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Abstract

In this paper, we consider the power allocation of the physical layer and the buffer delay of the upper

application layer in energy harvesting green networks. Thetotal power required for reliable transmission

includes the transmission power and the circuit power. The harvested power (which is stored in a battery)

and the grid power constitute the power resource. The uncertainty of data generated from the upper

layer, the intermittence of the harvested energy, and the variation of the fading channel are taken into

account and described as independent Markov processes. In each transmission, the transmitter decides

the transmission rate as well as the allocated power from thebattery, and the rest of the required power

will be supplied by the power grid. The objective is to find an allocation sequence of transmission

rate and battery power to minimize the long-term average buffer delay under the average grid power

constraint. A stochastic optimization problem is formulated accordingly to find such transmission rate

and battery power sequence. Furthermore, the optimizationproblem is reformulated as a constrained

Markov decision process (MDP) problem whose policy is a two-dimensional vector with the transmission

rate and the power allocation of the battery as its elements.We prove that the optimal policy of the

constrained MDP can be obtained by solving the unconstrained MDP. Then we focus on the analysis of

the unconstrained average-cost MDP. The structural properties of the average optimal policy are derived.

Moreover, we discuss the relations between elements of the two-dimensional policy. Next, based on the

theoretical analysis, the algorithm to find the constrainedoptimal policy is presented for the finite state

space scenario. In addition, heuristic policies (two deterministic policies and a mixed policy) with low-

complexity are given for the general state space. Finally, simulations are performed under these policies

to demonstrate the effectiveness.

Index Terms

Green communications, energy harvesting, cross-layer design, power allocation, Markov decision

process.
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I. INTRODUCTION

Rapid wireless communication industry development has ledto a dramatic increase of energy

consumption in wireless networks, and such an increasing energy consumption produces a

series of energetic and environmental problems. Recently,green communications, which aims at

enhancing energy efficiency and carbon emission reduction,have received considerable attention

[2]-[6]. In the energy-efficient design for wireless communications, the total energy consumption

includes not only the transmission energy but also the circuit energy consumption [7].

As a preferred choice supporting green communications, energy harvesting techniques such

as photovoltaic solar cells become popular for the ability to prolong the lifetime of the battery

and the lifetime of wireless networks thereby. There have been a lot of researches in wireless

networks with energy harvesting nodes. In [8], an optimal energy management policy for a solar-

powered sensor node was proposed. The policy uses a sleep andwakeup strategy for energy

conservation. In [9], throughput optimal and mean delay optimal energy management policies

were studied for a single energy harvesting sensor node. TheShannon capacity of an energy

harvesting sensor node transmitting over an AWGN channel was obtained in [10]. In [11], the

optimal binary transmission policies were studied under i.i.d. Bernoulli energy arrivals. In [12],

the long-term average communication reliability optimization problem was studied for the system

of energy-harvesting active networked tags (EnHANTs). In [13] and [14], throughput-maximal

schemes of energy allocation for wireless communications with energy harvesting constraints

are studied.

Resource allocation is a fundamental problem in wireless communications [15]. Generally,

resource consumption reduction and quality of service (QoS) improvement are two conflicting

objectives in a resource allocation problem. There has beensome interests in analyzing the power

allocation and delay performance from the cross-layer perspective. In [16] and [17], the tradeoff

between the average required power for reliable transmission at the physical layer and the mean

delay at the network layer was studied in fading channels. The adaptive control policies utilize

information on both queue state and channel state, and some structural results for the optimal

policy were derived. In [18], the authors derived the improved results upon these obtained in
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[17]. They considered the optimization problem aiming to minimize the delay in the transmitter

buffer under an average transmitter power constraint. The existence of stationary average optimal

policy was proved and some structural results were obtained. In [19], the fading channel was

simplified to a static channel, and the explicit optimal control policy was characterized.

In [17]-[19], only the transmission power is considered. However, as shown in [2], the

transmission strategy changes when taking the circuit power into account. Then a natural problem

is what about the power and delay when considering both transmission power and circuit power.

Meanwhile, as energy allocation of the battery plays a central role in the transmission strategy of

energy harvesting nodes,how the energy allocation strategy of the battery will affect the power

and delay?

In this paper, we consider the power allocation in the physical layer and the delay performance

in the upper application layer in green wireless networks with energy harvesting nodes. The data

are generated in the application layer, and placed in a buffer at the transmitter. The transmitter

periodically removes some data from the buffer, and transmits the data to the receiver. The

required power for reliable transmission takes both transmission power and circuit power into

account, and the power resource makes up of the harvested power and grid power. The harvested

energy arrives randomly, and there is a constraint on the average grid power. The objective is

to minimize the average delay in the buffer with a constrained average grid power and random

battery energy. Since the required power for each transmission can be supplied from both the

battery and the grid, the policy is two-dimensional, i.e., the rate as well as the allocation of the

battery energy (the grid power allocation is then the total required power minus the allocated

battery power), in the formulated optimization problem.

Specifically, the main contributions of the paper can be summarized as follows.

• We consider the delay-optimal power allocation in the framework of green communications

over fading channels, where the power comes from both power grid and harvesting devices.

The data arrival process, the harvested energy arrival process, and the channel process are

Markovian. A stochastic optimization problem is formulated to find a transmission rate and

battery power allocation sequence to minimize the long-runaverage buffer delay under the

October 26, 2018 DRAFT



3

constraint on the average grid power.

• We reformulate the optimization problem as a constrained Markov decision process (MDP)

problem, in which the state and action are defined. The state includes the queue state, the

battery state (i.e., the stored energy in the battery), the channel state, the data arrival, and

the harvested energy arrival. The action consists of the transmission rate and the power

allocation from the battery. Using the Lagrangian methodology, the constrained MDP can

be relaxed to an unconstrained problem (UP), which is an average cost MDP. We prove that

the optimal solution of the constrained MDP can be derived bysolving the UP with one or

two Lagrangian multipliers. Then we focus on the optimal policy of the average cost MDP

(i.e., UP). We verify the existence of the optimal stationary policy of the average cost MDP

and it can be obtained from the corresponding discount cost MDP. We derive two necessary

conditions for the optimal policy of the average cost MDP (average cost optimal policy).

Under certain conditions, the policy that serving nothing and allocating no energy from the

battery is an average cost optimal policy. We also prove thatserving everything combined

with allocating the minimal of the total required power and total energy in the battery are

an average cost optimal policy under other certain conditions. The monotonicities of the

optimal object value with respect to Lagrangian multiplierand optimal policy regarding the

state are investigated, respectively.

• We analyze the relations between the transmission rate and the power allocation from

the battery. We find that given the transmission rate policy,the optimal battery power

allocation policy is the greedy policy in some scenario. Forgeneral scenario, we propose

a sufficient condition under which the optimal policy of two-dimensional MDP problem

can be decomposed to the optimal policy of an MDP problem withthe policy to be the

transmission rate only in addition with the greedy battery power allocation policy.

• On the basis of the theoretical investigation, we propose analgorithm to find the constrained

optimal policy under the finite state case. In addition, we propose three heuristic policies

for the constrained MDP with the general state case: radicalpolicy, conservative policy, and

mixed policy.
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The remainder of the paper is organized as follows. In Section II, the system model is

described, and a mean buffer delay minimization problem with average grid power constraint is

formulated. In Section III, the optimization problem is re-formulated as a constrained MDP and

the optimal two-dimensional policy of the constrained MDP is investigated. Next, we discuss the

relations between elements of the two-dimensional policy in Section IV. Based on the theoretical

analysis, the algorithm to find the constrained optimal policy under the finite state space and

heuristic policies for the general state space are proposedin Section V. Simulations are performed

in Section VI. Finally, Section VII concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a slotted-time model of a point-to-point block fading channel. The length of a

time-slot is τ units. Then-th time-slot is the time interval
[

nτ, (n + 1)τ
)

. The channel gain

remains static in each slot, and changes between different slots. The sequence of the channel

gains is a finite-state ergodic Markov chain{H [n]}. The transmitter is assumed to have perfect

channel state information (CSI). As shown in Fig. 1, at the end of then-th slot, the higher layer

generatesA[n] packets and they are stored in a buffer before transmission.It is assumed that

each packet is withb bits and{A[n]} is a finite-state ergodic Markov chain. We assume that

the transmitter is equipped with an energy harvesting device and it can also get power from

the power grid.1 The harvested energy arrives at each end of the slot according to a finite-

state ergodic Markov chain{E[n]}, and the harvested energy will be stored in a battery before

consumption. There exists a long run average constraint on the grid power at the transmitter.

At the beginning of then-th time slot, the transmitter choosesR[n] packets from the buffer

and transmits to the receiver.2 We assume the additive white Gaussian noise (AWGN) at the

receiver is with zero mean and varianceσ2. In green communications, the total power required

1Grid power with average constraint is to guarantee user’s QoS (delay). Specifically, due to the causality of harvested energy,
the transmitter should accumulate a sufficient amount of energy before each packet transmission. Then the waiting time could
be undesirably long since the randomness of harvested energy arrival. In contrast, when the grid power is available, even if
the battery energy is insufficient, the transmitter could use the grid power to transmit packet. Hence, the user’s QoS canbe
guaranteed.

2R[n] is the transmission rate of then-th timeslot with unit packets/timeslot.
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Fig. 1. System model

for reliable transmissions3 of R[n] packets in then-th time-slot is [2]

P (X [n], R[n]) = ρ
σ2

H [n]
(eθR[n] − 1) + ∆(R[n]), (1)

whereX [n] is the system state that will be defined later,ρ ≥ 1 is a constant,θ = 2 ln(2)b
N

with

N being the channel uses in each time-slot, and

∆(R[n]) =







C,R[n] 6= 0;

0, R[n] = 0,
(2)

whereC ≥ 0 is a constant. In particular,ρ = 1 andC = 0 when no circuit power is taken into

account. In the transmission during then-th timeslot, the transmitter allocatesW [n] power from

the battery, and the remaining power will be supplied by the power grid. DenoteQ[n] as the

queue length of the buffer at instancenτ , the evolution equation for the buffer length is

Q[n + 1] = Q[n]−R[n] + A[n]. (3)

Assume that the capacity for the battery isEmax. Denote the battery’s stored energy at instance

nτ asEb[n], then the evolution equation for harvested energy in the battery can be given by

Eb[n + 1] = min {Eb[n]−W [n]τ + E[n], Emax} := (Eb[n]−W [n]τ + E[n])−. (4)

3In the paper, “reliable transmission” means totally error-free according to capacity arguments.
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The objective is to find a rate and battery power allocation sequence that minimizes the mean

buffer delay under the constraint on the long-run average grid power P̄, and the stochastic

optimization problem is given by

min
{(R[n],W [n])}∞n=1

lim sup
n→∞

1

n
E

[

n−1
∑

k=0

Q[k]

]

(5)

s.t.



























lim sup
n→∞

1

n
E

[

n−1
∑

k=0

Pgrid[k]

]

≤ P̄, (6a)

R[k] ≤ Q[k], (6b)

W [k]τ ≤ Eb[k], (6c)

wherePgrid[k] is the power from the power grid,

P (X [k], R[k]) = Pgrid[k] +W [k]. (7)

III. A NALYSIS OF THE FORMULATED STOCHASTIC OPTIMIZATION PROBLEM

In this section, we first reconstruct the problem (5) as a constrained two-dimensional (i.e., rate

and battery power allocation) MDP. Second, we prove that theconstrained two-dimensional MDP

can be transformed to unconstrained MDP by the Lagrangian method in Section III-B. Then we

focus on the analysis of the unconstrained MDP in Section III-C. We verify the existence of the

stationary policy for the unconstrained MDP (which is an average cost MDP) in Section III-C1.

Next, we investigate the optimal policy of the average cost MDP, and structural properties of

the average cost optimal policy are derived in Section III-C2. For better readability, the analysis

flowchart for this section is illustrated in Fig. 2.
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Reformulate (5) as constrained two-dimensional MDP (8)

The optimal policy of (8) can be derived by solving unconstrained 

MDP (10) with  certain Lagrangian multipliers
Lemma 1

For finite state space, Algorithm 1 is given to find the 

optimal policy of (10) with given Lagrangian multiplier

Optimal policy of (10) exits and it can be obtained as the limit of optimal policy for discount cost MDP

Sufficient condition for 

non-optimality

Necessary condition 

for optimality 

Closed-form expression 

for special system state

Lemma 3

Lemma 2

Structural properties of the optimal policy of (10)

For general state space

Monotonicity

W.r.t multiplier W.r.t stateLemma 4 Lemma 5

Lemma 6 Lemma 7

Fig. 2. Analysis structure of Section III

A. Reconstruction as a constrained two-dimensional MDP

Define the state asX [n] := (Q[n], H [n], A[n], Eb[n], E[n]) with state spaceX and the action

asA[n] := (R[n],W [n]) with action spaceA, respectively.4 Then{X [n],A[n]} can be viewed as

a Markov decision process (MDP). The feasible action(r, w) in a statex = (q, h, a, eb, e) ∈ X

belongs toA(x) = {0, 1, · · · , q} × {0, 1
τ
, · · · , eb

τ
}.5 Define a policyπ = (π0, π1, · · · ) that πn

generates an action(r[n], w[n]) with a probability at instantnτ [20][21]. We denote the set

of all policies asΠ. Specially, a stationary deterministic policy isπ = (g, g, · · · ), where g

is a measurable mapping fromX to A such thatg(x) ∈ A(x) for all x ∈ X . Then, (5) is

reformulated as the constrained MDP to find the two-dimensional (i.e., rate and battery power

4The system state includes the buffer queue length, channel gain, data arrival, energy in the battery, and harvested energy
arrival. The action includes the allocated rate and the allocated battery energy.

5The harvested energy has been discretized.
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allocation) optimal policy.

min
π∈Π

Bπ
x = lim sup

n→∞

1

n
E
π
x

[

n−1
∑

k=0

Q[k]

]

(8)

s.t. Kπ
x = lim sup

n→∞

1

n
E
π
x

[

n−1
∑

k=0

Pgrid[k]

]

≤ P̄, (9)

where the subscriptx = (q, h, a, eb, e) ∈ X is the initial system state.

B. Transformation to unconstrained MDP

Define Pgrid(x, r, w) := max{P (x, r) − w, 0} := (P (x, r) − w)+ and fβ(x, r, w) := q +

βPgrid(x, r, w) with β > 0. Then we have a family of the following unconstrained problem

(UPβ).

min
π

Jπ
x (β) := lim sup

n→∞

1

n
E
π
x

[

n−1
∑

k=0

fβ(X [k], R[k],W [k])

]

. (10)

In UPβ, fβ(X [k], R[k],W [k]) is the one-step cost in thek-th time-slot.

Remark: UPβ is an average cost MDP. Its optimal solution is called the average cost optimal

policy.

The following lemma gives the relation between UPβ and the constrained two-dimensional

MDP (8).

Lemma 1. When there exists aβ0 > 0 that the optimal policy of UPβ0
has an average grid

power consumption equal tōP, the optimal solution of UPβ is optimal for the constrained MDP

in (8). Otherwise, there exit aβ+ > 0 and aβ− > 0. The optimal policy for the constrained

MDP (8) is as follows: at each decision epoch, chooseπ− with a certain probabilityq andπ+

with probability1− q, whereπ+ andπ− are the optimal policies obtained for UPβ+ and UPβ− ,

respectively.q depends on̄P and the grid power consumptions of the two policies.

Proof: See Appendix A.

Lemma 1 reveals that the solution of (8) can be obtained by solving UPβ with one or twoβ.

In the following, we focus on the analysis of the unconstrained MDP, UPβ.
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C. Analysis of the unconstrained MDP

1) Existence of the optimal policy:Define a discount cost MDP with discount factorα ∈ (0, 1)

corresponding to UPβ for each initial statex = (q, h, a, eb, e), with value function

Vα(x) = min
π

E
π
x

[

∞
∑

k=0

αk (Q[k] + βPgrid(X [k], R[k],W [k]))

]

. (11)

The optimal solution for the discounted problem is referredto as a discount optimal policy.

The following lemma reveals the existence of the stationarypolicy. Furthermore, it derives

how to obtain the optimal solution.

Lemma 2. There exists a stationary deterministic policy that solvesUPβ with a β > 0, and it

can be obtained as a limit of discount optimal policies as thediscount factor increases to one.

Proof: See Appendix B.

Following the proof of Lema 2, we can also derive that the optimal Jπ∗

x (β) is independent of

the initial statex. Thus we can rewriteJπ∗

x (β) asJπ∗

(β).

If the state is finite (Specifically, the data buffer state is finite), the relative value iteration

algorithm (Algorithm 1) [26] can be utilized to find the optimal policy of the unconstrained

MDP UPβ with givenβ. However, we are interested in deriving structural resultson the optimal

policies under general state space6 and not simply solving the unconstrained problem with finite

state space. Furthermore, some structural results are useful to solve the constrained MDP (Section

V).

2) Structural properties:The average optimal policy are discussed in the subsection.First, the

sufficient condition for non-optimality, necessary condition for optimality, and the closed-form

expressions of optimal policy in special system states are given.

Lemma 3. In statex = (q, h, a, eb, e), (r(x), w(x)) is not the average cost optimal policy if

q − r(x) 6= 0 andeb − w(x) + e > Emax.

6The number of data buffer states can be infinite, then the state number can be infinite in the paper.
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TABLE I

Algorithm 1: Relative value iteration algorithm of finding t he optimal policy for UPβ

Step 1: Select initial valueV 0, choose reference statex∗ ∈ X , specifyǫ, and setn = 0
Step 2: For eachx = (q, h, a, eb, e) ∈ X , computeV n+1(x, β) by

V n+1(x, β) = min
(r,w)∈A(x)

{

fβ(x, r, w) +
∑

x
′=(q′ ,h′

,a
′
,e

′

b
,e

′)∈X

p(x
′

|x, (r, w))V n(x
′

, β)
}

wherep(x
′

|x, (r, w)) = δ(q − r + a− q′)δ(eb − w + e− e
′

b)p(h
′

|h)p(a
′

|a)p(e
′

|e)
is the transition probability,δ(0) = 1 andδ(x) = 0 whenx 6= 0.
Step 3: NormalizeV n+1(x, β) for eachx ∈ X asV n+1(x, β) = V n+1(x, β)− V n+1(x∗, β)
Step 4: If |V n+1 − V n| < ǫ, go to next Step. Otherwise,n = n+ 1 and go to Step 2.
Step 5: For eachx ∈ X , choose the policy according to

π(x, β) = arg min
(r,w)∈A(x)

{

fβ(x, r, w) +
∑

x
′∈X

p(x
′

|x, (r, w))V n(x
′

, β)
}

Proof: When a policy results in battery overflow (i.e.,eb − w(x) + e > Emax) and non-

emptiness of the buffer (i.e.,q − r(x) 6= 0), then in terms of the average cost performance,

the policy can be improved by using the overflowed energy for transmitting some (parts or all)

remaining buffer data. The reasons are as follows. First, using overflowed energy for transmitting

some (parts or all) remaining buffer data will not increase one-step cost since no extra grid power

is utilized. Second, using overflowed energy for transmitting some (parts or all) remaining buffer

data will decrease the initial buffer data for future while the initial battery energy for future does

not change (remainsEmax). Using Property 1 in Appendix C1, we derive that the averagecost

will be decreased.

Remark: Lemma 3 means if a policy results in battery overflow but non-emptiness of the buffer,

there are (is) polices (policy) that can achieve better average cost performance definitely.

Remark: Lemma 3 gives a sufficient condition for the non-optimality. Meanwhile, Lemma 3

can be also viewed as the necessary condition for the optimality. That is to say, any average

optimal policy should not incur battery overflow and non-emptiness of the buffer simultaneously.

Next, based on Lemma 2 and Proposition 1 in Appendix C2, we have the following lemma.

Lemma 4. Given statex = (q, h, a, eb, e), the average cost optimal policy(r∗(x), w∗(x)) should

October 26, 2018 DRAFT
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satisfy the following inequality array

Z̃1(q, q − r∗, h, a, eb − w∗, e) ≤ βρ
σ2

h
eθq(eθ − 1) ≤ Z̃1(q, q − r∗ + 1, h, a, eb − w∗, e), (12)

Z̃2(q − r∗, h, a, eb − w∗, e) ≤
−β

τ
≤ Z̃2(q − r∗, h, a, eb − w∗ + 1, e), (13)

Z̃3(q, q − r∗, h, a, eb − w∗, e) ≤ βρ
σ2

h
eθq(eθ − 1) ≤ Z̃3(q, q − r∗ + 1, h, a, eb − w∗ + 1, e), (14)

where Z̃1(q, u, h, a, η, e) = lim
α→1

Z1(q, u, h, a, η, e), Z̃2(u, h, a, η, e) = lim
α→1

Z2(u, h, a, η, e), and

Z̃3(q, u, h, a, η, e) = lim
α→1

Z3(q, u, h, a, η, e). Zi(·) (i = 1, 2, 3) is defined in Proposition 1.

Remark: Lemma 4 reveals a necessary condition for the average cost optimality, i.e., the opti-

mal transmit rater∗ and the optimal battery energy allocationw∗ should satisfy the condition.

Remark: When(r∗, w∗) is on the boundary of the feasible set, corresponding conditions can

also be obtained similarly.

Combining Lemma 2 and Proposition 2 in Appendix C2, we derivethe following lemma.

Lemma 5. For x = (q, h, a, eb, e) satisfying

Z̃1(q, 0, h, a, τ max{0,
eb
τ
− P (x, q)}, e) > βρ

σ2

h
eθq(eθ − 1) (15)

and

Z̃2(0, h, a, τ max{0,
eb
τ
− P (x, q)}, e) >

−β

τ
, (16)

(q, eb− τ max{0, eb
τ
−P (x, q)}) is the average cost optimal policy. In addition, for(q, h, a, eb, e)

satisfying

Z̃1(q, q, h, a, eb, e) < βρ
σ2

h
eθq(eθ − 1) (17)
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and

Z̃2(q, h, a, eb, e) <
−β

τ
, (18)

(0, 0) is the average cost optimal policy.

Remark:(q, eb − τ max{0, eb
τ
− P (x, q)}) means transmit all the data in the buffer and the

allocated battery energy iseb − τ max{0, eb
τ
− P (x, q)}). That is to say, transmit all data in

the buffer and allocate as much energy as possible from the battery. Specifically, if the required

power for transmitting all buffer data is less than the powerstored in the battery, allocate all

the required power from the battery. Otherwise, allocate all the battery’s energy (the rest of the

required power will be allocated from the power grid).(0, 0) means transmit no buffer data and

allocate no battery energy.

Remark: (15) and (16) give the set of states, for which transmit all the buffer data the together

with allocate as much energy as possible from the battery is the two-dimensional average cost

optimal policy. (17) and (18) give the set of states, for which transmit no buffer data together

with allocate no battery energy is the two-dimensional average cost optimal policy.

In the following, we investigate the monotonicity.

Lemma 6. Denote the optimal stationary deterministic policy for UPβ asgβ, we have

• Jgβ(β) is non-decreasing inβ.

• Bgβ is non-decreasing inβ, andKgβ is monotone non-increasing inβ

Proof: See Appendix F.

Lemma 7. The average cost optimal transmit rate policyr(q, h, a, eb, e) is non-decreasing inq

and eb, respectively; The average cost optimal battery energy allocation policyw(q, h, a, eb, e)

is non-decreasing inq andeb, respectively.

Proof: The lemma can be proved by the second half of Lemma 2 and Proposition 3 in

Appendix C2.
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Lemma 9
Given a stationary rate allocation policy that is irrelevant to eb,

the greedy battery power allocation is optimal

Given a rate allocation policy, the greedy battery power allocation is 

optimal for   and not optimal for

Extend to general rate allocation policy 

Lemma 10

Analysis of relations between r and w in UP 

In a timeslot, given rate, greedy battery power 

allocation is optimal for one-step cost minimization 

Extend from one timeslot to timeslot sequence

Lemma 8

 

1  0 !

If              or         ,  the two-dimensional 

policy of (8) can be reduced from (r,w) to r

Lemma 12

 

Lemma 9 still holds for (8)

Lemma 11

Based on Lemma 1, we have 
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Fig. 3. Analysis structure of Section IV, the derived results are also shown correspondingly

IV. RELATIONS BETWEEN RATE ALLOCATION AND THE BATTERY POWER ALLOCATION

The rate allocationr and the power allocation from the batteryw are coupled together, they

affect each other. In this section, we investigate the relations between the rate allocationr and

the power allocation from the batteryw. We first focus on the relation betweenr andw in UPβ.

Next, we derive that under a condition, the policy of the constrained two-dimensional MDP

problem (8) can be reduced to the rate policy only. To make thepresentation clear, the analysis

structure of this section is drawn in Fig. 3.

A. The relation betweenr andw in UPβ

If we assume that rater[n] has been chosen at then-th time-slot, then the required total power

has been fixed. In this case, to minimize the immediate one-step costq[n]+β
[

ρ σ2

h[n]
(eθr[n]−1)+

∆(r[n]) − w[n]
]+

, we will allocate as much power as possible from the battery to meet the
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required total power, i.e., the greedy policy for the battery power allocation. This is because the

power from the battery is “free”.7 Formally, we have the following claim.

Lemma 8. In a timeslot, if the rate allocationr is chosen, the greedy battery power allocation

is optimal for the immediate one-step cost minimization.

Proof: See Appendix D.

Remark: Lemma 8 reveals the optimality of greedy battery power allocation for given rate in

a time-slot.

In the following, we consider the extension from one time-slot to the timeslot sequence. First,

we have the following lemma.

Lemma 9. For a given rate allocation policyr(q, h, a, eb, e) that is irrelevant toeb, i.e.,r(q, h, a),8

the greedy battery power allocation is optimal (for UPβ).

Proof: See Appendix E.

Remark: The irrelevance toeb of rate allocation policy is sufficient condition for the optimality

of greedy battery power allocation. Lemma 9 guarantees the optimality of greedy battery power

under any given rate allocation policy irrelevant toeb.

Next, a natural question iswhether the greedy allocation strategy of battery power is optimal

given general rate allocation policyr(x = (q, h, a, eb, e))? The following lemma gives the

answer.

Lemma 10. Given a rate allocation policyr(x),9

• When β is large enough, e.g.,β ≫ 1, the greedy policy is the optimal battery power

allocation policy in UPβ .

• If β is sufficiently small, e.g.,β → 0, the greedy battery power allocation policy is NOT

optimal for UPβ .

7Please refer to (10). the price of the grid power isβ.
8According to (4), if a policy is irrelevant toeb, then it is irrelevant toe.
9According to Lemma 7, it is reasonable to assume thatr(x) is non-decreasing inq andeb, respectively.
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Proof: See Appendix G.

Remark: Lemma 10 reveals that the greedy policy is NOT the optimal battery power allocation

policy in UPβ with arbitrary β. The optimality of greedy battery power allocation dependson

the value ofβ. It can be explained as follows: Sinceβ is the “price” of grid power in UPβ, when

the grid power is very cheap, the profit of reserving some battery power for future timeslot10 is

more than the cost of buying the same amount of grid power in current timeslot. Thus, reserving

some battery energy but using the grid power instead is optimal. When the price is high, the

cost of buying the grid power is more than the profit of reserving some battery energy, then

allocate as much energy as possible from the battery to fulfill the required power (i.e., greedy

battery allocation policy) is optimal.

Remark: As the remaining battery energy will affect action and cost in future timeslot for

given rate policy (e.g., battery power allocationw[n] at then-th time-slot will affect the rate

allocation r[n + 1] at the (n + 1) times-lot), the optimality of greedy battery power allocation

can not extend from one timeslot (Lemma 8) to time-slot sequence.

B. Dimension reduction for the two-dimensional policy of the constrained MDP under a sufficient

condition

According to Lemma 1, the two-dimensional optimal policy ofconstrained MDP (8) can be

derived by the optimal policy of the UPβ with one or two values ofβ. Then we have

Lemma 11. For a given rate allocation policyr(q, h, a, eb, e) that is irrelevant toeb, i.e.,r(q, h, a),

the greedy battery power allocation is optimal (for the constrained MDP (8)).

Furthermore, the following lemma reveals that the two-dimensional policy of the constrained

MDP can be reduced to the rate policy whenβ0 or β− satisfies a condition.

10Based on Property 2 in Appendix C1, there exists profit for reserving some battery power for future timeslot. The price
of using grid energy is constant over time, the cost of using grid power is constant. But reserving battery energy can incur
more data transmission in future (Observe that the rate policy has been given already, more battery power leads to more data
transmission). That is to say, delaying the use of battery energy has profits in minimizing data delay. All in all, there are profits
for the first part ofJπ

x (β).
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Lemma 12. If β0 ≫ 1 or β− ≫ 1, the greedy policy is the optimal battery power allocation

policy of the two-dimensional constrained MDP (8). Furthermore, view(X [n], R[n]) as an MDP

with stateX [n] and actionR[n].11 The feasible actionr in statex = (q, h, a, eb, e) belongs to

{0, 1, · · · , q}. Defineπr = (πr[0], πr[1], · · · ) to be a policy thatπr[n] generates an actionr[n] at

nτ , the optimal policy of the following MDP problem is the optimal rate policy of (8).

min
πr

lim sup
n→∞

1

n
E
πr

x

[

n−1
∑

k=0

Q[k]

]

(19)

s.t. lim sup
n→∞

1

n
E
πr

x

[

n−1
∑

k=0

Pgrid[k]

]

≤ P̄ , (20)

wherePgrid[k] = P (X [k], R[k])−min
{

P
(

X [k], R[k]
)

, Eb[k]
τ

}

, and the evolution of energy in

the battery becomesEb[k + 1] =
(

Eb[k]− τ min
{

P
(

X [k], R[k]
)

, Eb[k]
τ

}

+ E[k]
)−

.

Proof: See Appendix H.

Remark: When the conditionβ0 ≫ 1 or β− ≫ 1 holds, the two-dimensional policy can

be obtained as follows. We can first derive the optimal battery allocation policy of the two-

dimensional policy to be greedy policy, and then the optimalrate policy can be solved through

an MDP whose policy includes the rate allocation only (i.e.,(19)). The dimension of the policy

has reduced from(r, w) to r.

Remark: Ifβ0 ≫ 1 or β− ≫ 1, the dimension reduction can be implemented. In contrast, if

β0 → 0 or β+ → 0, the dimension reduction in Lemma 12 can not be accomplished(See the

second half of Lemma 10). For other cases, we do not know whether the dimension reduction

can be implemented.β0 ≫ 1 or β− ≫ 1 is only a sufficient condition for dimension reduction

in Lemma 12.

Since there is a conditionβ0 ≫ 1 or β− ≫ 1 in Lemma 12 and the dimension reduction does

not hold forβ0 → 0 or β+ → 0, formulating the original optimization problem (5) directly as

11The state includes the buffer queue length, channel gain, data arrival, energy in the battery, and harvested energy arrival.
The action includes the allocated rate only.
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Lemma 6 

Use (23) to find the smallest multiplier

For finite state space, Algorithm 2 is proposed

Lemma 1 

Algorithm 2 is only 

for finite state space

Algorithm 2 is time-consuming 

when the state number is large

Heuristic policies with low-complexity  for general state space

Lemma 1 Results in Section IV

Radical policy, conservative policy, and mixed policy

Algorithm 2

Fig. 4. Structure of Section V

(19) is NOT convincing.12

V. POLICY OF THE CONSTRAINEDMDP

Based on the previous theoretical results, an algorithm to find the constrained optimal policy

is proposed for the finite state space, and heuristic policesare given for the general state space.

The structure of this section is illustrated in Fig. 4.

A. Algorithm to find the optimal policy for finite state space

In this subsection, we give the algorithm to find the constrained optimal policy when the state

is finite.

According to Lemma 6, smallerβ results in better delay performanceB. Meanwhile, the

decrease ofβ will increase the grid power consumptionK. Too smallβ will violate the grid

12If we can prove that the conditionβ0 ≫ 1 or β− ≫ 1 holds, (5) can be reformulated as (19).
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TABLE II

Algorithm 2: Algorithm of finding the constrained optimal po licy for finite state

Step 1:
Using iteration algorithm (21) to findβ∗, and the corresponding average grid
powerKgβ∗ , in which the relative value iteration algorithm (Algorithm 1) is applied.
Step 2:
If Kgβ∗ = P̄, thengβ∗ is the optimal policy of the constrained MDP. Otherwise, go to next Step.
Step 3:
Perturbβ∗ by ν: β+ = β∗ + ν andβ− = β∗ − ν. Find the optimal policiesgβ+ andgβ− for
UPβ+ and UPβ+ as well as the corresponding grid powerKg

β+ andKg
β− , respectively, by using

Algorithm 1. The optimal policy is takinggβ+ with probability ξ andgβ− with probability
1− ξ at each decision stage.ξ is determined byξKg

β+ + (1− ξ)Kg
β− = P̄.

power constraint. Then we should find the smallestβ that satisfying the average grid power

first. Denoteβ∗ = inf{β : Kgβ ≤ P̄}, wheregβ is the optimal policy of UPβ. We can use the

following method to findβ∗. Let

βn+1 = βn +
1

n

(

Kgβn − P̄
)

(21)

with β1 is a sufficiently large number.Kgβn is computed by using the relative value iteration

algorithm for eachβn. Then{βn} converges toβ∗ [25]. Based on Lemma 1, if the average grid

powerKgβ∗ equals to the grid power constraint, the obtained optimal policy is also optimal for

the constrained MDP. Otherwise, we should findβ+ andβ−. The detailed algorithm for finite

state is listed in Table II.

B. Proposed heuristic policies

Algorithm 2 is only for the finite state space. Meanwhile, it is time-consuming when the num-

ber of states is large. In this subsection, we propose low-complex heuristic policies for general

state space. The paper has derived the structural properties of the optimal policy. Particularly,

we have proved that the optimal policy exists, and it is a stationary deterministic policy or a

mixed policy of two stationary deterministic policies. Moreover, we have proved that the greedy

battery power allocation MAY BE optimal (in Section IV). Based on these properties and in
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light of Algorithm 2, we propose heuristic policies as follows (a summary is given in Table III).

The first is named radical policy. Under radical policy, the action is(r = q, w = min{eb, P (x, r)})

for statex = (q, h, a, eb, e). That is to say, all the buffer data are served at each time-slot, and

use the greedy strategy for the battery energy allocation, i.e., if the required power is not greater

than the battery power, then all the power will be supplied from the battery and no grid power

will be used. Otherwise, allocate all the battery power, andthe rest will be supplied from the

power grid.

Remark: When there is no average grid power constraint, the radical policy is the optimal

policy to minimize the mean buffer delay. Furthermore, given an average grid power constraint,

when the mean date arrival, mean energy arrival, and mean channel gain satisfy a condition,

the grid power constraint can be obeyed under radical policy, the radical policy is the optimal

policy even when considering the average grid power constraint.

In the radical policy, the average grid power constraint is not considered. Then we propose

another policy (i.e., the conservative policy) that guarantees the average grid power constraint

through satisfying the constraints in each time-slot. Define P−1(·) as the inverse function of

P (x, r) with respect tor. We call the policy(r(x), w(x)) =
(

min
{

q, P−1
(

P̄ + eb
τ

)}

,min{ eb
τ
, P (x, r)}

)

the conservative policy. That is to say, we first guarantee that the grid power utilized in each time

is less than the average grid constraint, then transmit as many packets as possible and utilize

the greedy policy for the battery energy allocation.

The third policy is a random policy referred to as mixed policy. In the mixed policy, the radical

policy and conservative policy are utilized randomly with probability ξ and1− ξ, respectively.

Denote the average grid power consumptions of the radical policy and conservative asGr and

Gc, respectively.ξ is determined byξ ∗Gr + (1− ξ) ∗Gc = P̄.

VI. NUMERICAL RESULTS

In this section, simulation results are presented under theradical policy, conservative policy

and mixed policy. We consider the i.i.d. Rayleigh fading channel (i.e., the power gainH is

exponentially distributed). In addition, unless otherwise specified, we setτ = 1, b = 1, N = 5,
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TABLE III

Policy name Strategy(r(x), w(x)) for x = (q, h, a, eb, e)

Radical policy (q,min{eb, P (x, r)})
Conservative policy

(

min
{

q, P−1
(

P̄ + eb
τ

)}

,min{ eb
τ
, P (x, r)}

)

Mixed policy Apply the radical policy and conservative policy with
probability ξ and1− ξ, respectively

andρ = 1. Both the initial battery energy and initial buffer length are zero.

Fig. 5 plots the average grid power consumption with respectto the average data arrival (Ā)

under radical policy. We can observe that whenĀ is small, the grid power consumption is nearly

zero. However, when̄A is large the grid power consumption grows rapidly with the increase

of Ā roughly according to exponential relation. This can be explained as follows: when̄A is

small, the required power is small and the battery can supplythe power. Then no grid power

will be consumed. OncēA is large, the required power is much larger than the battery power,

and the grid power becomes the main power source. Since the required power roughly varies

with the transmission rate according to the exponential function, the grid power consumption

varies exponentially withĀ. Meanwhile, we can see that the better channel conditions lead to

less grid power consumption.

Furthermore, from Fig. 5, it can be derived that ifĀ is less than a certain value, the grid

power will be less than a certain value. Since the radical policy is optimal for the buffer delay

minimization without the average grid power constraint, ifĀ is less than some value to make

the average grid power be no more than the constraint, i.e., the average grid power constant is

satisfied, then the radical policy is also optimal when considering the grid power constraint. For

example, whenP̄ = 2000, according to Fig. 5, the strategy is optimal forĀ = 1, 2, · · · , 8. The

reason is that when the average power grid plus the harvestedpower is large enough to serve

all the data, then serving all is optimal.

Fig. 6 illustrates the average buffer length performance for conservative policy.A takes

values from{0, 10, 20, 30} with probabilities{0.1, 0.3, 0.5, 0.1}, respectively.E takes values
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Fig. 5. Average grid power consumptions v.s.Ā. C = 1 andEmax = 2500. A takes0 and2 ∗ Ā with equal probability0.5.
E takes values{200, 800, 1000, 2000} with probabilities{0.1, 0.6, 0.2, 0.1}, respectively. The mean grid power is average over
106 time-slots.

{200, 800, 1000, 2000} with probabilities{0.1, 0.6, 0.2, 0.1}, respectively. In Fig. 6(a), the buffer

length is averaged over105 time-slots. From the figure, we can see that the mean buffer length

decreases fast when̄P is small (e.g.,P̄ ≤ 1000 ), and the decrease becomes slow whenP̄ is

large (e.g.,P̄ > 2000). This can be explained as follows: when the upper bound of the average

grid power (i.e.,P̄) increases, there are more available grid power in a time-slot in average, sense

and we can transmit more (at least no less) buffer data, then the average buffer length becomes

shorter. WhenP̄ is small, r = min
{

q, P−1
(

P̄ + eb
τ

)}

= P−1
(

P̄ + eb
τ

)

with a high chance,

hencer increases apparently with the increase ofP̄ , and the average buffer length decreases

quickly. OnceP̄ is large enough,r = min
{

q, P−1
(

P̄ + eb
τ

)}

= q with a high probability, andr

becomes static with respect tōP . Then, the average buffer length decreases slowly. Furthermore,

we can observe that more extra circuit power consumption (i.e.,C) and smaller battery capacity

can respectively result in worse mean buffer length performance (i.e., longer length). Meanwhile,

by comparing(C = 1, Emax = 850) with (C = 100, Emax = 2500), we can find that the mean

buffer length performance for(C = 1, Emax = 850) is better whenP̄ is small. But whenP̄ is

large,(C = 100, Emax = 2500) has slightly better performance.

In Fig. 6(b), for each curve, we can observe that the buffer length performance decreases with

the increase ofH/σ2, fast whenH/σ2 is small (e.g.0.1, 0.2, 0.3), moderately whenH/σ2 is large

(e.g.,0.4, · · · , 0.7), and slowly whenH/σ2 is very large (e.g.,0.8, 0.9). The reason is as follows.

WhenH/σ2 is not very large,q > P−1( eb
τ
) with a high probability, i.e.,r(x) = P−1( eb

τ
). The
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Fig. 6. The mean buffer length performance for conservativepolicy.

remaining buffer lengthu(x) = q− r(x) = q−P−1( eb
τ
) will decrease with the increase ofh/σ2

approximately according to minus logarithmic relation.13 Thus, the mean buffer length decreases

harshly at first and moderate then. OnceH/σ2 is larger than a certain value,q < P−1( eb
τ
) with

a high probability. Then,r(x) = q and the remaining buffer length becomes zero with a high

probability. In this case, the increase ofH/σ2 will not have great effects on the mean buffer

length (the mean length is nearly the average data arrival,16).

Fig. 7 compares the buffer length performance of the heuristic policies with respect tōH/σ2. In

the simulations,A takes values from{0, 10, 20, 30} with probabilities{0.1, 0.5, 0.3, 0.1}, respec-

tively. E takes values{200, 800, 1000, 2000} with probabilities{0.1, 0.6, 0.2, 0.1}, respectively..

Emax = 2500 and P̄ = 3000. Based on the average grid power consumptions of radical policy

and conservative policy (as plotted in Fig. 8), we compute the probability of using radical policy

in the mixed policy,ξ = [0.9468 0.8615 0.7933 0.7463 0.7053 0.6608 0.6689 0.6452]. We can

see that in terms of the buffer length performance, the radical policy is better than the mixed

policy, which is better than the conservative policy. For the conservative policy and mixed policy,

the buffer length decreases with the increase ofH̄/σ2 first harshly and then moderately. The

explanations for the conservative policy are similar to Fig. 6(b). As the usage probability of the

conservative policy in mixed policy is high, the buffer length of the mixed policy is similar as

13P−1(·) is increasing withh/σ2 according to logarithmic relation.
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(b) Conservative policy

Fig. 8. The average grid power consumptions of the radical policy and conservative policy.

the conservative policy. Meanwhile, as there is chance of using the radical policy in the mixed

policy, the buffer length performance of the mixed policy isbetter than the conservative policy.

The mean buffer length of the radical policy is approximately the mean data arrival and remains

static. As the radical policy is the optimal policy without the grid power constraint, the buffer

length of the radical policy is the lower bound of the optimalpolicy.

VII. CONCLUSION

In this paper, we have studied the power allocation of the physical layer together with the

optimal mean buffer delay of the upper layer in green networks with energy harvesting nodes.

The physical power allocation contains two aspects: power allocation from the power grid and

power allocation from the battery. The rate allocation can represent the total power allocation

and the grid power allocation is the total power subtract thebattery power, then the physical

power allocation is equivalent to rate allocation and battery power allocation. For the purpose of
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modeling and analyzing the conflicting relation between power and delay as well as the coupling

between rate allocation and battery power allocation, we reformulate a constrained MDP with

a two-dimensional policy. The analysis of the constrained MDP is transformed to that of the

corresponding unconstrained MDP. Structural properties of the optimal policy are derived. In

addition, the relations between elements of the two-dimensional policy are also investigated.

According to the theoretical study, an algorithm to find the constrained optimal policy is proposed

for finite state space. Furthermore, heuristic policies (i.e., the radical policy, the conservative

policy and the mixed policy) are presented for general state. In the end, simulations are carried

out under these policies. We have observed the interactionsamong the channel, the data arrival,

the harvested energy arrival, the power grid, and the data buffer length.

APPENDIX

A. Proof of Lemma 1

If for someβ (denoted asβ0), the optimal stationary policyπ∗ of UPβ0
satisfies: 1)π∗ yields

Bπ∗

andKπ∗

as limits for allx ∈ X ; 2) Kπ∗

= P̄ . Thenπ∗ is optimal for the constrained MDP

(8) according to [22][23]. Otherwise, there areβ+ andβ−. The optimal policyπ− that obtained

for UPβ− has a grid power consumption slightly larger thanP̄ . β+ > β− will instead lead to a

less aggressive policyπ+ with a grid power consumption slightly smaller than̄P. The optimal

policy for the constrained MDP (8) is as follows: at each decision epoch, chooseπ− with a

certain probabilityq andπ+ with probability 1− q, whereq depends on̄P and the grid power

consumptions of the two policies [23][24].14

B. Proof of Lemma 2

We prove the lemma by applying Theorem 3.8 in [27]. First, we can prove that the conditions

of Proposition 2.1 in [27] holds. Next, the discounted cost optimality equation [28] forVα(x) is

Vα(q, h, a, eb, e) = min
r∈{0,1,··· ,q},w∈{0, 1

τ
,··· ,

eb
τ
}

{

q + β
[

ρ
σ2

h
(eθr − 1) + ∆(r)− w

]+
+ α

×Eh,a,e

[

Vα(q − r + A,H,A, (eb − wτ + E)−, E)
]

}

. (22)

14The state space is countable.
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We can see thatVα(q, h, a, eb, e) is increasing inq and non-increasing ineb given (h, a, e) since

the larger the initial buffer the larger will be the cost to go, and the larger the initial battery

energy the smaller will be the cost.15 Thus,arg infy∈X Vα(y) = (0, h0, a0, Emax, e0) := x0, i.e.,

the infimum is obtained when the system begins with an empty buffer, a full battery, and for

some channel sateh0, arrival statea0, and harvested energy arrival statee0. When the buffer is

empty, the set of feasible rate is{0}. Thenf(x0, 0, w) = 0, we get

Vα(x0) = min
w∈{0, 1

τ
,··· ,Emax

τ
}
αEh0,a0,e0

[

Vα(A,H,A, (Emax − wτ + E)−, E)
]

= αEh0,a0,e0 [Vα(A,H,A,Emax, E)] . (23)

Meanwhile, since policy(q, 0) is feasible for state(q, h, a, eb, e), then

Vα(x) ≤ q + ρ
σ2

h
(eθq − 1) + C + αEh,a,e

[

Vα(A,H,A, (eb + E)−, E)
]

. (24)

Let the system start in state(a, h, a, eb+e, e), we take the actionr[n] = a[n] andw[n] < e[n] for

all n. Let ξ(h, a, eb, e) be the expected number of slots to hit the state(a0, h0, a0, Emax, e0).16

Observe thatξ(h, a, eb, e) is finite. Let cmax = max
h,a

{

a+ ρσ2

h
(eθa − 1)

}

+ C. Applying the

Wald’s lemma [29], we get

αEh,a,e

[

Vα(A,H,A, (eb + E)−, E)
]

≤ cmaxξ(h, a, eb, e) + α

× Eh0,a0,e0 [Vα(A,H,A,Emax, E)] = cmaxξ(h, a, eb, e) + Vα(x0). (25)

In (25), we have used(Emax +E)− = Emax. Next, combining (24) and (25), we haveVα(x) ≤

q + ρσ2

h
(eθq − 1) +C + cmaxξ(h, a, eb, e) + Vα(x0). Thus,Vα(x)− Vα(x0) ≤ q + ρσ2

h
(eθq − 1) +

C + cmaxξ(h, a, eb, e) < ∞. Third, there exits a policyπ ∈ A and an initial statex ∈ X such

that Jπ
x (β) < ∞ in the practical problem. Otherwise, the cost is infinite forall policies and any

policy is optimal. Based on the above analysis, the conditions in Theorem 3.8 in [27] hold, and

then we prove the lemma.

15See the formal proof at Property 1 and Property 2 in Appendix C1.
16Whenw[n] < e[n], Emax is the absorbing state of the battery energy.
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C. Optimal policy for the discount cost MDP

1) Properties ofVα(q, h, a, eb, e): Property 1 - Property 3 give the properties of the value

function Vα(q, h, a, eb, e).

Property 1. Vα(q, h, a, eb, e) is an increasing function ofq.

Proof: We verify the increasing property by induction. The value iteration algorithm (or

successive approximation method) corresponding to (32) is

Vα,n(q, h, a, eb, e) = min
u∈{0,1,··· ,q},η∈{0,1,··· ,eb}

{

q + β
[

ρ
σ2

h
(eθ(q−u) − 1) + ∆(q − u)−

eb − η

τ

]+
+ α

× Eh,a,e

[

Vα,n−1(u+ A,H,A, (η + E)−, E)
]

}

(26)

with Vα,0(q, h, a, eb, e) = 0. Accordingly, Vα,0 = 0, and Vα,1 = q. The increasing property

in q holds. AssumeVα,n−1(q, h, a, eb, e) is increasing inq. Fix (h, a, eb, e), in the state(q +

1, h, a, eb, e), the set of feasibleu is {0, 1, · · · , q + 1} whereas it is{0, 1, · · · , q} for state

(q, h, a, eb, e). Consider state(q + 1, h, a, eb, e), let the optimal action be(u∗, η∗) with u∗ ∈

{0, 1, · · · , q}, henceVα,n(q + 1, h, a, eb, e) = q + 1 + β
[

ρσ2

h
(eθ(q+1−u∗) − 1) + ∆(q + 1 −

u∗) − eb−η∗

τ

]+
+ αEh,a,e [Vα,n−1(u

∗ + A,H,A, (η∗ + E)−, E)] . As (u∗, η∗) is feasible in state

(q, h, a, eb, e), Vα,n(q, h, a, eb, e) ≤ q + β
[

ρσ2

h
(eθ(q−u∗) − 1) + ∆(q − u∗) − eb−η∗

τ

]+
+ αEh,a,e

[Vα,n−1(u
∗ + A,H,A, (η∗ + E)−, E)] ≤ Vα,n(q + 1, h, a, eb, e). If (u∗, η∗) with u∗ = q + 1,

Vα,n(q + 1, h, a, eb, e) = q + 1 + αEh,a,e

[

Vα,n−1(q + 1 + A,H,A, (η∗ + E)−, E)
]

. (27)

Meanwhile, since(q, η∗) is feasible in state(q, h, a, eb, e),

Vα,n(q, h, a, eb, e) ≤ q + αEh,a,e

[

Vα,n−1(q + A,H,A, (η∗ + E)−, E)
]

(a)

≤ Vα,n(q + 1, h, a, eb, e),

where (a) holds since the induction hypothesis.

Property 2. Vα(q, h, a, eb, e) is a non-increasing function ofeb.

Proof: We verify this by induction. According to (26),Vα,0 = 0, and thenVα,1 = q.

The non-increasing property holds. AssumeVα,n−1(q, h, a, eb, e) is non-increasing ineb. Given
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(q, h, a, e), consider state(q, h, a, eb, e), let (u∗, η∗) be the optimal policy, i.e.,Vα,n(q, h, a, eb, e) =

q+β
[

ρσ2

h
(eθ(q−u∗)−1)+∆(q−u∗)−(eb−η∗)/τ

]+
+αEh,a,e [Vα,n−1(u

∗ + A,H,A, (η∗ + E)−, E)] .

For state(q, h, a, eb + 1, e), (u∗, η∗) is feasible, then we haveVα,n(q, h, a, eb + 1, e) ≤ q +

β
[

ρσ2

h
(eθ(q−u∗)−1)+∆(q−u∗)−(eb+1−η∗)/τ

]+
+αEh,a,e [Vα,n−1(u

∗ + A,H,A, (η∗ + E)−, E)] ≤

Vα,n(q, h, a, eb, e).

In the practical case, the allocated harvested power will not surpass the required total power.

Thus, we assume the(u, η) always guarantees that

ρ
σ2

h
(eθ(q−u) − 1) + ∆(q − u) ≥

eb − η

τ
. (28)

Based on this assumption,Pgrid(x, r, w) = P (x, r)− w. The following property gives the joint

convexity ofVα(q, h, a, eb, e) in (q, eb).

Property 3. Vα(q, h, a, eb, e) is convex in(q, eb).

Proof: First, we prove the following claim.

Claim 1. For φ ∈ (0, 1) and∀x1, x2, y, φmin{x1, y}+ (1 − φ)min{x2, y} ≤ min{φx1 + (1 −

φ)x2, y}.

Proof: The claim can be proved by consideringmin{x1, x2} > y, max{x1, x2} < y, and

min{x1, x2} ≤ y ≤ max{x1, x2}, respectively.

The convexity is proved by induction. Forn = 0, Vα,0 = 0, and it is convex. Assume

Vα,n−1(q, h, a, eb, e) is convex in(q, eb). Fix (q, h, a, eb, e), let (u1, η1) and(u2, η2) be the optimal
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policy for (q1, eb1) and (q2, eb2). Then, we get

φVα,n(q1, h, a, eb1, e) + (1− φ)Vα,n(q2, h, a, eb2, e) = φ
[

q1 + β(ρ
σ2

h
(eθ(q1−u1) − 1)

+ ∆(q1 − u1)−
eb1 − η1

τ
)
]

+ (1− φ)[q2 + β(ρ
σ2

h
(eθ(q2−u2) − 1) + ∆(q2 − u2)−

eb2 − η2
τ

)]

+ αEh,a,e

[

φVα,n−1(u1 + A,H,A, (η1 + E)−, E) + (1− φ)Vα,n−1(u2 + A,H,A, (η2 + E)−, E)
]

(b)

≥ φq1 + (1− φ)q2 + β

[

ρ
σ2

h
(eθ[φ(q1−u1)+(1−φ)(q2−u2)] − 1) + ∆(φ(q1 − u1) + (1− φ)(q2 − u2))

−
1

τ
(φ(eb1 − η1) + (1− φ)(eb2 − η2))

]

+ αEh,a,e

[

Vα,n−1(φu1 + (1− φ)u2 + A,H,A, φ(η1 + E)−

+ (1− φ)(η2 + E)−, E)
(c)

≥ φq1 + (1− φ)q2 + β

[

ρ
σ2

h
(eθ[φ(q1−u1)+(1−φ)(q2−u2)] − 1) + ∆(φ(q1 − u1)

+ (1− φ)(q2 − u2))−
1

τ
(φ(eb1 − η1) + (1− φ)(eb2 − η2))

]

+ αEh,a,e

[

Vα,n−1(φu1 + (1− φ)u2

+ A,H,A, (φη1 + (1− φ)η2 + E)−, E)
(d)

≥ Vα,n(φq1 + (1− φ)q2, h, a, φeb1 + (1− φ)eb2, e),

where (b) holds because of the convexity ofeθ(q−u)+∆(q−u) (with respect tou) andVα,n−1(q, h, a, eb, e),

(c) holds because of Claim 1 as well as Property 2, and (d) holds since(φu1+(1−φ)u2, φη1+

(1− φ)η2) is feasible forφ(q1, h, a, eb1, e) + (1− φ)(q2, h, a, eb2, e). The proof completes.

2) On the discount optimal policy:For a state-action pair(x = (q, h, a, eb, e), (r, w)) ∈ X ×

A(x), defineu := q − r and η := eb − wτ, i.e., let u and η denote the remaining data in the

buffer and the remaining energy in the battery, respectively. Then(u(x), η(x)) can also define a

stationary policy. We can analysis the policy in terms of theremaining data in the bufferu and

the remaining energy in the batteryη.

Proposition 1. Denote the discount optimal policy in statex = (q, h, a, eb, e) as (u∗(x), η∗(x)).

Then,(u∗(x), η∗(x)) satisfies the following inequality array

Z1(q, u
∗, h, a, η∗, e) ≤ βρ

σ2

h
eθq(eθ − 1) ≤ Z1(u

∗ + 1, h, a, η∗, e), (29)

Z2(u
∗, h, a, η∗, e) ≤

−β

τ
≤ Z2(u

∗, h, a, η∗ + 1, e), (30)
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Z3(q, u
∗, h, a, η∗, e) ≤ βρ

σ2

h
eθq(eθ − 1) ≤ Z3(u

∗ + 1, h, a, η∗ + 1, e), (31)

whereZ1(q, u, h, a, η, e) = eθu
[

αEh,a,e

[

G1(u+A,H,A, (η+E)−, E)
]

+β
[

∆(q−u)−∆(q−u+

1)
]

]

with G1(q, h, a, eb, e) = Vα(q, h, a, eb, e)− Vα(q − 1, h, a, eb, e) being the partial backward

difference ofVα regardingq. Z2(u, h, a, η, e) = αEh,a,e

[

G2(u + A,H,A, (η + E)−, E)
]

with

G2(q, h, a, eb, e) = Vα(q, h, a, eb, e)− Vα(q, h, a, eb − 1, e) being the partial backward difference

of Vα regardingeb. Z3(q, u, h, a, η, e) = eθu
[

αEh,a,e

[

G12(u+A,H,A, (η+E)−, E)
]

+β
[

∆(q−

u) − ∆(q − u + 1)
]

+ β

τ

]

with G12(q, h, a, eb, e) = Vα(q, h, a, eb, e) − Vα(q − 1, h, a, eb − 1, e)

being the backward difference ofVα regarding(q, eb).

Proof: First, the discounted cost optimality equation becomes

Vα(q, h, a, eb, e) = min
u∈{0,1,··· ,q},η∈{0,1,··· ,eb}

{

q + β
[

ρ
σ2

h
(eθ(q−u) − 1) + ∆(q − u)−

eb − η

τ

]+

+ αEh,a,e

[

Vα(u+ A,H,A, (η + E)−, E)
]

}

, (32)

Let S(u, η) = q+β
[

ρσ2

h
(eθ(q−u)−1)+∆(q−u)− eb−η

τ

]

+αEh,a,e [Vα(u+ A,H,A, (η + E)−, E)] .

First, we have

S(u+ 1, η)− S(u, η) = βρ
σ2

h
(eθ(q−u−1) − eθ(q−u)) + β[∆(q − u− 1)−∆(q − u)]

+ αEh,a,e

[

Vα(u+ 1 + A,H,A, (η + E)−, E)− Vα(u+ A,H,A, (η + E)−, E)
]

(33)

and

S(u− 1, η)− S(u, η) = βρ
σ2

h
(eθ(q−u+1) − eθ(q−u)) + β[∆(q − u+ 1)−∆(q − u)]

+ αEh,a,e

[

Vα(u− 1 + A,H,A, (η + E)−, E)− Vα(u+ A,H,A, (η + E)−, E)
]

. (34)

Then applyingS(u∗+1, η∗)−S(u∗, η∗) ≥ 0 andS(u∗−1, η∗)−S(u∗, η∗) ≥ 0, we obtain (29).

Similarly, asS(u, η + 1)− S(u, η) = β

τ
+ αEh,a,e

[

Vα(u + A,H,A, (η + 1 + E)−, E)− Vα(u +

A,H,A, (η + E)−, E)
]

and S(u, η − 1) − S(u, η) = −β

τ
+ αEh,a,e

[

Vα(u + A,H,A, (η − 1 +

E)−, E)−Vα(u+A,H,A, (η+E)−, E)
]

, we can reach (30) fromS(u∗, η∗+1)−S(u∗, η∗) ≥ 0
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andS(u∗, η∗ − 1)− S(u∗, η∗) ≥ 0. In addition,

S(u+ 1, η + 1)− S(u, η) = βρ
σ2

h
(eθ(q−u−1) − eθ(q−u)) +

β

τ
+ β[∆(q − u− 1)−∆(q − u)]

+ αEh,a,e

[

Vα(u+ 1 + A,H,A, (η + 1 + E)−, E)− Vα(u+ A,H,A, (η + E)−, E)
]

(35)

and

S(u− 1, η − 1)− S(u, η) = βρ
σ2

h
(eθ(q−u+1) − eθ(q−u))−

β

τ
+ β[∆(q − u+ 1)−∆(q − u)]

+ αEh,a,e

[

Vα(u− 1 + A,H,A, (η − 1 + E)−, E)− Vα(u+ A,H,A, (η + E)−, E)
]

. (36)

Then, (31) can be obtained by applyingS(u∗ − 1, η∗ − 1) − S(u∗, η∗) ≥ 0 andS(u∗ + 1, η∗ +

1)− S(u∗, η∗) ≥ 0.

Remark: When(u∗, η∗) is on the boundary of the feasible set, corresponding conditions can

also be obtained by following the proof of Proposition 1.

Proposition 2. For x = (q, h, a, eb, e) satisfying

Z1

(

q, 0, h, a, τ max{0,
eb
τ
− P (x, q)}, e

)

> βρ
σ2

h
eθq(eθ − 1) (37)

and

Z2(0, h, a, τ max{0,
eb
τ
− P (x, q)}, e) >

−β

τ
, (38)

(0, τ max{0, eb
τ
−P (x, q)}) is the discount optimal policy. In addition, for(q, h, a, eb, e) satisfying

Z1(q, q, h, a, eb, e) < βρ
σ2

h
eθq(eθ − 1) (39)

and

Z2(q, h, a, eb, e) <
−β

τ
, (40)

(q, eb) is the discount optimal policy.

Proof: Using Property 3 in Appendix C1, we can derive thatZ1(q, u, h, a, η, e) ≤ Z1(q, u+

1, h, a, η, e), Z1(q, u, h, a, η, e) ≤ Z1(q, u, h, a, η + 1, e), Z2(u, h, a, η, e) ≤ Z2(u, h, a, η + 1, e),
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Z2(u, h, a, η, e) ≤ Z2(u + 1, h, a, η, e), and Z3(q, u, h, a, η, e) ≤ Z3(q, u + 1, h, a, η + 1, e).17

On the other hand, (28) should be satisfied. Thus, given(q, h, a, e), Z1(q, 0, h, a, τ max{0, eb
τ
−

P (x, q)}, e), Z2(0, h, a, τ max{0, eb
τ
− P (x, q)}, e), andZ3(q, 0, h, a, τ max{0, eb

τ
− P (x, q)}, e)

are the smallest respectively. Following the proof of proposition 1, we can prove the first half

of the proposition by contradiction. Specifically, suppose(0, τ max{0, eb
τ
− P (x, q)}) is not the

optimal solution, thenS(u∗ − 1, η∗) − S(u∗, η∗) ≥ 0 or S(u∗, η∗ − 1) − S(u∗, η∗) ≥ 0 should

hold. We haveZ1(q, 0, h, a, τ max{0, eb
τ
−P (x, q)}, e) < Z1(q, u

∗, h, a, η∗, e) ≤ βρσ2

h
eθq(eθ − 1)

or Z2(0, h, a, τ max{0, eb
τ
−P (x, q)}, e) < Z2(u

∗, h, a, η∗, e) ≤ −β

τ
, and the contradiction occurs.

We can prove the second half of the proposition similarly by using contradiction. First,

given (q, h, a, e), Z1(q, q, h, a, eb, e) and Z2(q, h, a, eb, e) are the largest values ofZ1 and Z2,

respectively. Assume(q, eb) is not the optimal solution, thenS(u∗ + 1, η∗) − S(u∗, η∗) ≥ 0 or

S(u∗, η∗ + 1) − S(u∗, η∗) ≥ 0 should be satisfied. Consequently, we getZ1(q, q, h, a, eb, e) ≥

Z1(q, u
∗+1, h, a, η∗, e) ≥ βρσ2

h
eθq(eθ−1) or Z2(q, h, a, eb, e) ≥ Z2(u, h, a, η

∗+1, e) ≥ −β

τ
. The

contradiction occurs then.

Remark: In Proposition 1 and Proposition 2, to computeZi(·) i = 1, 2, 3, we need to compute

Vα(·). It can be obtained by value iteration (26).

Proposition 3. Denotex = (q, h, a, eb, e). The discount optimal transmit rate policyr(x) =

q − u∗(x) is non-decreasing inq and eb, respectively; The discount optimal battery energy

allocation policyw(x) = eb − η∗(x) is non-decreasing inq andeb, respectively.

Proof: First, it is easy to see thatr(x) is nondecreasing ineb andw(x) is non-decreasing

in q. Next, we prove the non-decreasing ofr(x) in q by contradiction. Consider two states

x1 = (q1, h, a, eb, e) andx2 = (q2, h, a, eb, e). We write r(x1) and r(x2) as r(q1) and r(q2) for

brevity. Assumeq1 < q2 but r(q1) > r(q2), then0 ≤ r(q2) < r(q1) ≤ q1 < q2. r(q2), w(q2) is

17It is assumed thatαEh,a,e

[

G1(q+A,H,A, (η+E)−, E)
]

− e−θαEh,a,e

[

G1(q− 1+A,H,A, (η+E)−, E)
]

≥ βC and
αEh,a,e

[

G12(q + A,H,A, (η + E)−, E)
]

− e−θαEh,a,e

[

G12(q − 1 + A,H,A, (η + E)−, E)
]

+ β

τ
(1 − e−θ) ≥ βC. This

assumption can be definitely satisfied whenC is small.
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feasible inx1 andr(q1), w(q1) is feasible inx2. Sincer(·) andw(·) are optimal, we have

q1 + β
[

ρ
σ2

h
(eθr(q1) − 1) + C − w(q1)

]

+ αEh,a,e

[

Vα(q1 − r(q1) + A,H,A, (eb − w(q1)τ + E)−, E)
]

≤ q1 + β
[

ρ
σ2

h
(eθr(q2) − 1) + ∆(r(q2))− w(q2)

]

+ αEh,a,e

[

Vα(q1 − r(q2) + A,H,A, (eb − w(q2)τ + E)−, E)
]

(41)

q2 + β
[

ρ
σ2

h
(eθr(q2) − 1) + ∆(r(q2))− w(q2)

]

+ αEh,a,e

[

Vα(q2 − r(q2) + A,H,A, (eb − w(q2)τ + E)−, E)
]

≤ q2 + β
[

ρ
σ2

h
(eθr(q1) − 1) + C − w(q1)

]

+ αEh,a,e

[

Vα(q2 − r(q1) + A,H,A, (eb − w(q1)τ + E)−, E)
]

(42)

Add (41) and (42), we have

Eh,a,e

[

Vα(q1 − r(q2) + A,H,A, (eb − w(q2)τ + E)−, E)
]

− Eh,a,e

[

Vα(q1 − r(q1) + A,H,A, (eb − w(q1)τ + E)−, E)
]

> Eh,a,e

[

Vα(q2 − r(q2) + A,H,A, (eb − w(q2)τ + E)−, E)
]

− Eh,a,e

[

Vα(q2 − r(q1) + A,H,A, (eb − w(q1)τ + E)−, E)
]

(43)

As Vα(q, h, a, eb, e) is convex in(q, eb), Eh,a,e [Vα(y + A,H,A, (z + E)−, E)] is convex in(y, z).

(43) contradicts the convexity. Then we prove the non-decreasing ofr(x) in q. The non-decreasing

of w(x) in eb can be verified similarly.

D. Proof of Lemma 8

The lemma can be proved intuitively as follows. Given a transmission rate, the required power

is known from the inverse of (1). Out of this power, as much as possible shall be supplied by

the battery, since battery energy is “free”. In other words,any policy that draws power from

the grid while energy is still available in the battery cannot outperform an equivalent one which
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strictly uses battery energy first, that has the same total power.

E. Proof of Lemma 9

Since r(q, h, a, eb, e) is irrelevant toeb, given rate policyr(q, h, a), the rate is determined

independent of the battery allocation in each timeslot. Then greedy battery allocation is optimal

for one-step cost in each timeslot according to lemma 8. Thus, the greedy battery allocation

policy is the optimal for (10).

F. Proof of Lemma 6

Since the optimal policy of UPβ is gβ, we have

Jgβ(β + λ)− Jgβ(β) ≥ Jgβ+λ(β + λ)− Jgβ(β) ≥ Jgβ+λ(β + λ)− Jgβ+λ(β) (44)

for any positiveβ > 0 andλ > 0. Thus,

λKβ ≥ Jgβ+λ(β + λ)− Jgβ(β) ≥ λKβ+λ > 0. (45)

The monotonicity ofJgβ(β) andKgβ with respect toβ are verified. In the following, we prove

the non-decreasing ofBgβ in β. First, similarly as in [18], we can prove thatu∗(x) is non-

decreasing inβ. Next, asA[n] is an independent process, then using (3), we claim thatBgβ is

also non-decreasing inβ.

G. Proof of Lemma 10

We can verify the lemma through (22) together with Lemma 2. When β ≫ 1, we have

β ≫ α. Then Vα = min
r∈{0,1,··· ,q},w∈{0, 1

τ
,··· ,

eb
τ
}

{

q + β
[

ρσ2

h
(eθr − 1) + ∆(r) − w

]+
}

. Given rate

r(x), we havew(x) = min{ eb
τ
, P (x, r)} (i.e., greedy policy) is discount optimal for state

x. When β is sufficient small, we haveβ ≪ α. Thus, Vα = min
r∈{0,1,··· ,q},w∈{0, 1

τ
,··· ,

eb
τ
}

{

q +

αEh,a,e [Vα(q − r + A,H,A, (eb − wτ + E)−, E)]
}

. Using Property 2 in Appendix C1,w = 0

is discount optimal. Since limitation will not change the partial order, utilizing the second half

of Lemma 2, we reach the lemma.
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H. Proof of Lemma 12

Since the constrained MDP (8) is equivalent to UPβ0
or the constrained optimal policy is a

mixed policy of optimal policies for UPβ+ and UPβ− . When β0 ≫ 1 or β− ≫ 1, according

to the first half of Lemma 10, we can derive the greedy policy isthe optimal battery power

allocation policy under given rate policy. Fix the greedy policy as the battery power allocation

policy in (8), we arrive at (19) for solving the optimal rate policy.
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