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Abstract—In this paper, we consider the radio resource alloca-
tion problem for uplink OFDMA system. The existing algorithms
have been derived under the assumption of Gaussian inputs due
to its closed-form expression of mutual information. For the
sake of practicality, we consider the system with Finite Symbol
Alphabet (FSA) inputs, and solve the problem by capitalizing on
the recently revealed relationship between mutual information
and Minimum Mean-Square Error (MMSE). We first relax
the problem to formulate it as a convex optimization problem,
then we derive the optimal solution via decomposition methods.
The optimal solution serves as an upper bound on the system
performance. Due to the complexity of the optimal solution,
a low-complexity suboptimal algorithm is proposed. Numerical
results show that the presented suboptimal algorithm can achieve
performance very close to the optimal solution and outperforms
the existing suboptimal algorithms. Furthermore, using our
proposed algorithm, significant power saving can be achieved
in comparison to the case when Gaussian input is assumed.

Index Terms—Radio resource allocation, OFDMA, uplink,
finite symbol alphabet.

I. INTRODUCTION

Orthogonal Frequency Division Multiple Access (OFDMA)
is a key technology in existing and upcoming mobile com-
munication systems, including 3GPP-LTE and WiMAX. The
radio resource allocation in the OFDMA context has attracted
considerable attention due to its importance in optimizing the
OFDMA system performance. The radio resource allocation
algorithms exploit the frequency and multiuser diversities to
optimize the sum-rate of the system. In uplink, each user has
individual power constraint, which makes the optimization
problem more challenging. In the literature, the Subcarrier
and Power Allocation (SPA) algorithms are based on the
assumption of Gaussian signalling as the channel input [1].
This assumption is motivated by the closed-form expression of
mutual information under the Gaussian input, which simplifies
the problem definition. However, in practical systems, Finite
Symbol Alphabet (FSA) are employed (e.g., M-QAM). The
Signal to Noise Ratio (SNR) gap has been used to model the
difference between the capacity given the Gaussian input and
mutual information under FSA constraint in [2]. The main is-
sue with the capacity of Gaussian inputs is that it is unbounded
in the SNR. On the other hand, the mutual information given
the FSA input is bounded by log2 |X |, where X denotes
the constellation alphabet. Thus, the achievable rate based on
the Gaussian assumption is not valid for practical systems.
Furthermore, in [3], the advantage of explicitly considering
FSA for single-user OFDM system is demonstrated. It has
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been shown that unlike the water-filling solution for Gaussian
inputs, for FSA inputs more power has to be allocated to the
weak channels [3].

In this paper, we consider the joint SPA problem in uplink
OFDMA system with FSA input. The objective is to maximize
users’ weighted sum mutual information. The SPA problem is
complicated in the uplink OFDMA due to the individual power
constraints and the discrete nature of subcarrier allocation. We
approach this problem by first relaxing the integer allocation
constraint and allowing more than one user to share the
subcarrier. Then, we use the decomposition method to solve
the relaxed problem by decoupling the main problem into two
subproblems. To the best of our knowledge, the optimal SPA
for multiuser uplink with FSA inputs has not been investigated
in the literature. Although sharing the subcarriers may not
be practical, solving the relaxed problem provides an upper
bound on the system performance and can be used to eval-
uate the performance of the suboptimal algorithms. We also
propose a low-complexity suboptimal algorithm that takes into
consideration the integer allocation. In our solution, we exploit
the recently revealed fundamental relationship between mutual
information and Minimum Mean-Square Error (MMSE) [4].
The developed optimal solution and the proposed algorithm are
valid for any input distribution, including Gaussian. It will be
shown that our proposed suboptimal algorithm achieves per-
formance that is very close to the optimal one and outperforms
the existing suboptimal algorithms. It is also revealed that
optimizing the power allocation based on FSA inputs saves
the total transmitted power comparing to the case with the
Gaussian assumption.

II. SYSTEM MODEL

Here, we consider the SPA problem for uplink OFDMA
systems. The objective is to allocate the available subcarriers
and power to maximize the weighted sum mutual information
in the system. A single-cell OFDMA system is considered
with a set of users K = {1, · · · ,K} transmitting to the
same base station. The total frequency band is divided into
a set of subcarriers N = {1, · · · , N}. The users are subject
to individual maximum power constraints (Pk) such that:∑

n∈N pk,n ≤ Pk, where pk,n is the transmission power of
the kth user on subcarrier n. The transmitted symbols are
drawn from FSA. Channel State Information (CSI) is assumed
to be available at the base station. The optimization problem
for weighted sum mutual information maximization can be
formulated as follows

max
xk,n,pk,n

∑
k∈K

wk

∑
n∈N

xk,n I

(
pk,ngk,n
xk,n

)
, (1)
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subject to∑
n∈N

pk,n ≤ Pk, pk,n ≥ 0, ∀k ∈ K, n ∈ N , (2)

∑
k∈K

xk,n ≤ 1, ∀n ∈ N , (3)

xk,n ∈ {0, 1}, ∀k ∈ K, n ∈ N , (4)

where gk,n = |hk,n|2/N0BN is the SNR for user k on
subcarrier n with unit power, and hk,n is the channel gain
that user k experiences on subcarrier n. N0 and BN are the
noise power spectral density and the subchannel bandwidth,
respectively. xk,n is the subcarrier allocation binary indicator,
where xk,n equals to 1 if subcarrier n is allocated to user k,
and 0 otherwise. I(.) denotes the mutual information between
the input and the output of the channel, and wk is the
weight associated with user k. As we can see, the power
constraint (2) couples the problem among the subcarriers,
where the power allocated over the subcarriers has to satisfy
the power constraint (2). On the other hand, the subcarrier
allocation constraint (3) couples the problem among the users.

III. OPTIMAL SOLUTION

The optimization problem (1-4) above is a combinatorial
one due to the binary variable xk,n, which makes the problem
intractable for large system. One approach for solving the
problem is to relax the binary constraint and allows any real
value in the interval [0, 1]. Hence, the constraint (4) can be
replaced by

xk,n ≥ 0, ∀k ∈ K, n ∈ N . (5)

If the subcarrier allocation is carried out over blocks of
OFDMA symbols, the non-integer values of xk,n can be
realised by sharing the symbols in the blocks over time.
Also, if the number of subcarrier is large enough such that
the adjacent subcarriers are highly correlated, then the non-
integer values of xk,n can be realised by frequency sharing. It
can be easily verified that the relaxed problem is convex and
has no duality gap. Consequently, the problem can be solved
via decomposition methods [5]. We will solve the relaxed
problem by decomposing it into two subproblems; one for
power allocation and the other for subcarrier allocation.

First subproblem: for a given subcarrier allocation {xk,n}
the power allocation problem will be decomposed into K
power allocation subproblems, each one for a single-user

max
pk,n

∑
n∈N

xk,n I

(
pk,ngk,n
xk,n

)
, (6)

subject to the constraints (2). This subproblem, Single-User
Power Allocation (SUPA), is convex and the optimal power
allocation can be found as follows.

Corollary 1. The optimal power allocation for (6) is given by

p⋆k,n =


xk,n

gk,n
mmse−1

(
λk

gk,n

)
if gk,n > λk,

0 if gk,n ≤ λk,
(7)

where λk is the Lagrange multiplier associated with the power
constraint (2) and can be found using iterative methods (such
as bisection, secant, or Newton) by solving the following
equation

(gk,n>λk)∑
n∈N

xk,n

gk,n
mmse−1

(
λk

gk,n

)
− Pk = 0. (8)

Proof: See Appendix A.
It is worth mentioning that without the subcarrier allocation in-
dex, the optimal SUPA will turn into Mercury/Waterfilling [3].

Second subproblem: for a given power allocation {pk,n}
the subcarrier allocation problem will be decoupled into N
optimization subproblems, each over one subcarrier

max
xk,n

∑
k∈K

wkxk,n I

(
pk,ngk,n
xk,n

)
, (9)

subject to the constraints (3) and (5). The optimal subcarrier
allocation can by found iteratively using gradient method as
follows

xk,n(j + 1) = xk,n(j) + α(j)sk,n, (10)

where α(j) is a positive step-size, and sk,n is the gradient
of (9) with respect to xk,n and given by

sk,n = wkI

(
pk,ngk,n
xk,n

)
− wkpk,ngk,n

xk,n
mmse

(
pk,ngk,n
xk,n

)
.

(11)
To satisfy the constraint (3), the updated subcarrier allocation
must be normalized as follows

xk,n =
xk,n∑

k∈K xk,n
. (12)

Consequently, the optimal solution of the relaxed problem can
be found iteratively by solving the subproblems (6) and (9).
Starting with arbitrary feasible subcarrier allocation, the op-
timal power allocation is found using (7). Using the optimal
power allocation, the optimal subcarrier allocation is found
using the gradient method. Then, this subcarrier allocation
is fed back into the power allocation problem, and so on.
After large number of iterations, the algorithm will reach
the optimal solution of the relaxed problem. The proposed
iterative algorithm is detailed in Algorithm 1. As evidenced
by (10) and (11), the optimal subcarrier allocation will allocate
more subcarrier share to the user who has the highest gradi-
ent (11) on that subcarrier. Consequently, the objective func-
tion will be increased. As the objective function is bounded
due to the limited power and subcarriers, the increase in the
objective function continues until it reaches to an equilibrium
point, which is the global optimal as the optimization problem
is a convex one. For the termination criterion, the iterative
algorithm terminates if either the number of iterations reaches
a given threshold or the difference in the objective function
between two successive iterations vanishes.

IV. SUBOPTIMAL ALGORITHM

The optimal SPA is impractical for real time implemen-
tation due to the following reasons. Firstly, the complexity
for solving the relaxed problem is too high for practical



3

Algorithm 1 Optimal Subcarrier and Power Allocation
1: Set i = 1, and select feasible subcarrier allocation xk,n(i).
2: Use xk,n(i) to find the optimal power allocation pk,n(i) by

solving (6).
3: Using pk,n(i) find the subcarrier allocation xk,n(i + 1) by

solving (9).
4: Set i = i + 1 and go to Step 2 until the stopping criterion

is reached (number of iterations reaches a given threshold or
the difference in the objective function between two successive
iterations vanishes).

systems. Secondly, partitioning of the available bandwidth
in optimal fashion may be difficult to achieve in practice.
Furthermore, although optimal power allocation maximizes
the user mutual information, signalling the power levels to
the users requires high signalling overhead, which will reduce
the spectral efficiency. Thus, it is more practical to use equal
power allocation over the allocated subcarriers to the user [6].
In this way, only the subcarrier allocation decisions need to
be signalled to the users. Consequently, in this section, we
propose a suboptimal algorithm that takes into account more
practical assumptions. The algorithm relies on equal power
allocation that is performed on appropriately selected set of
subcarriers. Each user will allocate its power only on the set of
the subcarriers that have non-zero power in the optimal SUPA.
Let N⋆

k be the number of subcarriers that will have non-zero
power under optimal SUPA, the equal power allocation can be
expressed as

pk,n =


Pk

N⋆
k

if gk,n > λk,

0 if gk,n ≤ λk,
(13)

where λk is the solution of (8). It is clear that the optimal
Lagrange multiplier λk is required to perform the power allo-
cation (13). Using the numerical methods (such as bisection
or Newton) to find λk by solving (8) is computationally
inefficient due to the lack of closed-form expressions of
the mmse(.) and mmse−1(.) functions. Here, we propose a
simplified iterative method to calculate the optimal Lagrange
multiplier based on an approximation of the mmse(.) function.

Lemma 1. For a given range of SNR, mmse−1(.) can be
approximated by

mmse−1(x) =
log10(x)−B

A
, (14)

where the constants A and B are defined in Appendix B.

Proof: See Appendix B.
Using (14) and (8), for a given set of subcarriers, λk can

be calculated using the following equation

log10(λk) =

Pk +
∑
n∈Tk

(
log10(gk,n) +B

gk,nA

)
∑
n∈Tk

1

gk,nA

. (15)

Consequently, the optimal Lagrange multiplier can be itera-
tively found, by sorting the subcarriers in a descending order
based on their channel gains. Then, starting with the best

Algorithm 2 Suboptimal Subcarrier and Power Allocation
1: Initialization: Set i = 0, Ak = ϕ, U = N and Ku = K.
2: Calculate the constants Ak and Bk for each user us-

ing (26) and (27).
3: while i < N do
4: i = i+ 1.
5: Subcarrier Selection:
6: for all k ∈ Ku do
7: lk = argmax

n∈U
gk,n, (select the preferred subcarrier).

8: Find λi for (Ak ∪ {lk}) using (15).
9: if (log10(λi/gk,lk)−Bk) ≤ 0 then

10: A⋆
k = Ak, Ku = Ku \ k.

11: end if
12: end for
13: Subcarrier Allocation:
14: Option1: k⋆ = arg max

k∈Ku

wkI
( Pk

|Ak|
gk,lk

)
.

15: Option2: k⋆ = arg max
k∈Ku

wk

( ∑
n∈Ak∪{lk}

I
( Pk

|Ak|+ 1
gk,n

)
−

∑
n∈Ak

I
( Pk

|Ak|
gk,n

))
.

16: Ak⋆ = Ak⋆ ∪ gk⋆,lk⋆ , U = U \ {lk⋆}.
17: end while

TABLE I
ALGORITHM COMPLEXITY

Operation
max(.) log(.)/Exp. Add./Subt. Multip./Div.

Option1 KN N(3K+N/2) N(4K+N) N(7K+N)

Option2 KN N(4K+3N/2) 2N(3K+N) 2N(4K+N)

subcarrier, λk is calculated using (15). Another subcarrier is
added, with a descending order, in each step as long as it
results in positive power allocation, until a non-positive power
allocation occurs.

Using the proposed approximation and equal power alloca-
tion, the suboptimal SPA can be developed in two phases.
In the first phase (Subcarriers Selection), each user select
its best unallocated subcarrier, referred to as the preferred
subcarrier. Also, a check is performed to see if the user has
reached a saturation point, i.e., the preferred subcarrier will
have zero power under optimal SUPA. In the second phase
(Subcarrier Allocation), a subcarrier is allocated to one user
based on the users’ utilities with equal power allocation. We
will consider two options for subcarrier allocation criteria. The
first option is to consider the utility as the user’s weighted
mutual information on its preferred subcarrier. For the second
option, the utility is considered as the increase in the user’s
mutual information due to allocating an extra subcarrier. The
algorithm iteratively allocates a subcarrier in each iteration
until all the subcarriers are allocated. The proposed suboptimal
algorithm is explained in details in Algorithm 2. Different
mathematical operations necessary for the implementation of
our algorithm are identified. We count the instances of each of
these operations in each step of the algorithm and multiply it
by the number of times this step is performed in a complete run
of the algorithm. These total counts for each type of operation
are provided in Table I. It can be seen from the table that both
Option1 and Option2 have a complexity order of O(KN).
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Fig. 1. Spectral efficiency comparison of the proposed algorithm and the
optimal solution.

Comparing to the optimal solution and the benchmark al-
gorithm that have complexity order of O(LKN(L1 + L2))
and O(KN2), respectively, our algorithm has much lower
complexity. Here, L1 is the number of iterations required to
find the optimal power (8) in the First Subproblem, L2 is the
number of iterations for the gradient method (10-12) in the
Second Subproblem, and L is the number of main iterations
in Algorithm 1.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-
posed algorithm through Monte Carlo simulation. A single-
cell with 1 km radius will be considered, and users’ locations
are randomly generated and uniformly distributed over the
cell. The total bandwidth is 5 MHz consisting of 32 sub-
carriers and the user’s maximum transmit power is 1 Watt.
ITU pedestrian B is adopted for fast fading generation [7,
page 476], and the simplified model [8] for the path loss. The
noise power spectral density is assumed to be −120 dB/Hz.
The performance is compared with the optimal solution of
the relaxed problem and a benchmark algorithm from [9],
which has been proven to be Pareto optimal within a large
neighbourhood of the solution obtained by the algorithm [9].
In the simulations, the optimal algorithm stops if the gain in
spectral efficiency between two successive iterations is less
than 10−3 bit/s/Hz, and the maximum number of iterations
was 200. The algorithm required about 60-150 iterations on
average to converge, depending on the number of users (K).
Fig. 1 shows the spectral efficiency versus the number of
users (K) for different modulation orders (BPSK, QPSK and
16QAM). It can be seen that the performance of our proposed
suboptimal algorithm, with the two subcarrier allocation cri-
teria (Option1 and Option2), achieves very close performance
to the upper bound and outperforms the benchmark algorithm.
The proposed algorithm achieves in average 98.2% and 99.4%
of the optimal solution for Option1 and Option2, respectively.
Furthermore, the gap between the two subcarrier allocation cri-
teria (Option1 and Option2) increases as the modulation order
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Fig. 2. Comparison of the total transmitted power, PT , for FSA and Gaussian
inputs.

increase, and Option2 always outperforms Option1. Now, the
advantage of explicitly considering the FSA in optimizing the
power allocation comparing to the Gaussian assumption will
be demonstrated. Fig. 2 shows the total transmitted power
for each channel input (Gaussian and FSA) versus the total
number of users in the system. The total transmitted power,
PT , is given by

PT =
∑
k∈K

∑
n∈N

pk,n. (16)

As the figure shows, the total transmitted power under
Gaussian assumption is higher comparing to the FSA inputs. If
the power is optimized based on the Gaussian input then FSA
is used for transmission, large amount of power will be wasted.
Consequently, using the proposed algorithm will significantly
reduce the average transmitted power of each user. Thus, as
the achieved spectral efficiency is the same for both cases, our
algorithm can be considered more energy efficient comparing
to the algorithms that assumes Gaussian inputs. To evaluate
the effect of imperfect CSI on the algorithm performance, we
expressed the imperfect CSI as ĝk,n = gk,n+ek,n, where gk,n
is the perfect CSI and ek,n is the error in the CSI estimation,
which modeled as a zero-mean Gaussian random variable with
variance σ2

e [10]. Fig. 3 shows the spectral efficiency of the
proposed algorithm for different values of error variance (σ2

e).
As can be observed from the figure, the effect of imperfect CSI
on the algorithm’s performance is marginal. For the simulated
error variance, the maximum spectral efficiency degradation
are 0.14% and 0.09% for Option1 and Option2, respectively,
which can be considered practically negligible.

VI. CONCLUSION

In this paper, we considered radio resource allocation for
weighted sum mutual information maximization in the uplink
OFDMA system. Unlike existing work that assumes Gaus-
sian inputs, we consider FSA inputs. By capitalizing on the
relationship between mutual information and the MMSE, we
provided the optimal solution using a decomposition approach.
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Due to the complexity of the optimal solution, we proposed a
low-complexity suboptimal subcarrier and power allocation al-
gorithm. The complexity of the proposed algorithm is analysed
and shown to have complexity of O(KN), which is far less
than that of the optimal solution and the benchmark algorithm.
The performance of the proposed algorithm is evaluated via
Monte Carlo simulation and shown to achieve near opti-
mal performance and outperform the benchmark algorithm.
Furthermore, it is revealed that by explicitly optimizing the
power for FSA inputs, significant power saving can be gained
comparing to the case when Gaussian input is assumed.
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APPENDIX A
PROOF OF COROLLARY 1

Proof: The subproblem (6) is convex and it satisfies the
Slater condition (by setting pk,n = Pk/N ). Hence, there is no
duality gap and the Karush-Kuhn-Tucker (KKT) conditions are
necessary and sufficient. The Lagrangian for subproblem (6)
can be formulated as

Lk(pk, λk,νk) = −
∑
n∈N

xk,nI

(
pk,ngk,n
xk,n

)
+

λk

(∑
n∈N

pk,n − Pk

)
−
∑
n∈N

νk,npk,n, (17)

and the KKT conditions are

−gk,n mmse
(
p⋆k,ngk,n

xk,n

)
+ λk − νk,n = 0, (18)

νk,n ≥ 0, p⋆k,n ≥ 0, ∀n ∈ N , (19)

νk,np
⋆
k,n = 0, ∀n ∈ N . (20)
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Fig. 4. Linear approximation for the MMSE (the QPSK case).

Using (18) and (20), and by substituting (18) into (19) yields

p⋆k,n

(
λk − gk,n mmse

(
p⋆k,ngk,n

xk,n

))
= 0, (21)

gk,n mmse
(
p⋆k,ngk,n

xk,n

)
≤ λk. (22)

Consequently, if p⋆k,n > 0 then from (21) we have λk =

gk,n mmse
(

p⋆
k,ngk,n

xk,n

)
, therefore

p⋆k,n =
xk,n

gk,n
mmse−1

(
λk

gk,n

)
. (23)

Since mmse
(

p⋆
k,ngk,n

xk,n

)
< 1 when p⋆k,n > 0, we know

from (22) that gk,n > λk. On the other hand, as the
mmse(0) = 1, if p⋆k,n = 0, we have from (22) gk,n ≤ λk.
Hence, the corollary follows.

APPENDIX B
MMSE APPROXIMATION (proof of Lemma 1)

For FSA sets, there is no closed-form expression for the
MMSE, and it is calculated numerically using the following
formula

mmse(snr) = 1− 1

π

∫
∣∣∣∣∣∑
x∈X

p(x)xe−|y−
√
snrx|2

∣∣∣∣∣
2

∑
x∈X

p(x)e−|y−
√
snrx|2

dy, (24)

where the integral is over the complex field and p(x) is
the probability of x [3]. It is clear that using the numerical
methods to calculate the MMSE from this formula to find the
optimal Lagrange multiplier (8) is computationally complex.
As can be seen in Fig. 4, the logarithm of the mmse(.) is al-
most linear in the SNR. Consequently, a linear approximation
of the logarithm of the mmse(.) for a given range of the SNR
can be formulated as follows

log10(mmse(snr)) = A snr +B,

SNRmin ≤ snr ≤ SNRmax, (25)
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where A is the slop of the line, and B is the y-intercept, which
are given by

A =
log10(mmse(SNRmax))− log10(mmse(SNRmin))

SNRmax − SNRmin
,

(26)

B = log10(mmse(SNRmin))−A SNRmin. (27)

The error in calculating the MMSE using the linear approxi-
mation is considerably low. For the results presented in Fig. 4,
the mean squared error E(mmse(snr)− m̂mse(snr))2 is only
7 × 10−7 for the QPSK case, and the SNR range is 30 dB.
Similar results have been noticed for other modulation orders.
The mmse−1(.) can be straightforwardly found from (25) as
follows

mmse−1(x) =
log10(x)−B

A
. (28)
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