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Abstract

In this paper, we consider the power allocation of the ptajdayer and the buffer delay of the upper
application layer in energy harvesting green networks. ok power required for reliable transmission
includes the transmission power and the circuit power. Tdrgdsted power (which is stored in a battery)
and the grid power constitute the power resource. The umiogrtof data generated from the upper
layer, the intermittence of the harvested energy, and thiatian of the fading channel are taken into
account and described as independent Markov processeaclnt@nsmission, the transmitter decides
the transmission rate as well as the allocated power fronbdttery, and the rest of the required power
will be supplied by the power grid. The objective is to find dl@ation sequence of transmission
rate and battery power to minimize the long-term averagéebufelay under the average grid power
constraint. A stochastic optimization problem is formathaccordingly to find such transmission rate
and battery power sequence. Furthermore, the optimizgtioblem is reformulated as a constrained
Markov decision process (MDP) problem whose policy is a timensional vector with the transmission
rate and the power allocation of the battery as its eleméanésprove that the optimal policy of the
constrained MDP can be obtained by solving the unconsulditieP. Then we focus on the analysis of
the unconstrained average-cost MDP. The structural ptiegasf the average optimal policy are derived.
Moreover, we discuss the relations between elements ofsbalimensional policy. Next, based on the
theoretical analysis, the algorithm to find the constraioptimal policy is presented for the finite state
space scenario. In addition, heuristic policies (two deiristic policies and a mixed policy) with low-
complexity are given for the general state space. Findliyktions are performed under these policies
to demonstrate the effectiveness.

Index Terms

Green communications, energy harvesting, cross-layagmiepower allocation, Markov decision
process.
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I. INTRODUCTION

Rapid wireless communication industry development hasdeal dramatic increase of energy
consumption in wireless networks, and such an increasirggggnconsumption produces a
series of energetic and environmental problems. Recagrdgn communications, which aims at
enhancing energy efficiency and carbon emission redudtiave received considerable attention
[2]-[6]. In the energy-efficient design for wireless comnuations, the total energy consumption
includes not only the transmission energy but also the tienergy consumption [7].

As a preferred choice supporting green communicationgggnearvesting techniques such
as photovoltaic solar cells become popular for the abilityptolong the lifetime of the battery
and the lifetime of wireless networks thereby. There havenbe lot of researches in wireless
networks with energy harvesting nodes.!In [8], an optim&rgyn management policy for a solar-
powered sensor node was proposed. The policy uses a sleewakedip strategy for energy
conservation. In[[9], throughput optimal and mean delayinogt energy management policies
were studied for a single energy harvesting sensor node.Sha@non capacity of an energy
harvesting sensor node transmitting over an AWGN channsl etdained in[[10]. In[[11], the
optimal binary transmission policies were studied undet.iBernoulli energy arrivals. In_[12],
the long-term average communication reliability optintiaa problem was studied for the system
of energy-harvesting active networked tags (EnHANTS).18] [and [14], throughput-maximal
schemes of energy allocation for wireless communicatioite energy harvesting constraints
are studied.

Resource allocation is a fundamental problem in wirelesanoanications[[15]. Generally,
resource consumption reduction and quality of service jQu®Brovement are two conflicting
objectives in a resource allocation problem. There has beste interests in analyzing the power
allocation and delay performance from the cross-layergsative. In [16] and [17], the tradeoff
between the average required power for reliable transamsai the physical layer and the mean
delay at the network layer was studied in fading channelg. 8daptive control policies utilize
information on both queue state and channel state, and soowusal results for the optimal

policy were derived. In[[18], the authors derived the imgvesults upon these obtained in

October 26, 2018 DRAFT



[17]. They considered the optimization problem aiming toimize the delay in the transmitter
buffer under an average transmitter power constraint. kistence of stationary average optimal
policy was proved and some structural results were obtailmefll9], the fading channel was
simplified to a static channel, and the explicit optimal ecohpolicy was characterized.

In [17]-[19], only the transmission power is considered.wdwger, as shown in_[2], the
transmission strategy changes when taking the circuit powe account. Then a natural problem
is what about the power and delay when considering both trassion power and circuit power.
Meanwhile, as energy allocation of the battery plays a eénbte in the transmission strategy of
energy harvesting nodelBpw the energy allocation strategy of the battery will affde power
and delay?

In this paper, we consider the power allocation in the platdayer and the delay performance
in the upper application layer in green wireless networké whergy harvesting nodes. The data
are generated in the application layer, and placed in a baff¢he transmitter. The transmitter
periodically removes some data from the buffer, and tratssthie data to the receiver. The
required power for reliable transmission takes both trassion power and circuit power into
account, and the power resource makes up of the harvestest po grid power. The harvested
energy arrives randomly, and there is a constraint on theageegrid power. The objective is
to minimize the average delay in the buffer with a constrdiaeerage grid power and random
battery energy. Since the required power for each trangmissan be supplied from both the
battery and the grid, the policy is two-dimensional, i.ee tate as well as the allocation of the
battery energy (the grid power allocation is then the totgjuired power minus the allocated
battery power), in the formulated optimization problem.

Specifically, the main contributions of the paper can be sanmead as follows.

« We consider the delay-optimal power allocation in the freworx of green communications
over fading channels, where the power comes from both povigagd harvesting devices.
The data arrival process, the harvested energy arrivalepsy@nd the channel process are
Markovian. A stochastic optimization problem is formuthte find a transmission rate and

battery power allocation sequence to minimize the longawverage buffer delay under the
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constraint on the average grid power.

« We reformulate the optimization problem as a constrainedkbadecision process (MDP)
problem, in which the state and action are defined. The statades the queue state, the
battery state (i.e., the stored energy in the battery), bancel state, the data arrival, and
the harvested energy arrival. The action consists of thesitngssion rate and the power
allocation from the battery. Using the Lagrangian methodyp| the constrained MDP can
be relaxed to an unconstrained problem (UP), which is anageecost MDP. We prove that
the optimal solution of the constrained MDP can be deriveddlying the UP with one or
two Lagrangian multipliers. Then we focus on the optimaligobf the average cost MDP
(i.e., UP). We verify the existence of the optimal statignpwlicy of the average cost MDP
and it can be obtained from the corresponding discount c@®.NVe derive two necessary
conditions for the optimal policy of the average cost MDPefage cost optimal policy).
Under certain conditions, the policy that serving nothing allocating no energy from the
battery is an average cost optimal policy. We also prove skating everything combined
with allocating the minimal of the total required power awtit energy in the battery are
an average cost optimal policy under other certain conwitid’he monotonicities of the
optimal object value with respect to Lagrangian multiphed optimal policy regarding the
state are investigated, respectively.

« We analyze the relations between the transmission rate lamdgdwer allocation from
the battery. We find that given the transmission rate polibg optimal battery power
allocation policy is the greedy policy in some scenario. §eneral scenario, we propose
a sufficient condition under which the optimal policy of twonensional MDP problem
can be decomposed to the optimal policy of an MDP problem with policy to be the
transmission rate only in addition with the greedy batteoywer allocation policy.

« On the basis of the theoretical investigation, we proposal@orithm to find the constrained
optimal policy under the finite state case. In addition, weppise three heuristic policies
for the constrained MDP with the general state case: ragigiaty, conservative policy, and

mixed policy.
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The remainder of the paper is organized as follows. In Seclip the system model is
described, and a mean buffer delay minimization problenh a&iterage grid power constraint is
formulated. In Section lll, the optimization problem isfeermulated as a constrained MDP and
the optimal two-dimensional policy of the constrained MBRnvestigated. Next, we discuss the
relations between elements of the two-dimensional poticgectiori IV. Based on the theoretical
analysis, the algorithm to find the constrained optimal gyolinder the finite state space and
heuristic policies for the general state space are proposeédctiori . Simulations are performed

in Section VI. Finally, Section VIl concludes the paper.

[I. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a slotted-time model of a point-to-point bloakihg channel. The length of a
time-slot is7 units. Then-th time-slot is the time interva|nr, (n + 1)7). The channel gain
remains static in each slot, and changes between diffefetst §he sequence of the channel
gains is a finite-state ergodic Markov chdif/ [n]}. The transmitter is assumed to have perfect
channel state information (CSI). As shown in Hig. 1, at theé ehthen-th slot, the higher layer
generatesA|n| packets and they are stored in a buffer before transmisHian.assumed that
each packet is witlh bits and{A[n]} is a finite-state ergodic Markov chain. We assume that
the transmitter is equipped with an energy harvesting @ewed it can also get power from
the power gricﬂ The harvested energy arrives at each end of the slot acgptdira finite-
state ergodic Markov chaifiF[n|}, and the harvested energy will be stored in a battery before
consumption. There exists a long run average constrainhergtid power at the transmitter.
At the beginning of then-th time slot, the transmitter chooségn| packets from the buffer
and transmits to the recei\gNVe assume the additive white Gaussian noise (AWGN) at the

receiver is with zero mean and variancg In green communications, the total power required

1Grid power with average constraint is to guarantee userS @elay). Specifically, due to the causality of harvestestgn
the transmitter should accumulate a sufficient amount ofggnkefore each packet transmission. Then the waiting tiowddc
be undesirably long since the randomness of harvested yemergal. In contrast, when the grid power is available, revie
the battery energy is insufficient, the transmitter could tise grid power to transmit packet. Hence, the user's QoSbean
guaranteed.

2R[n] is the transmission rate of theth timeslot with unit packets/timeslot.
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Fig. 1. System model

for reliable transmissiogsof R[n] packets in the:-th time-slot is [2]

("R _ 1) 4 A(RIn)), W

P[], Rln)) = pges

where X [n| is the system state that will be defined later> 1 is a constantf = 21“—152)1’ with

N being the channel uses in each time-slot, and

C,R[n ;
A - ¢ ;[ ]]f(? @

whereC' > 0 is a constant. In particulap = 1 andC' = 0 when no circuit power is taken into
account. In the transmission during theh timeslot, the transmitter allocat&g|[n| power from
the battery, and the remaining power will be supplied by tbegr grid. Denotel)[n] as the

gueue length of the buffer at instange, the evolution equation for the buffer length is
Q[n +1] = Q[n] — Rln] + A[n]. 3)

Assume that the capacity for the batteryHs,.. Denote the battery’s stored energy at instance

nt as E,[n], then the evolution equation for harvested energy in theehatan be given by
Eyin+1] = min{E[n] — Win|t + En|, Ene} = (Ep[n] — Wn|t + E[n])~.  (4)

3In the paper, “reliable transmission” means totally efree according to capacity arguments.
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The objective is to find a rate and battery power allocatiaqueace that minimizes the mean
buffer delay under the constraint on the long-run average gower P, and the stochastic
optimization problem is given by

1
min limsup —E
{RLWDIZ, nosco N

i@[k]] )

( n—1
lim sup %E P,alk]| <P, (6a)
S.t.
R[K] < Q[k], (6b)
WIk]T < Ey[k], (6c)
where P,,.;4]k] is the power from the power grid,
P(X[k], RIk]) = Pyrialk] + WIk]. (7

[Il. A NALYSIS OF THE FORMULATED STOCHASTIC OPTIMIZATION PROBLEM

In this section, we first reconstruct the problém (5) as atraimed two-dimensional (i.e., rate
and battery power allocation) MDP. Second, we prove thattimstrained two-dimensional MDP
can be transformed to unconstrained MDP by the Lagrangighoden Section III-B. Then we
focus on the analysis of the unconstrained MDP in SectiotlliWe verify the existence of the
stationary policy for the unconstrained MDP (which is anrage cost MDP) in Sectidn IlI-C1.
Next, we investigate the optimal policy of the average cofiRyiand structural properties of
the average cost optimal policy are derived in Sedtion Bl-Eor better readability, the analysis

flowchart for this section is illustrated in Figl 2.
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Reformulate (5) as constrained two-dimensional MDP (8)

The optimal policy of (8) can be derived by solving unconstrained
|

MDP (10) with certain Lagrangian multipliers

For finite state space, Algorithm 1 is given to find the

optimal policy of (10) with given Lagrangian multiplier For general state space

Optimal policy of (10) exits and it can be obtained as the limit of optimal policy for discount cost MDP

Structural properties of the optimal policy of (10)

1 1
1 1
: NG |
| — - |
1| Sufficient condition for Necessary condition Closed-form expression Monotonicity i
' non-optimality for optimality for special system state '
1 [ A 1
1 1
! ‘ Lemma 4 ‘ ‘ Lemma 5 ‘ W.r.t multiplier | | W.r.t state |
1 [ 1
: ‘ Lemma 6 ‘ ‘ Lemma7 ‘ :
1 1

Fig. 2. Analysis structure of Sectignlill
A. Reconstruction as a constrained two-dimensional MDP

Define the state aX'[n] := (Q[n], H[n|, A[n], Ey[n], En]) with state spacet and the action
as2n] := (R[n], W|[n]) with action space, respectivelyl Then{X [n],A[n|} can be viewed as
a Markov decision process (MDP). The feasible actignw) in a statex = (¢, h, a,ep,¢) € X
belongs toA(z) = {0,1,---,¢} x {0,%,---, 2} Define a policyr = (m, m,---) thatm,
generates an actiofr[n], w[n]) with a probability at instant:r [20][21]. We denote the set
of all policies asll. Specially, a stationary deterministic policy s = (g,9,---), Whereg
is a measurable mapping frod to A such thatg(x) € A(x) for all x € X. Then, [5) is

reformulated as the constrained MDP to find the two-dimeradidi.e., rate and battery power

“The system state includes the buffer queue length, charaie) data arrival, energy in the battery, and harvestedggner
arrival. The action includes the allocated rate and thecatld battery energy.

5The harvested energy has been discretized.
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allocation) optimal policy.

n—1
1
min B = limsup —E7 Q[k]] (8)
well n—soco N
k=0
1 n—1
st. K7 =limsup ~E7 |S " Plk]| <P, 9)
n—oo 1 0

where the subscript = (¢, h, a, ey, €) € X is the initial system state.

B. Transformation to unconstrained MDP

Define Py,;q(x,r,w) = max{P(z,r) — w,0} := (P(z,r) —w)" and fz(z,r,w) = q +
BPyia(z,r,w) with 8 > 0. Then we have a family of the following unconstrained prable
(UPg).

n—oo

min /7 (8) = limsup VE | S (X4, RIEL WIK) | (10)
k=0

In UPs, f3(X k], R[k], W[k]) is the one-step cost in theth time-slot.

Remark: UR; is an average cost MDP. Its optimal solution is called therage cost optimal
policy.

The following lemma gives the relation between JJ&nd the constrained two-dimensional

MDP (3).

Lemma 1. When there exists &, > 0 that the optimal policy of UR has an average grid
power consumption equal t8, the optimal solution of URis optimal for the constrained MDP
in (8). Otherwise, there exit & > 0 and a5~ > 0. The optimal policy for the constrained
MDP (8) is as follows: at each decision epoch, chossewith a certain probabilityy and 7™
with probability 1 — ¢, wherer™ and=~ are the optimal policies obtained for WPand UR;-,

respectivelyg depends orP and the grid power consumptions of the two policies.

Proof: See Appendix_A. [
Lemmall reveals that the solution of (8) can be obtained byirsplUP; with one or twog.

In the following, we focus on the analysis of the unconsediMDP, UR.
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C. Analysis of the unconstrained MDP

1) Existence of the optimal policyDefine a discount cost MDP with discount factoe (0, 1)

corresponding to UPfor each initial stater = (¢, h, a, e, €), with value function

Va(z) = minE] | Y o* (Q[K] + BPyria( X[K], RIK], WIK])) | . (11)

The optimal solution for the discounted problem is refen@ds a discount optimal policy.
The following lemma reveals the existence of the statior@ulcy. Furthermore, it derives

how to obtain the optimal solution.

Lemma 2. There exists a stationary deterministic policy that solM&s with a g > 0, and it

can be obtained as a limit of discount optimal policies asdiseount factor increases to one.

Proof: See AppendixB. u

Following the proof of Lemal2, we can also derive that theroptiJ™ (3) is independent of
the initial stater. Thus we can rewrited™ (3) as J™ (f3).

If the state is finite (Specifically, the data buffer state rtdi), the relative value iteration
algorithm (Algorithm 1) [26] can be utilized to find the optnpolicy of the unconstrained
MDP UP; with given 3. However, we are interested in deriving structural resattshe optimal
policies under general state s;gaed not simply solving the unconstrained problem with finite
state space. Furthermore, some structural results arel tissblve the constrained MDP (Section
V).

2) Structural propertiesThe average optimal policy are discussed in the subsedtist, the
sufficient condition for non-optimality, necessary coraitfor optimality, and the closed-form

expressions of optimal policy in special system states aeng

Lemma 3. In statex = (q, h,a,ep, €), (r(x),w(x)) is not the average cost optimal policy if

g—r(zr)#0ande, —w(z) + e > Eu.

®The number of data buffer states can be infinite, then the stamnber can be infinite in the paper.
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TABLE |

Algorithm 1: Relative value iteration algorithm of finding t he optimal policy for UPg

Step 1: Select initial valu&®, choose reference stat¢ ¢ X, specifye, and seth = 0
Step 2: For each = (¢, h, a, e, ¢) € X, computeV "1 (z, 3) by
i) = min {fa@re)+ X p@le (ne)ViE8) )
(r,w)eA(z) m,:(q, ,h,,(l, ,8;,8,)6.)(‘
wherep(z'|z, (r,w)) = (g —r +a — ¢')d(ey —w + e — e, )p(h'|h)p(a’|a)p(e|e)
is the transition probabilityy(0) = 1 andj(z) = 0 whenz # 0.
Step 3: Normalizé/"*!(x, 8) for eachx € X asV"(x, 8) = V" i(z, B) — VT i(z*, B)
Step 4: If|[V" T — V| < ¢, go to next Step. Otherwise,=n + 1 and go to Step 2.
Step 5: For eaclr € X, choose the policy according to
n(e,8) —arg min {fo(e,r,w)+ 2 pla'l, (rw)V (', 8)}
raw)eA(z)

( 2 ex

Proof: When a policy results in battery overflow (i.e, — w(z) + e > E,,..) and non-
emptiness of the buffer (i.eq — r(z) # 0), then in terms of the average cost performance,
the policy can be improved by using the overflowed energy famgmitting some (parts or all)
remaining buffer data. The reasons are as follows. Firgigusverflowed energy for transmitting
some (parts or all) remaining buffer data will not increase-step cost since no extra grid power
is utilized. Second, using overflowed energy for transngtSome (parts or all) remaining buffer
data will decrease the initial buffer data for future white tinitial battery energy for future does
not change (remaing&,,..). Using Property 11 in Appendix C1, we derive that the avercost
will be decreased. [ |

Remark: Lemmal3 means if a policy results in battery overflotmbn-emptiness of the buffer,
there are (is) polices (policy) that can achieve better ager cost performance definitely.

Remark: Lemmal3 gives a sufficient condition for the nonrugdity. Meanwhile, Lemmal 3
can be also viewed as the necessary condition for the opgtyimahat is to say, any average
optimal policy should not incur battery overflow and non-émgss of the buffer simultaneously.

Next, based on Lemnid 2 and Propositidon 1 in Appefndik C2, we lia® following lemma.

Lemma 4. Given stater = (q, h, a, e, ¢), the average cost optimal poli¢y*(z), w*(x)) should
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satisfy the following inequality array

~ 2 ~
Z1(q,q — 1" hya,ep —w*,e) < ﬁp%eeq(ee - 1)< Zi(qg,q—7r"+1,h,a,e, —w*,e), (12)

Zs(q—1"h,a,e, —w™,e) < SZg(q—r*,h,a,eb—w*+1,e), (13)

: =
=

~ 2 ~
Z3<Q7 q— T*7 h7 a, €p — w*7 6) S 5p%66q(69 - 1) S Z3(Q7 q— r + 17 hu a, €y — w* + 17 6)7 (14)
where Z,(q,u, h,a,n,e) = lir% Zi(q,u, hya,n,e), Zo(u, h,a,n,e) = lirq Zs(u, h,a,n,e), and
oa—r oa—r
Zs(q,u, hya,m,€) = lim Zs(q, u, h,a,n,e). Zi(-) (i = 1,2,3) is defined in Propositiof 1.
a—

Remark: Lemmal4 reveals a necessary condition for the aeeragt optimality, i.e., the opti-
mal transmit rater* and the optimal battery energy allocaties® should satisfy the condition.
Remark: Wher{r*, w*) is on the boundary of the feasible set, corresponding camditcan

also be obtained similarly.

Combining Lemmal2 and Propositioh 2 in Appendix C2, we detie following lemma.

Lemma 5. For x = (¢, h, a, e, ) satisfying

~ 2
Z1(0.0,h,a,7max{0, = — P(x, )} ¢) > Bp (e — 1) (15)
and

26(0,h 0,7 max{0, % — Pz, q)}, ) > . (16)

(¢, es —Tmax{0, > — P(z,q)}) is the average cost optimal policy. In addition, fqt 4, a, e, ¢)
satisfying

_ 2

ag
Zl(q7q7 h,CL, 6(,,6) < 5pfeeq<€€ - 1) (17)
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and

22(q7 h? @, €p, 6) < —767 (18)

(0,0) is the average cost optimal policy.

Remark:(q, e, — 7 max{0, 2 — P(z,q)}) means transmit all the data in the buffer and the
allocated battery energy is, — 7 max{0, % — P(z,q)}). That is to say, transmit all data in
the buffer and allocate as much energy as possible from tktergaSpecifically, if the required
power for transmitting all buffer data is less than the powéored in the battery, allocate all
the required power from the battery. Otherwise, allocatetla battery’s energy (the rest of the
required power will be allocated from the power grid), 0) means transmit no buffer data and
allocate no battery energy.

Remark: [1b) and (16) give the set of states, for which tranaliithe buffer data the together
with allocate as much energy as possible from the batterhastivo-dimensional average cost
optimal policy. [1¥) and[(18) give the set of states, for WwHhi@nsmit no buffer data together
with allocate no battery energy is the two-dimensional agercost optimal policy.

In the following, we investigate the monotonicity.

Lemma 6. Denote the optimal stationary deterministic policy for JJ&s g, we have
« J9 () is non-decreasing if.

« B9 is non-decreasing i, and K9 is monotone non-increasing
Proof: See AppendixF. [

Lemma 7. The average cost optimal transmit rate policy, &, a, e;, €) iS non-decreasing in
and e, respectively; The average cost optimal battery energycation policyw(q, h, a, e, €)

is non-decreasing ip ande,, respectively.

Proof: The lemma can be proved by the second half of Lemiina 2 and RtiopdS in
Appendix[C2. n
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Analysis of relations between r and win UPs

In a timeslot, given rate, greedy battery power
allocation is optimal for one-step cost minimization

Extend from one timeslot to timeslot sequence

Given a stationary rate allocation policy that is irrelevant to e, -
the greedy battery power allocation is optimal

Extend to general rate allocation policy
Given a rate allocation policy, the greedy battery power allocation is
optimal for 5>1 and not optimal for 5—0

Based on Lemma 1, we have

fa Y

Lemma 9 still holds for (8) If .ﬂo >1 0r L >1, the two-dimensional
policy of (8) can be reduced from (r,w) to r

Fig. 3. Analysis structure of Sectign]lV, the derived reswte also shown correspondingly

IV. RELATIONS BETWEEN RATE ALLOCATION AND THE BATTERY POWER ALLCQCATION

The rate allocation and the power allocation from the batteryare coupled together, they
affect each other. In this section, we investigate the imatbetween the rate allocatienand
the power allocation from the battery. We first focus on the relation betweerandw in UPg.
Next, we derive that under a condition, the policy of the ¢mised two-dimensional MDP
problem [8) can be reduced to the rate policy only. To makeptleeentation clear, the analysis

structure of this section is drawn in Fig. 3.

A. The relation between and w in UPg

If we assume that ratgn| has been chosen at theth time-slot, then the required total power
has been fixed. In this case, to minimize the immediate ogy-&bst;[n] +B[p%(e""[”] —1)+

A(r[n]) — w[n]rr, we will allocate as much power as possible from the batteryneet the
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required total power, i.e., the ijeedy policy for the batigower allocation. This is because the

power from the battery is “freel.Formally, we have the following claim.

Lemma 8. In a timesilot, if the rate allocation is chosen, the greedy battery power allocation

is optimal for the immediate one-step cost minimization.

Proof: See AppendixD. [ |
Remark: Lemmal8 reveals the optimality of greedy batteryep@ilocation for given rate in
a time-slot.
In the following, we consider the extension from one timet-$b the timeslot sequence. First,

we have the following lemma.

Lemma 9. For a given rate allocation poliey(q, h, a, e, ¢) that is irrelevant te,, i.e.,r(q, h, a)H

the greedy battery power allocation is optimal (for )P

Proof: See AppendixE. u
Remark: The irrelevance tg, of rate allocation policy is sufficient condition for the opality
of greedy battery power allocation. Lemina 9 guarantees fitenality of greedy battery power

under any given rate allocation policy irrelevant tg.
Next, a natural question iwhether the greedy allocation strategy of battery powergsroal
given general rate allocation policy(x = (q,h,a, e, e))? The following lemma gives the

answer.

Lemma 10. Given a rate allocation policy(x)H
« When j is large enough, e.gf > 1, the greedy policy is the optimal battery power
allocation policy in UR.
. If g is sufficiently small, e.g.5 — 0, the greedy battery power allocation policy is NOT

optimal for UP.

"Please refer td (10). the price of the grid powepis
8According to [@), if a policy is irrelevant tey, then it is irrelevant tee.

®According to Lemmd4l7, it is reasonable to assume #fa} is non-decreasing ig and e, respectively.
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Proof: See AppendiX G. [

Remark: Lemma_10 reveals that the greedy policy is NOT thienapbattery power allocation
policy in UP; with arbitrary 5. The optimality of greedy battery power allocation depeads
the value of5. It can be explained as follows: Singes the “price” of grid power in UP;, when
the grid power is very cheap, the profit of reserving someebpatpower for future timeslét is
more than the cost of buying the same amount of grid powerriregutimeslot. Thus, reserving
some battery energy but using the grid power instead is @btilWhen the price is high, the
cost of buying the grid power is more than the profit of resegvéome battery energy, then
allocate as much energy as possible from the battery tolfth& required power (i.e., greedy
battery allocation policy) is optimal.

Remark: As the remaining battery energy will affect actiord aost in future timeslot for
given rate policy (e.g., battery power allocatiemn| at the n-th time-slot will affect the rate
allocation r[n + 1] at the (n + 1) times-lot), the optimality of greedy battery power alldoat

can not extend from one timeslot (Lemima 8) to time-slot semue

B. Dimension reduction for the two-dimensional policy & tlonstrained MDP under a sufficient

condition

According to Lemmall, the two-dimensional optimal policycostrained MDPL(8) can be

derived by the optimal policy of the UPwith one or two values off. Then we have

Lemma 11. For a given rate allocation poliey(q, h, a, e, €) that is irrelevant tey, i.e.,r(q, h, a),

the greedy battery power allocation is optimal (for the ¢a@ised MDP [()).

Furthermore, the following lemma reveals that the two-disienal policy of the constrained

MDP can be reduced to the rate policy whenor 5~ satisfies a condition.

10Based on Property] 2 in Appendix IC1, there exists profit foeméiag some battery power for future timeslot. The price
of using grid energy is constant over time, the cost of usirig gower is constant. But reserving battery energy canrincu
more data transmission in future (Observe that the rateydlas been given already, more battery power leads to mdee da
transmission). That is to say, delaying the use of battegygnhas profits in minimizing data delay. All in all, theree grofits
for the first part ofJ; (8).
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Lemma 12.1If g, > 1 or 5~ > 1, the greedy policy is the optimal battery power allocation
policy of the two-dimensional constrained MDR (8). Furthere, view(X [n], R[n|) as an MDP
with state X [n| and actionR[n] The feasible actiom in statex = (¢, h, a, ey, ¢) belongs to
{0,1,--- ,q}. Definer, = (m,.[0], m.[1],---) to be a policy thatr,[n| generates an actiofin| at
nt, the optimal policy of the following MDP problem is the optafrate policy of [(8).

2_: Q[kr]] (19)

- 1
min limsup —E7”
Tr n—oo T

Pgm’d[k]
0

1 _
s.t. limsup —E7" <P, (20)

n—oo 1N

=
Il

where P,,;4[k] = P(X[k], R[k]) — min {P(X[k;], R[k]), E"["”}} , and the evolution of energy in

T

the battery becomes, [k + 1] = (Eb[k:] — 7min {P(X[k:], R[k]), Ebfm} + E[k:])

Proof: See AppendixH. [

Remark: When the conditiofi, > 1 or g~ > 1 holds, the two-dimensional policy can
be obtained as follows. We can first derive the optimal bgtedlocation policy of the two-
dimensional policy to be greedy policy, and then the optiratd policy can be solved through
an MDP whose policy includes the rate allocation only (i&9)). The dimension of the policy
has reduced fronfr, w) to r.

Remark: If 3, > 1 or 5~ > 1, the dimension reduction can be implemented. In contrést, i
By — 0 or 8T — 0, the dimension reduction in Lemrhal 12 can not be accompli¢Bed the
second half of Lemml@a110). For other cases, we do not know wehéib dimension reduction
can be implementedi, > 1 or 5~ > 1 is only a sufficient condition for dimension reduction
in LemmaR.

Since there is a conditiofiy > 1 or 5~ > 1 in Lemmal12 and the dimension reduction does

not hold for 8, — 0 or S — 0, formulating the original optimization problerh] (5) dirgcts

"The state includes the buffer queue length, channel gata, ataival, energy in the battery, and harvested energyaarri
The action includes the allocated rate only.
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Lemma 6
|
Use (23) to find the smallest multiplier Lemma 1

. 7
~

For finite state space, Algorithm 2 is proposed

Algorithm 2 is only Algorithm 2 is time-consuming
for finite state space when the state number is large

Heuristic policies with low-complexity for general state space

h.

1
|
1
' Lemma1 Results in Section IV Algorithm 2
1
1
1
I
1

Radical policy, conservative policy, and mixed policy

Fig. 4. Structure of Sectidn]V

@9 is NOT convincing

V. PoLICY OF THE CONSTRAINEDMDP

Based on the previous theoretical results, an algorithrmtb the constrained optimal policy
is proposed for the finite state space, and heuristic pocegiven for the general state space.

The structure of this section is illustrated in Hig. 4.

A. Algorithm to find the optimal policy for finite state space

In this subsection, we give the algorithm to find the constrdioptimal policy when the state
is finite.

According to Lemmd.l6, smallef results in better delay performandg. Meanwhile, the

decrease off will increase the grid power consumptidi. Too smalls will violate the grid

2If we can prove that the conditiofiy > 1 or 3~ > 1 holds, [) can be reformulated &5](19).

October 26, 2018 DRAFT



18

TABLE Il

Algorithm 2: Algorithm of finding the constrained optimal po licy for finite state

Step 1:

Using iteration algorithm[(21) to fing*, and the corresponding average grid

power K9+, in which the relative value iteration algorithm (Algonithl) is applied.

Step 2:

If K9+ =P, thengs- is the optimal policy of the constrained MDP. Otherwise, gméxt Step.
Step 3:

Perturbg* by v: p* = p* + v and 5~ = * — v. Find the optimal policiegs+ and gs- for

UPs+ and UR;+ as well as the corresponding grid powEfs* and K-, respectively, by using
Algorithm 1. The optimal policy is takings+ with probability ¢ and gs- with probability

1 — ¢ at each decision stagé.is determined by K9+ + (1 — {) K9~ = P.

power constraint. Then we should find the small@sthat satisfying the average grid power
first. Denote* = inf{3 : K% < P}, wheregs is the optimal policy of UR. We can use the
following method to find5*. Let

Busr = o+ - (K% — P) (21)

with 3, is a sufficiently large number 9~ is computed by using the relative value iteration
algorithm for eachs,,. Then{j,} converges tg3* [25]. Based on Lemmal 1, if the average grid
power K9 equals to the grid power constraint, the obtained optimétyds also optimal for
the constrained MDP. Otherwise, we should fifid and 5~. The detailed algorithm for finite
state is listed in Tablg]ll.

B. Proposed heuristic policies

Algorithm 2 is only for the finite state space. Meanwhile sitime-consuming when the num-
ber of states is large. In this subsection, we propose lawptex heuristic policies for general
state space. The paper has derived the structural prapeitithe optimal policy. Particularly,
we have proved that the optimal policy exists, and it is ai@tary deterministic policy or a
mixed policy of two stationary deterministic policies. Mawer, we have proved that the greedy

battery power allocation MAY BE optimal (in SectianllV). Bas on these properties and in
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light of Algorithm 2, we propose heuristic policies as foll® (a summary is given in Tablellll).

The first is named radical policy. Under radical policy, tkéi@n is(r = ¢, w = min{e,, P(z,7)})
for statex = (¢, h,a, e, ). That is to say, all the buffer data are served at each tiwte-shd
use the greedy strategy for the battery energy allocatien,if the required power is not greater
than the battery power, then all the power will be supplienhfrthe battery and no grid power
will be used. Otherwise, allocate all the battery power, #ralrest will be supplied from the
power grid.

Remark: When there is no average grid power constraint, #aécal policy is the optimal
policy to minimize the mean buffer delay. Furthermore, giga average grid power constraint,
when the mean date arrival, mean energy arrival, and meamicblgain satisfy a condition,
the grid power constraint can be obeyed under radical polibg radical policy is the optimal
policy even when considering the average grid power coirgtra

In the radical policy, the average grid power constraintas considered. Then we propose
another policy (i.e., the conservative policy) that guésans the average grid power constraint
through satisfying the constraints in each time-slot. Refitr!(-) as the inverse function of
P(z,r) with respect to-. We call the policy(r(z), w(z)) = (min {¢, P~* (P + 2)} ,min{2, P(z,r)})
the conservative policy. That is to say, we first guarantaettie grid power utilized in each time
is less than the average grid constraint, then transmit as/ rpackets as possible and utilize
the greedy policy for the battery energy allocation.

The third policy is a random policy referred to as mixed pplia the mixed policy, the radical
policy and conservative policy are utilized randomly wittolpability ¢ and 1 — &, respectively.
Denote the average grid power consumptions of the radidatypand conservative a&', and

G., respectively¢ is determined by * G, + (1 — &) xG. = P.

VI. NUMERICAL RESULTS

In this section, simulation results are presented underdtial policy, conservative policy
and mixed policy. We consider the i.i.d. Rayleigh fading o (i.e., the power gairl{ is

exponentially distributed). In addition, unless otheevepecified, we set =1, b =1, N =5,
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TABLE 1l

Policy name Strategyr(z), w(z)) for x = (q, h, a, e, €)

Radical policy (¢, min{ey, P(z,7)})

Conservative policy (min {¢q, P! (P + <)} ,min{<%, P(xz,r)})

Mixed policy Apply the radical policy and conservative pgliwith

probability ¢ and1 — &, respectively

andp = 1. Both the initial battery energy and initial buffer lengtreaero.

Fig.[3 plots the average grid power consumption with respethe average data arrivall)
under radical policy. We can observe that wheis small, the grid power consumption is nearly
zero. However, whem is large the grid power consumption grows rapidly with theréase
of A roughly according to exponential relation. This can be aixgd as follows: whe is
small, the required power is small and the battery can suftydypower. Then no grid power
will be consumed. Oncel is large, the required power is much larger than the battewyep,
and the grid power becomes the main power source. Since tlured power roughly varies
with the transmission rate according to the exponentiattion, the grid power consumption
varies exponentially withd. Meanwhile, we can see that the better channel conditicars te
less grid power consumption.

Furthermore, from Figl]5, it can be derived thatAfis less than a certain value, the grid
power will be less than a certain value. Since the radicakcpa$ optimal for the buffer delay
minimization without the average grid power constraintAifis less than some value to make
the average grid power be no more than the constraint, he.aterage grid power constant is
satisfied, then the radical policy is also optimal when cbeshg the grid power constraint. For
example, wher® = 2000, according to Fig[15, the strategy is optimal far=1,2,--- 8. The
reason is that when the average power grid plus the harvestedr is large enough to serve
all the data, then serving all is optimal.

Fig. [@ illustrates the average buffer length performance donservative policy.A takes

values from{0, 10, 20,30} with probabilities{0.1,0.3,0.5,0.1}, respectively.E takes values
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Fig. 5. Average grid power consumptions v&. C' = 1 and Epq. = 2500. A takes0 and2 * A with equal probability0.5.
E takes valueq200, 800, 1000, 2000} with probabilities{0.1, 0.6,0.2, 0.1}, respectively. The mean grid power is average over
108 time-slots.

{200, 800, 1000, 2000} with probabilities{0.1, 0.6, 0.2, 0.1}, respectively. In Fid. 6(&), the buffer
length is averaged ovei)® time-slots. From the figure, we can see that the mean buifgthe
decreases fast wheR is small (e.g.,P < 1000 ), and the decrease becomes slow wieis
large (e.g.;P > 2000). This can be explained as follows: when the upper bound efatlerage
grid power (i.e.,P) increases, there are more available grid power in a timeislkaverage, sense
and we can transmit more (at least no less) buffer data, tieemverage buffer length becomes
shorter. WherP is small,r = min {¢q, P~* (P + 2)} = P~' (P + 2) with a high chance,
hencer increases apparently with the increaseffand the average buffer length decreases
quickly. Once?P is large enoughy = min {¢, P~ (P + 2)} = ¢ with a high probability, ana
becomes static with respect® Then, the average buffer length decreases slowly. Fumibre,
we can observe that more extra circuit power consumptien (i) and smaller battery capacity
can respectively result in worse mean buffer length peréoee (i.e., longer length). Meanwhile,
by comparing(C' = 1, E,,.. = 850) with (C' = 100, E,,.. = 2500), we can find that the mean
buffer length performance faiC' = 1, E,,... = 850) is better wherP is small. But wherP is
large, (C' = 100, E,.. = 2500) has slightly better performance.

In Fig.[6(b), for each curve, we can observe that the buffegtle performance decreases with
the increase off /o2, fast whenH /o2 is small (e.g0.1, 0.2, 0.3), moderately whetH /o2 is large
(e.g.,0.4,---,0.7), and slowly whenH /o2 is very large (e.g.).8,0.9). The reason is as follows.

When H/o? is not very largeg > P~'(%) with a high probability, i.e.;(z) = P~'(%). The
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Fig. 6. The mean buffer length performance for conservaiivécy.

remaining buffer lengthu(z) = ¢ —r(z) = ¢ — P~'(2) will decrease with the increase bf o>
approximately according to minus logarithmic relatEﬁfhus, the mean buffer length decreases
harshly at first and moderate then. Onidgo? is larger than a certain value,< P1(2) with
a high probability. Thenr(z) = ¢ and the remaining buffer length becomes zero with a high
probability. In this case, the increase Hf/o2 will not have great effects on the mean buffer
length (the mean length is nearly the average data arrigal,

Fig.[7 compares the buffer length performance of the heapsticies with respect téf /o2. In
the simulationsA takes values from0, 10, 20, 30} with probabilities{0.1,0.5,0.3,0.1}, respec-
tively. £ takes valueq200, 800, 1000, 2000} with probabilities{0.1,0.6,0.2,0.1}, respectively..
Ermaz = 2500 and P = 3000. Based on the average grid power consumptions of radicatypol
and conservative policy (as plotted in Fig. 8), we compuéegtobability of using radical policy
in the mixed policy,( = [0.9468 0.8615 0.7933 0.7463 0.7053 0.6608 0.6689 0.6452]. We can
see that in terms of the buffer length performance, the ahgiolicy is better than the mixed
policy, which is better than the conservative policy. F@ tonservative policy and mixed policy,
the buffer length decreases with the increaselof? first harshly and then moderately. The

explanations for the conservative policy are similar to. fGifb]. As the usage probability of the

conservative policy in mixed policy is high, the buffer I¢éhgf the mixed policy is similar as

Bp=1(.) is increasing withk /o according to logarithmic relation.
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Fig. 7. Buffer length performance of the radical policy, servative policy, and mixed policy
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Fig. 8. The average grid power consumptions of the radichtypand conservative policy.

the conservative policy. Meanwhile, as there is chance wiguthe radical policy in the mixed

policy, the buffer length performance of the mixed policybitter than the conservative policy.
The mean buffer length of the radical policy is approximatbke mean data arrival and remains
static. As the radical policy is the optimal policy withotnet grid power constraint, the buffer

length of the radical policy is the lower bound of the optimpalicy.

VIlI. CONCLUSION

In this paper, we have studied the power allocation of thesigay layer together with the
optimal mean buffer delay of the upper layer in green netwavith energy harvesting nodes.
The physical power allocation contains two aspects: powecation from the power grid and
power allocation from the battery. The rate allocation capresent the total power allocation
and the grid power allocation is the total power subtractdh#ery power, then the physical

power allocation is equivalent to rate allocation and lwgtpwer allocation. For the purpose of
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modeling and analyzing the conflicting relation between @oand delay as well as the coupling
between rate allocation and battery power allocation, viermeulate a constrained MDP with
a two-dimensional policy. The analysis of the constrainebRVis transformed to that of the
corresponding unconstrained MDP. Structural propertiethe optimal policy are derived. In
addition, the relations between elements of the two-dinoeas$ policy are also investigated.
According to the theoretical study, an algorithm to find tbastrained optimal policy is proposed
for finite state space. Furthermore, heuristic policies.,(ithe radical policy, the conservative
policy and the mixed policy) are presented for general statéhe end, simulations are carried
out under these policies. We have observed the interactioig the channel, the data arrival,
the harvested energy arrival, the power grid, and the dafardength.
APPENDIX

A. Proof of Lemmall

If for some 3 (denoted ag),), the optimal stationary policy* of UPs, satisfies: 1)r* yields
B™ and K™ as limits for allz € X'; 2) K™ = P. Thenr* is optimal for the constrained MDP
(8) according tol[22][23]. Otherwise, there ate and/3~. The optimal policyr~ that obtained
for UP;- has a grid power consumption slightly larger tians+ > 3~ will instead lead to a
less aggressive policyt with a grid power consumption slightly smaller th@ The optimal
policy for the constrained MDH_(8) is as follows: at each dieci epoch, choose~ with a
certain probabilityg and 7+ with probabﬁl — g, whereq depends orP and the grid power

consumptions of the two policies [23][24].

B. Proof of Lemmé&]2

We prove the lemma by applying Theorem 3.8in![27]. First, \&a prove that the conditions

of Proposition 2.1 in[[27] holds. Next, the discounted cq#tirality equation([28] forl/,(x) is

2
Valq, h,a,ep,e) = min {q + ﬁ[p%(eer ~ D) +AF) —w] +a

T€{0717“' 7q}7w€{07%7"' 7%}

XEp qc [Va(q—r+A, H, A, (eb—w7‘+E)_,E)] } (22)

The state space is countable.
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We can see that,,(q, h, a, e, €) is increasing in; and non-increasing in, given (h, a, e) since
the larger the initial buffer the larger will be the cost to, gmd the larger the initial battery
energy the smaller will be the CQ.ThUS,arg inf cx Va(y) = (0, ho, ao, Eraz, €0) = o, i.€.,
the infimum is obtained when the system begins with an empffeihwa full battery, and for
some channel sat@,, arrival statea,, and harvested energy arrival state When the buffer is

empty, the set of feasible rate {8}. Then f(z,,0,w) = 0, we get

Valzg) = min aEpg 0.0 [VQ(A, H A (Epgr —wr+ E)7, E)]

'LUE{O,%, 7%}

= aEh(),a(LEO [VOC(Av H7 Av Ema:c? E)] . (23)

Meanwhile, since policyq, 0) is feasible for statéq, h, a, e, €), then

2

Vo(z) < g+ p%(e"q — 1)+ C+ aEpae [Va(A H, A, (e, + E)", E)] . (24)

Let the system start in stafe, i, a, e, + ¢, ¢), we take the action|n] = a[n] andw[n| < e[n] for
all n. Let {(h,a, e, e) be the expected number of slots to hit the staig Ao, ao, Ema:meO)
Observe that{(h,a, ey, €) is finite. Let ¢ = r%ax{ajtp%(e"“ — 1)} + C. Applying the

Wald’s lemma[[29], we get

aEh,a,e [Va(Av Ha Aa (eb + E)_, E)} < Cma:cg(ha Q, €p, 6) +a

X Engaoe0 VoA H, A, Erpaz, E)] = Cnac€(h, a, ep, €) + Va(@o). (25)

In 25), we have usedE, .. + E)~ = E,.... Next, combining[(24) and (25), we ha¥g(z) <
q+ p%(e(’q — 1)+ C+ cnacl(h, a, ep, €) + Vi (xg). Thus,V,(z) — V(o) < g+ p%(e(’q - 1)+
C' + cnas€(h,a, e, e) < co. Third, there exits a policyr € A and an initial stater € X such
that J7 (8) < oo in the practical problem. Otherwise, the cost is infinite dirpolicies and any
policy is optimal. Based on the above analysis, the conastio Theorem 3.8 in [27] hold, and

then we prove the lemma.

15See the formal proof at Propefiy 1 and Propéity 2 in Appehdix C

®Whenw(n] < e[n], Emaz is the absorbing state of the battery energy.
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C. Optimal policy for the discount cost MDP

1) Properties ofV,(q, h,a, ey, e): Property[1l - Property]3 give the properties of the value

function V,,(q, h, a, e, €).

Property 1. V,(q, h,a, e, €) IS @an increasing function af.

Proof: We verify the increasing property by induction. The valueration algorithm (or

successive approximation method) correspondind tb (32) is

o e — 17+
(@, B = i — (@ — 1) + A(g —u) —
X Eh,a,e [Va,n—l(u + Aa Ha Aa (77 + E)_a E)} } (26)

with V., (g, h,a,ep,e) = 0. Accordingly, V,o = 0, andV,; = ¢. The increasing property
in ¢ holds. AssuméV,, ,,_1(q, h, a, ey, €) is increasing ing. Fix (h,a, e, e), in the state(q +
1,h,a,e,e), the set of feasible: is {0,1,--- ,¢ + 1} whereas it is{0,1,---,q} for state
(q,h,a, ey, e). Consider statdg + 1, h,a, e, e), let the optimal action béu*, n*) with v* €
{0,1,-- ,q}, henceV, (¢ + 1,h,a,ep,¢) = g+ 1+ B[p% (P04 — 1) 4 A(g + 1 —
w) — @] 4 By g Va1 (u* + A H, A, (7 + E), E)]. As (u*,7%) is feasible in state

(q7 h7 a, €y, 6), Va,n<q7 h7 a, €y, 6) S q + ﬁ[p%Q(ee(q—u*) - 1) + A(q - U*) - M}—i_ + aEh,(l,e

T

Van—1(w*+ A H A (*+E),E)] <Vanlg+1,ha,epe) If (u*,n*) with u* =q+1,
Va,n(q + 1, h, a, €y, 6) =q+ 14 aEh,a,e [Va,n—1<q +1+ A7 H7 A7 (77* + E>_7 E)] . (27)
Meanwhile, sincgq, n*) is feasible in statéq, h, a, e, e),
(a)

Va,n(q, h> a, €y, 6) S q + aEh,a,e [Vam—l(q + Av H7 Av (77* + E)_v E)] S Vam(q + 17 hv Q, €p, 6)7

where (a) holds since the induction hypothesis. [ |

Property 2. V,(q, h, a, ey, €) IS @ non-increasing function af,.

Proof: We verify this by induction. According td_(26)/,, = 0, and thenV,; = ¢.

The non-increasing property holds. Assuiig,_1(q, h, a, e, €) IS non-increasing ire,. Given
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(g, h,a,e), consider statég, h, a, ey, €), let (u*, n*) be the optimal policy, i.e¥, ,.(¢, h,a, e, €) =
g+B8[p% (?@ )~ 1)+ A(g—u*)— (e, =) /7] +aBn e [Vamor (u* + A H, A, (" + E)~, E)].
For state(q, h,a,e, + 1,¢), (u*,n*) is feasible, then we hav®, (¢, h,a,e, + 1,¢) < g +
Blp% (") =)+ A(g—u) —(ept1—17) /7] +0Bhge Van 1 (u* + A, H, A, (7" + E)~, E)] <
Van(q, h,a, ey, e). [ |

In the practical case, the allocated harvested power willsagpass the required total power.
Thus, we assume the:, n) always guarantees that

0.2

P

() — 1) + Ag—u) > 21, (28)
T

Based on this assumptiof,,4(x, r,w) = P(z,r) — w. The following property gives the joint

convexity of V,,(q, h, a, e, €) in (g, €p).

Property 3. V,(q, h,a, e, ) IS convex in(q, ep).

Proof: First, we prove the following claim.

Claim 1. For ¢ € (0,1) andVzy, z2,y, ¢ min{zy,y} + (1 — ¢) min{zs, y} < min{pz; + (1 —
¢)x27y}'

Proof: The claim can be proved by consideringn{xy,z2} > y, max{z;,x2} < y, and
min{z, x2} <y < max{xz;,x2}, respectively. [
The convexity is proved by induction. For = 0, V,,, = 0, and it is convex. Assume

Van—1(q, h,a, ey, €) is convex in(q, ep). Fix (¢, h, a, ey, €), let (uy, ;) and(uq, n2) be the optimal
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policy for (g1, ey) and(gq, ep2). Then, we get

2

o
¢Va,n(6ha h,a,ep, 6) + (1 - ¢)va,n(q27 h, a, ey, 6) = ¢[CI1 + ﬁ(ﬂﬁ(ee(ql_ul) - 1)

+

+

S

_l_

2

Algy = w) = )] + (1= 9)lgz + AlpT- (77 = 1) + Algy — ) — )]

B e [(bvam_l(ul YA H A+ B E) + (1 — ¢)WVani(us + A H, A, (112 + E)", E)]

2
b0+ (1= d)ar + 5 [ﬂ%<69[¢<q1-“1>+<1-¢><q2-“2” = 1)+ A@q — m) + (1= 6)(g2 — u2))
%(Cﬁ(ebl —m) + (1 —¢)(epe — 772))} + aEp g [Va,n—1(¢ul +(1=@Jus+ A H A ¢(m + E)”

© 2
(L= ¢)(na+ E)", E) = ¢ar + (1 = d)g + [p%<e9[¢<ql—“1>+<1—¢><q2—“2” = 1)+ Ad(ar — w)

(1= 0002 = 1) = 26 =) + (1= 0)era = )| + @B Vsl + (1= O

@
A H,A (¢ + (1= @)z + E)7 E) 2 Van (o + (1= @)z, hy a, pen + (1 = d)ews, ),

where (b) holds because of the convexity8f—+A (g—u) (with respect tar) andV, ,,_1(q, h, a, ey, €),
(c) holds because of Claifd 1 as well as Propelty 2, and (d)shsittce(puy + (1 — ¢)ug, ¢y +

(1 — @)no) is feasible forp(qi, h, a, epr, €) + (1 — ¢)(qo, h, a, e, €). The proof completes. =

2) On the discount optimal policyfor a state-action pairr = (¢, h, a, e, €), (r,w)) € X X

A(x), defineu := ¢ —r andn := e, — wr, i.e., letu andn denote the remaining data in the

buffer and the remaining energy in the battery, respegtividien (u(x), n(z)) can also define a

stationary policy. We can analysis the policy in terms of theaining data in the buffer and

the remaining energy in the batteny

Proposition 1. Denote the discount optimal policy in state= (q, h, a, e, €) as (u*(z), n*(z)).
Then, (u*(x),n*(z)) satisfies the following inequality array

2

Zi(q,u* hya,n*e) < 5/)%6&1(69 - 1) < Zj(u" +1,h,a,n%e), (29)
Zy(u* hya,n"e) < _—6 < Zy(u*, hya,n* +1,e), (30)
T
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2
Z3(Qa U*a h, a, 77*’ 6) < ﬁp%eﬁq(eﬁ - 1) < Z3(U* + 1> h> a, 77* + 1> 6)a (31)

WhereZl(Qaua h,&,?], )_6 |:aEhae[Gl(u+A H A (77+E) )}‘FB[A(Q_U)_A(C]—U_‘_

1)]} with G1(q, h,a, ey, e) = Vo (q,h,a, ey, e) — Vo(q— 1, h,a, e, e) being the partial backward

difference ofV, regardingq. Zy(u,h,a,n,e) = aBpac[Ga(u + A, H, A, (n+ E)~, E)] with
Go(q, h,a,ep,e) = V,(q, h,a, e, ) — Vo (q, h,a,e, — 1, e) being the partial backward difference

of V, regardinge,. Z3(q,u, h,a,n,e) = €’ {aEhae[Glg(ujLA H A (n+E)", )} +5[A(q_

u) —Alg—u+ 1)} + g with Gi2(q, h,a, ey, e) = Vo(q, h,a,ep,e) — Vo(qg— 1, h,a,e, — 1, €)
being the backward difference &f, regarding(q, e;).

Proof: First, the discounted cost optimality equation becomes

o’ €r — 11+
Valg, h = mi + Blp=— ("™ — 1) + A(g — u) —
(¢, h,a, e, ) N {q Blp (e )+ Al —u) - ]

+ alpq. [Va(u +A HA (n+E), E)] }, (32)

LetS(u,n)ZqﬂLﬁ[/)%( @) —1)+A(g—u)— ‘”"”]+oth,a,e[Va(u+A,H,A,(n+E)—,E)].

First, we have
S(u+1,1) = S(u,n) = 6,0 ( oz — ) 4 BIA(g —u—1) — Alg — w)]
+ aEpge|Valu+14+AH A (n+E)",E)—Vo(u+ A H A (n+E)",E)] (33)
and
S(u—1,m) = S(u,m) = Bp=- (e o) 1 BIA( — 1) — Alg — u)]
+ aBpae|Valu—14+AH A (n+E),E)—Vo(u+ A H A (n+ E)",E)]. (34)

Then applyingS(u*+1,7*) — S(u*,n*) > 0 andS(u*—1,n*) — S(u*,n*) > 0, we obtain[(2D).
Similarly, asS(u,n + 1) — S(u,n) = £ + aBhae [Valu + A, H/A, (n+ 1+ E)~, E) — Vi (u +
AH A (n+ E)",BE)] and S(u,n — 1) — S(u,n) = = + aBpae[Valu + A H A (n — 1+
E)",E)=Vu(u+A H, A, (n+E)", E)], we can reach(30) frons'(u*,n*+1) — S(u*,n*) > 0
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and S(u*,n* — 1) — S(u*,n*) > 0. In addition,

2
S(u+1,n+1) = S(u,n) = Bp%(ee(q‘“‘” — Ty 4 g +B[A(g—u—1) — Alg — u)]

+ aBpae[Valu+14+ A HA m+1+E)"E)=Va(u+ A H A (n+ E)",E)] (35)

and

S(u—1,7—1) = S(u,n) = 6/)%2(69(““) — M) — g +B[A(g —u+1) = Alg — u)]

+ aEh7a,€[Va(u -1 +A> Hv A> (77 -1+ E)_vE) - Va(u_l' Av H>A7 (77+ E)_aE)}(?’G)

Then, [(31) can be obtained by applyisgu* — 1,n* — 1) — S(u*,n*) > 0 and S(u* + 1,n* +
1) = S(u*,n*) > 0. u

Remark: Wher{u*, n*) is on the boundary of the feasible set, corresponding carditcan
also be obtained by following the proof of Propositldn 1.

Proposition 2. For = = (q, h, a, e, €) satisfying

2
Zl ((LO» haavaaX{Ov @ - P($7Q)}76) > ﬁp%eeq(ee - 1) (37)
T

and

(38)

23(0,h, 0 Tmasx{0, % — Pl q)} ) > 2.

(0, 7 max{0, 2 —P(z, q)}) is the discount optimal policy. In addition, o, h, a, e;, €) satisfying

2

ag
Z:(q,q,h,a,ep,€) < ﬁpﬁegq(eg ~1) (39)
and
-
Z2(q7 h7 a, €y, 6) < 77 (40)

(q,ep) is the discount optimal policy.

Proof: Using Property 3 in Appendix €1, we can derive thatq, u, h, a,n,e) < Zi(q,u+
17 h7 a, 1, 6), Zl(Qv U, h’7 a, 1, 6) S Zl(q7 u, h7 a, 1 + 17 6), ZQ(U7 h7 a, 1, 6) S Z2(u7 h7 a, 1 + 17 6),
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Zs(u,hya,m,e) < Zs(u+ 1,h,a,n,¢e), and Zs3(q,u, h,a,n,e) < Zs(q,u + 1,h,a,n + 1,6)
On the other hand[_(28) should be satisfied. Thus, giyeh, a,¢e), Z1(q,0, h, a, 7 max{0, % —
P(z,q)},e), Z2(0,h,a, Tmax{0, % — P(x,q)},e), and Z3(q,0, h, a, T max{0,  — P(z,q)},e)
are the smallest respectively. Following the proof of psipon[1, we can prove the first half
of the proposition by contradiction. Specifically, supp@ser max{0, % — P(x,q)}) is not the
optimal solution, thenS(u* — 1,7*) — S(u*,n*) > 0 or S(u*,n* — 1) — S(u*,n*) > 0 should
hold. We haveZ,(q, 0, h, a, 7 max{0, % — P(x,q)},e) < Zi(q,u*, h,a,n*,e) < 5p"—;e€q(69 -1)
or Z»(0, h, a, 7 max{0, 2 — P(x,q)},e) < Zy(u*, h,a,n",e) < ‘TB, and the contradiction occurs.

We can prove the second half of the proposition similarly k®ng contradiction. First,
given (q, h,a,e), Z1(q,q, h,a, ey, e) and Zs(q, h,a, ey, €) are the largest values df; and Z,,
respectively. Assuméy, e;) is not the optimal solution, thef(u* + 1,7*) — S(u*,n*) > 0 or
S(u*,n* + 1) — S(u*,n*) > 0 should be satisfied. Consequently, we gegtq, ¢, h,a, ey, e) >
Zi(q,u*+1,h,a,n* e) > 5p"—h269‘1(69 —1) or Zy(q, h,a, ey, e) > Zy(u, h,a,n* +1,e) > _TB The
contradiction occurs then. n

Remark: In Propositionll and Propositidh 2, to compitg:) i = 1,2, 3, we need to compute
V,(+). It can be obtained by value iteration (26).

Proposition 3. Denotex = (q, h, a, ey, e). The discount optimal transmit rate polieyz) =
q — u*(x) is non-decreasing i and ¢,, respectively; The discount optimal battery energy
allocation policyw(z) = e, — n*(x) is non-decreasing ip ande,, respectively.

Proof: First, it is easy to see thaix) is nondecreasing in, andw(x) iS non-decreasing
in ¢. Next, we prove the non-decreasing «fr) in ¢ by contradiction. Consider two states
x1 = (q1, h,a,ep,e) andxy = (qo, h, a, ey, e). We write r(z;) andr(xs) asr(q;) andr(gq) for
brevity. Assumey; < g2 butr(gi) > r(g2), then0 < r(g2) < 7(q1) < @1 < go. 7(g2), w(g2) IS

Yit is assumed thatEy a.c[G1(q+ A, H, A,(n+ E)~,E)| —e %aEnq.[Gi(¢—1+ A, H, A, (n+ E)”,E)] > BC and

aEnae[Gi2(g+ A H, A, (n+ E)",E)] — e %aBpac[Gralg— 1+ A H A (n+E)",E)] + 21— > BC. This
assumption can be definitely satisfied wh@&ris small.
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feasible inx; andr(q;),w(q) is feasible inz,. Sincer(:) andw(-) are optimal, we have

2
@+ BT () 1)+ C — w(g)

2

< ¢+ ﬁ[p%(eer(q2) — 1)+ A(r(g2)) — w(go)]

+ OéEh’me [Va(ql — T(QQ) —+ A, H, A, (eb — w(QQ)T + E)_, E):| (41)

o+ BT (0 1) + A(r(an) — w(e)]

+ aEh,a,e [Va(q2 - T(Q2) + A7 Hv Aa (611 - w(qZ)T + E)_7 E)}

0.2

< @+ 5[[)%(6(%(%) 1)+ C —w(a)]

+ aEh,a,e [Va(q2 - T(q1) + A7 Hv A7 (611 - w(QI)T + E)_7 E)} (42)
Add (41) and[(4R), we have

Enae [Valan —r(g) + A, H A, (e, — w(g2)T + E) ™, E)]
= Enge [Valer —7(@) + A H, A, (e —w(q)T + E)7, E)]
> Epae [Valge — () + A, H, A, (e, — w(g2)T + E) ™, E)]
— Ehae [Valeza —7(@1) + A H, A, (e, —w(q)T + E) ", E)] (43)
AsV,(q,h,a, e e)isconvexin(g,ey), Enqe[Valy + A, H, A, (2 + E)~, E)] is convex in(y, z).

(43) contradicts the convexity. Then we prove the non-desing ofr(z) in ¢. The non-decreasing

of w(z) in e, can be verified similarly. u

D. Proof of Lemmal8

The lemma can be proved intuitively as follows. Given a tnaission rate, the required power
is known from the inverse of1). Out of this power, as much assjble shall be supplied by
the battery, since battery energy is “free”. In other woraisy policy that draws power from

the grid while energy is still available in the battery canhaotperform an equivalent one which
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strictly uses battery energy first, that has the same totakpo

E. Proof of Lemm&]9

Since r(q, h,a, ey, €) is irrelevant toey,, given rate policyr(q, h,a), the rate is determined
independent of the battery allocation in each timeslot.nTtpeeedy battery allocation is optimal
for one-step cost in each timeslot according to lenia 8. ,Tthes greedy battery allocation

policy is the optimal for[(70).

F. Proof of Lemma&l6

Since the optimal policy of UPRis gz, we have
JIE(B+A) = JP(B) = JPA B+ A) = JP(B) = J9 (B + A) — J9(B) (44)
for any positiveg > 0 and A > 0. Thus,
AKP > J953 (8 + \) — J9%(B) > AKP > 0. (45)

The monotonicity of/94 (/3) and K9 with respect tos are verified. In the following, we prove
the non-decreasing aB% in (. First, similarly as in[[18], we can prove that(z) is non-
decreasing in3. Next, asA[n] is an independent process, then using (3), we claim Bfatis

also non-decreasing if.

G. Proof of Lemma_10

We can verify the lemma througl (22) together with Lemima 2.ewh > 1, we have

B> a. ThenV, = min {q +B[p% (" — 1) + Ar) — w]+}. Given rate
re{0,1,,q},we{0, 2,52}
r(xz), we havew(z) = min{%, P(z,7)} (i.e., greedy policy) is discount optimal for state
x. When 3 is sufficient small, we havey < «. Thus,V, = min {q +
re{0,1,+ g}, we{0,1 - 2}

aEpae Valg—7+ A H A, (e, —wr + E)~, E)] }. Using Property 12 in AppendiX Cly = 0
is discount optimal. Since limitation will not change thetgd order, utilizing the second half

of Lemmal2, we reach the lemma.
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H. Proof of Lemma_12

Since the constrained MDIP(8) is equivalent togJBr the constrained optimal policy is a
mixed policy of optimal policies for UR- and UR,-. When 3, > 1 or 5~ > 1, according
to the first half of Lemma_10, we can derive the greedy policyhis optimal battery power
allocation policy under given rate policy. Fix the greedyippas the battery power allocation

policy in (8), we arrive at[(19) for solving the optimal rateligy.
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