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Performance Analysis of Two-Way AF MIMO
Relaying of OSTBCs with Imperfect Channel Gains
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Abstract— In this paper, we consider the relaying of orthog-
onal space time block codes (OSTBCs) in a two-way amplify-
and-forward (AF) multiple-input multiple-output (MIMO) r elay
system with estimated channel state information (CSI). A simple
four phase protocol is used for training and OSTBC data
transmission. Decoding of OSTBC data at a user terminal is
performed by replacing the exact CSI by the estimated CSI,
in a maximum likelihood decoder. Tight approximations for
the moment generating function (m.g.f.) of the received signal-
to-noise ratio at a user is derived under Rayleigh fading by
ignoring the higher order noise terms. Analytical average error
performance of the considered cooperative scheme is derived by
using the m.g.f. expression. Moreover, the analytical diversity
order of the considered scheme is also obtained for certain system
configurations. It is shown by simulations and analysis thatthe
channel estimation does not affect the diversity order of the
OSTBC based two-way AF MIMO relay system.

I. I NTRODUCTION

Two users can exchange their information by using a relay
node, in a two-way cooperative system. The spectral efficiency
and diversity gain of the two-way relay system can be im-
proved by employing multiple antennas [1]–[5]. However, a
key problem in two-way relay system is that the channel state
information (CSI) of all links is needed at both the users,
for self-interference cancellation and decoding of the data
transmitted by each other. The problem of channel estimation
in two-way relaying is not simple because each user needs to
estimate the channel in between itself and relay node as well
as the channel in between the other user and relay. Optimal
channel estimation and training design forsingle antenna
based two-way amplify-and-forward (AF) relay networks is
discussed in [6]; a rate efficient two-phase training protocol for
cascaded channel estimation, required for maximum likelihood
(ML) detection, is proposed in this paper. Comparison of
different channel estimation schemes like cascaded channel
estimation and individual channel estimation is performedin
[7], for a two-way multiple-input multiple-output (MIMO)
relay systems. The mean square error (MSE) and bit error
rate (BER) performance of these two schemes are compared, in
this work. In [8], lower bounds on the sum rate of information
transmission in AF MIMO relay system with estimated CSI,
using a precoding matrix at the relay, are obtained. The
problem of joint source and relay optimization for AF MIMO
two-way relay systems, with imperfect CSI, is considered in
[9]; however, no analytical performance of the AF MIMO
relay system is provided.
Motivation and Our Contributions

In the existing works [8], [9], the transmission of the
spatial multiplexed data vector, by using imperfect CSI based
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precoding matrix at the users and/or relay, is considered. These
techniques require complicated MIMO precoder designs, at
different nodes; moreover, the spatial multiplexing results
into high complexity ML decoding. On the other hand, the
orthogonal space time block code (OSTBC) achieves full
diversity without any channel information at the transmitter,
and provides low complexity symbol wise ML decoding. The
OSTBC based relay system does not require global CSI at
the source and/or relay contrary to the existing schemes [8],
[9]; hence, it can be easily implemented in practice. In [10],
[11], transmission of OSTBC in decode-and-forward (DF)
protocol based two-way MIMO relay system is studied with
perfect information of the CSI, required for decoding the
transmitted data at the users and relay. The schemes of [10],
[11] avoid the need for the CSI at the transmitters in two-
way MIMO relay system, contrary to [8], [9]. However, due
to the erroneous relaying in DF protocol, the OSTBC based
two-way DF MIMO relay systems [10], [11] loose diversity.
Since the AF protocol does not have this problem, it can be
used for improving the OSTBC relaying in two-way MIMO
relay system. Further, the existing works [10], [11] do not
facilitate deriving important performance metrics such asthe
symbol error rate (SER) and achievable diversity, for the
OSTBC based two-way MIMO relay system. In this paper,
we address the problem of fixed gain relaying of OSTBC in
a two-way AF MIMO relay system, withimperfectCSI. It
is deduced by using the ML decoder metric of the OSTBC
data that OSTBC relaying in two-way AF MIMO relaying
system requires a complicated channel estimation protocol, as
compared to existing two-way AF relay systems.

Our contributions in this paper are as follows: 1) Closed-
form approximate expression (by ignoring higher order noise
terms) for the moment generating function (m.g.f.) of the
received signal-to-noise ratio (SNR) at a user in OSTBC
based two-way AF MIMO relaying system with estimated CSI,
is derived. 2) The performance of the considered two-way
AF MIMO cooperative system is quantified by deriving the
analytical average error performance forM -PSK andM -QAM
constellations. 3) The analytical expression of diversityorder
of the considered system with imperfect CSI, for some special
cases, is also obtained. Some useful insights into practical two-
way AF MIMO relay system implementation are obtained by
using the analytical diversity order.

II. SYSTEM MODEL

We consider a two-way cooperative system with two users
and a single relay, as shown in Fig. 1, where User-i, i =
1, 2, and the relay haveNi and Nr antennas, respectively.
Both users act as source and destination as well. Since the
transmission of data occurs in both directions, i.e., to/from
the relaying node, we assume that channel reciprocity holds;
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Fig. 1

TWO-WAY MIMO RELAY SYSTEM.

so that the reverse channel matrices are the transpose of the
forward channel matrices. If channel reciprocity does not hold,
then the derived results are not applicable. LetHi be the
Ni × Nr relay-to-User-i MIMO channel matrix containing
independent and identically distributed (i.i.d.) complexcircular
Gaussian elements with zero mean and unit variance, which
corresponds to the case of i.i.d. Rayleigh fading. Transmission
of data occurs in two phases; during first phase, both users
transmit their data to the relay. In the second phase, the MIMO
relay amplifies the received signals with a fixed gain, and then
broadcasts to both users. There is no direct link in between
the users. Throughout the paper, we assume that User-i needs
to decode the OSTBC data transmitted by User-j, j = 1, 2,
i 6= j.

It is assumed for analytical simplicity, that the source (User-
j) employs linear OSTBC encoding. In particular, groups
of Mj complex symbolsc(j)1 , c

(j)
2 , ..., c

(j)
Mj

are mapped to
an orthogonal matrixCj ∈ CNj×T , Nj ≤ T , where T
denotes the number of symbol intervals used to send each
OSTBC codeword. A detailed structure of the linear OSTBC
is given in [12, Chapter 7]. Since it takesT symbol periods
to transmit Mj symbols, the code rate isRj = Mj/T .
We can writeCj = [cj(1), cj(2), cj(3), . . . , cj(T )], where

cj(m) ∈ CNj×1, m = 1, 2, ..., T , E
{

‖cj(m)‖2
}

= γ̄j , E {·}
denotes the expectation,‖·‖ stands for the Euclidean norm,
and γ̄j is defined as the average SNR of User-j. The received
signal at the relay in the first phase is given by

Yr =

2
∑

i=1

HT
i Ci +Wr, (1)

whereYr ∈ CNr×T denotes the received signal matrix,(·)T
denotes the transpose; andWr ∈ CNr×T with vec(Wr) ∼
CN (0NrT , INrT )–where vec(·) is the column wise vector-
ization operator,0NrT represents an all zeroNrT × 1 vector,
andCN (·, ·) denotes the complex Normal distribution–is the
additive white Gaussian noise (AWGN) matrix at the relay,
containing zero mean complex Gaussian noise elements with
unit variance. The relay multiplies this received signal bya
constant gain matrixG = aINr

prior to broadcasting it to
both users. In particular, the selection ofa ensures that an
average power constraintE

{

‖GYr‖2F
}

≤ b, where‖·‖F is
the Frobenius norm of the matrix, is satisfied at the relay. The
value ofa is given as

a =

√

b

NrT (1 + ρ)
, b ∈ R

+, (2)

whereρ = γ̄i + γ̄j . The data received at the User-i, during
broadcasting from the relay, is given by

Yi = aHiYr +Wi, (3)

whereWi with vec(Wi) ∼ CN (0NiT , INiT ) is the AWGN
noise matrix. From (1) and (3), we have

Yi = aGiCi + aGi,jCj + aHiWr +Wi, (4)

where Gi = HiH
T
i ∈ CNi×Ni and Gi,j = HiH

T
j ∈

CNi×Nj . An ML decoder ofCj can be obtained by maximiz-
ing the conditional probability density function (p.d.f.), i.e.,
f(ỹi|gi,gi,j ,Hi,Ci,Cj)–whereỹi = K

−1/2
i yi ∈ CNiT×1,

yi = vec(Yi) ∈ CNiT×1, gi = vec(Gi) ∈ CN2
i ×1,

gi,j = vec(Gi,j) ∈ CNiNj×1, Ki = a2(IT ⊗ HiH
H
i ) +

INiT ∈ CNiT×NiT , ⊗ denotes the Kronecker product, and
(·)H represents the Hermitian–as

Ĉj=argmin
Cj

∥

∥

∥̃yi−aK−1/2
i

{(

CT
i ⊗INi

)

gi+
(

CT
j ⊗INi

)

gi,j

}

∥

∥

∥

2

,

(5)
whereA1/2 denotes the matrix square root of matrixA. From
(5), it can be seen that we need to estimateHi (in order to
calculateKi); and cascaded channel matricesGi andGi,j , to
decode the OSTBC matrixCj at User-i.

III. D ECODING OFOSTBC IN TWO-WAY AF MIMO
RELAY SYSTEM WITH ESTIMATED CSI

Since the proposed ML decoder (5) requires individual and
cascaded channel estimates, we use a modified version of the
protocol of [6] (which only allows for cascaded channel esti-
mation) for channel estimation and OSTBC data transmission;
this protocol consists of four phases. In the first phase, the
relay broadcasts training data to both users. In the second
phase, one of the users (User-i) transmits pilot symbols to the
relay and relay broadcasts the received signals with unity gain.
Another user (User-j) transmits training data and the relay
broadcasts the received signals, in the third phase. Whereas,
in the fourth and final phase, two-way relaying of the OSTBCs
of the users takes place. It is assumed that the users and relay
transmit unitary pilot matrices.

In the first phase, the ML estimate ofHi at User-i can be
obtained as

Ĥi = RiS
H
p

(

SpS
H
p

)−1
= Hi + N̂i ∈ C

Ni×Nr , (6)
where Ri = HiSp + Ni ∈ CNi×P , P = MpNr, Mp ∈
Z
+, denotes the data matrix received by User-i due to the

pilot matrix Sp ∈ CNr×P broadcasted by the relay, and
Ni with vec(Ni) ∼ CN (0NiP , INiP ) is the AWGN noise
matrix received at User-i. Note that the pilot matrixSp

containsMp transmissions of anNr × Nr unitary matrix.

Furthermore,N̂i = NiS
H
p

(

SpS
H
p

)−1
with vec

(

N̂i

)

∼
CN (0NiNr

, INiNr
) is the channel estimation noise ofHi.

In the second phase of training, the data received at User-j
is given by

R̃j = HjH
T
i Cpi

+HjUi +Nj , (7)
where Cpi

∈ CNi×L, L = Npi
Ni, Npi

∈ Z+, denotes
the unitary training matrix transmitted by User-i; Ui with
vec(Ui) ∼ CN (0NrL, INrL) and Nj with vec(Nj) ∼
CN

(

0NjL, INjL

)

represent AWGN noise received at the
relay and User-j, respectively. By applying the vectorization
operator over (7) and performing whitening of the noise,
we obtain r̆j = K

−1/2
j r̃j = K

−1/2
j

(

CT
pi
⊗INj

)

gj,i + nj,i,

where r̃j = vec
(

R̃j

)

, Kj =
(

IL ⊗HjH
H
j

)

+ ILNj
, and
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nj,i ∼ CN
(

0NjL, INjL

)

is the AWGN noise vector. By

minimizing
∥

∥

∥r̆j −K
−1/2
j

(

CT
pi
⊗INj

)

gj,i

∥

∥

∥

2

with respect to

(w.r.t.) gj,i = vec{Gj,i} = vec
{

HjH
T
i

}

∈ CNiNj×1, we
get the estimate ofgj,i as

ĝj,i=
(

(C∗
pi
⊗ INj

)K̃−1
j (CT

pi
⊗INj

)
)−1

(C∗
pi
⊗INj

)K̃−1
j vec(R̃j),

(8)
where K̃j =

(

IL ⊗ ĤjĤ
H
j

)

+ ILNj
and (·)∗ denotes the

matrix conjugate. By substituting the value ofr̃j from (7) to
(8), and after some algebraic manipulations, we get

ĝj,i = gj,i +
(

C∗
pi
⊗ INj

)

K̃
1/2
j nj,i. (9)

The data received at User-i, in the second phase, is given by

R̄i = GiCpi
+HiUj +Ni, (10)

whereUj with vec(Uj) ∼ CN (0NrL, INrL) and Ni with
vec(Ni) ∼ CN (0NiL, INiL) represent AWGN noise received
at the relay and User-i, respectively. From (10), after some
manipulations, the ML estimate ofgi can be obtained as

ĝi = gi +
(

C∗
pi
⊗ INi

)

K̃
1/2
i ni,i, (11)

whereni,i ∼ CN (0NiL, INiL) is the AWGN noise vector.
Similarly, the channel estimates,ĝi,j andĝj , in the third phase
of training, can be obtained. By replacing the exact channel
gains with their estimated values in (5), we get a decoder of
the OSTBC matrixCj at User-i:

Ĉj=argmin
Cj

∥

∥

∥

ˆ̃yi−aK̂−1/2
i

{(

CT
i ⊗INi

)

ĝi+
(

CT
j ⊗INi

)

ĝi,j

}

∥

∥

∥

2

,

(12)
where ˆ̃yi = K̂

−1/2
i yi, K̂i = a2(IT ⊗ ĤiĤ

H
i ) + INiT , ĝi is

given in (11), and̂gi,j can be obtained from (9) by swappingi
andj. From (12) and [12, Eq. (7.4.2)], and after some algebra,
we get the following symbol-wise decoder of the OSTBC data,
in channel estimation based two-way AF MIMO relay system:

ĉ(j)n =min
c
(j)
n

∣

∣

∣

∣

∣

∣

c(j)n −
Re
(

Tr
{

Y̆H
i XAn

})

−Im
(

Tr
{

Y̆H
i XBn

})

‖X‖2

∣

∣

∣

∣

∣

∣

2

.

(13)
In (13), n = 1, 2, ..,Mj, An and Bn are Nj × T OSTBC
specific dispersion matrices given in [12, Eq. (7.1.1)], Re(·)
and Im(·) represent real and imaginary parts, respectively,
of a complex quantity, Tr{·} denotes the matrix trace, =
√
−1, X =

(

ĤiĤ
H
i + INi

)−1/2

Ĝi,j , and vec
(

Y̆i

)

= ˆ̃yi −
(

CT
i ⊗

(

ĤiĤ
H
i + INi

)−1/2
)

ĝi.

IV. PERFORMANCEANALYSIS

We analyze the performance of the two-way AF MIMO
relay system with estimated channel gains, in this section.It
is assumed thatCpi

CH
pi

= INi
andCiC

H
i = INi

. Let b (k)
denotes thek-th column of a matrixB; therefore, we can write
them-th column ofYi from (4) as

yi(m)=aGici(m)+aGi,jcj(m)+aHiwr(m)+wi(m). (14)

From (14), it can be seen that the overall input-output relation-
ship is equivalent to multiple access channels based two-user
MIMO system with effective channel matricesGi andGi,j ;

and additive colored Gaussian noise,aHiwr(m) + wi(m),
which has the following conditional covariance:

K̆i=E
{

(aHiwr(m)+wi(m))(aHiwr(m)+wi(m))
H|Hi

}

.

(15)
Therefore, the ML decision variable at User-i will be

Λ=min
c̃j

∥

∥

∥ỹi(m)−aK̆
−1/2
i (Gici(m)+Gi,j c̃j(m))

∥

∥

∥

2

, (16)

where ỹi(m) = K̆
−1/2
i yi(m). It can be observed from (16)

that the decision variable depends upon the exact value of
the effective channel matrices. However, the destination user
utilizes estimated channel matrices (gained during the training
phases), in place of the exact channel matrices in the decision
variable. Therefore, from (16), the decision variable with
estimated channel matrices can be written as

Λ=min
c̃j

∥

∥

∥

ˆ̃yi(m)−a
ˆ̆
K

−1/2
i

(

Ĝici(m)+Ĝi,j c̃j(m)
)∥

∥

∥

2

, (17)

where Ĝi and Ĝi,j denote the estimate ofGi and Gi,j ,

respectively;̂̃yi(m) =
ˆ̆
K

−1/2
i yi(m), and

ˆ̆
Ki=E

{

(

aĤiwr(m)+wi(m)
)(

aĤiwr(m)+wi(m)
)H

|Hi

}

(18)
is the estimate of̆Ki. From (6) and (18), we have

ˆ̆
Ki = E

{(

aHiwr(m) + aN̂iwr(m) +wi(m)
)

×
(

aHiwr(m) + aN̂iwr(m) +wi(m)
)H

|Hi

}

. (19)

By ignoring the higher order noise in (19), we haveˆ̆Ki
∼= K̆i;

hence,ˆ̃yi(m) ∼= K̆
−1/2
i yi(m). Since the higher order noise

terms have very small value as compared to other noise terms,
these terms can be ignored for simplifying the analysis. It is
shown in [13]–[15] that this approximation works very well
for performance analysis of different communication systems.
Moreover, it will be verified by simulation in Section V that
the analytical results, derived under this assumption, arevery
accurate.

Let us observe that̂gi = vec
(

Ĝi

)

and ĝi,j = vec
(

Ĝi,j

)

;

therefore, we can writêGi,j andĜi, in terms ofGi,j andGi,
by using (9) and (11), respectively, after some straightforward
algebra. Substituting these values ofĜi and Ĝi,j , and value
of yi(m) (given in (14)) in (17); and after some algebra, the
decision variable at the User-i can be written as

Λ = min
c̃j

∥

∥

∥aK̆
−1/2
i Gi,j (cj(m)− c̃j(m)) +w(m)

∥

∥

∥

2

, (20)

wherew(m) = K̆
−1/2
i

{

aHiwr(m) +wi(m)− a
(

n̂i,i(m)

ci(m) + n̂i,j(m)cj(m)
)}

; n̂i,i(m) and n̂i,j(m) are the es-

timation noises ofgi(m) and gi,j(m), respectively. From
(20), we can write the ML decision variable for transmitted
codewordCj at User-i as

Λ = min
C̃j

∥

∥

∥
aK̆

−1/2
i Gi,j

(

Cj − C̃j

)

+W

∥

∥

∥

2

. (21)

In (21),W = K̆
−1/2
i

{

aHiWr+Wi−a
(

N̂i,iCi+N̂i,jCj

)}

is the additive Gaussian noise (N̂i,i ∈ CNi×Ni and N̂i,j ∈
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CNi×Nj being the estimation noises ofGi and Gi,j , re-
spectively) present in the decision variable with conditional
covariance matrix

Ǩi =E
{

K̆
−1/2
i

(

aHiWr+Wi−a
(

N̂i,iCi+N̂i,jCj

))

×
(

aHiWr+Wi−a
(

N̂i,iCi+N̂i,jCj

))H

K̆
−H/2
i |Hi

}

= K̆
−1/2
i

(

Z1INi
+ Z2HiH

H
i

)

K̆
−H/2
i , (22)

where Z1 = 1 + a2
(

1/Npi
+ 1/Npj

)

and Z2 = a2(1 +
1/Npi

+ 1/Npj
). From (21), the instantaneous SNR of the

n-th symbolc(j)n encoded in the OSTBCCj , can be written
after linear OSTBC processing, using [16, Eq. (11)], and after
some algebraic manipulations, as

γ(i)
n =

∥

∥

∥aǨ
−1/2
i K̆

−1/2
i Gi,j

∥

∥

∥

2

F
E

{

∣

∣

∣c(j)n

∣

∣

∣

2
}

= αj γ̄ja
2Tr
{

GH
i,j

(

Z1INi
+ Z2HiH

H
i

)−1
Gi,j

}

, (23)

hereαj = 1/(RjNj). Since the right hand side of (23) is
independent ofn, hence, we drop subscriptn; and denote the
received instantaneous SNR at User-i as γ(i), in rest of the
paper.

A. Expression of M.G.F.

The following theorem provides a closed-form expression
for the m.g.f. of the SNRγ(i).

Theorem 1: The m.g.f. ofγ(i) is given as

Mγ(i)(s) = κ−1 det (J(s)) , (24)

where det (·) denotes the determinant, κ =
∏q

l=1 Γ(p− l + 1)Γ(q − l+ 1), p = max(Nr, Ni), q =
min(Nr, Ni), and J(s) is the q × q Hankel matrix with
(t, v)-th entry

Jtv(s) =
Γ(νtv)

(Z2

Z1
)νtv (1+

a2sαj γ̄j

Z2
)νtv+Nj

Nj
∑

k=0

(

Nj

k

)(

a2sαj γ̄j
Z2

)k

× U



νtv, νtv + 1− k,
Z1

Z2

(

1 +
a2sαj γ̄j

Z2

)



 , (25)

whereνtv = t + v + p − q − 1, Γ(·) is the Gamma function,
and U(·, ·, ·) is the confluent hypergeometric function of the
second kind.
Proof: A proof of Theorem 1 is given in Appendix I.

It can be seen from (24) and (25) that the m.g.f. has a
direct dependence onNj; however, the dependence onNr and
Ni is through their maximum and minimum values,p andq,
respectively.

B. Average Error Performance

1) M -PSK Constellation:The SER of User-i for the M -
PSK constellation is given by [17]

P
(i)
MPSK =

1

π

∫ θ

0

Mγ(i)

(

gMPSK

sin2 θ

)

dθ, (26)

where θ = π(M − 1)/M and gMPSK = sin2(π/M).
Therefore, the SER of the channel estimation based two-way
AF MIMO relay system can be calculated from (24) and (26).
The integral in (26) can be numerically computed with the
help of MATLAB.

From (26), for BPSK (M = 2), we can write the BER of
User-i as

P
(i)
BPSK =

1

π

∫ π/2

0

Mγ(i)

(

1

sin2θ

)

. (27)

For q = 1 (q is defined after (24)), from (26), (35), and (36),
we have

P
(i)
BPSK =

1

Γ(p)

∫ ∞

0

λp−1exp(−λ)

×







1

π

∫ π/2

0

(

1 +
a2αj γ̄jλ

Z1(1 +
Z2

Z1
λ)sin2θ

)−1

dθ







dλ. (28)

With help of [17], the inner integral in (28) can be solved as
∫ π/2

0

(

1 +
a2αj γ̄jλ

Z1(1 +
Z2

Z1
λ)sin2θ

)−1

dθ

=
1

2



1−
Nj−1
∑

k=0

(2kk )(1 + Z2

Z1
λ)k
√

(a2αj γ̄jλ/Z1)

4k(1 + Z2

Z1
(1 + a2αj γ̄j/Z2)λ)k+1/2



 . (29)

From (28) and (29), using binomial series expansion of the
term (1+ Z2

Z1
λ)k, and with help of [18, Eq. (3.383.5)], we get

P
(i)
BPSK=

1

2



1−
Nj−1
∑

k=0

k
∑

l=0

(2kk )(kl )Γ(p+ l + 1/2)
√

a2αj γ̄j/Z2
(

Z2

Z1

)p

(1 + a2αj γ̄j/Z2)p+l+1/24k

× 1

Γ(p)
U

(

p+l+1/2; p+l−k−1;
Z1

(Z2 + a2αj γ̄j)

))

. (30)

2) M -QAM Constellation:The SER of User-i for theM -
QAM constellation can be obtained as [19]

P
(i)
MQAM =

4

π

(

1− 1√
M

)∫ π/2

0

Mγ(i)

(

gMQAM

sin2 θ

)

dθ

− 4

π

(

1− 1√
M

)2 ∫ π/4

0

Mγ(i)

(

gMQAM

sin2 θ

)

dθ, (31)

wheregMQAM = 3/ (2(M − 1)). The SER for theM -QAM
constellation at User-i can be found by using (24) and (31).
The finite integrals in (31) can be evaluated numerically.

C. Diversity Order

In the high SNR region, the diversity order is a key param-
eter, which dictates the system performance. This parameter
can be derived by focusing on the asymptotic expansion of
the m.g.f. of the instantaneous received SNR. By using (24),
we can find the diversity order of the OSTBC based two-way
AF MIMO relay system with imperfect channel knowledge,
for some special cases, as given in Theorem 2.

Theorem 2: The diversity order of the channel estimates
based two-way AF MIMO relay system isp, if p < Nj ; and
Nj, if p > Nj ; for min(Nr, Ni) = 1.
Proof: A proof of Theorem 2 is given in Appendix II.
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ANALYTICAL AND SIMULATED BER PLOTS OF THE TWO-WAY AF MIMO

RELAY SYSTEM WITH N1 = N2 = Nr = 2, Np1 = Np2 = 1, a = 1,

ALAMOUTI CODE, PERFECT AND ESTIMATEDCSI,AND BPSK

CONSTELLATION; AND SIMULATED BER PLOTS OF THE EXISTING

TWO-WAY AF RELAY SYSTEM WITH ESTIMATED CSI [6].

V. SIMULATION AND ANALYTICAL RESULTS

A three node two-way cooperative system shown in Fig. 1 is
considered for simulation and analysis. We present numerical
results for γ̄1 = γ̄2 = γ̄, which we call the SNR, in
Figs. 2, 3, 4, and 5. All results are shown for one of the
two users.

In Fig. 2, simulation results of the two-way AF MIMO
relay system using the ML decoder with perfect CSI (given
in (5)) and imperfect CSI (given in (12)) are obtained for
N1 = N2 = Nr = 2, Np1 = Np2 = Mp = 1, a = 1,
Alamouti OSTBC, and BPSK constellation. It can be seen
from Fig. 2 that the ML decoder with perfect CSI outperforms
the ML decoder with imperfect CSI at all SNRs considered
in the figure. For example, for BER=10−6, the ML decoder
looses approximately 5 dB due to the usage of imperfect CSI.
Moreover, Fig. 2 also presents the analytical BER curve of the
two-way AF MIMO relaying with perfect and imperfect CSI
for BPSK modulation; analytical curves are generated based
on the closed-form expression, given in (30). It can be noticed
from Fig. 2, that analytical and simulated curves are closely
matched for all SNR values considered in the simulation; this
indicates that neglecting higher order noise does not lead to
any serious degradation in the analytical performance. Further,
the slopes of the analytical BER versus SNR plots at high SNR
in Fig. 2 indicate that the diversity order of the consideredtwo-
way AF MIMO relay system with perfect or imperfect CSI is
four; therefore, the quality of CSI does not affect the diversity
order of the ML decoder of two-way AF MIMO relay system
with estimated CSI. We have also plotted the simulated BER
performance of the same rate existing optimal training based
AF two-way relaying system [6], in Fig. 2. It can be seen from
Fig. 2 that the considered training based two-way AF MIMO
relay system significantly outperforms the existing single
antenna and optimal training based two-way AF scheme [6].
Therefore, the proposed four phase training protocol (though
appears to be rate deficient) enables the OSTBC based two-
way AF MIMO relay system to significantly outperform the
same rate single antenna based two-way AF relaying scheme
which uses optimal training sequences.
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ANALYTICAL AND SIMULATED BER/SERPLOTS OF THE TWO-WAY AF

MIMO RELAY SYSTEM WITH N1 = N2 = Nr = 2, Np1 = Np2 = 1,

a = 1, ALAMOUTI CODE, BPSK, QPSK, 8-PSK, 16-PSK,AND 16-QAM.

The analytical and simulated performance of the ML de-
coder is obtained forN1 = N2 = Nr = 2, Np1 = Np2 = 1,
a = 1, Alamouti STBC, BPSK, QPSK, 8-PSK, 16-PSK, and
16-QAM, in Fig. 3. The simulation results closely follow the
analytical BER/SER values, as seen in Fig. 3. In Fig. 4, we
have plotted the simulated and analytical error performance of
the ML decoder with estimated CSI forNp1 = Np2 = Mp =
1, N1 = N2 = 2, Nr = 1, a = 1, BPSK, and QPSK. It can be
seen from Fig. 4 that the simulated and analytical values of
the BER/SER have a close match. Further, the diversity of the
considered two-way AF MIMO relay system is two as seen
in Fig. 4; this observation corroborates the analytical diversity
order given in Theorem 2.

We have plotted analytical BER of the two-way AF MIMO
relay system withN1 = N2 = Nr = 2; Np = Np1 =
Np2 = 1, 2, 4, 8, 16, a = 1, perfect CSI, BPSK constellation,
and Alamouti code. It can be seen from Fig. 5 that the BER
performance of the ML decoder using estimated CSI improves
with increasing number of training blocks. ForNp = 16, the
ML decoder with estimated CSI performs very close to the
ML decoder with perfect CSI, as seen in Fig. 5.

VI. CONCLUSIONS

This paper has discussed the transmission of OSTBC in
a two-way AF MIMO relay system with estimated channel
gains. We have investigated the statistical properties of in-
stantaneous received SNR of a user, utilizing an ML decoder
with imperfect CSI, by using the tools of finite-dimensional
random matrix theory. The performance of the scheme has
been discussed in terms of BER, SER, and diversity order
for some special cases, by using the tight approximations of
m.g.f.; simulation and analytical results have demonstrated that
the diversity order of the two-way AF MIMO relay system is
not affected by the use of estimated channel matrices.

APPENDIX I
PROOF OFTHEOREM 1

The m.g.f. ofγ(i) can be expressed as
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Mγ(i)(s) = E
{

exp(−sγ(i))
}

= EHiHj

(

exp
(

−a2sαj γ̄jTr
{

GH
i,j

(

Z1INi
+Z2HiH

H
i

)−1
Gi,j

})

)

.

(32)
SinceHj has a matrix variate complex Gaussian distribution,
by using the results given in [12, Proof of Theorem 4.1], we
have

Mγ(i)|Hi
(s)

= det
(

INi
+a2αj γ̄jsH

H
i

(

Z1INi
+Z2HiH

H
i

)−1
Hi

)−Nj

. (33)

Now we need to averageMγ(i)|Hi
(s) overHi. By performing

the singular value decomposition (SVD) ofHi, we haveHi =
XiDiVi, whereXi ∈ CNi×Ni andVi ∈ CNr×Nr are unitary
matrices, andDi ∈ RNi×Nr is a diagonal matrix with singular
values l1 > l2 · · · > lq (q = min(Ni, Nr)). From (33) and
SVD factorization ofHi, we get

Mγ(i)|DiD
T
i
(s)

= det
(

INi
+a2αj γ̄jsDiD

T
i

(

Z1INi
+Z2DiD

T
i

)−1
)−Nj

=

q
∏

j1=1

(

1 +
a2sαj γ̄j l

2
j1

Z1 + Z2l2j1

)−Nj

. (34)

Let λ1, . . . , λq denote the ordered non-zero eigenvalues of
HH

i Hi (λ1 > λ2 > · · · > λq); we can rewrite (34) as

Mγ(i)|Λ(s) =

q
∏

j1=1

(

1 +
a2sαj γ̄jλj1

Z1 + Z2λj1

)−Nj

, (35)

where λj1 = l2j1 and Λ = diag(λ1, λ2 . . . , λq). The joint
distribution of the eigenvalues ofHH

i Hi can be written as
[20, Eq. (2.22)]

fΛ (λ1, λ2 . . . , λq)=κ
−1

q
∏

j1<j2

(λj2−λj1)
2

q
∏

k=1

λp−q
k exp(−λk),

(36)
whereλ1 > λ2 > · · · > λq > 0. By averaging (35) overΛ,
with the help of (36) and [16, Corollary 2], we have

Mγ(i)(s) = κ−1 det (J(s)) , (37)
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whereκ =
∏q

l=1 Γ(p− l + 1)Γ(q − l + 1) andJ(s) is aq×q
Hankel matrix with(t, v)-th element

Jtv(s)=

∫ ∞

0

λνtv−1





(

1 + Z2

Z1
λ
)

1 + Z2

Z1
λ
(

1 +
a2sαj γ̄j

Z2

)

λ





Nj

exp(−λ)dλ.

(38)
After solving the integral in (38) by using [18, Eq. (3.383.5)],
we obtain (25).

APPENDIX II
PROOF OFTHEOREM 2

It can be seen from [21, Eqs. (13.5.6), (13.5.9),
and (13.5.12)] that the confluent hypergeometric function
U(a1, b1, z) of the second kind can be asymptotically approx-
imated forz ≪ 1 (small z) as

U(a1, b1, z) ≈











Γ(b1−1)
Γ(a1)

z1−b1 , if b1 ≥ 2,

− 1
Γ(a1)

(ln z +Ψ(a1)) , if b1 = 1,
Γ(1−b1)

Γ(1+a1−b1)
, if b1 ≤ 0,

(39)

whereΨ(·) is the digamma function [21] anda1 > 0. We
consider the case when min(Nr, Ni) = 1 andp < Nj . In this
case, the m.g.f. of the received SNR of the ML decoder can
be expressed using (24) as

Mγ(i)(s)=

∑p−1
k=0 φ(k, s)+φ(p, s)+

∑Nj

k=p+1 φ(k, s)
(

1 +
a2sαj γ̄j

Z2

)p+Nj
(

Z2

Z1

)p
, (40)

whereφ(k, s)= (
Nj

k )
(

a2sαj γ̄j

Z2

)k

Γ(p)U

(

p, p+1−k, Z1Z
−1
2

(1+
a2αjsγ̄j

Z2
)

)

.

Let us assume that̄γ1 = γ̄2 = γ̄ (all links are identically
distributed) andb = βγ̄, β ∈ R+, for diversity calculations.
It can be shown from (2) thata2 = β/(2NrT ), for very large
values ofγ̄. Therefore, for|s|γ̄ ≫ 1 (largesγ̄), from (39) and
(40), we have
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p−1
∑

k=0

φ(k, s) ≈
(

a2αj γ̄s

Z2

)p p−1
∑

k=0

(
Nj

k )Γ(p− k) ,

φ(p, s) ≈
(

a2αj γ̄s

Z2

)p

(Nj

p )

(

−Ψ(p)+lnαj+ln s+ln
a2γ̄

Z2

)

,

Nj
∑

k=p+1

φ(k, s) ≈
Nj
∑

k=p+1

(

a2αj γ̄s

Z2

)k

(
Nj

k )
Γ(k − p)Γ(p)

Γ(k)
,

(41)
whereαj , a, Z1, andZ2 are independent ofs and γ̄. Taking
the most dominant power ofsγ̄ in (41), the m.g.f., given in
(40), can be approximated for largesγ̄ asMγ(i)(s) ≈ η1

(sγ̄)p ,
where η1 is a constant independent ofs and γ̄. Hence, the
diversity order of the ML decoder isp for min(Nr, Ni) = 1
andp < Nj. Formin(Nr, Ni) = 1 andp ≥ Nj , we can obtain
the approximate m.g.f. by a method similar to that forp < Nj

asMγ(i)(s) ≈ η2/(sγ̄)
Nj , whereη2 is a constant independent

of s and γ̄, resulting in a diversity order ofNj .
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