaller or equal to the MSE that can be

achieved by minimum variance unbiased estimator (MVUE)
such as the LS estimator. Then the MSE lower bounds of the

GSE schemes will be derived. In addition, we will prove that
Pw_,s(ch 1) = Pw_rs(c) — UsOw,s (55) when the numbers of groups is larger than or equal to two,
the MSE lower bound will always be lower than the biased
estimator with only one shrinkage factor (when the number of
groupssS equals one).

Hence, for each group, the correspondﬁ’;gS can be updated
by the following equation

wherec is the iteration index and,, s is the estimator of the
gradient of the cost function with respect 19, s, which is
given by

Qv

2 g P 52 a2 A. MMSE Comparison
A A~ 92 Qsl'm s~ ~ .5 Q. . . .
(32 + pm75)2 T2+ P, ) Assuming AWGN with zero mean and varianeg, the LS

7 (56) estimator is a minimum variance unbiased estimator. The MSE

gw,s = 23—2 (1+&s)



TABLE Il

GSEFORFREQUENCY DOMAIN RECEIVER INSC-FDE DS-UWB SSTEMS

Proposed GSE-EB

Proposed GSE-AT

1. Initialization:

dw(l) =0¢ CcSx1
Set value of,

1. Initialization:

&w(l) =0¢ CcSxt
Set values ofu,, and ps

For:=1,2,...
Wy, (1) = WrLs())(1s + 6w (i)

2. Calculate the biased estimator:

2. Calculate the biased estimator:
Fori=1,2,...
(i) = Wrrs()(1s + 6w (i)

3. Calculate the shrinkage factor:
w(i) =+ 3%, wrLs())

52,(1) = |lwrrs(6) — w(@)|?/S
P (i) = Wips()Wris (9)

3. Calculate the shrinkage factor:
(i) = 1 3, wrLs())

55,(1) = lwres () — w(i)]?/S
Pu(i) = Wrips () Wris(0)

Fors=1,2,...,8

90 () =62 (1s + G (i) + Puw(@)&w (i), | Puw,s(i) = Pu,s(i) — psduw,s (i), wheregy,, s (i) is given in [56).
If Puo(i) < 0, set Py, (i) = Whyg(i)Wres () break;

End For.

G (1) = 62, (1) (s + rw (i) + Py (i) érw (i),

A (i + 1) = G (1) — pw @y, (4).

dw(i + 1) = d’LU (Z) - /"ng'w (Z)

for the LS estimator is

E{||h—hys|?} = E{(hLs —h)" (hLs —h)} = var(h, hLs).
(57)

Bound (CRLB), which is expressed asin this equation.
Note that this expression can be considered as the relatpns
between the MSE lower bound of the GSE and the unbiased
CRLB. In the case where the number of groups equals 1, we
haveS =1, 5% = v and appy = —v/(v + ||R||?). The lower
(58) bound becomes

Defining v = var(h, his), we have
v=tr{c2(X*X)"1}

It should be noted that we can also express the LS estimator
as his = h + n, hence, we have that the variance of the
elements in the equivalent noiseis 62 = v/L.

Recall that the target of the biased estimation that is to
reduce the MSE introduced liy,s. The objective is to obtain In this case, the one-group GSE scheme converges to our
a biased estimator that results in previously proposed shrinkage factor biased estimato}, [13

B{lh—hol?} <E(Ih—hus|?). 69 TP |
For the proposed GSE schemes, we prove the following
Recall the equation§ (B3) and [34), the objective becomesatements:
-2 H HoayrH Statement 1: The MSE lower bound as shown in_{61) with
(s +e) (st o) +aH Ho < v. (60) S > 1 will always be lower than or equal to the lower
Sinces? = v/L, we haves? = (L/S)52 = v/S. In appendix bound forS = 1. This statement indicates that our proposed
Al we prove that this objective is always fulfilled with theGSE outperforms the biased estimator with only one shriekag
optimal solutionay,p, as shown in[(35). factor. The proof is detailed in appendik B.
Statement 2: The lowest MSE lower bound as shown[inl(61)
B. MSE Lower Bound and the Effect of the Number of Groups can be obtained irf = L case, whereL_|s the Iength Of
the parameter vector to be estimated. This statement iedica
It should be noted that a lower bound of the MSE perfoghat the optimal performance can be obtained with the larges

mance of the proposed GSE schemes that corresponds togh&sible group number. The proof is detailed in Appeindix B.
optimal « can be obtained as

A 1
— >
E{Ilh— hol?} > —— (62)

550U
Al

The performance of the algorithm depends on the number
A s v 25—1(%) of groups and the scenario. If some a priori knowledge of the
E{||h — hp||*} > (S + Zaopt,s)g =v— — e parameter vector to be estimated is available, then a pessib

s=1 S
2

S
v
’”*S;SUME,SST

extension of the GSE is to develop a method to determine the
size of the groups. For example, the knowledge of the exgecte
value of the number of clusters of a UWB channel might
enable a more attractive tradeoff between the performamte a
the complexity. Moreover, the increase in the number of gsou

Since the second term on the right hand-side is non-negatigan improve the MSE performance. However, this comes
it can be concluded that the MSE lower bound will alwaywith diminishing returns and an increase in the computation
be smaller than or equal to the unbiased GiaRao Lower complexity.
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VI. SIMULATIONS 0 Lower bounds

In this section, the proposed GSE estimators are employz - gzi’iased CRLB
in the SCE and in the design of the frequency domain re S=3
ceiver of a synchronous downlink block-by-block transrioiss S~ s=L

binary phase shift keying (BPSK) DS-UWB system that are 10"}
detailed in Sectiof II-B and Sectién IIFC, respectively.efh
MSE performances are compared with the conventional RL
adaptive algorithms. The pulse shape adopted is the roc
raised-cosine (RRC) pulse with the pulse-width = 0.375 1072}
ns. The length of the data block is set A0 = 32 symbols.

The Walsh spreading code with a spreading gain = 8

is generated for the simulations and we assume that tt
maximum number of active usersis The channel has been 10° ‘ ‘ ‘ ‘
simulated according to the standard IEEE 802.15.4a chanr -5 0 SNSR @) 10 15

model for the NLOS indoor environment as shown [inl[25].

We assume that the channel is constant during the wh%i 3 lower bounds for the proposed GSE with differammbers of
transmission and the time domain channel impulse respor%éjps( )
has 100 taps. The CP guard interval has a length 35f
chips, which has the equivalent length &5 samples and

MSE

Structured channel estimation
T

it is enough to eliminate the IBl. The uncoded data rat o s cRLB
of the transmission is approximate®3 Mbps. For all the s =1, GSE-EB
simulations, the adaptive receivers/estimators arealiziid as 0B e bound tor S
null vectors. All the curves are obtained by averagity 0 Lower bound for S=3
channel realizations. In Fi§l 2 - Figl 5, the performancehef t " = = ~S°L.GSE-EB

. . . . [ Lower bound for S=L
proposed GSE in the parameter estimation scenario (SCE 4 Ve
an example) is shown. In this scenario, the GSE is employ = P
to improve the MSE performance of the channel estimatio 107 "
In Fig.[8 to Fig.[8, the performance of the proposed GS AN
in the interference suppression scenario (frequency dom: S e I IS
receiver design as an example) is presented. In this scena R
the GSE schemes accelerate the convergence speed of R

adaptive algorithm. 0 500 1000 1500

Number of blocks

Fig. 4. MSE performance with different numbers of groups Ep®Param-

1| (022 P 7 0 eters used: RLSA = 0.998, 6 = 10. Proposed GSE EBz = 0.075.
0.9 -0.01
08 -0.02 zero, which corresponding to the poiitt 1] in the figure, the
0.7 003 MSE difference equals zero. The optimal solution is located
06 at[1+aq, 1+ ag] = [0.15,0.35]. For this channel realization,
& os 004 the optimal solution that is obtained by our algorithm after
- -0.05 transmitting 1000 data blocks is reported ag- a1, 1+ as] =
04 005 [0.16,0.35], which is very close to the optimal solution shown
03 ’ in this figure.
02 -007 In Fig. 3, the MSE lower bounds for the proposed GSE
o1 008 schemes with different numbers of groups are shown as a
i function of SNR. The proposed biased estimators show arbette
% 02 0.4 0.6 08 1 performance than the conventional unbiased estimator. &s w
T+, have proved, the best performance can be obtained in case
Fig. 2. Surface of the MSE difference in a scenario witk= 2 (SCE). The of S = L. The proposed GSE schemes can maintain the
MSE difference is defined a8MSE = ||h — hy,||2 — ||h — hrLs]|? MSE gain for low and medium SNR regimes. In high SNR

scenarios with a small noise variance, the biased estimator
First, we examine the MSE difference between the unbiasegnverges to the unbiased estimator and the gain becomes
estimator and the proposed GSE as a function of the shrinkagealler. Compared with the biased estimators with only one
factors for each group in a single user system with O d&hrinkage factor (which is equivalent to the céase- 1), the
SNR. In Fig.[2, the surface defined @ISE = |h — GSE schemes with a number of groups can maintain the MSE
hy||> — ||h — hris||® in the range of the shrinkage factorsgain until higher SNR regime.
between 0 to 1 is shown. Note that, when the bias equaldn the third experiment, we examine the proposed GSE



Structured channel estimation

-13 _

Frequency domain receiver design
T T T

10 10 _
S=1, GSE-EB
——— 5=1, GSE-AT
Lower bound for S=1 10740 |
- = = 5=, GSE-EB RLS
—— S=L. GSE-AT S:iGSE_ﬁ
10° Lower bound for S=L | 1050 ,\SA?\AS?;S -AT| |
) w
)
: :
107 |
1072 s ‘ ) ‘ ‘ ‘ ‘ : :
0 s00 1000 1500 20 40 60 80 100 120 140

Number of blocks Number of blocks

Fig. 5. MSE performance of the proposed GSE-EB and GSE-Adridhgns
with S = 1 and S = L (SCE). Parameters used: Proposed GSE-&£B:
0.075. Proposed GSE-ATi = 0.075, up = 0.05.

Fig. 7. Normalized MSE performance|i{ — b||2/||b||2) of the biased
estimators with 5 users in 3 dB SNR.

Frequency domain receiver design 10 T
s : : : - — RLS
10 7 ——S=1EB
___________ —6— S=4,EB
RLS N —4— S=M,EB
s (oo S=1,GSE-EB === - = = = MMSE
10 7f _ 1 S S s
—— 5=2,GSE-EB 10 S S !
——— S=M,GSE-EB RN N A \
MMSE TN\ NN
N < N
& N N\ . \
w o Y \ A\ \
%] N \ \
= \ \ \ \
-2 \
10 " A\ i
\ N\ \ \'\
\ \ \
LDPC LR Convolutionals
\ \ \
A s\
N\ W\ \
A) \ \
10’ 1 1 A\ ’ 1 A
0 5 10 15 20
10 15 20 25 30 35 40 45 50 SNR (dB)
Number of blocks
Fig. 8. Coded BER performance of the GSE schemes in intexdere

Fig. 6. Normalized MSE performance|¥ — b||2/||b||?) of the biased

- _ \ suppression scenario with 5 users.
estimator with 5 users in 5 dB SNR.

the beginning stage when the RLS algorithm does not very

schemes with different numbers of groups for the SCE igcurately estimate the channel, the GSE-AT algorithm can
a single-user system with 0 dB SNR. In F. 4, the MSke used to improve the convergence rate.
performance of the channel estimators are compared as # Fig.[d, the performance of the proposed GSE is shown
function of the number of blocks transmitted. The RLS ain the interference suppression scenario (frequency domai
gorithm approaches the unbiased CRLB while the proposgsteiver design as an example) with a short training sequenc
biased estimators approach the lower bounds as givénln () this simulation, 50 training blocks are transmitted in a
The biased estimators converge faster than the RLS algoritgcenario with 5 users with 5 dB SNR. The proposed GSE-
and the steady-state performance is also improved. Note tB®& algorithm outperforms the RLS algorithm and the best
the additional complexity to employ the proposed biasgserformance is obtained by setting = M. In Fig. [7,
estimation techniques increases linearly with the prodiict we compare the GSE-EB and GSE-AT algorithms in 5-user
the number of groups and the length of the channel. communications and an SNR of 3 dB. In this experiment,

In Fig.[H, the proposed GSE-EB and GSE-AT algorithmE50 training blocks are transmitted. The GSE-AT algorithm
are compared inS = 1 andS = L scenarios in a single can further accelerate the convergence rate of the GSE-EB
user system with 0 dB SNR. It can be found that the GSEigorithm. At the beginning stage, the GSE-AT algorithm
AT algorithm can provide a noticeable gain over the GSE-EBtroduces the best performance.
algorithm especially at the beginning stage of transmissio In Fig. [8, the bit error rate (BER) performance of the
This is because the GSE-AT algorithm allows us to furth@roposed GSE with different numbers of groups are shown
adjust the diagonal matriPm(i) for each time instant. At in a scenario with 5 users. The coded BER performance is
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S
o"H"Ho =Y "ol hs.. (65)

s=1

obtained by adopting a convolutional code and an LDPC code
[30] designed according to the PEG approdch [30]. For the
convolutional code, the constraint length is 5, the rate/& 2 o . )
and the code polynomial is [7,5,5]. For the LDPC code, tHeY substituting [(6#) and.(65) into the MSE expressibnl (60)
rate is 1/2 and the code length is 200 bits. The maximuffd bearing in mind thaf5* = v, the inequality that we want
number of iterations is set to 20. In this experiment, 10§ Prove becomes

training blocks are transmitted followed by 400 data blocks s s

With the convolutional code, the proposed GSEs perform &2 (1 4 aopts)® + > a2y hiss — 562 <0. (66)
better than the RLS algorithm and the maximum gains are s=1 s=1

obtained in the medium SNR range from 12 dB to 17 dB\ote that the left hand-side df{66) can be expressed as
By employing the LDPC code, a BER of aroun@—3 is s s s

achieved at 12 dB. The proposed GSEs with LDPC codes 2 2 ~2
also outperform the RLS algorithm and the maximum gains Zl Popts ; 2a0pt,s + ; Coptshe.s/

are obtained for an SNR around 7 dB. s s (67)
=Y a2 (1 +hs/6%) + > 200pts.
VII. CONCLUSIONS s=1 s=1
. L Cov_
In this work, a novel biased estimation algorithm callegy recal_ll_ng thataept,s = —(1 + hs.e/G >. is always a .
rgﬁn-posnwe scalar value, the left-hand side of the equati

group-based shrinkage estimator (GSE) is proposed, wh
divides the target parameter vector into a number of grouh < < ;
and calculates one shrinkage factor for each group. Adaptiv

algorithms are developed fogr] the GSE scheme ign thg parar[;eter Z(l s /57 + Z 2aopt,s = Z Qopts-  (68)
estimation and the interference suppression scenarios. Th *=* s=1 s=1

incorporation of the proposed estimators has been consftf copt,s are always non-positive, the summation on the right
ered in the frequency-domain of DS-UWB systems, whefnd-side of[(68) will always be smaller or equal to zero,
structured channel estimation and the receiver designs #f@ich completes the proof.

considered as examples of the parameter estimation soenari

and interference suppression scenario, respectively. St M APPENDIXB

analysis is presented that indicates the lower bound of the PROOFS OF THE STATEMENTS

proposed GSE schemes. The relationship between the lowerirst, we want to prove that the lower bound of MSE as
bound and the number of groups are also established.sown in [61) withS > 1 will always be lower than or equal

has been proved that the GSE provides a better performaggene S = 1 case. Based on the equatiénl(61), we can focus
than the biased estimators with only one shrinkage factor. ¢n the following function

addition, the lowest MSE lower bound can be obtained in s s
the S = L case. As for future research directions, the GSE 1 1 1
’ — - - - - 69
Sf(S) ;Ser 52;(0/5) (69)

gcomes

scheme can be developed in different systems and scenario hy S% +hys

In addition, if we have some prior knowledge of the target

parameter vector, we can then divide it into groups witwherehs , = Zfi(/f_l)L s41 [P()]> The task now is equiv-
different sizes and find more attractive tradeoffs betwéden talent to proving tha‘gf(S§ > f(1) for all the possible values

computational complexity and the performance. of S. Note thath:1 hs,s = ||h||* and
1) = 1 - 1 - 1
APPENDIXA v+ [|h|? U+Zf:1 hs,s Zle(v/s—l—hzs).
MMSE COMPARISON (70)

In order to check if the objective as shown in_](60) iyence, the relation becomes

fulfilled with a.p, the equation[(35) is rearranged by taking 1 S2
the expression of the diagonal mattll? H ¢ C5*5 into > (0/5) + ros z S 05t ) (71)
account. We have s=1 ’ s=1 2.

o1 Actually, we can express this problem as the following math-
Qopt = [Aopt .1, -+ -5 Qopts]T = =7 (6° T+ H'H) 15 ematical problem:
= —[(1+hs1/5%)" (1 +hso/5?) .., (1+hss/5%) T 11 1 g2
(63) —+—+ ot — 22— (72)
ay a2 as YU as
where hy, ; = Zfi(/ss_l)wsﬂ |h(i)[*. Hence, we have the where S is a positive integer and, = (v/S) + hy , are all
following expressions non-negative values. This inequality can be proved by using
g the mathematical induction as follows:
5215 + @) (15 + a) = &2 Z(l + topts)?, (64) For S = 1, the left-hand side and the right-hand side are both
~ ’ equal to--.



For S = 2, the left-hand side equalg- + L = “+%2 and (3]
the right-hand side equalaslﬁ. Since(a; + a2)? —4ajas =
(a1 — az)? > 0, the inequality holds.

Assuming the inequality holds fof = n, wheren > 2, we
have

(4

1 1 1 2
— e — > (73) 18]
ai az (427 25:1 g
For S = n+ 1, we first consider the left-hand side as follows[G]
1 1 1 1 n? 1
—+ =4+ —+ > =n + 7
ay a anp An+1 Zs:l ag An+1
2 n (74)
_ napy1 + 23:1 as ]
(Xohm1 @s) - ant
and then, the right-hand side is given by [9]
1 2
n(n;)_ (75) [10]
Zs:l Ag + an+1
Because [11]
Za5+an+1 nan+1+2as (n+1)>2 (Zas).an+1[ :
s=1 12

= (Y n o)’ 20 »
s=1
the inequality also holds fof = n + 1. This completes the
proof. [14]
Now, we can prove the second statement which points out
that the lowest MSE lower bound as shown [in](61) can be
obtained when the numbers of groups is equal to the lengj
of the parameter vector to be estimated. Following the proof
of of Statement 1, we can express the problem that needs to
be solved as: prove thgt{ L) > f(S), for any possible values [16]
of number of groups, and mathematically, we need to prove; 7
that
(18]

(76)

1
L2Z (v/L) + |h(i)|? —522 (v/S) +h;;‘s

holds for all the possible values . Since the parameter[lg]

vector is divided into a number of groups, this inequality

holds if the following relationship is fulfilled: [20]

1
(v/L) + [h(D)[?

S
22
Actually, theS = L case can be considered as the division ([)f ]
each group (with lengtiL./S) into a number ofZ/S length-
one sub-groups, and the inequality bf1(77) always holds f
each group because 8tatement 1. This completes the proof.

1

1 sL/S 1
_ >
=52 (0/S) + Iy’

R

i=(s—1)L/S+1
with s=1,2,...,

[21]

(77)
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