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Abstract

This paper introduces an improved variational bayes (Improved-VB) receiver algorithm for joint

signal detection, noise covariance matrix estimation and channel impulse response (CIR) tracking

in MIMO-OFDM systems over time varying channels. The variational bayes (VB) framework and

turbo principle are combined to accomplish the parameter estimation and data detection. In the pro-

posed Improved-VB receiver, a modified linear minimum mean-square-error interference cancellation

(LMMSE-IC) soft detector is developed based on the VB theory, which adaptively sets the log-likelihood

ratio (LLR) clipping value according to the reliability of detection on each subcarrier to mitigate the error

propagation. Following the signal detection, an adaptive noise covariance matrix estimator is derived for

the effective noise covariance estimation. Furthermore, in order to track time varying channels, a VB soft-

input Kalman filter (VB-Soft-KF) is first derived. However, unreliable soft symbols introduce outliers,

which degrade the performance of VB-Soft-KF. To tackle this problem, we propose a robust VB soft-

input Kalman filter (VB-Robust-KF) based on the Huber M estimation theory. Finally, the performance

The material has been presented in parts at IEEE PIMRC 2010, Istanbul, Turkey, Sep. 26-30. This work has been supported in

part by the National Natural Science Foundation of China under Grant 61101096, 61372099 and the Hunan Provincial Natural

Science Foundation of China under Grant 11jj4055.

X. Zhang, D. Ma and J. Wei are with the School of Electronic Science and Engineering, National University of Defense

Technology, P. R. China (e-mail: zxy_nudt@163.com, Dongtangma@nudt.edu.cn, windflow_cfd@163.com).

P. Xiao is with the center of communication systems research (CCSR), University of Surrey, Guilford, Surrey, GU2 7HX,

UK (e-mail: p.xiao@surrey.ac.uk).

April 22, 2014 DRAFT



2

of the proposed algorithm is assessed via simulations, showing superior performance compared to the

other benchmark receiver algorithms.

Index Terms

MIMO-OFDM, variational bayes (VB) algorithm, kalman filter, error propagation

I. INTRODUCTION

Multiple-Input-Multiple-Output (MIMO) and Orthogonal Frequency-Division Multiplexing (OFDM)

are effective techniques for high data rate transmission. One of the important advantages of

OFDM is its robustness to frequency-selective channels [1]. Multiple antennas can be used in

conjunction with OFDM to improve the channel capacity and quality of communication systems

[2]. MIMO-OFDM has been adopted in many wireless communication standards, such as the

Worldwide Interoperability for Microwave Access (WiMAX) IEEE 802.16 e/m standard and

the Third Generation Partnership Project long term evolution (3GPP LTE). All these emerging

wireless systems are expected to offer both the high data rate and high-mobility transmissions.

For example, LTE Release 10 promises to support a peak data rate of 100Mbps for high mobility

up to 350 km/h. The high vehicular speeds of the user terminals make the channels subjected

to significant time selectivity, rendering channel estimation a challenging task. The traditional

pilot aided channel estimation algorithms need an abundance of extra resources to transmit pilot

symbols to track the fast fading channels, which may significantly reduce the spectral efficiency

and the data transmission rate.

In order to save the pilot overhead and improve the efficiency of communications, joint

detection and channel estimation schemes have received considerable attentions [3]–[5]. In

these schemes, pilot symbols are used to obtain initial channel estimation; the hard or soft

decision symbols are exploited to re-estimate the channels which in turn refine the data detection.

The performance of channel estimation and data detection is improved in an iterative manner.

For example, the QR-decomposition (i.e., orthogonal triangular decomposition) M (QRD-M)

algorithm combined with a decision-directed (DD) Kalman channel estimator was proposed for

MIMO-OFDM systems in [3]. In [4], Kashima et al. developed iterative receivers which employ

the data-aided recursive least squares (RLS) algorithm to improve the channel tracking capability.

In the above mentioned schemes, hard decision symbols are used for channel estimation, which
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are sensitive to error propagation as a result of erroneous detection. The receiver algorithm in

[5] considered the soft DD channel estimation by employing the expectation maximization (EM)

algorithm. However, as reported in [6]–[8], both soft and hard DD channel tracking methods

are susceptible to error propagation, especially in fast fading channels. Furthermore, the noise

variance is usually assumed to be known to the receiver, which may not be a realistic assumption

in many practical situations.

It is well known that the optimal joint estimation of multiple parameters is intractable in

most applications, necessitating the use of alternative suboptimal approaches. The Variational

Bayes (VB) algorithm [9] effectively solves this problem by iteratively finding the optimal set

of marginal distributions in the sense of minimizing the Kullback-Leibler (KL) distance. In [10]

and [11], variational inference theory was applied to derive iterative receiver for Code-Division

Multiple Access (CDMA) systems. The VB algorithm was also applied to joint data detection and

channel estimation for single-input single-output OFDM systems [12], [13] and MIMO-OFDM

systems [14]. We have studied the VB assisted iterative receiver with joint data detection and

channel estimation for MIMO-OFDM systems in [15]–[18]. In [12]–[18], after applying the

VB algorithm, the soft symbols and the corresponding estimation variances calculated from the

signal detector were fed to the channel estimators. However, in the case of fast fading, the initial

channel estimates used by the detectors may be poor, leading to unreliable soft symbol estimates,

which in turn degrade the channel estimation performance and give rise to error propagation.

To overcome the shortcomings of the conventional VB receiver, we propose an Improved-VB

receiver algorithm for joint data detection, noise covariance estimation and channel estimation,

which can combat the error propagation effectively. The proposed VB receiver achieves a reliable

system performance over fast fading channels even in the case where only one training symbol

is transmitted at the start of the data frame with moderate length. It provides an efficient solution

for high data rate and high-mobility wireless transmissions. The main contributions of this paper

are listed as follows.

Firstly, a modified linear minimum mean-square-error interference cancellation (MLMMSE-

IC) detector is derived based on the VB theory for data detection. In contrast to the conventional

LMMSE-IC detector [19], [20], the MLMMSE-IC detector takes into account the mean square

error matrix of the channel estimation to combat the channel uncertainty. Furthermore, to reduce

the effect of error propagation, we introduce a log likelihood ratio (LLR) clipping component in
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the MLMMSE-IC detector at the first turbo iteration. This component sets the upper bound of

the LLRs according to the reliability measure of data detection, i.e., the estimated minimum bit

error probability (BEP) at each subcarrier. Simulation results show that the proposed MLMMSE-

IC algorithm is more robust to the channel uncertainty and achieves better performance than its

conventional counterpart.

Secondly, we propose an algorithm for estimating the effective noise covariance matrix for

each subcarrier under the VB framework. This algorithm can adaptively track the effective noise

covariance matrix and account for the residual spatial interference, thermal noise and uncertainties

from channel estimation and symbol detection. Note that, in the related previous work, noise is

often assumed to be additive white Gaussian noise with constant variance [12], [13], [15]–[18],

or remain stationary during one data frame [11], [14]. Similar noise variance tracking method

was proposed in [21] which, however, only considers the covariance matrix caused by channel

estimation errors while neglecting the one caused by the signal detection error. Simulation results

show that the proposed noise estimation algorithm is effective in mitigating error propagation.

Thirdly, a robust version of the VB soft-input Kalman filter (VB-Soft-KF) algorithm, called

VB-Robust-KF algorithm, is proposed based on the robust statistical theory [22] to reduce the

effect of unreliable soft symbols in fast fading channels. As shown in [6]–[8], the VB-Soft-

KF algorithm suffers from unreliable soft symbols, which are regarded as outliers in the KF

algorithm. To solve this problem, we derive an equivalent observation equation for the VB-

Soft-KF algorithm, which allows reformulating the VB-Soft-KF in a similar way to that for the

standard KF. This enables us to extend the robust standard KF [23]–[25] to the VB-Robust-KF

under the VB framework. Note that a similar approach of setting equivalent observation equation

is also applied to the VB based data detection in this paper and to derive the soft-input Kalman

filter in [5].

The rest of the paper is organized as follows. In Sec. II, the system and channel models

under investigation are presented. Sec. III describes the algorithm for joint data detection,

noise covariance estimation and channel estimation under the VB framework. Sec. IV shows

the performance results obtained by simulations. Finally, conclusions are drawn based on the

presented results in Sec. V.

Notations: IN denotes an identity matrix of dimension N×N . The element at the i-th row and

the j-th column of matrix X(n) is denoted as [X(n)](i,j), the i-th row of matrix X(n) is denoted
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as [X(n)](i,:), and the i-th element of the vector x(n, k) is denoted by [x(n, k)](i); Tr{·} denotes

the trace operation, diag(x) represents a diagonal matrix with the diagonal elements taken from

the vector x, Diag(X) denotes a diagonal matrix with its diagonal elements the same as that of

X; ⊗ represents the kronecker product. CN(m,C) denotes the complex, circularly symmetric,

multivariate Gaussian probability density function (pdf) with mean m and a covariance matrix

C. EP (x){f(x)} denotes the expectation of the function f(x) with respect to the pdf P (x). The

proportionality x ∝ y denotes x = αy, where α is a scalar.

II. SYSTEM DESCRIPTION

First, let us consider a MIMO-OFDM system with Nt transmit antennas, Nr receive antennas

and K subcarriers. There are Ns OFDM symbols in a transmission frame. The transmitter

structure is shown in Fig. 1. The input information sequence is first encoded and then bit-wise

interleaved. Every mc-tuple interleaved binary code bits are mapped to a symbol chosen from

the complex-valued finite alphabet Ω with 2mc possible signal points. The complex symbols

are demultiplexed into Nt sub-streams through the serial-to-parallel (S/P) converter. The symbol

vector xt(n) = [xt(n, 0), · · · , xt(n,K − 1)]T is transmitted through the t-th antenna after OFDM

modulation. The length of cyclic prefix (CP) is LCP .

The channel is a frequency-selective fading channel, and is assumed to remain constant during

an OFDM symbol period Ts , but varies from one OFDM symbol to another. The discrete channel

impulse response (CIR) from the t-th transmit antenna to the r-th receive antenna during the

n-th OFDM symbol is expressed as

hr,t(n) = [hr,t(n, 0), · · · , hr,t(n, L− 1)]T , (1)

where L is the channel delay spread (L ≤ LCP ). We assume that the channel correlation can be

described by the autoregressive (AR) filter of order one [5], i.e.,

hr(n + 1) = Ahr(n) + v(n), (2)

where hr(n) =
[

hT
r,1(n), · · · ,h

T
r,Nt

(n)
]T

, v(n) is an NtL × 1 complex white Gaussian vector

which excites the AR filter, and A is an NtL×NtL diagonal matrix containing the AR parameters.

The received signal at the r-th receive antenna after CP removal and discrete fourier transform
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(DFT) operation is given as

yr(n) =
Nt
∑

t=1

Xt(n)Fhr,t(n) + ωr(n)

= X(n)Whr(n) + ωr(n),

(3)

where yr(n) = [yr(n, 0), · · · , yr(n,K − 1)]T is a K-dimensional frequency domain observation

vector, X(n) = [X1(n), · · · ,XNt(n)] is constructed from Xt(n) = diag(xt(n)), which contains

the symbols transmitted from the t-th transmit antenna. In (3), F is constructed by the first

L columns of the K × K DFT matrix and W = INt ⊗ F, ωr(n) ∼ CN(0,Σ(n)) is a K-

dimensional Gaussian noise vector, where Σ(n) is a K × K diagonal matrix with the k-th

diagonal element σ2(n, k), 0 ≤ k ≤ K − 1, which denotes the variance of the noise on the k-th

subcarrier over the n-th OFDM symbol. Let’s define x(n) = [xT
1 (n), · · · ,x

T
Nt
(n)]T and Hr(n) =

[diag(Fhr,1(n)), · · · , diag(Fhr,Nt(n))]. It can be shown that yr(n) can also be expressed as

yr(n) = Hr(n)x(n) + ωr(n). (4)

Denoting y(n, k) = [y1(n, k), · · · , yNr(n, k)]
T as the received signals at the k-th subcarrier

from all receive antennas, we have

y(n, k) = H(n, k)x(n, k) + ω(n, k), (5)

where ω(n, k) is a Nr × 1 complex Gaussian noise vector, x(n, k) = [x1(n, k), · · · , xNt(n, k)]
T

is the transmitted signals at the k-th subcarrier from all the transmit antennas, and

H(n, k) =











H1,1(n, k) · · · H1,Nt(n, k)
...

. . .
...

HNr ,1(n, k) · · · HNr,Nt(n, k)











.

III. JOINT SIGNAL DETECTION, NOISE COVARIANCE ESTIMATION AND

CHANNEL TRACKING

In this section, we derive the algorithm for achieving joint signal detection, noise covariance

estimation and channel tracking based on the VB algorithm.

Let Φ = {αl}
m
l=1 denote the vector containing all the unknown parameters to be estimated.

Let P (Φ |θ ) = P (α1, · · · ,αm |θ ) denote the joint posterior distribution of Φ, given the ob-

servation θ. Since the optimal joint maximum a posteriori probability (MAP) estimation is
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usually too complicated to implement in practice, feasible suboptimal algorithms are therefore

desirable. In this paper, we introduce the VB algorithm which approximates P (Φ |θ ) by an

auxiliary distribution P̂ (Φ), i.e., P̂ (Φ) =
∏m

l=1 P̂ (αl) under the mean-field approximation [9].

By minimizing the Kullback-Leibler (KL) divergence between P (Φ |θ ) and P̂ (Φ), the optimized

marginal distribution P̂ (αj), j = 1, · · · , m, can be obtained by the following equations [12] (up

to some additive constant)

ln P̂ (αj) = EP̂ (Φ/j)
{lnP (α1 · · ·αm |θ )}

=

∫

∏m

l=1,l 6=j
P̂ (αl) lnP (α1 · · ·αm |θ )dΦ/j ,

(6)

where P̂ (Φ/j) =
∏m

l=1,l 6=j P̂ (αl). A closed form derivation of (6) is intractable, as such the

optimal set of marginal distributions has to be found iteratively by alternately minimizing the

KL divergence with respect to one of the distribution P̂ (αj), while retaining the other marginal

distributions P̂ (Φ/j) fixed. The iterative VB algorithm is at least guaranteed to converge to

a local optimal value [26]. In the context of this work, the observations of the first n OFDM

symbols are Yn
0 = {Y(l)}nl=0 , where Y(l) = {y1(l), · · · ,yNr(l)} and yr(l) is given by (3). The

unknown parameters to be estimated include the transmitted data X(n), the channel coefficients

h(n) = {hr(n)}
Nr
r=1 and the inverse of noise covariance matrix Σ−1(n). After ignoring the terms

independent of the unknown parameters, the joint posterior pdf P (X(n),h(n),Σ−1(n) |Yn
0 ) can

be factorized as

P (X(n),h(n),Σ−1(n) |Yn
0 )

∝ P
(

Y(n) |X(n),h(n) ,Σ−1(n)
)

P (X(n)
∣

∣Yn−1
0 )P (Σ−1(n)

∣

∣Yn−1
0 )P (h(n)

∣

∣Yn−1
0 ).

(7)

By invoking the VB algorithm, we can approximate P (X(n),h(n),Σ−1(n) |Yn
0 ) as

P (X(n),h(n),Σ−1(n) |Yn
0 ) ≈ P̂ (X(n))P̂ (h(n))P̂ (Σ−1(n)),

where P̂ (X(n)), P̂ (h(n)) and P̂ (Σ−1(n)) represent the approximations of the true marginal dis-

tributions P (X(n) |Yn
0 ), P (h(n) |Y

n
0 ), and P (Σ−1(n) |Yn

0 ), respectively. Next we shall describe

our proposed algorithm in detail.

A. Signal Detection

According to (6), P̂ (X(n)) can be estimated based on the fixed distributions P̂ (h(n)) and

P̂ (Σ−1(n)) by solving the equation

ln P̂ (X(n)) = EP̂ (h(n))EP̂ (Σ−1(n))

[

lnP (X(n),h(n),Σ−1(n) |Yn
0 )
]

. (8)
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Using (7) and assuming X(n) is independent of Yn−1
0 , (8) can be reformed as

ln P̂ (X(n)) = lnP a(X(n)) + EP̂ (h(n))EP̂ (Σ−1(n))

[

lnP (Y(n) |X(n),h(n) ,Σ−1(n))
]

, (9)

where P a (·) denotes the prior distribution, which is computed from the SISO channel decoder.

Using (3), the log-likelihood function (LLF) in (9) can be expressed as

lnP (Y(n) |X(n),h(n), Σ−1(n))

= Nr ln
(
∣

∣Σ−1(n)
∣

∣

)

−
Nr
∑

r=1

{

[yr(n)−X(n)Whr(n)]
H
Σ−1(n) [yr(n)−X(n)Whr(n)]

}

,
(10)

up to some constant additive term. Assume that P̂ (h(n)) has a joint Gaussian distribution with

mean {ĥr(n)}
Nr
r=1 and covariance matrix {Ξr(n)}

Nr
r=1, and let Σ̂−1(n) = EP̂ (Σ−1(n)) [Σ

−1(n)] be

a diagonal matrix with diagonal elements σ̂−2(n, k), 0 ≤ k ≤ K − 1. Furthermore, we assume

that the transmitted symbols on different subcarriers are uncorrelated. Then, it can be shown

from (9) that P̂ (X(n)) can be decoupled into subcarrier components as

P̂ (X(n)) =
K−1
∏

k=0

P̂ (x(n, k)).

For the k-th subcarrier, ln P̂ (x(n, k)) can be written as

ln P̂ (x(n, k)) = lnP a(x(n, k)) + ELLF (x(n, k)) (11)

with

ELLF (x(n, k)) =
−1

σ̂2(n, k)

{

∥

∥

∥
y(n, k)− Ĥ(n, k)x(n, k)

∥

∥

∥

2

+ xH(n, k)Q(n)x(n, k)

}

. (12)

where ELLF (x(n, k)) represents the expectation of LLF at the k-th subcarrier with respect to

P̂ (h(n)) and P̂ (Σ−1(n)). In (12), Ĥ(n, k) is the mean of H(n, k) and its element Ĥr,t(n, k)

can be calculated from the DFT of ĥr(n). The matrix Q(n) is given by

Q(n) =

Nr
∑

r=1













[

Ξ̈r
(1,1)(n)

]

(k,k)

[

Ξ̈r
(2,1)(n)

]

(k,k)
· · ·

[

Ξ̈r
(Nt,1)

(n)
]

(k,k)
[

Ξ̈r
(1,2)(n)

]

(k,k)

. . .
...

[

Ξ̈r
(1,Nt)

(n)
]

(k,k)
· · ·

[

Ξ̈r
(Nt,Nt)

(n)
]

(k,k)













, (13)

where Ξ̈r
(t,t′)(n) = FΞ(r,t);(r,t′)(n)F

H denotes the frequency-domain mean square error (MSE)

matrix and Ξ(r,t);(r,t′)(n) = E{[hr,t(n)− ĥr,t(n)][hr,t′(n)− ĥr,t′(n)]
H
} denotes the time-domain

MSE matrix , whose elements are given by [Ξ(r,t);(r,t′)(n)](i,j) = [Ξr(n)]((t−1)L+i,(t′−1)L+j) for
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1 ≤ i, j ≤ L. Detailed derivations for (11) can be found in Appendix A. Note that {Ξr(n)}
Nr
r=1

represents the estimation errors of the CIRs, thus the uncertainties of the channel state information

are incorporated in LLF for data detection. The computation of {Ξr(n)}
Nr
r=1 is described in details

in Section III-C.

Based on the variational inference interpretation of the LMMSE-IC detector [10] and (11),

we are ready to derive a modified LMMSE-IC (MLMMSE-IC) detector which considers the

covariance matrix of channel estimation. To detect the t-th transmitted signal xt(n, k) on the

k-th subcarrier, we first ignore the prior information of xt(n, k) and approximate the prior

distribution of x(n, k) to be Gaussian, i.e.,

P a(x(n, k)) = CN(x̄(n,k), Γ̄(n,k)), (14)

where x̄(n,k) = [x̄
(n,k)
1 , · · · , x̄

(n,k)
t−1 , 0, x̄

(n,k)
t+1 , · · · , x̄

(n,k)
Nt

], Γ̄(n,k) = diag([Var(x1(n, k)), · · · ,

Var(xt−1(n, k)), 1, Var(xt+1(n, k)), · · ·Var(xNt(n, k))]. The prior expectation x̄
(n,k)
i and the cor-

responding variance Var(xi(n, k)), 1 ≤ i ≤ Nt, can be found to be

x̄
(n,k)
i =

∑

xm∈Ω

xmp
a(xi(n, k) = xm), (15)

Var(xi(n, k)) =
∑

xm∈Ω

∣

∣

∣
xm − x̄

(n,k)
i

∣

∣

∣

2

pa(xi(n, k) = xm), (16)

where pa(xi(n, k)) denotes the a priori probability mass function (pmf) of xi(n, k). Under the

assumption that xi(n, k) is mapped from bits [b1i , · · · , b
mc
i ], pa(xi(n, k)) can be written as

pa(xi(n, k)) =
∏mc

m=1
pa(bmi ), (17)

where pa(bmi ) denotes the a priori pmf of bit bmi which is obtained from the channel decoder.

Substituting (14) in (11), the posterior distribution of x(n, k), which does not consider the prior

information of xt(n, k), can be written as

P (x(n, k)) = CN(
⌣
x
(n,k)

,Γ(n,k)). (18)

In (18), the covariance matrix Γ(n,k) is obtained by taking the second derivative of (11) with

respect to x(n, k), which is given by

Γ(n,k) =

[

1

σ̂2(n, k)

(

Ĥ(n, k)HĤ(n, k) +Q(n)
)

+
(

Γ̄(n,k)
)−1

]−1

, (19)
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The mean
⌣
x
(n,k)

is obtained by setting the first order partial derivative of (11) with respect to

the x(n, k) to zero, which is written as

⌣
x
(n,k)

= Γ(n,k)

(

1

σ̂2(n, k)
Ĥ(n, k)Hy(n, k) +

(

Γ̄(n,k)
)−1

x̄(n,k)

)

. (20)

Note that, by setting y
(n,k)
eq = [y(n, k)T0T

Nt×1]
T and Ĥ

(n,k)
eq = [ Ĥ(n, k)T

√

Q(n)
T
]T , the

following equivalent observation equation has the same LLF as (12) (up to some additive

constant)

y(n,k)
eq = Ĥ(n,k)

eq x(n, k) +̟
′(n, k), (21)

where ̟
′(n, k) ∼ CN(0(Nt+Nr)×1, σ̂

2(n, k)I) is the virtual noise vector at the k-th subcarrier.

Based on (21), it can be shown that (19) and (20) can also be obtained by the conventional

interference cancellation (IC) and LMMSE filtering process [19], i.e.,

Γ(n,k) =

[

1

σ̂2(n, k)

(

Ĥ(n,k)
eq

)H

Ĥ(n,k)
eq +

(

Γ̄(n,k)
)−1

]−1

, (22)

⌣
x
(n,k)

= x̄(n,k) + Γ̄(n,k)
(

Ĥ(n,k)
eq

)H

·

[

σ̂2(n, k)I+ Ĥ(n,k)
eq Γ̄(n,k)

(

Ĥ(n,k)
eq

)H
]−1

(y(n,k)
eq − Ĥ(n,k)

eq x̄(n,k)). (23)

Let [
⌣
x
(n,k)

]t denote the t-th element of
⌣
x
(n,k)

and [Γ(n,k)]t,t denote the t-th diagonal element of

Γ(n,k), the marginal distribution of xt(n, k) can be written as

P (xt(n, k)) = CN([
⌣
x
(n,k)

]t, [Γ
(n,k)]t,t). (24)

Since (24) is derived without using the prior information of xt(n, k), we have

P (y(n, k) |xt(n, k)) ∝ P (xt(n, k)). (25)

Using Bayes’s rule, we can further express the posterior distribution of xt(n, k) as

P̂ (xt(n, k)) = P (y(n, k) |xt(n, k))p
a(xt(n, k)). (26)

After deriving P̂ (xt(n, k)), the mean and variance of xt(n, k) can be calculated, respectively, as

x̂t(n, k) =
∑

x∈Ω

xP̂ (xt(n, k) = x) , (27)

ε2t (n, k) = EP̂ (xt(n,k))
{|xt(n, k)− x̂t(n, k)|

2}, (28)
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where x̂t(n, k) represents the soft symbol estimation of xt(n, k), the corresponding MSE ε2t (n, k)

indicates the uncertainty of the soft symbol. The extrinsic LLRs of the coded bits Le(bmt ),

1 ≤ m ≤ mc, can be computed as

Le(bmt ) = ln

∑

xt∈Ω
+
m

P (y(n, k) |xt(n, k))p
a(xt(n, k))

∑

xt∈Ω
−

m

P (y(n, k) |xt(n, k))pa(xt(n, k))
− ln

pa(bmt = 1)

pa(bmt = −1)

= ln

∑

xt∈Ω
+
m

P̂ (xt(n, k))
mc
∏

i=1,i 6=m

pa(bit)

∑

xt∈Ω
−

m

P̂ (xt(n, k))
mc
∏

i=1,i 6=m

pa(bit)
,

where Ω+
m and Ω−

m denote the subsets of Ω with bmt = +1 and bmt = −1, respectively. The

exchange of extrinsic information between the MLMMSE-IC detector and channel decoder

obeys turbo principle, as depicted in Fig. 2. At each iteration, the SISO decoder takes in the

deinterleaved extrinsic LLRs Le(b) for the coded bits b from the SISO detector and computes

the updated extrinsic LLRs Le
Dec(b), which is then interleaved and sent back to the SISO detector

as the a priori information La(b) for the next turbo iteration.

In the first turbo iteration, La(b) = 0 and x̄(n,k) = 0Nt×1. In this case, as seen in (22) and

(23), the MLMMSE-IC detector degenerates to a MMSE linear soft detector based on effective

observation model (21). We can estimate the detector’s performance at the k-th subcarrier by

evaluating its BEP. According to [27], the maximum output Signal-to-Noise Ratio (SNR) of the

MMSE data estimate [
⌣
x
(n,k)

]t, 1 ≤ t ≤ Nt, at the k-th subcarrier can be calculated as

γ(n,k)max =
1

min
1≤t≤Nt







[

(

I+ 1
σ̂2(n,k)

(

Ĥ
(n,k)
eq

)H

Ĥ
(n,k)
eq

)−1
]

t,t







− 1. (29)

Based on (29), the minimum BEP in the case of QPSK modulation can be obtained as [28]

P
(n,k)
min = P b

QPSK ≈
1

2
erfc

(
√

γ
(n,k)
max /2

)

.

In the case of 16QAM modulation, the minimum BEP can be approximated as [28]

P
(n,k)
min = P b

16QAM ≈
1

4

[

1− (1− P s
4PAM)2

]

,

where P s
4PAM = 3

4
erfc

(

√

γ
(n,k)
max /10

)

denotes the symbol error rate of 4PAM modulation with

SNR γ
(n,k)
max . In order to reduce the error propagation, it is desirable to limit the magnitude of the
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LLRs calculated from those subcarriers with high estimated BEP. Note that the error probability

of bit b with a posteriori LLR L(b) can be written as [29]

P b(b) = (1 + exp(|L(b)|))−1. (30)

With (30) and using P
(n,k)
min as the reliability measure of the detector, we can adaptively set the

LLR clipping value L
(n,k)
c for the kth subcarrier as

L(n,k)
c = ln(1

/

P
(n,k)
min − 1). (31)

Note that this LLR clipping value is only used in the first turbo iteration because, in this case,

there is no feedback information from channel decoder and the channel estimation results are

usually poor. The possible over-optimistic LLRs need to be constrained to an appropriate level

by the clipping value. After the first turbo iteration, clipping is no longer applied in order to

fully utilize channel decoder’s error correction capability. In the rest of this paper, we will use

MLMMSE-IC to represent the proposed modified LMMSE-IC detector with LLR clipping at the

first iteration.

B. Estimation of Noise Covariance Matrix Distribution

According to (6) and (7), P̂ (Σ−1(n)) is updated based on the fixed P̂ (X(n)) and P̂ (h(n)) as

ln P̂ (Σ−1(n)) = EP̂ (h(n))EP̂ (X(n))

[

lnP (X(n),h(n),Σ−1(n) |Yn
0 )
]

= lnP (Σ−1(n)
∣

∣Yn−1
0 ) + EP̂ (h(n))EP̂ (X(n))

[

lnP (Y(n)
∣

∣X(n),h(n),Σ−1(n))
]

.

(32)

In (32), the expectation of LLF with respect to the distribution function P̂ (h(n)) and P̂ (X(n))

can be expressed as

EP̂ (h(n))EP̂ (X(n))

[

lnP (Y(n)
∣

∣X(n),h(n),Σ−1(n))
]

= Nr ln
(
∣

∣Σ−1(n)
∣

∣

)

− Tr
[

Σ−1(n)Θ
]

,

(33)
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where

Θ =

Nr
∑

r=1







[

yr(n)−

Nt
∑

t=1

X̂t(n)Fĥr,t(n)

][

yr(n)−

Nt
∑

t=1

X̂t(n)Fĥr,t(n)

]

H

+
Nt
∑

t=1

Nt
∑

t′=1

X̂t(n)Ξ̈
r
(t,t′)(n)X̂

H
t′ (n) +

Nt
∑

t=1

Diag

(

Fĥr,t(n)ĥ
H
r,t(n)F

H
)

Dt(n)

+

Nt
∑

t=1

Diag

(

Ξ̈r
(t,t)(n)

)

Dt(n)

}

,

(34)

with Dt(n) = diag ([ε2t (n, 0), · · · , ε
2
t (n,K − 1)]) and X̂t(n) = EP̂ (X(n))[Xt(n)] , which can be

computed from (27-28). The mean ĥr,t(n) and covariance matrix Ξ̈r
(t,t′)(n) can be obtained from

P̂ (h(n)). The detailed derivations are given in Appendix B.

Assume P (Σ−1(n)
∣

∣Yn−1
0 ) obeys the Wishart distribution [11] as P (Σ−1(n)

∣

∣Yn−1
0 ) ∼

WK(õn, Σ̃
−1(n)/õn), i.e.,

ln
(

P
(

Σ−1(n)
∣

∣Yn−1
0

))

∝ (õn −K − 1) ln
∣

∣Σ−1(n)
∣

∣− Tr[õnΣ̃(n)Σ−1(n)], (35)

where WK(o,Σ) denotes a Wishart distribution with the K×K precision matrix Σ and o degree

of freedom. Upon applying (33) and (35) to (32), we can show that P̂ (Σ−1(n)) also follows the

Wishart distribution P̂ (Σ(n)−1) ∼WK(on, Σ̂
−1(n)/on), where

on = õn +Nr,

Σ̂−1(n) =
on

Θ+ õnΣ̃(n)
.

(36)

Let P̂ (Σ−1(n− 1)) ∼ WK(on−1, Σ̂
−1(n− 1)/on−1) be the pdf of the inverse noise covariance

matrix corresponding to the (n− 1)th OFDM symbol. A heuristic dynamics [21] is adopted to

perform the one-step prediction of the inverse noise covariance matrix by assuming õn = on−1

and Σ̃−1(n) = Σ̂−1(n− 1), n = 1, · · · , Ns.

With the aid of the above approach, we have completed the update-prediction procedure for

the effective noise covariance matrix. It can be shown from (34) that the proposed approach takes

into account the residual spatial interference covariance matrix, the MSE matrices of estimation

caused by the imperfect channel estimation, signal detection as well as their combined effects.

As will be shown in our simulations, the effective noise estimation plays an important role to

mitigate the effect of error propagation, and it can also be regarded as a reliability indicator,

from which we can estimate the BEP of the detector at each subcarrier.
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C. Tracking of Channel Impulse Response

Similar to (32), the distribution of CIR h(n) is updated based on (6), while keeping the

distributions P̂ (X(n)) and P̂ (Σ−1(n)) fixed, we have

ln P̂ (h(n)) = EP̂ (X(n))EP̂ (Σ−1(n))

[

lnP
(

X(n),h(n),Σ−1(n) |Yn
0

)]

= lnP (h(n)
∣

∣Yn−1
0 ) + EP̂ (X(n))EP̂ (Σ−1(n))

[

lnP (Y(n)
∣

∣X(n),h(n),Σ−1(n))
]

.

(37)

Using the relationship Hr(n)x(n) = X(n)Whr(n) and discarding the terms irrelevant to hr(n),

the expectation of the LLF in (37) can be derived as

EP̂ (X(n))EP̂ (Σ−1(n))

[

lnP
(

Y(n) |X(n),h(n) ,Σ−1(n)
)]

∝− EP̂ (X(n))

{

Tr

[

Nr
∑

r=1

Σ̂−1(n) (yr(n)−Hr(n)x(n)) (yr(n)−Hr(n)x(n))
H

]}

∝−

Nr
∑

r=1

[

(

yr(n)− X̂(n)Whr(n)
)H

Σ̂−1(n)
(

yr(n)− X̂(n)Whr(n)
)

+hr
H(n)WH

(

INt ⊗ Σ̂−1(n)
)

D(n)Whr(n)

]

,

(38)

where X̂(n) = EP̂ (X(n))[X(n)], the element of which can be obtained from (27); D(n) is the

covariance matrix of x(n) and can be expressed as

D(n) = EP̂ (X(n)){[x(n)− x̂(n)][x(n)− x̂(n)]H}

= diag([ε21(n, 0), · · · , ε
2
1(n,K − 1), · · · , ε2Nt

(n, 0) · · · ε2Nt
(n,K − 1)]),

(39)

where ε2t (n, k) is given by (28). From (38) one can see that the uncertainties of data detection

are considered in the channel estimation under the VB framework. As exact derivation of (37)

is intractable, we adopt the Gaussian distribution to approximate P (h(n)
∣

∣Yn−1
0 ) [12] in (37),

yielding

lnP (h(n)
∣

∣Yn−1
0 ) ∝ −

Nr
∑

r=1

[hr(n)− hr(n |n− 1)]HΞ−1
r (n |n− 1)[hr(n)−hr(n |n− 1)], (40)

where hr(n |n− 1) is the conditional mean of hr(n) given the observations up to the (n −

1)th OFDM symbol; Ξr(n |n− 1) = E
[

(hr(n)− hr(n |n− 1))(hr(n)− hr(n |n− 1))H
]

is

the corresponding MSE matrix, which represents the initial channel estimation error induced by

the inaccurate prediction. After substituting (38)-(40) to (37), we can show that P̂ (h(n)) is also
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joint Gaussian distribution with the pdf P̂ (h(n)) =
Nr
∏

r=1

CN
(

ĥr(n),Ξr(n)
)

. Therefore, P̂ (h(n))

can be obtained by the VB soft-input Kalman filter (VB-Soft-KF) algorithm [15], which can be

described as follows: for the r-th receiver antenna , r = 1, · · · , Nr, compute

Ξr(n) =
[

Ξ−1
r (n |n− 1) +WHX̂(n)HΣ̂−1(n)X̂(n)W

+ WH(INt ⊗ Σ̂−1(n))D(n)W
]−1

(41)

ĥr(n) = Ξr(n)
[

Ξ−1
r (n |n− 1)hr(n |n− 1) +WHX̂(n)HΣ̂−1(n)yr(n)

]

(42)

hr(n+ 1 |n) = Aĥr(n) (43)

Ξr(n+ 1 |n) = AΞr(n)A
H +Rv. (44)

When the time-varying channels change significantly between consecutive OFDM symbols,

the channel prediction may be poor which degrades the performance of the signal detector and

possibly leads to a large number of unreliable soft symbols. These unreliable soft symbols act

as outliers in the VB-Soft-KF algorithm and may incur severe performance degradation. Next,

we discuss how to improve the VB-Soft-KF algorithm using the robust statistical theory.

Similar to the derivation of (21) in Sec. III-A, it can be shown that the following equivalent

observation model has the same LLF as (38) (up to some additive constant)

yr
eq(n) = Xeq(n)hr(n) + ω

+
r (n), (45)

where Xeq(n) = [ (X̂(n)W)T (
√

D(n)W)T ]T , yr
eq(n) = [ yr(n)

T 0T
(NtK×1)

]T , and ω
+
r (n) ∼

CN(0, Σ̂+(n)) is a (NtK +K) -length zero-mean virtual noise vector with covariance matrix

Σ̂+(n) = INt+1⊗ Σ̂(n). The VB-Soft-KF algorithm expressed by (41)-(44) can also be obtained

by applying the standard KF [30] to the state-space model expressed by (45) and (2). When the

channel is fast fading, the soft symbols with low reliabilities render the state-space model to be

an inaccurate error-in-variable model [6] and generate outliers, which may make the KF diverge

from the real channel trajectory.

Note that the channel state prediction hr(n |n− 1) can be seen as the observation of the

true state hr(n) with prediction error e(n |n− 1). Hence, we can obtain the batch-form linear

regression equation as




yr
eq(n)

hr(n |n− 1)



 =





Xeq(n)

IL×L



hr(n) +





ω
+
r (n)

e(n |n− 1)



 , (46)
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which can be expressed in a compact form as

⌢
yr(n) =

⌢

X(n)hr(n) +
⌢
e(n). (47)

The covariance matrix of
⌢
e(n) is given by

Γ⌢
e
=





Σ̂+(n) 0

0 Ξr(n |n− 1)



 = SSH , (48)

where Ξr(n |n− 1) is the MSE matrix of channel prediction with error vector e(n |n− 1), and

S may be obtained by Cholesky decomposition of Γ⌢
e

. Consequently, upon multiplying both

sides of (47) by S−1 to perform prewhitening, we obtain

ȳr(n) = X̄(n)hr(n) + ē(n), (49)

where ȳr(n) = S−1⌢yr(n), X̄(n) = S−1
⌢

X(n), and ē(n) = S−1⌢
e(n) with E[ē(n)ē(n)H ] = I.

Clearly, (49) is a standard linear least squares (LS) regression problem which yields the LS

estimate of hr(n) as

ĥr(n) =
[

X̄(n)HX̄(n)
]−1

X̄(n)H ȳr(n), (50)

with the MSE matrix

Ξr(n) =
[

X̄(n)HX̄(n)
]−1

. (51)

It can be easily proved that (41)-(42) obtained by the VB-Soft-KF are equivalent to (50)-(51)

obtained from the LS problem given by (49). Since the LS solution suffers from the outlier

problem, it can be inferred that the VB-Soft-KF algorithm has the same problem to estimate

hr(n). In order to mitigate the effect of outliers caused by unreliable soft symbols, the Huber M

estimator can be applied instead of the LS estimation [23]–[25], [31], which finds the solutions

according to the following minimization problem

ĥr(n) = argmin
h

{

m̄
∑

i=1

ρ (r̃i)

}

, (52)

where r̃i = [ȳr(n)](i)−
⌣
xi

H
h with

⌣
xi representing the i-th column of X̄H(n), m̄ is the dimension

of ȳr(n), ρ(·) is the Huber minimax penalty function given by

ρ(x) =











|x|2/2, if |x| ≤ β

β |x| − β2/2, if |x| > β
. (53)
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When the absolute value of the residual is smaller than β, ρ(·) is L2 norm. By contrast, when

the absolute value of the residual is larger than β, ρ(·) is chosen as the L1 norm to reduce the

effect of outliers, and hence bounds the influence of low reliable data. The threshold value β

results in a tradeoff between efficiency and robustness of the estimator. In this paper, we choose

β to ensure the asymptotic efficiency of this estimator under normal assumptions is higher than

95% [7]. Upon solving (52) by setting the partial derivatives of the objective function on the

right-hand-side of (52) with respect to h to zero, we obtain

m̄
∑

i=1

−ψ(r̃i)
⌣
xi = 0, (54)

where ψ(·) = ρ′(·) is the influence function [22], which is given by

ψ(x) =











x, if |x| ≤ β

βx/ |x|, if |x| > β
. (55)

(54) can be solved by using the iteratively reweighted least-squares (IRLS) approach [25]. By

multiplying and dividing ψ(r̃i) in (54) by r̃i, and defining a diagonal weight matrix Λ with the

ith diagonal element [Λ](i.i) = ψ(r̃i)/r̃i, (54) can be solved to update ĥr(n) as

ĥr(n) = (X̄H(n)ΛX̄(n))−1X̄H(n)Λȳr(n), (56)

In summary, the proposed VB-Robust-KF algorithm can be stated as follows: for the r-th receiver

antenna, r = 1, · · · , Nr

1) Form the equivalent observation equation (45) using X̂(n), D(n) and Σ̂−1(n).

2) Form the equivalent standard linear LS regression equation (49) by prewhitening the batch-

form linear regression equation (47), as shown in (46)-(49).

3) Initialize the trial value h = hr(n |n− 1).

4) Compute the Huber weight matrix Λ based on (55).

5) Update ĥr(n) using (56), then set the trial value h = ĥr(n) and go to 4).

6) Output ĥr(n) when the maximum number of IRLS iterations is reached. Correspondingly,

the covariance matrix Ξr(n) is approximated by (41), which is reasonable due to the fact

that ρ(·) resembles the quadratic function [23].

7) Predict hr(n+ 1 |n) and Ξr(n + 1 |n) at time n+ 1 using (43) and (44), respectively.
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The updated channel estimate {ĥr(n)}
Nr
r=1 and the MSE matrices {Ξr(n)}

Nr
r=1 are forwarded to

the data detection and noise estimator in the next VB iteration.

D. Receiver Structure, Initialization and Complexity

The structure of the proposed Improved-VB receiver is illustrated in Fig. 2. There are two types

of iterations in the proposed receiver. Turbo iterations are performed between the MLMMSE-IC

detector and the SISO decoder, which exchange extrinsic LLRs to improve the detection and

decoding performance. Within each turbo iteration, the VB assisted joint signal detection, noise

covariance estimation and channel tracking are iterated several times for every OFDM symbol.

A good initialization is essential for successful implementation of the VB algorithm. In the

proposed Improved-VB receiver, the phase-shift orthogonal training sequences are transmitted

in the pilot slot n = 0, which enable the data-aided LS channel estimator to obtain the ini-

tial {ĥr(0)}
Nr
r=1 [32]. With the initial estimates of channels and the known training sequence,

the estimate of the inverse noise covariance matrix Σ̂−1(0) can be obtained by the estimator

proposed in [11]. Here, we ignore channel estimation errors and assume that the initial noise

variances on all subcarriers are the same. Then the distribution of Σ−1(0) can be approximated as

P̂ (Σ−1(0)) = WK(o0, Σ̂
−1(0)/o0) with the degree of freedom o0 = K+Nr+1. Given the initial

estimated Σ̂−1(0), the MSE matrices {Ξr(0)}
Nr
r=1 for the LS channel estimation can be obtained,

and we can thus approximate the distribution for h(0) as P̂ (h(0)) =
Nr
∏

r=1

CN
(

ĥr(0),Ξr(0)
)

.

For the first OFDM symbol, we set {hr(1 |0)}
Nr
r=1 = {ĥr(0)}

Nr
r=1, {Ξr(1 |0)}

Nr
r=1 = {Ξr(0)}

Nr
r=1,

~o1 = o0, and Σ̃(1)−1 = Σ̂(0)−1. For every OFDM symbol, P̂ (h(n)) and P̂ (Σ−1(n)) are

initialized to P (h(n)
∣

∣Yn−1
0 ) and P (Σ−1(n)

∣

∣Yn−1
0 ), respectively, to start the VB iterations at

each turbo iteration.

Considering the number of complex multiplications as a complexity metric, the inversion

of an n × n matrix requires O(n3) operations, and the product of an m × r matrix with

a r × n matrix requires O(mrn) operations. The computational complexity for each update

of the noise covariance estimation is of the order O(NrNtK
2L). We assume that α IRLS

iterations are performed in the proposed VB-Robust-KF algorithm for each update of channel

estimation. The computational complexity for the VB-Soft-KF and the VB-Robust-KF is of the

order O(NrN
2
tKL

2) and O(αNrN
3
t KL

2), respectively. Note that in order to avoid numerical

instabilities and decrease the complexity, we approximate the time-domain channel covariance
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matrix {Ξr(n)} as a diagonal matrix which has been proved to be a good approximation with

negligible performance loss. For the MLMMSE-IC detection at each subcarrier, the computational

complexity of MMSE filter is of the order O(NrN
3
t ), the computation of conditional mean and

variance poses a computational load roughly equal to O(Nt2
mc+3).

IV. SIMULATION RESULTE AND DISCUSSION

In this section, the performance of the proposed algorithm is evaluated with simulations. In our

studies, we assume a MIMO-OFDM system with two transmit antennas and two receive antennas.

The OFDM modulation uses 64 subcarriers and a CP of length 8. A rate 1/2 convolutional coder

with generator polynomial (7, 5)8 is used at the transmitter. Both QPSK and 16QAM modulations

are considered. Each data frame includes 21 OFDM symbols, the first OFDM symbol contains

the training sequences for initial channel estimation. The CIR of each transmit/receive antenna

pair is assumed to have L = 7 paths, which follow an exponentially decaying power delay profile.

The multiple paths are independent from each other and each path gain evolves according to the

Jakes model [33]. In our simulation, the time-varying path coefficients are generated by the filter

based method [34], where the white complex Gaussian noise is passed through the spectral filter.

Two normalized doppler frequencies are considered, i.e., fdTs = 0.02 and fdTs = 0.04, where fd

is the maximum doppler frequency. Three turbo iterations are used in our simulations, since there

is no apparent performance gain after 3 iterations according to our simulation results. The VB

iterative procedure is terminated when the normalized difference between the CIRs’ expectation

of two consecutive VB iterations does not exceed a predefined threshold, such as 0.02.

In Fig. 3, we compare the performance of the iterative receivers employing different channel

estimation methods when assuming QPSK modulation and 3 turbo iterations. Here the proposed

MLMMSE-IC detector and effective noise covariance estimator are used for signal detection

and noise estimation, respectively. Huber-LS refers to the robust LS channel tracking algorithm

presented in [7]. It can be observed that the receiver employing the proposed VB-Robust-KF

algorithm has a better performance than the receivers employing the VB-soft-KF algorithm

and the Huber-LS algorithm at both normalized doppler frequencies, i.e., fdTs = 0.02 and

fdTs = 0.04. When fdTs = 0.02, the VB-Robust-KF scheme is about 2dB better than the

VB-soft-KF algorithm and about 0.5dB better than the Huber-LS algorithm at BER= 10−4.

When operated at a higher doppler rate of fdTs = 0.04, the VB-Robust-KF method achieves a
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1.2dB gain compared to the Huber-LS algorithm at BER= 10−3, while the VB-Soft-KF scheme

exhibits an error floor. This follows from the fact that the VB-Soft-KF algorithm suffers from

performance degradation in the presence of outliers (low-reliability soft symbols); while the VB-

Robust-KF and Huber-LS estimators can downweight outliers by using the Huber cost function.

The VB-Robust-KF method has better BER performance than the Huber-LS algorithm since

the latter can neither use the statistical information of channel nor output channel covariance

matrix to cope with the channel uncertainty. Fig. 4 shows the normalized mean-square error

(NMSE) [35] performance of the different channel estimation algorithms. It can be observed

that when fdTs = 0.04, the NMSE curve of the VB-Soft-KF algorithm descends slower as the

SNR values increase, due to the detrimental effect of error propagation. The VB-Robust-KF

algorithm achieves a lower NMSE than the VB-Soft-KF and Huber-LS algorithms. The better

NMSE performance of the VB-Robust-KF results in a better BER performance, as shown in

Fig. 3.

In Fig. 5 and Fig. 6, we provide simulation results to demonstrate the performance gains

achieved by the proposed MLMMSE-IC detector over the conventional LMMSE-IC detector

[19]. Here the proposed VB-Robust-KF estimator and effective noise covariance estimator are

used for channel and noise estimation, respectively. Fig. 5 shows the BER performance of

the proposed MLMMSE-IC detector and the conventional LMMSE-IC detector when assuming

QPSK modulation and fdTs = 0.04. One can see that the proposed MLMMSE-IC detector

performs better than the conventional LMMSE-IC detector at each turbo iteration. At a BER

of 10−3, the MLMMSE-IC algorithm yields a performance gain of about 1dB compared to

the LMMSE-IC algorithm at the 3rd turbo iteration. Fig. 6 compares the BER performance

of two detectors when assuming 16QAM modulation and fdTs = 0.02. The superiority of the

MLMMSE-IC detector over the conventional LMMSE-IC detector can clearly been seen. At a

BER of 10−3, the MLMMSE-IC algorithm is about 2dB better than the LMMSE-IC algorithm at

the 3rd turbo iteration. The better performance of MLMMSE-IC detector is anticipated since the

uncertainties of channel estimation are incorporated in the detector design and the LLR clipping

value is used to mitigate the error propagation in the first turbo iteration by constraining the

possible over-optimistic LLRs to an appropriate level.

In Fig. 7, we compare the performance of the MIMO-OFDM systems employing different

noise covariance estimation methods. Here we assume fdTs = 0.02 and 16QAM modulation.
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The VB-Robust-KF algorithm is used for channel tracking and the MLMMSE-IC method is

used for signal detection. The HEM noise estimator refers to the half-biased EM noise variance

estimator proposed in [32] which is used to estimate the noise variance at every subcarrier. It

is shown that the BER performance of the receiver that updates the noise covariance matrix

according to the tracking algorithm proposed in Sec. III-B is better than all the other schemes.

The receiver assuming ideal noise variance shows inferior performance than the one using the

proposed tracking method. This is due to the fact that when the interference cancellation (IC)

based signal detection is employed and the channel estimator works in a pilotless decision-

directed mode to track the fast fading channels, the VB receiver needs to take into account

the residual interference and the additional noise caused by the channel estimation error and

signal detection error to combat error propagation; however, ideal noise variance only contains

the thermal noise. When SNR increases, the ideal noise variance can not accommodate the

large residual spatial interference which is caused by nonideal channel estimation and signal

detection, and thus become too optimistic in presence of outliers. We can also observe from

Fig. 7 that the receiver which estimates the noise variance assuming the reciprocal variance is

chi-square distributed [11] shows severe performance degradation since the chi-square distributed

noise variance estimator restricts the noise variance to be the same for all the subcarriers, even

those subcarriers with large residuals, while the proposed Wishart distributed noise covariance

estimator can estimate the effective noise at different subcarriers which can be regarded as a

reliability indicator at each subcarrier. Therefore, Wishart distributed noise covariance model

has much more flexibility to interpret outliers at different subcarriers and thus results in better

performance than the chi-squared distributed noise variance model.

For an overall assessment, we compare the BER performance of the proposed Improved-VB

receiver and other related receivers [7], [15]. The VB receiver is presented in [15], where list

sphere decoder is used for signal detection, the forward-backward VB-soft-KF is used for channel

estimation and the noise variance is assumed to be known. We set the list size to be 16 and

256 for QPSK and 16QAM modulation, respectively. The EM-HuberLS receiver is extended

from the algorithm presented in [7] where a robust Huber-LS algorithm is used for channel

estimation and the noise variance is estimated using the preamble data. For a fair comparison,

the LMMSE-IC algorithm [19] is adopted for signal detection in the EM-HuberLS receiver.

In Fig. 8, the BER vs. SNR performance is presented for three iterative receivers, namely, the
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Improved-VB, VB, EM-HuberLS receivers when assuming QPSK modulation and fdTs = 0.04.

We observe from the figure that the performance of the Improved-VB receiver is significantly

improved through turbo iterations. One can also see that the Improved-VB scheme achieves

much better performance than the EM-HuberLS receiver. When SNR <13dB, the performance

of the proposed Improved-VB receiver is comparable to that of the VB receiver. We reckon that

this behavior stems from the combined effect of the following three factors. Firstly, the near-

optimal LSD detector adopted by the VB receiver has better performance than the LMMSE-IC

type detector at relative low SNR values. Secondly, the detection of the QPSK modulation signal

with constant modulus is not sensitive to the amplitude degradation induced by the inaccurate

channel estimation. Thus, QPSK systems are less prone to the error propagation problem than

the systems which employ higher order constellations, such as 16QAM. Thirdly, at relative low

SNR values, the thermal noise composes a significant part of the effective noise, which leads

to a relatively minor difference between the ideal noise variance adopted by the VB receiver

and the effective noise variance used by the Improved-VB receiver. When SNR is smaller than

16dB, the Improved-VB scheme outperforms the VB scheme by about 0.5dB at BER= 10−3

after there turbo iterations. When SNR is larger than 16dB, the BER performance of the VB

receiver becomes worse as SNR increase. This follows from the fact that the VB-soft-KF channel

estimation algorithm lacks robustness, and the ideal noise variance cannot accommodate the

additional noise caused by the imperfect channel estimation and data detection, which become

dominant at high SNRs. Fig. 9 shows the BER performance of the MIMO-OFDM systems with

different receiver algorithms when assuming fdTs = 0.02 and 16QAM modulation. As shown in

Fig. 9, the performance advantage of the Improved-VB method over other methods becomes more

obvious when a multiamplitude, higher-order constellation (16QAM) is employed. In particular,

it is observed that increasing the number of turbo iterations does not bring noticeable performance

improvements for the VB receiver even at high SNRs. In this case, the use of a multiamplitude,

higher-order modulation makes the soft detection more sensitive to channel estimation errors.

Consequently, serious error propagation is introduced, rendering the turbo receiver ineffective.

As depicted by both Fig. 8 and Fig. 9, although the EM-HuberLS receiver employs the robust

Huber-LS channel estimation algorithm, it gives poor performance due to the error propagation

problem inherent in the IC based LMMSE-IC detector, while the preamble aided noise variance

estimation can not accommodate the residual interference and channel uncertainty to avoid the
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performance degradation. In the proposed Improved-VB receiver, this problem is solved by

employing the improved MLMMSE-IC detector and the effective noise estimator.

In addition to the convolutional code employed in our simulations, we also tested a rate

Rc = 1/2 turbo code which is a parallel concatenated convolutional code with constraint length

of 3 and generation polynomial g = (5, 7)8. The turbo decoder consists of two constituent log-

maximum a posteriori decoders. The simulation results are similar to those with the convolutional

code, they are thus omitted in order to conserve space.

V. CONCLUSIONS

In this paper, a novel Improved-VB iterative receiver has been presented for MIMO-OFDM

systems to combat error propagation effect in fast fading channels. In our proposed receiver, a

modified LMMSE-IC detector is developed based on the VB theory which considers the channel

uncertainty and adopts an adaptive LLR clipping scheme according to the reliability of detection

at each subcarrier. A noise covariance estimator has been derived to track the covariance matrix

of the effective noise. Furthermore, a novel VB-Robust-KF algorithm based on the Huber M

estimator has been proposed for channel tracking. It downweights the low reliability soft symbols

to reduce error propagation, therefore considerably improves the performance of the traditional

VB-Soft-KF algorithm. Simulation results show that the proposed receiver outperforms the other

receivers considered, and the advantages of our proposed receiver become more explicit as the

channel fading rate increases and/or the multiamplitude, higher-order modulation is adopted.

The error propagation mitigation in the low SNR region will be studied in our future work. To

combat the error propagation problem over fast fading channels at low SNRs, we reckon that

following methods may be adopted. Firstly, we may construct a more precise channel state model

to describe the channel statistics. Secondly, some other advanced signal processing algorithms

can be proposed to achieve the signal detection and channel estimation. Thirdly, pilots can be

transmitted more frequently or equivalently the length of frame needs to be shortened, during

which the channel estimator works in the decision-directed mode. In this case, the performance

improvement is achieved at the expense of additional pilot overhead.
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APPENDIX A

DERIVATIONS FOR ESTIMATING THE SYMBOL DISTRIBUTION

The expectation term in (9) with respect to P̂ (h(n)) and P̂ (Σ−1(n)) can be written as

EP̂ (h(n))EP̂ (Σ−1(n))

[

lnP (Y(n) |X(n),h(n) ,Σ−1(n))
]

=EP̂ (h(n))

{

−
Nr
∑

r=1

Tr
[

Σ̂−1(n) (yr(n)−X(n)Whr(n)) (yr(n)−X(n)Whr(n))
H
]

}

=
K−1
∑

k=0

−
1

σ̂2(n, k)

Nr
∑

r=1

[

yr(n, k)y
∗
r(n, k)−

Nt
∑

t=1

xt(n, k)Ĥr,t(n, k)y
∗
r(n, k)

−

Nt
∑

t=1

x∗t (n, k)Ĥr,t(n, k)
∗yr(n, k) +

Nt
∑

t=1

Nt
∑

t′=1

xt(n, k)Ĥr,t(n, k)Ĥr,t′(n, k)
∗x∗t′(n, k)

+

Nt
∑

t=1

Nt
∑

t′=1

xt(n, k)
[

Ξ̈
(r)
(t,t′)(n)

]

(k,k)
x∗t′(n, k)

]

=
K−1
∑

k=0

ELLF (x(n, k)).

(57)

Since we assume that the transmitted symbols on different subcarriers are uncorrelated, the first

term in (9) can be written as

lnP a(X(n)) =
K−1
∑

k=0

lnP a (x(n, k)). (58)

Consequently, using (57) and (58), we can obtain (11).
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APPENDIX B

DERIVATIONS OF (33)

Using (3) and (4), the expectation of the log-likelihood function in (32) can be expressed as

EP̂ (h(n))EP̂ (X(n))

[

lnP (Y(n)
∣

∣X(n),h(n),Σ(n)−1 )
]

=Nr ln
(
∣

∣Σ−1(n)
∣

∣

)

− EP̂ (h(n))

{

Tr

[

Nr
∑

r=1

Σ−1(n)

(

yr(n)yr
H(n) −

Nt
∑

t=1

X̂t(n)Fhr,t(n)y
H
r (n)

− yr(n)(

Nt
∑

t=1

X̂t(n)Fhr,t(n))
H +

Nt
∑

t=1

Nt
∑

t′=1

X̂t(n)Fhr,t(n)h
H
r,t′(n)F

HX̂t′(n)
H

+

Nt
∑

t=1

Diag[Fhr,t(n)h
H
r,t(n)F

H ]Dt(n)

)

]}

.

(59)

Consequently, substituting EP̂ (h(n))

(

hr,t(n)h
H
r,t′(n)

)

= ĥr,t(n)ĥ
H
r,t′(n) +Ξ(r,t);(r,t′)(n) and

EP̂ (h(n))(hr,t(n)) = ĥr,t(n) to (59), we obtain (33).
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Fig. 3. BER performance comparison of the MIMO-OFDM systems employing different channel estimation methods with

QPSK modulation.
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Fig. 4. Performance comparison of different channel estimators with QPSK modulation.
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Fig. 5. BER performance comparison of different signal detectors with fdTs = 0.04 and QPSK modulation.
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Fig. 6. BER performance comparison of different signal detectors with fdTs = 0.02 and 16QAM modulation.
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Fig. 7. Comparison of BER performance of the MIMO-OFDM systems employing different noise covariance estimation with

fdTs = 0.02 and 16QAM modulation.
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Fig. 8. BER performance comparison of different receivers with fdTs = 0.04 and QPSK modulation.
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Fig. 9. BER performance comparison of different receivers with fdTs = 0.02 and 16QAM modulation.
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