Pedestrian Detection based on Clustered Poselet
Models and Hierarchical And-Or Grammar

Bo Li, Yaobin Chen, Senior Member, IEEE, Fei-Yue Wang, Fellow, IEEE

Abstract—In this paper, a novel part-based pedestrian detec-
tion algorithm is proposed for complex traffic surveillance envi-
ronments. In order to capture posture and articulation variations
of pedestrians, we define a hierarchical grammar model with
the And-Or graphical structure to represent the decomposition
of pedestrians. Thus, pedestrian detection is converted to a
parsing problem. Next, we propose clustered poselet models,
which use the affinity propagation (AP) clustering algorithm to
automatically select representative pedestrian part patterns in
the keypoint space. Trained clustered poselets are utilized as the
terminal part models in the grammar model. Finally, after all
clustered poselet activations in the input image are detected, one
bottom-up inference is performed to effectively search maximum
a posterior (MAP) solutions in grammar model. Thus, consistent
poselet activations are combined into pedestrian hypotheses and
their bounding boxes are predicted. Both appearance scores and
geometry constraints among pedestrian parts are considered in
inference. A series of experiments are conducted on images both
from the public TUD-Pedestrian dataset and collected in the real
traffic crossing scenarios. The experimental results demonstrate
that our algorithm outperforms other successful approaches with
high reliability and robustness in complex environments.

Index Terms—And-Or graph, clustered poselet, computer vi-
sion, pedestrian detection

I. INTRODUCTION

ISION-BASED pedestrian detection has become one hot
Vtopic in intelligent transportation systems (ITS). It can
collect pedestrian data for traffic management and analysis
in artificial transportation systems [1]. Besides, it is a key
module in advanced driver assistance systems (ADAS) of
intelligent vehicles [2]. Detection results provide important
data for robust vehicle tracking control [3], [4].

In natural traffic surveillance environments, pedestrian de-
tection is one challenging task. Firstly, pedestrians are non-
rigid and highly-articulated objects. Their intra-class differ-
ences are extremely obvious because of varieties in clothing,
poses, appearances, and so on. Secondly, many environmental
disturbances may deteriorate the detection performance, such
as cluttered background, various illuminations, and severe
occlusions. Especially in urban mixed traffic scenarios, pedes-
trians are visually occluded by vehicles or other moving
objects prevalently.

Bo Li and Fei-Yue Wang are with the State Key Laboratory of Management
and Control for Complex Systems, Institute of Automation, Chinese Academy
of Sciences, Beijing 100190, China (Email: bo.li@ia.ac.cn).

Yaobin Chen is with the Department of Electrical and Computer Engi-
neering and also with the Transportation Active Safety Institute, Indiana
University-Purdue University Indianapolis, Indianapolis, IN46202, USA (E-
mail: ychen@iupui.edu).

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions @ieee.org.

In recent years, more and more part-based models have
been studied and achieve success for human modeling in
computer vision [5]-[7]. Our work is motivated by pose
estimation algorithms that utilize the context among human
parts to capture various human articulations. However, without
considering specific characteristics of pedestrians in traffic
environments, their human decomposition and part selection
patterns may not be the optimal for pedestrians. For exam-
ple, general pictorial models in human modeling can hardly
cover all possible appearances of pedestrians. Moreover, most
algorithms finely decompose human into arms and legs, which
are not discriminative for detection tasks with cluttered back-
ground and unknown pedestrian number and size. Numerous
part detection false alarms will be generated by objects with
similar shapes. Therefore, we hope to investigate reasonable
pedestrian decomposition structure and part models consid-
ering both pedestrian articulation varieties and discriminative
abilities of parts.

In this pape, we present one novel part-based pedestrian
detection algorithm for complex traffic surveillance environ-
ments. The algorithm is under the grammar-based framework,
which is a novel structural model in computer vision. With
a set of production rules, grammar models have strong and
flexible representation ability for complex compositional struc-
tures, such as various pedestrian articulations. Main contri-
butions of our work are following: i) According to inherent
characteristics of pedestrians, one hierarchical And-Or gram-
mar model is proposed. With the coarse-to-fine decomposition
structure, traditional holistic pedestrian detection and part-
based detection are simultaneously combined in one uniform
framework. ii) Based on poselets [8], [9] that are originally
proposed for person detection and attribute recognition, we
improve them and propose clustered poselet models. An unsu-
pervised learning algorithm is introduced to discover the rep-
resentative part forms for specific part types. Some pedestrian
characteristics are integrated into clustered poselets to make
them suitable for traffic environments. iii) In detection, one
effective bottom-up inference algorithm is presented to select
consistent part activations and combine them into pedestrians.
Except for the excellent detection performance in complex
traffic environments, the main advantage of our algorithm is
that we not only detect pedestrian locations, but also estimate
detailed part configurations and attributes of pedestrians parts.

The remainder of this paper is organized as follows. Pre-
vious pedestrian detection algorithms are generally reviewed
in Section II. Next, our hierarchical And-Or grammar for
pedestrians is explained in Section III. Then, the detailed
pedestrian detection algorithm is presented in Section IV. In
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Section V, the performance of our algorithm is evaluated by
both public dataset and real traffic surveillance environments.
Experimental results and their comprehensive discussions are
also included in the same section. Finally, we make a conclu-
sion of this paper and present the future work.

II. RELATED WORKS

Pedestrian detection is a long-standing problem in both
computer vision and ITS. In literatures, large amount of
algorithms and techniques have been proposed on pedestrian
detection [10]. Some of them take advantage of multiple
sensors such as stereo cameras and infrared cameras [11],
[12]. In this section, we mainly concentrate on algorithms
for monocular cameras. Conventional pedestrian detection
algorithms are roughly classified into two categories: template-
based and feature-based, which respectively correspond to
generative and discriminative models.

For template-based methods, exact mathematical models for
pedestrians are defined firstly. Then, the image is searched for
template matching under the Bayesian framework. Generally,
human shapes are modeled for detection. Discrete shape
models denote a set of contour exemplars for edge matching
[13], [14]. Continuous shape models are parametric contours,
which can represent all likely poses theoretically. In [15] and
[16], 3D models are defined to segment pedestrians given the
foreground crowd regions. [17] uses mixtures of Bernoulli
distribution and marked point process to represent pedestrians.

The most popular pedestrian detection approaches are
feature-based methods, which rely on discriminative feature
descriptors and classification models. Feature is the key factor.
Earlier works extract statistics in local image blocks as shape
features. [18] and [19] extract Haar wavelets to compute
the local intensity differences. [20] proposes histogram of
oriented gradient (HOG), which is one of the most popular
feature descriptor for pedestrian detection. Many subsequent
works are based on HOG and its variants [21], [22]. Some
new shape-based features in high-level forms are proposed
afterwards. [23] defines edgelet features utilizing a segment of
lines or curves. [24] proposes shapelet automatically selecting
gradients to form mid-level shape features.

Feature fusion is a straightforward strategy to provide
complementary information and outperforms the performance
of singular feature. [25] extracts feature set consisting of
HOG, co-occurrence matrix and color frequency. In [26], HOG
and local receptive field (LRF) is used to train classifiers
respectively and classification results are combined finally.
[27] presents the combination of Harr-like features, shapelets,
shape context, and HOG. Then, [28] extends this idea and
combines color self-similarity with motion features. Wang
et al. [29] combines HOG with local binary patterns (LBP)
texture feature. In [30], Haar-like features are computed over
multiple channels, such as color, grayscale, and gradient
channels. Thus, multiple feature types are integrated.

Compared with various feature strategies, classification
models are relatively fixed. Most of work utilize support vector
machine (SVM), boosting, or their variants as the learning
framework.

Most of the above-mentioned methods mainly focus on
holistic pedestrian detection. Recently, part-based approaches
have been studied to deal with human articulation and posture
variations. [5] defines the human parts as head-shoulder, torso,
and legs. Their detection responses are combined with simple
geometric relations. Many works extend pedestrians to humans
in a broad sense for pose estimation. [6] uses basic semantic
human parts, such as the torso and left upper arm. These
parts are considered as nodes in a graphical model with
pictorial structure. [7] continues this framework and improves
the part appearance model with more discriminative features.
Distinguished from these natural human partition ways, in
[8] and [9], poselets are proposed as a kind of novel parts.
They defines parts clustered in joint configuration space and
appearance space.

In this paper, we improve the notion of poselets with
a more compact representation. Then, it is embedded into
the hierarchical grammar-based human parsing framework to
detect pedestrians with various appearances and postures.

III. HIERARCHICAL AND-OR GRAMMAR MODEL FOR
PEDESTRIANS

In this section, a hierarchical grammar model is defined to
determine the pedestrian decomposition pattern. The proposed
model is formulated as an And-Or graph [31], as shown in Fig.
1. The And-Or graph contains two kinds of nodes: and-nodes
and or-nodes. And-nodes denote compositional relationships,
which uniquely identify the specific combination of child
nodes. Or-nodes denote reconfigurable relationships, which
mean the current node can be in any state of the children.
Children of one or-node are interchangeable with each other.
Production rules of the grammar model are represented by
node configurations in the graph. Owing to various combina-
tions of two kinds of nodes, the grammar model can generate
several objects with different appearances.

The And-Or graphical structure in Fig. 1 is designed ac-
cording to general characteristics of pedestrians. From the
root, pedestrians are decomposed hierarchically in a coarse-to-
fine manner. In the second layer, pedestrians are classified by
their body orientations from the standpoint of cameras. In this
paper, we define four common viewpoint categories in traffic
environments: front, back, left, and right. For each pedestrian
that is specified one viewpoint, we semantically divided the
full-body into three constituent part types: head-shoulder,
torso, and legs. There are certain geometry constraints among
these human parts.

In order to capture human articulations and simultaneously
ensure the parts are discriminative for detection, we assign
multiple forms for each part to represent the local defor-
mation, rather than using small components, such as upper
arms and lower legs. The relations are implemented with or-
nodes, as shown in the fourth layer of the grammar model.
The local articulation pattern is denoted by configurations
of significant kinetic joints of human, which are called as
keypoints in this paper. For head-shoulder part, we directly use
one uniform configuration since mostly walking pedestrians
keep their upper-body straight and head-shoulder variations are
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Fig. 1. The And-Or grammar for pedestrians. Rounded rectangles denote and-
nodes, and rounded ones denotes or-nodes. Red dotted lines among human
parts mean the geometry constraints. The figure on the right shows the
decomposition hierarchy of pedestrians.
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relatively small. However, for torso and legs, their local pose
variations are obvious caused by arms and legs swing. Thus,
we select certain typical keypoint configurations for parts
instead of enumerating all their possible states. These part
forms correspond to terminal nodes in the graphical structure.

The dictionary of grammar model consists of both terminal
and non-terminal and-nodes. Appearance models for all items
in the dictionary are trained, including holistic pedestrian
models in specific viewpoints and their part models with
certain part forms. Thus, both holistic-based and part-based
pedestrian detection are combined in the unified framework to
improve robustness of detection.

As a result, the pedestrian And-Or grammar model is
defined with the 5-tuple in (1).

g = (VgaEandanrzngTS) (])

V, denotes the set of nodes, F,,q and E,, are edges for
composition and selection respectively. [, means geome-
try relations in the part composition, and 75 is the root.
Through selecting certain forms from or-nodes in the bottom-
up inference, one specific pedestrian example is obtained.
Meanwhile, a unique parse graph pg is constructed with and-
nodes encountered in inference.

According to [32], the And-Or grammar represents the
probability distribution on the pg in a Bayesian framework,
as shown in (2).

P(pgl|l) < P(I|pg)P(pg) (2)

I denotes the input image. The likelihood distribution P(I|pg)
is considered as the appearance model, which is related to
the detection responses of parse nodes. Prior model P(pg)
evaluates the probability for a certain parse graph. We mainly
consider geometric relations among parts as the prior. Thus,
the detection problem is converted to human parsing as a
maximum a posterior (MAP) estimation task.

IV. PROPOSED METHOD
A. Overview

Flowchart of the pedestrian detection algorithm is illustrated
in Fig. 2. At first, the grammar dictionary is constructed by
proposed clustered poselet models, which select representative
keypoint configurations of human parts and use HOG-SVM
to learn their appearance models (in Section III-B). Next,
given the test image, pyramid HOG features are extracted
at multiple scales. Activations for all clustered poselet filters
are computed by convolution (in Section III-C). Finally, the
bottom-up inference is performed to search the MAP solution
and assemble these activations into the pedestrian full-body
(in Section III-D). Through inference, pedestrian locations as
well as part configurations are estimated. We give the detailed
implementation and explanation for each procedure below.

B. Clustered poselet Models

As new notions of parts, poselets [8] show several ad-
vantages in person detection. They learns numerous common
patterns for various human postures in the keypoint space.
Poselet detectors embody keypoint locations, which help the
subsequent pose estimation and human segmentation. More-
over, since related poselet image patches are extracted by
keypoint alignments, this reduces the impact of unaligned
training samples in detector learning.

However, limitations also exist if we directly apply poselets
to pedestrian detection. For example, it is difficult to determine
the appropriate number of poselets. Then, the randomness
in seed window selection may lead to improper or various
window locations at every runs. Especially when the pedestrian
training set is relatively small, pattern variations become more
obvious. Thus, acquired poselet models are not representative
enough to cover all articulation changes.

Therefore, we propose clustered poselets, which are con-
sidered as one new poselet-based model for our pedestrian
detection grammar. The main improvement is utilizing the
unsupervised clustering algorithm to automatically discover
the typical articulation patterns. Compared with original pose-
lets, our clustered poselets have more compact representation,
convenient implementation, definite semantic meaning, and
sufficient discriminative ability.

Significant modifications on poselets are briefly summarized
as three aspects. Firstly, the range of operated keypoints is
explicitly defined according to the specific part type. This
avoids the randomness in seed window selection. Secondly,
the affinity propagation (AP) clustering algorithm [33] is
introduced. It is the key operation to find clusters of local
postures. Through AP clustering, the image patch matching
and search strategy for original poselets is replaced with the
segmentation in keypoint configuration space. This ensures
that one image patch only belongs to a unique poselet category.
Meanwhile, redundant and rate patterns will not be generated.
Thus, extra postprocess of poselet selection can be removed.
Thirdly, considering the straight characteristics of pedestrians,
the rotation constraint is added to compute the similarity
metric between two image patches.

The detailed training algorithm contains following steps:
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Fig. 3. The pedestrian keypoint definition. Keypoints with different types
are denoted by different colors. Dotted rectangles in the left figure mean
pedestrian parts (Red: head-shoulder, Yellow: torso, Blue: legs).

TABLE 1
RANGE OF ACTIVE KEYPOINTS FOR DIFFERENT PART TYPES

Part Type Active Keypoints

Head-shoulder

Torso

Head, Shoulder_L\R
Shoulder_L\R, Elbow_L\R, Wrist_L\R

Legs Hip_L\R, Knee_L\R, Ankle_L\R

1. Keypoint annotation. At first, human keypoints are man-
nually marked in training pedestrian images. In this paper,
totally 13 keypoints are defined as the head and main joints
in arms and legs. Fig. 3 shows the intuition of all keypoints.
These keypoints are sufficient to determine the general posture
of one pedestrian. We annotate the image coordination as
well as the visible attribute for each keypoint. If the keypoint
position can be roughly inferred while it is occluded, we define
it as “nonvisible”. Otherwise, it is annotated as “visible”.

2. Determine the range of active keypoints. For a certain part
type, we should specify the range of keypoints to be operated,
which is called active keypoints. The detailed configuration of
active keypoints for each part type is shown in Table I.

3. Compute the distance matrix. For two pedestrian images

that are specified the same range of active keypoints, we
measure their similarity according to keypoint attributes. The
distance metric refers to [9], as in (3). P; and P, denote two
active keypoint configurations, including the location, type,
and the visible attribute. dy.,. is the Procrustes distance, which
evaluates the average displacement of keypoints after keypoint
alignment by linear least square transformation 7°(0). It is
noted that the rotation constraint is added in the transformation
to ensure that the alignment is made in an approximate upright
precondition, as in (4). d,;s is the visibility distance, which
means the intersection over visible keypoints. Thus, we can
build a distance matrix for the training set to save the pairwise
distance between keypoint configurations.

d(P1, Py) = dproc(P1, P2) + Adyis(P1, P5)
dproc(Pla P2) = m1n||P1 — T(Q) . P2||,S.t. 0 S Hmax

3
“)

4. Clustering in keypoint configuration space. Based on the
distance matrix, the AP clustering is performed to segment
the keypoint configuration space to several representative and
salient patterns.

AP is an exemplar-based clustering algorithm that takes
similarity between pairs of data points as the input. AP clus-
tering has some particular advantages for this task. Firstly, the
cluster number is not required. Thus, keypoint configurations
are clustered in a self-organizing way. Secondly, the cluster
center is chosen as the most representative data point in the
cluster. The exemplar just corresponds to the seed patch in our
application. Thirdly, without random operations, AP clustering
results keep stable with numerous operations. This removes the
randomness of original poselets.

In our implementation, we define the affinity metric sim as
the function of the distance value, as in (5). Larger distance
means less affinity. The parameter +y controls the compact
degree of the clustering. The number of clusters reduces with
v increases.

sim(Ph PQ) = —[d(Pl, PQ)]’Y (5)
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Based on pairwise similarities that are computed from the
distance matrix, several clusters are obtained through AP
clustering. We remove small clusters and select each cluster
center as the seed to collect other image patches in the same
cluster. Thus, one cluster contains aligned image patches with
similar local posture. Each cluster generates one clustered
poselet model.

5. Train classifiers and collect necessary information on
each cluster. We train one simple but effective discriminative
HOG-SVM detector for each clustered poselet according to
[20]. Except for SVM filters, other additional information
are necessary to complete the detection, as shown in Fig. 4.
Operations for the information collection are listed below:

(a) A logistic transformation on SVM classification re-
sponses is trained to obtain parameters A and b in Platt’s
scaling. The transformation converts the SVM score s, into
the detection probability s, as in (6).

1

PTIY exp(A-s.+b) ©

(b) Given each clustered poselet, the position statistics for
each keypoint is modelled by a Gaussian distribution. The
mean and variance of each keypoint distribution are saved.

(c) We collect the holistic pedestrian bounding boxes rel-
ative to each clustered poselet patch. The relative bounding
box is represented by coordinations of two vertexes as bbox =
(Tomins Ymin, Tmazs Ymaz )- Statistics of the 4 variables are also
fitted by Gaussian distributions.

Through above procedures, several clustered poselet models
for different part types are automatically learned from the
pedestrian training set. Taking the TUD-Pedestrian dataset
as the example, AP clustering results for torso and legs
are presented in Fig. 5. It is observed that image patches
belong to the same category have the similar local articulation
pattern. Thus, pedestrian posture varieties in continuous space
are discretized with mixtures of clustered poselets. They are
utilized as nodes that represent the part forms. Moreover, to
complete the inference framework, full-body pedestrians are
also considered as a special kind of clustered poselets that
skip the AP clustering procedure. Thus, clustered poselets
mentioned below also include holistic pedestrian models.

Fig. 5. Some AP clustering results for left-view pedestrians in TUD dataset.
Each row denotes one cluster that represents a clustered poselet model for the
part (a) torso and (b) legs.

C. poselet Activation Derivation

Given the learned clustered poselets, the beginning of our
detection approach is to find their strong activations in the
input image. The classical sliding window paradigm is utilized
to compute the convolution responses of clustered poselet
filters on the multi-scale pyramid-HOG feature map. For each
SVM classification score that is computed with linear weighted
sum, the Platt’s transformation [34] is conducted to normalize
the score within [0, 1]. After the thresholding and non-maximal
suppression (NMS) strategy, we derive activations for all
clustered poselets with their locations and sizes. Next, we will
rely on the bottom-up inference to combine these activations.

D. Bottom-up Inference

Based on the And-Or grammar, pedestrian detection is
viewed as a human parsing problem. We aim to determine
the optimal parse graph pg* with MAP criterion in multiple
locations. As in (7), given the hierarchical structure of the
grammar model, the log-posterior can be formulated as the
recursive scoring function of the root node vy [32]. Thus, we
propose a bottom-up inference algorithm to effectively search
the solution that maximize s(vg) and locate pedestrians with
optimal part composition.

pg* = arg max P(pg|I) = arg max s(vg) @)
Py Py

The algorithm is performed by selecting the optimal node
configuration from bottom to top in the grammar model, which
is shown in Fig. 6. According to different node types that en-
countered, the inference mainly comprises two significant op-
erations. The or-node corresponds to the NMS, which selects
the most reliable candidates in the neighborhood by scores.
The and-node corresponds to the part combination, which
finds consistent child nodes and aggregates their compositional
scores. The part combination is the essence of the inference
algorithm. Thus, we mainly present this algorithm in detail,
which is given in Algorithm 1. The algorithm consists of three
major processes: component clustering, score aggregation, and
bounds prediction.
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Algorithm 1 Part combination in the bottom-up inference.
Input:
The set of poselet activations, P,;
The distance threshold for activation to cluster, D;j,;
Output:
Bounding boxes of holistic pedestrians, B,,;
1: Sort activations in P, in a descending order with their de-
tection scores s, in (6), denoted by P,, = {a1, a2, ...,an};
2: Initial the first cluster C1 = {a1};
3: for each a; in P, do

4:  Compute the distance between a; and each cluster, and
find the closest cluster C; with distance D(a;, C});

5: if D(ai, CJ) > Dy, then

6: Add a new cluster with activation a;;

7.  else

8: if a;, € C; and a;, has the same part type with a;
then

9: Compute the new aggregation score S*(C;) with

(11) if ay, is replaced by a;;

10: if S*(C;) > S(C;) then

11: Replace a, with a; in the cluster Cj;

12: end if

13: else

14: Merge a; in the cluster C;;

15: Compute the new cluster score S(C;) with (11).

16: end if

17:  end if

18: end for

19: for each cluster C; in all clusters do

20:  Predict the bounding box B,, (i) of the cluster C;;
21: end for

22: return B, ;

Component clustering: Component clustering is to group
poselet activations that belong to the same pedestrian. The
approach is similar with that in [9], which is a form of
greedy clustering starting from the poselet activation with the
highest score. The metric for evaluating whether two poselet
activations are consistent is to measure the similarity between
their empirical keypoint distributions, which are obtained in
clustered poselet training. If two activations correspond to

the same person in the image, they should have uniform
keypoint positions with small variance. The KL-divergence is
introduced to measure the consistency between two poselet
activations. Let NF denotes the distributions of the k-th
keypoint in poselet activation a;, the distance between two
poselet activations is formulated in (8). D denotes the KL-
divergence between Gaussian distribution N* and NJ’-“. K is
the number of all keypoints.

1 K
D(ai,aj) = 7= > [Drr(NFIINS) + D (NFIINF)] )
k=1

From the step 3 in Algorithm 1, the poselet activation is
successively taken to compute the distance to each cluster.
The distance of the activation a; to the cluster C; is estimated
by averaging distances of a; to all samples in Cj, as in (9).
|C;| denotes the number of activations in C}.

1
D(ai, C;) = o > D(ai,a;) )
I ajec;

If this distance is larger than a certain threshold, then we
form a new cluster. Otherwise, the activation is merged in the
cluster. We make the constraint that each poselet activation in
the cluster should has the unique part type. Thus, if the new
poselet activation has the same part type with anyone in the
cluster, we will discuss whether to replace the old poselet by
evaluating the effects that the new activation can bring.

Score aggregation: We define a score function to measure
the compositional consistency of the poselet activations in the
cluster. In the grammar model, the score is expressed as the
log-posterior of a parse node v that represents the holistic
pedestrian, as in (10).

s(0l) = sa(vll) +s(v) + D s(will)

v, €C(v)

(10)

The aggregation score includes the appearance score
sq(v|I), the geometry score s4(v), and scores from all chil-
dren. s,(v|I) denotes the detection response of the holistic
pedestrian model. C'(v) is the set of children of node v,
which means clustered poselet activations with different part
types. Thus, s(v;|I) only remains the appearance term and
represents the detection response. The geometry score s, (v) is
represented by displacement costs among parts. It is computed
by the minus logarithm format of pairwise KL-divergence
distance in (8). In this way, the score of cluster C; can be
expressed in (11), where w, denotes the geometry cost weight.
The score is computed by assembling appearance scores and
measuring geometry costs. It measures how likely the cluster
corresponds to a pedestrian compared with to be a false alarm.

S(C;) = Z sp(ai) — wy Z log D(a;, a;)

a; €C; ai,a]‘ECi

(In

The main circulation (step 3 to 18 in Algorithm 1) termi-
nates when the last poselet activation has been treated to be
included into one existing cluster or be a new cluster. Thus, we
can get many clusters. Each cluster is a pedestrian hypothesis
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Fig. 7. The example of the bottom-up inference results. (a) Component
clustering and score aggregation results. (b) Bounds prediction results.

consisting of several poselet activations.

Bounds prediction: Finally, the exact bounding box of one
pedestrian is predicted given all clustered poselet activations
in the merged cluster. For each activation, we have fitted its
Gaussian distribution for the relative holistic bounding box
in training. Thus, the weighted average of mean values for
pedestrian bounds distributions is computed from all poselet
activations. The weights correspond to appearance scores of
activations and statistical variance. The response of pedestrian
hypothesis is defined as the cluster score.

After all viewpoint-specified holistic pedestrians are located
through above part combination, the NMS is performed to
select the optimal viewpoint at last. Thus, the root node is
reached. The part configuration of each pedestrian can be
recovered by the backtrack. Fig. 7 (a) shows results for poselet
activation clustering and score aggregation. Then, after NMS
and thresholding, the predicted bounding box is illustrated in
Fig. 7(b).

V. EXPERIMENTS
A. Experiments on TUD-Pedestrian

At first, we evaluate our approach on the public TUD-
Pedestrian dataset, whose pedestrian images have relatively
high resolution comparing with most of publicly available
datasets. The dataset contains 250 images with 311 pedestrian-
s. Corresponding training set contains 400 pedestrian images
with resolution 200 x 100. Pedestrians in this dataset are mostly
captured in a side view, where pedestrians are most likely to
perform various articulation patterns in arms and legs.

In experiments, we use all training images to learn clustered
poselet models. According to major viewpoints in the dataset,
nodes in the second layer of the grammar model are limited
as two types: left-side and right-side. For each viewpoint
category, we set 7 = 5 to obtain 5 clustered poselets in torso
and 5 in legs. With the single model for holistic pedestrian and
head-shoulder, totally 22 HOG-SVM filters are utilized in the
grammar dictionary. Then, we use these filters to locate their
activations in images and perform the bottom-up inference to
evaluate our detection performance.

The receiver operating characteristic (ROC) curve is utilized
as the evaluation criterion. ROC curves plot the true positive
rate versus the false positive rate at various threshold settings.
Fig. 8 shows the ROC curve for our algorithm in TUD-
Pedestrian, as well as other results from literatures on the
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Fig. 8. The detection performance on the TUD-Pedestrian dataset.

Fig. 9. Detection result examples on the TUD-Pedestrian dataset. Green
and pink bounding boxes denote pedestrians with right-view and left-view
respectively. Detected human parts are illustrated with dotted rectangles in
different colors.

same dataset for comparison. It is observed that our approach
significantly outperforms the classical HOG-SVM holistic
pedestrian detector. Meanwhile, comparative performance is
achieved comparing with detectors in [7] and [35], which
finely decompose human into arms and legs to detect them in
multiple orientations for articulation estimation. In contrast,
our approach needs less computation complexity on part
likelihood computation and inference. Fig. 9 shows some
detection results of our approach. It is observed that not only
precious bounding boxes of pedestrians are obtained, but also
detailed pose attributes and part configurations are estimated.

B. Experiments on Practical Traffic Environments

In order to evaluate our algorithm in practical traffic sce-
narios, we create a dataset collecting from real traffic environ-
ments with a high-resolution CCD camera for surveillance.
The dataset is built from two videos that are respectively
captured in two busy crossings. Both videos are taken at 8
fps with the resolution being 2592 x1936. We subsample 300
frames from each video. Besides, the rectangular region of
interest (ROI) is defined in test images to reduce false alarms
and improve the time efficiency. Detailed information of each
dataset is shown in Table II. Since the camera view is deep



and wide, object scales greatly change and pedestrian heights
vary from 150 to 700 pixels. Unlike the TUD-Pedestrian
dataset where most pedestrians have the view in left or
right, pedestrians in our dataset mainly walking in front or
back view. This dataset is much more challenging than other
public dataset, since it contains a large number of pedestrians
with various appearances and carrying different items. The
occlusion occurs frequently, too. Meanwhile, the background
is quite cluttered and complex with several disturbances, like
vehicles, buildings, and plants.

In experiments, we randomly select 400 pedestrian images
for each viewpoint from the captured video as the training
samples. A software tool is designed to extract pedestrian
images in video frames with fixed height-width ratio of 2.
Then, pedestrian images are uniformly normalized into the
resolution of 300x150. Since clustered poselets can deal
with the alignment problem in detector learning, pedestrian
positions in training images need not be strictly restricted. In
implementation, the parameter « is set to be 7. Then, we get
4 clusters in torso and 5 in legs for front-view pedestrians,
as well as 5 torso patterns and 6 legs patterns for back-view
pedestrians. Totally 22 HOG-SVM models are utilized. The
prior of scene geometry is utilized in the post-process of
detection to remove detection results that do not consistent
with height constraints.

TABLE II
DETAILED INFORMATION OF OUR COLLECTED DATASET

Image  Pedestrian Pedestrian
Set Number  Number ROT Area Height
Set 1 300 1870 15001500 200~600 px
Set 2 300 1177 1500%1400 150~700 px

We use the same evaluation criterion as the TUD-Pedestrian.
ROC curves for both dataset are respectively illustrated in
Fig. 11. Deformable part models (DPM) which achieve state-
of-the-art accuracy on general object detection are brought
in for comparison. We train DPM on the same training set
with 8 components. The ROC comparison results clearly
show that with the same false positive rate over 0.05, our
approach achieves remarkable advantages on the detection true
positive rate for both dataset. This indicates that clustered
poselets and hierarchical grammar models are more flexible
to capture diverse articulations of pedestrians compared with
general DPM, which uniformly learn components without
considering specific pedestrian characteristics. Fig. 10 shows
some detection result examples and Fig. 12 shows detection
details. It is observed that our approach can successfully detect
pedestrians in this challenging traffic scenarios, even for some
occluded pedestrians. Viewpoint attribute for each pedestrian
is decided by the bottom-up inference. These attributes can be
used for pedestrian behavior recognition in the future.

C. Discussions

Wrong and missed detection samples are collected to an-
alyze limitations of our approach. We observe that most
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Fig. 11. The ROC curves for dataset of (a) Set 1 and (b) Set 2 respectively.

Fig. 12. Some detection details of our own collected dataset.

failed cases mainly correspond to three situations. Firstly,
poor contrast areas caused by shadows or strong light make
pedestrians hard to be identified. Secondly, pedestrians in
distance have low resolution in images. Thus, they are obscure
and generally cannot generate strong responses of poselet
filters. Thirdly, pedestrians with severe occlusion, such as only
one part is visible, are still difficult to be detected. In this
case, the aggregation score of the pedestrian hypothesis is quite
inferior being opposed to false alarms.

False alarms of our approach are usually produced by
texture rich regions in the background. However, compared
with holistic detectors, our false alarm rate are significantly
reduced due to the part-based detection strategy. There are
incorrect viewpoint estimations as well, which are usually
caused by ambiguities in the image or some rare posture



Fig. 10. Examples of detection results for our own collected dataset. Green and pink bounding boxes denote pedestrians with front-view and back-view
respectively. Cyan dotted rectangles denote the detection ROI. (a) Results for Set 1. (b) Results for Set 2.

patterns that cannot be captured by the grammar model.

The shortcoming of our proposed approach is that the
detection accuracy highly depends on the number of activated
poselets for one pedestrian hypothesis. Generally, at least two
parts should be detected to ensure the successful detection. We
believe that our approach is suitable for detecting pedestrians
in high-resolution images. More advanced imaging equipment
and techniques are utilized to improve the resolution of
pedestrians, better performance we could achieve.

Finally, we evaluate the processing time of our algorithm.
Our experiments are conducted in an Intel Core i5-3210M
CPU at 2.50GHz. The code has parts in C++ and others in
Matlab. No parallel implementation or algorithm optimization
strategies are used in experiments. With these settings, our
model consumes much less time to learn DPM. The training
of all clustered poselet filters costs about 1 hours in average,
while DPM learning nearly need 10 hours. For testing, our
algorithm runs in about 3 seconds per frame for our own
collected dataset. Most of the time are consumed in computing
the activations of clustered poselets.

VI. CONCLUSION

A novel part-based pedestrian detection algorithm is pro-
posed in this paper. Pedestrians are uniformly decomposed
with a hierarchical And-Or grammar. To acquire representative
articulation patterns for human parts, we propose clustered
poselet models, which combine poselets with AP clustering
algorithm to generate terminal filters in And-Or grammar.
After computing activations of these clustered poselets in the
input image, an effective bottom-up inference algorithm is
proposed to combine part activations to holistic pedestrians.
Due to the detection framework, not only pedestrians are
detected, but also detailed pose types and part configurations
are determined. Experimental results demonstrate that our
approach can achieve reliable and robust detection perfor-
mance in the complex traffic environment. Compared with
other pedestrian detection algorithms, our approach contains

following properties: (1) Pedestrians with numerous appear-
ances and postures can be captured in a uniform hierarchical
decomposition model. (2) Clustered poselet models inherit
advantages of poselets and automatically specify the pedestrian
part forms from large amount of samples. (3) With the score
aggregation strategy from multiple part detectors in inference,
false alarms in complex traffic environments are significantly
reduced. Meanwhile, some occluded pedestrians can be suc-
cessfully located.

However, our approach still has limitations. In the future,
more efforts can be made to improve the performance of
constituent component detection. For example, we plan to
combine more discriminative feature to increase the detection
accuracy of pedestrian parts. Additionally, we can attempt to
conduct parallel computing strategies with hardware support
to enhance our execution efficiency.
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