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Abstract—Adaptive power allocation (PA) algorithms based on opti-6
mization of the minimum distance dmin between signal points at the7
receiver side are investigated in spatial modulation (SM) systems. First, a8
closed-form solution of the optimal maximum-dmin-aided PA algorithm is9
derived in the case of two transmit antennas (TAs). Moreover, for a higher10
number of TAs, we propose a numerical approach, which appropriately11
splits the power between the specific TA pair associated with dmin to12
increase this distance. Furthermore, our PA-aided SM systems may be13
readily combined with adaptive modulation (AM) to further improve14
the system’s performance. Our numerical results show that the proposed15
algorithms provide beneficial system performance improvements com-16
pared with both the equal-gain PA-based SM and the identical-throughput17
PA-aided spatial multiplexing systems.18

Index Terms—Limited-feedback systems, multiple-input–multiple-19
output (MIMO), power allocation (PA), spatial modulation (SM).20

I. INTRODUCTION21

Spatial modulation (SM), which maps information both to a care-22
fully designed combination of antenna indices and to the classic23
amplitude and phase modulation (APM) constellation, constitutes24
a promising low-complexity multiple-input–multiple-output (MIMO)25
transmission technique [1]–[5]. The SM-based systems are capable of26
outperforming some of the classic MIMO techniques [6] even in the27
presence of channel estimation errors; however, they can only offer28
receive diversity [7], [8].29

To overcome this problem, link adaptation (LA) schemes have been30
proposed in [9]–[15], where the transmit parameters are dynamically31
adapted to the channel conditions. Specifically, the effects of power32
imbalance [9], the issues of achieving transmit diversity [10], the33
particular choice of the constellation used [11], and the impact of34
cooperation have been researched [12]. However, most of the afore-35
mentioned LA schemes considered only a special case of SM, i.e.,36
space-shift keying [3], which exclusively employs the antenna indices37

Manuscript received April 26, 2014; revised June 24, 2014; accepted July 12,
2014. This work was supported in part by the Key Laboratory of Universal
Wireless Communications, Beijing University of Posts and Telecommuni-
cations, Ministry of Education, China under Grant KFKT-2012102; by the
European Research Council’s Advanced Fellow Grant of the National Science
Foundation of China under Grant 60902026; and by the Foundation Project of
the National Key Laboratory of Science and Technology on Communications
under Grant 9140C020404120C0201. The review of this paper was coordinated
by Prof. W. Choi.

P. Yang, Y. Xiao, and S. Li are with the National Key Laboratory of
Science and Technology on Communications, University of Electronic Science
and Technology of China, Chengdu 611731, China (e-mail: yplxw@163.com;
lsq@uestc.edu.cn; xiaoyue@uestc.edu.cn).

B. Zhang, M. El-Hajjar, and L. Hanzo are with the School of Electronics and
Computer Science, University of Southampton, Southampton SO17 1BJ, U.K.
(e-mail: bz2g10@ecs.soton.ac.uk; meh@ecs.soton.ac.uk; lh@ecs.soton.ac.uk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2014.2339297

for data modulation. In [14], the Kronecker model was used to charac- 38
terize a correlated SM-MIMO channel, and a beamforming codebook 39
design algorithm was proposed to optimize the bit-error-ratio (BER) 40
performance based on the rather limited knowledge of the channel 41
envelope’s spatial correlation. In [15], a power-scaling-assisted SM 42
scheme was proposed, where a scaling factor (SF) was invoked for 43
weighting the modulated symbols before their transmission. However, 44
the related design algorithm of SF was not provided. Recently, we 45
have proposed an adaptive modulation (AM)-aided SM (ASM) scheme 46
[16], [17] to improve the attainable system performance. In ASM, the 47
receiver requests the most suitable modulation order to be used by the 48
transmitter for each transmit antenna (TA). However, constant-power 49
ASM may not be capable of fully exploiting the available spatial- 50
domain grade of freedom offered by MIMO channel. 51

Power allocation (PA) techniques are capable of alleviating the 52
adverse effects of channel fading to achieve either an increased data 53
rate or a reduced BER. Indeed, PA has been lavishly researched 54
in the context of spatial multiplexing systems [18], [19]. As a new 55
MIMO technique, SM may be also beneficially combined with PA for 56
adjusting the transmission parameters for the sake of accommodating 57
time-varying channels. However, since only a single TA is activated in 58
each time slot in SM-based schemes, the PA approaches designed for 59
spatial multiplexing-based MIMO systems may not be directly suitable 60
for SM systems. 61

Against this background, the novel contributions of this paper are as 62
follows. 63

• We investigate the benefits of adaptive PA based on the 64
maximum-free distance (max-FD) dmin between the pairs of 65
signal constellation points at the receiver side. An optimal dmin 66
PA precoder is derived for BPSK-modulated (2 × 1)-element 67
SM. Then, this result is extended to M -PSK/M -ary quadrature 68
amplitude modulation (M -QAM) (2 ×Nr)-element PA-aided 69
SM. 70

• To deal with the case of Nt > 2, we propose a numerical 71
approach, termed as the “worse-case-first”-based PA (WCF-PA) 72
algorithm, which appropriately splits the power between the 73
specific TA pair associated with dmin. As a further benefit, our 74
PA-aided SM systems may be readily combined with AM tech- 75
niques for the sake of maximizing the FD, hence improving the 76
system’s performance. 77

The organization of this paper is as follows. Section II presents 78
the system model of the PA-aided SM. In Section III, we introduce 79
our PA algorithms, whereas our simulation results and performance 80
comparisons are presented in Section IV. Finally, Section V concludes 81
this paper. 82

Notation: (·)∗, (·)T , and (·)H denote conjugate, transpose, and 83
Hermitian transpose, respectively. Furthermore, ‖ · ‖ stands for the 84
Frobenius norm, and Re{·} denotes the real part of a complex variable. 85
�x� denotes the smallest integer higher than or equal to x. 86

II. SYSTEM MODEL 87

A. Transceiver 88

Let us consider a flat-fading MIMO channel associated with Nt 89
TAs and Nr receiver antennas, represented by an (Nr ×Nt)-element 90
matrix H. The entries of H are assumed to be independent identically 91
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distributed and obeying hvu ∼ CN (0,1). Then, the transmitted PA-92
aided SM symbol x ∈ C

Nt×1 is given as93

x = sql eq = [0, . . . , sql , . . . , 0]T

↑ qth (1)

where sql is the APM symbol assigned to the qth TA, such as rq-94
QAM, which is associated with dq = log2(r

q) input bits, whereas95
eq ∈ C

Nt×1 is selected from the Nt-dimensions standard basis vectors96
(i.e., e1 = [1, 0, . . . , 0]T ), according to the log2(Nt) input bits.97

At the receiver, the corresponding (Nr × 1)-element received signal98
vector is given by99

y = HPx+ n (2)

where the elements of the Nr-element noise vector n are Gaussian100
random variables obeying CN (0, N0), and the diagonal matrix P101
allocates the total power PT to the different TAs, yielding102

P =

⎛
⎝

√
p1 0

. . .
0

√
pNt

⎞
⎠ (3)

where the diagonal elements are limited by the total power constraint103
as
∑Nt

q=1
pq = PT .104

B. Performance Metric105

Given the channel matrix H, the pairwise error probability (PEP)106
of the SM system using the maximum-likelihood (ML) detector is107
given by [19]108

P (xi → xj |H) ≈ λ ·Q
(√

1

2N0

dmin(H)

)
(4)

where Q(x) = (1/
√

2π)
∫∞
x

e−(y2/2)dy, and λ is the number of109
neighbor constellation points [19] having the FD dmin(H), which is110
defined as111

dmin(H) = min
xi,xj∈X,

xi �=xj

‖HP(xi − xj)‖2F

= min
eij∈E

‖HPeij‖2F (5)

where X is the set of all legitimate transmit symbols, whereas eij =112
xi − xj , i �= j denotes the error vector and E is a set of error vectors.113
The complexity for calculating the FD of our SM-based system in (5)114
is relatively modest because of the following two reasons.115

1) In (5), the collinear distance vectors generate the same distance.116
Hence, although the cardinality of the set E may be large, only117
a representative subset of those collinear error vectors has to be118
considered.119

2) Unlike in conventional MIMO techniques, the transmit vectors120
of SM-MIMO schemes are sparsely populated since they have121
mostly zero values. This property can be exploited to further122
reduce the complexity of evaluating (5), as detailed in [17].123

C. Optimization Criterion124

Since the error events mainly arise from the nearest neighbors, the125
maximization of the FD in (5) directly reduces the probability of error,126
particularly at high-signal-to-noise ratios (SNRs) [19]. Note that the127
PA solution based on the FD is an attractive LA regime, which has128
been vastly researched in the context of spatial multiplexing systems.129

However, these PA approaches designed for spatial multiplexing-based 130
MIMO systems may not be directly suitable for SM systems [20]–[22] 131
because only a single TA is activated in each time slot. Based on (5), 132
we propose a PA-aided SM system, which adapts the PA matrix P to 133
maximize the FD under the transmit power constraint as 134

Popt = argmax
P

dmin(H)

s.t. tr(P2) = PT (6)

where tr(·) denotes the matrix trace. 135
In most of the PA algorithms conceived for VBLAST, the power 136

is shared among the different TAs (space-only PA). This principle 137
has been also adopted in our PA schemes, and hence, a fixed total 138
power constraint is imposed on all TAs in (6). Since only a single 139
TA is activated in each time slot in SM schemes, unlike in the PA 140
algorithms designed for VBLAST, the PA of our proposed SM scheme 141
beneficially exploits the time domain for maintaining the total power 142
constraint. Under the assumption that all TAs are selected for transmis- 143
sion with equal probability, the average of the transmit power is fixed. 144

Moreover, it is noted that there are two main differences of ASM 145
[16] and the proposed PA-aided SM schemes. 146

• They exploit different properties of the MIMO channels. Specif- 147
ically, ASM dynamically adapts the modulation order assigned 148
to TAs, whereas the PA-aided SM adapts the power assigned to 149
these antennas. 150

• The modulation orders of ASM are selected from a discrete set, 151
whereas the PA parameters are chosen from the real-valued field. 152

III. PA ALGORITHMS 153

Here, we first derive a closed-form solution of (6) for BPSK- 154
modulated (2 × 1)-element SM and then extend the method to the 155
more general M -PSK/M -QAM modulated (2 ×Nr)-element PA- 156
aided SM scenario. In the case of large TAs and high modulation 157
order, deriving a closed-form solution to (6) remains an open challenge 158
since the solution is obtained by exhaustive search for large search 159
space constituted by all legitimate candidate transmit symbols or error 160
vectors. Hence, a numerical search method is proposed. 161

A. Optimal-FD PA Matrix for a BPSK-modulated 2 × 1 SM 162

For BPSK-modulated SM associated with Nt = 2 and Nr = 1, the 163
symbols belong to the set {1,−1}, and all possible error vectors eij = 164
xi − xj , i �= j are listed as follows: {[−2, 0]T , [2, 0]T , [0,−2]T , 165
[0, 2]T , [−1, 1]T , [−1,−1]T , [1,−1]T , and [1, 1]T }. Since some 166
of the vectors are collinear, the set to be studied is reduced 167
to {e1, e2, e3, e4} = {[2, 0]T , [0, 2]T , [1,−1]T , [1, 1]T }. Given the 168
(1 × 2) channel matrix H = [h1, h2], the received constellation point 169
distances are given by 170⎧⎪⎪⎨

⎪⎪⎩
d1 = ‖HPe1‖2 = 4p1 ‖h1‖2
d2 = ‖HPe2‖2 = 4p2 ‖h2‖2

d3 = ‖HPe3‖2 =
∥∥√p1h1 −

√
p2h2

∥∥2

d4 = ‖HPe4‖2 =
∥∥√p1h1 +

√
p2h2

∥∥2
.

(7)

Based on (7), the optimization problem of (6) can be simplified to 171

Popt = argmax
P

{min{d1, d2, d3, d4}}

s.t. p1 + p2 = PT . (8)

As indicated in (8) and shown in Fig. 1, d1 and d2 are linear 172
functions of parameter p1, whereas d3 and d4 are convex or concave 173
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Fig. 1. Optimal-FD-aided PA for BPSK-modulated 2 × 1 SM.

functions and represented by an ellipse as a function of the power p1.174
Hence, the max-FD solution according to p1 is one of the intersections175
between these received distances di(i = 1,2,3,4). More specifically,176
we can obtain the power assigned to the TA by finding these inter-177
sections and then selecting the one having the maximum FD as the178
final solution. As a result, the received FD is maximized, and then, the179
error performance is improved. To be specific, observe from (8) and180

for the total power constraint that the power p(1)1 associated with the181
first intersection in Fig. 1 satisfies182 {

d1 = 4p
(1)
1 ‖h1‖2 = d2 = 4p

(1)
2 ‖h2‖2

p
(1)
1 + p

(1)
2 = pT .

(9)

Upon introducing the shorthand of a = ‖h1‖2, b = ‖h2‖2, and c =183
h∗
1h2 + h∗

2h1 = 2Re{h∗
1h2} for a given channel matrix H and using184

(9), we obtain185 {
p
(1)
1 = b/(a+ b)PT

p
(1)
2 = a/(a+ b)PT .

(10)

Then, the power p(2)1 associated with second intersection of d1 = d3186
in Fig. 1 is given by187 ⎧⎨

⎩ 4p
(2)
1 ‖h1‖2 =

∥∥∥∥
√

p
(2)
1 h1 −

√
p
(2)
2 h2

∥∥∥∥
2

p
(2)
1 + p

(2)
2 = pT .

(11)

To elaborate a little further, (11) can be simplified to188 {
3ap

(2)
1 − bp

(2)
2 + c

√
p
(2)
1

√
p
(2)
2 = 0

p
(2)
1 + p

(2)
2 = pT .

(12)

Then, (12) can be viewed as a quadratic function of
√

p
(2)
1 , which189

can be solved190 {√
p
(2)
1 =

−c+
√

c2+12ab

6a

√
p
(2)
2

p
(2)
1 + p

(2)
2 = pT .

(13)

From (13), we can then evaluate the power as191 ⎧⎨
⎩

p
(2)
1 =

c2+6ab−c
√

c2+12ab

18a2+c2+6ab−c
√

c2+12ab
PT

p
(2)
2 = 18a2

18a2+c2+6ab−c
√

c2+12ab
PT .

(14)

Similar to the evaluation process of p(2)1 , we can obtain the candidate 192

power p
(3)
1 associated with d1 = d4, the power p

(4)
1 associated with 193

d2 = d3, and the power p
(5)
1 associated with d2 = d4 step by step, 194

which are given by 195⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p
(3)
1 =

c2+6ab+c
√

c2+12ab

18a2+c2+6ab+c
√

c2+12ab
PT

p
(4)
1 =

c2+6ab+c
√

c2+12ab

2a2+c2+6ab+c
√

c2+12ab
PT

p
(5)
1 =

c2+6ab−c
√

c2+12ab

2a2+c2+6ab−c
√

c2+12ab
PT .

(15)

Then, based on the fixed total power constraint, the corresponding 196
power assigned to the second TA is given by 197⎧⎪⎪⎨

⎪⎪⎩
p
(3)
2 = 18a2

18a2+c2+6ab+c
√

c2+12ab
PT

p
(4)
2 = 2a2

2a2+c2+6ab+c
√

c2+12ab
PT

p
(5)
2 = 2a2

2a2+c2+6ab−c
√

c2+12ab
PT .

(16)

Additionally, the solution p
(6)
1 associated with d3 = d4 satisfies 198

p
(6)
1 p

(6)
2 = 0. Since the activation of the TAs conveys the information 199

bits, the PA solution of p
(6)
1 = 0 or p

(6)
1 = PT (p

(6)
2 = 0) is not 200

considered as a legitimate one. In conclusion of the algorithm, the 201
FDs of these PA solutions are generated, and we select the one having 202
the largest FD as our final result. Next, the aforementioned method is 203
extended to M -PSK/M -QAM modulated PA-aided (2 ×Nr)-element 204
SM. Here, the value of Nr is an arbitrary positive integer. 205

The detailed max-FD-aided PA algorithm is summarized in two 206
steps as follows. 207

• Step 1: Compute all legitimate error vectors eij = xi − xj , i �= 208
j, and eliminate the redundant collinear elements. Calculate all 209
legitimate received constellation distances dl(l = 1, . . . , L) with 210
the aid of the channel matrix H and eij , which are either linear 211
or nonlinear but convex functions of power p1. 212

• Step 2: Find all possible intersections between the received con- 213
stellation distances di and dj (i, j ∈ {1, . . . , L}), and calculate 214
both the corresponding power matrix P = diag{√p1,

√
p2} and 215

the corresponding FD. Select the one having the largest FD as our 216
final result. 217

Therefore, the allocated power to TA can be decided as a closed- 218
form solution by the aforementioned steps with low complexity. Note AQ1219
that the restriction to 2 ×Nr-element SM is imposed by the difficulty 220
of the FD optimization, and the solution of the general problem 221
remains an open challenge. Indeed, the determination of the PA matrix 222
that maximizes the FD of (5) is difficult for two reasons: First, the 223
solution depends on both the channel matrix and on the symbol 224
alphabet, and the space of solutions is excessive. Hence, for a higher 225
throughput, we propose a simple numerical approach for this difficult 226
optimization problem. 227

B. WCF-PA 228

To deal with the case of Nt > 2 and high modulation orders, the 229
conventional greedy algorithm-based PA (GA-PA) of [17] can be 230
further developed for our SM systems. To be specific, at each step 231
of the GA-PA algorithm, a small fraction Δp of the total power is 232
allocated to that specific TA, which maximizes the FD. By contrast, the 233
power of all the other TAs remains unchanged. As the total power PT 234
is gradually allocated, the final PA matrix P is approached. However, 235
the GA-PA algorithm has to tentatively allocate power to all possible 236
TAs in each iteration, which imposes high complexity. 237
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TABLE I
PROPOSED WCF-PA ALGORITHM

To circumvent the aforementioned challenge, a WCF-PA algorithm238
is proposed for our PA-aided SM scheme, which reduces the search239
space by focusing its efforts on the specific TA pair (m,n) associated240
with the FD of (5) because this is associated with the most likely error241
event. Then the algorithm gradually assigns the appropriate portion242
of power to each of these TA pairs, whereas the power values of the243
remaining TAs remain unchanged with respect to their initial value.244

The detailed WCF-PA algorithm is summarized as in Table I.245
Initially, we assume that the power is equally shared by all TAs. For246
a given channel matrix H, the FD dmin(H) value associated with the247
initial PA matrix P is calculated as d1min in Step 1. Furthermore, the248
indices of the TA pair (m,n) achieving d1min are obtained. If m = n,249
the distance d1min is250

d1min = ‖hm‖2F d̄2min q ∈ {1, . . . , Nt} (17)

where hm is the mth column of H, and d̄min is the minimum distance251
in the APM constellation according to the modulation order, as shown252
in [19]. In (13), it is plausible that the TA m has the smallest channel253
gain ‖hm‖F . In this case, we deduct some power from the TA u, which254
has the largest channel gain and assign it to TA m; hence, dmin(H)255
may be increased due to the increased power assigned to the mth TA.256
Here, we define the achieved PA candidate as Ptemp1.257

If the values of m and n are not the same, the value of d1min is258
computed for different TAs. To increase this FD, two possible PA259
strategies are considered. The first deducts some power from the TA260
m and assigns it to TA n, whereas the second deducts power from the261
TA n and assigns it to TA m. Then, the resultant PA candidates of these262

strategies can be represented as Ptemp2 and Ptemp3, respectively. 263
Hence, the optimal PA matrix is formulated as 264

Popt =

⎧⎨
⎩

argmax
P∈{Pave,Ptemp1}

dmin(H), if m = n

argmax
P∈{Pave,Ptemp2,Ptemp3}

dmin(H), if m �= n.
(18)

As the dmin(H) value increases throughout the WCF-PA iterations, 265
the proposed PA scheme provides a beneficial system performance 266
improvement compared with the conventional SM. More importantly, 267
this algorithm has low complexity because the greedy PA philosophy 268
is adopted only for two TAs, regardless of the total number of TAs. 269

C. Joint AM and PA Techniques in SM 270

As shown in Section II, the PA and AM techniques may rely on dif- 271
ferent transmit parameters to achieve a BER improvement. To further 272
exploit the associated grade of freedom, our PA-aided SM systems can 273
be combined with AM technique. However, this hybrid scheme may 274
become excessively complex, when aiming for jointly optimizing these 275
parameters according to the near-instantaneous channel conditions. In 276
this paper, we simplify the computations using a multistage adaptation 277
strategy. First, the AM technique of [17] is invoked for choosing the 278
optimal modulation constellations for the most correlated TA pair. 279
Then their corresponding power is allocated. Although this approach 280
may not be optimal for joint AM-PA-based systems, we will confirm 281
with the aid of our simulations that this multistage adaptation strategy 282
is capable of achieving a performance improvement compared with 283
the ASM and PA-aided SM schemes. The efficient amalgamation of 284
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Fig. 2. Distribution of FD dmin of conventional and proposed PA schemes in
2 × 1 and 2 × 2 MIMO channels.

AM and PA for the sake of exploiting all the benefits of the MIMO285
channels constitutes a challenging problem, which will be investigated286
in our further studies.287

Fig. 2 portrays the complementary cumulative distribution functions288
of the FD recorded both for conventional SM and for the proposed289
PA-aided SM schemes in (2 × 1) and (2 × 2) MIMO channels. Observe290
in Fig. 2 that the PA-aided SM schemes are capable of beneficially291
increasing the FD. More specifically, as expected, the optimal max-292
FD-aided PA scheme has a higher FD than that of the GA-PA and the293
WCF-based PA schemes due to the fact that it is capable of finding294
the global optimal solution by using (8)–(16). Moreover, the GA-PA-295
aided SM achieves almost the same FD as that of the WCF-PA-aided296
SM. Hence, these two PA-aided schemes may achieve the same BER297
performance, as will be shown in Section IV. It is also shown in Fig. 2298
that the joint AM-PA-aided SM may outperform the other PA-aided299
schemes for (2 × 2) MIMO channels because it has the highest FD300
among these PA-aided schemes.301

D. Computational Complexity and Feedback Load302

For each channel realization H, the GA-PA algorithm has to conduct303
a full exhaustive search of the �(Nt/Δp)�Nt number of PA matrix304
candidates, whereas the proposed WCF-PA algorithm only deals with305
2�(1/Δp)� values. Here, the number of dmin(H) candidates to be306
evaluated is a good metric of quantifying the complexity of these307
algorithms. Moreover, in the proposed WCF-PA, we can first use308
the simplified calculation method of [16] and [17] for quantifying309
dmin(H) of the PA candidate P. Then, the calculation of dmin(H) in310
Step 3 for the other candidates having the tentative PA only has to con-311
sider the updated TAs. Hence, the complexity can be further reduced.312
On the other hand, the GA-PA algorithm requires the receiver to feed313
back the index of the activated PA matrix to the transmitter, whereas314
the WCF-PA algorithm only has to feed back the index of the specific315
TA pair associated with the PA and their assigned power values.316

IV. SIMULATION RESULTS317

Here, we evaluate the BER performance of the proposed PA-aided318
SM schemes over frequency-flat-fading channels. The simulation319
setup is based on 2–4 bits/symbol transmissions, and the number of320
modulated symbols is equal to NL = 30 for each channel realization.321
For comparison, we consider the one-bit reallocation (OBRA)-ASM322
of [17], which is a simplified version of the ASM scheme of [16].323

Fig. 3. BER comparison at mr = 2 bits/symbol for the conventional BPSK-
modulated SM and the PA-aided SM schemes.

Fig. 3 shows the BER performance of the optimal max-FD-aided 324
PA and the numerical search-aided PA schemes (the GA-PA-aided SM 325
and the WCF-PA-aided SM schemes). In Fig. 3, the (2 × 1)-element 326
and (2 × 2)-element MIMO channels using BPSK modulation are 327
considered. For completeness, we add the theoretical upper bound of 328
[14] for the conventional SM scheme. In Fig. 3, in the low-to-medium 329
SNR regime, the numerical search-aided PA schemes achieve almost 330
the same performance as the optimal max-FD-based PA-aided SM. 331
Note that, although the optimal max-FD-based PA-aided SM is capable 332
of achieving a higher FD than other PA-aided schemes, its number 333
λ of the nearest neighbor constellation points may become doubled 334
compared with the conventional SM due to the optimization process. 335
By contrast, the numerical search-aided PA schemes, the solutions may 336
be expected to be close to the optimal max-FD, and hence, parameter 337
λ may not be doubled as that of the optimal max-FD algorithm. As 338
indicated in (4), the FD and the corresponding number of nearest 339
neighbors λ jointly determine the BER and having an increased value 340
of λ may degrade the attainable BER performance. Hence, as shown 341
in Fig. 3, at high SNRs, the optimal max-FD-based PA-aided SM may 342
perform worse than numerical search-aided PA schemes associated 343
with a lower λ1. To circumvent this problem, the combination of the 344
max-FD and minimum-λ in PA-aided SM may be adopted, which has 345
high complexity, as indicated in [23]. Moreover, we observe in Fig. 3 346
that the low-complexity WCF-PA-aided scheme attains a similar BER 347
performance to that of the exhaustive-search-based GA-PA scheme. 348

In Fig. 4, the QPSK-modulated VBLAST scheme and its PA-aided 349
counterpart associated with a zero-forcing successive interference 350
cancelation (ZF-SIC) detector [20] are compared with our PA-aided AQ2351
schemes because their detection complexity values are similar [1], 352
[5]. Observe in Fig. 4 for mr = 4 that our PA-aided SM schemes 353
outperform the PA-aided VBLAST arrangements relying on a ZF- 354
SIC detector. Indeed, if a powerful ML detector is employed for 355
the VBLAST system, we can achieve a better BER performance. 356
However, designing PA algorithms for ML-based VBLAST systems 357
is a challenge, and their detection complexity is high, as indicated in 358
[21] and [22]. 359

1Another reason for this result is that the max-FD-aided PA may achieve
a lower Euclidean distance between the nonadjacent received constellation
points than that of the WCF-PA and GA-PA schemes. Hence, based on the
Q-function-aided PEP upper bound of [19], which depends on all received
distances dij(H) = ‖HP(xi − xj)‖F (i �= j) of the received constellation
points, the max-FD-based PA may not achieve the minimum BER performance
compared with that of other PA schemes.
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Fig. 4. BER comparison at mr = 4 bits/symbol for the conventional 8-QAM-
modulated SM and the PA-aided SM scheme in 2 × 2 MIMO channels. The
corresponding BER results of the QPSK-modulated VBLAST scheme and its
PA-aided scheme are calculated as the benchmarkers.

Fig. 5. BER comparison at mr = 4 bits/symbol for the conventional QPSK-
modulated SM, the ASM scheme, the proposed GA-PA-aided SM, the proposed
WCF-PA SM, and the joint AM-PA-aided SM. Here, 4 × 2 MIMO channels are
considered.

As indicated in Section II-C, our PA algorithm is to a degree360
reminiscent of the spatiotemporal PA scheme of [24], which is capable361
of achieving exponential diversity. However, they are different in the362
sense that the PA scheme in [24] relies on the long-term (time) average363
over which it maintains constant total power, whereas our scheme364
relies on the selection probability of the TAs for satisfying the total365
power constraint. Owing to this difference, the analysis method of366
[24] cannot be extended to our PA-aided SM scheme. However, since367
the power is allocated to both the spatial and temporal dimensions368
in our PA algorithm, more substantial performance gains may be369
expected than that of the pure spatial-domain PA-aided VBLAST370
scheme, as shown in Fig. 4. Deriving the explicit diversity order of371
this max-FD-based PA algorithm is based on the distribution of the FD372
distance. Since this FD depends both on the constellation and on the373
channel realization, its distribution is difficult to determine. Hence, the374
explicit diversity order of this max-FD-based PA algorithm is hard to375
characterize analytically. This challenge is also an open problem in the376
max-FD-aided PA algorithm of VBLAST [21], [22]. Nonetheless, the377
aforementioned challenge will be considered in our further research.378

Fig. 5 compares the BER performances of the PA-aided schemes379
and of the conventional ASM schemes for Nt = 4. Upon comparing380

Fig. 6. BER comparison of the QPSK-aided SM, the ASM, and the proposed
WCF-PA-aided SM schemes under 4 × 2 MIMO channels. We also considered
the effects of CSI error associated with an equivalent channel estimation’s noise
variance of w = 0.1 and (1/γ).

the results in Fig. 5 with the results in Fig. 4, we observe that the 381
AM-aided and PA-assisted SM schemes exhibit different BER advan- 382
tages for different numbers of TAs. This is because these techniques 383
exploit different properties of the MIMO channels when aiming to 384
maximize the FD, as indicated in Section II. As expected in Figs. 4 385
and 5, we observe that joint AM-PA-aided SM achieves the best BER 386
performance among all the schemes. 387

Fig. 6 compares the achievable BER performance of the WCF- 388
PA-aided SM in the presence of Gaussian-distributed channel state 389
information (CSI) errors obeying CN (0, w) [7], [8] associated with 390
w = 0.1 and (1/γ), where γ is the average CSI estimation SNR at 391
each receiver antenna. Observe in Fig. 6 that the BER performance 392
of WCF-PA-aided SM is degraded upon introducing CSI estimation 393
errors. However, this PA-based scheme still provides a considerable 394
performance improvement over its nonadaptive counterparts with 395
w = 1/γ. 396

V. CONCLUSION 397

In this paper, we have proposed the PA algorithms designed for 398
limited-feedback SM-MIMO systems. Our simulation results confirm 399
that the achievable performance is quite attractive. Our further work 400
will be focused on the integration of space–time coding, channel 401
coding, and space–time-shift keying [5] into the proposed schemes. 402
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Abstract—Adaptive power allocation (PA) algorithms based on opti-6
mization of the minimum distance dmin between signal points at the7
receiver side are investigated in spatial modulation (SM) systems. First, a8
closed-form solution of the optimal maximum-dmin-aided PA algorithm is9
derived in the case of two transmit antennas (TAs). Moreover, for a higher10
number of TAs, we propose a numerical approach, which appropriately11
splits the power between the specific TA pair associated with dmin to12
increase this distance. Furthermore, our PA-aided SM systems may be13
readily combined with adaptive modulation (AM) to further improve14
the system’s performance. Our numerical results show that the proposed15
algorithms provide beneficial system performance improvements com-16
pared with both the equal-gain PA-based SM and the identical-throughput17
PA-aided spatial multiplexing systems.18

Index Terms—Limited-feedback systems, multiple-input–multiple-19
output (MIMO), power allocation (PA), spatial modulation (SM).20

I. INTRODUCTION21

Spatial modulation (SM), which maps information both to a care-22
fully designed combination of antenna indices and to the classic23
amplitude and phase modulation (APM) constellation, constitutes24
a promising low-complexity multiple-input–multiple-output (MIMO)25
transmission technique [1]–[5]. The SM-based systems are capable of26
outperforming some of the classic MIMO techniques [6] even in the27
presence of channel estimation errors; however, they can only offer28
receive diversity [7], [8].29

To overcome this problem, link adaptation (LA) schemes have been30
proposed in [9]–[15], where the transmit parameters are dynamically31
adapted to the channel conditions. Specifically, the effects of power32
imbalance [9], the issues of achieving transmit diversity [10], the33
particular choice of the constellation used [11], and the impact of34
cooperation have been researched [12]. However, most of the afore-35
mentioned LA schemes considered only a special case of SM, i.e.,36
space-shift keying [3], which exclusively employs the antenna indices37
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for data modulation. In [14], the Kronecker model was used to charac- 38
terize a correlated SM-MIMO channel, and a beamforming codebook 39
design algorithm was proposed to optimize the bit-error-ratio (BER) 40
performance based on the rather limited knowledge of the channel 41
envelope’s spatial correlation. In [15], a power-scaling-assisted SM 42
scheme was proposed, where a scaling factor (SF) was invoked for 43
weighting the modulated symbols before their transmission. However, 44
the related design algorithm of SF was not provided. Recently, we 45
have proposed an adaptive modulation (AM)-aided SM (ASM) scheme 46
[16], [17] to improve the attainable system performance. In ASM, the 47
receiver requests the most suitable modulation order to be used by the 48
transmitter for each transmit antenna (TA). However, constant-power 49
ASM may not be capable of fully exploiting the available spatial- 50
domain grade of freedom offered by MIMO channel. 51

Power allocation (PA) techniques are capable of alleviating the 52
adverse effects of channel fading to achieve either an increased data 53
rate or a reduced BER. Indeed, PA has been lavishly researched 54
in the context of spatial multiplexing systems [18], [19]. As a new 55
MIMO technique, SM may be also beneficially combined with PA for 56
adjusting the transmission parameters for the sake of accommodating 57
time-varying channels. However, since only a single TA is activated in 58
each time slot in SM-based schemes, the PA approaches designed for 59
spatial multiplexing-based MIMO systems may not be directly suitable 60
for SM systems. 61

Against this background, the novel contributions of this paper are as 62
follows. 63

• We investigate the benefits of adaptive PA based on the 64
maximum-free distance (max-FD) dmin between the pairs of 65
signal constellation points at the receiver side. An optimal dmin 66
PA precoder is derived for BPSK-modulated (2 × 1)-element 67
SM. Then, this result is extended to M -PSK/M -ary quadrature 68
amplitude modulation (M -QAM) (2 ×Nr)-element PA-aided 69
SM. 70

• To deal with the case of Nt > 2, we propose a numerical 71
approach, termed as the “worse-case-first”-based PA (WCF-PA) 72
algorithm, which appropriately splits the power between the 73
specific TA pair associated with dmin. As a further benefit, our 74
PA-aided SM systems may be readily combined with AM tech- 75
niques for the sake of maximizing the FD, hence improving the 76
system’s performance. 77

The organization of this paper is as follows. Section II presents 78
the system model of the PA-aided SM. In Section III, we introduce 79
our PA algorithms, whereas our simulation results and performance 80
comparisons are presented in Section IV. Finally, Section V concludes 81
this paper. 82

Notation: (·)∗, (·)T , and (·)H denote conjugate, transpose, and 83
Hermitian transpose, respectively. Furthermore, ‖ · ‖ stands for the 84
Frobenius norm, and Re{·} denotes the real part of a complex variable. 85
�x� denotes the smallest integer higher than or equal to x. 86

II. SYSTEM MODEL 87

A. Transceiver 88

Let us consider a flat-fading MIMO channel associated with Nt 89
TAs and Nr receiver antennas, represented by an (Nr ×Nt)-element 90
matrix H. The entries of H are assumed to be independent identically 91

0018-9545 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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distributed and obeying hvu ∼ CN (0,1). Then, the transmitted PA-92
aided SM symbol x ∈ C

Nt×1 is given as93

x = sql eq = [0, . . . , sql , . . . , 0]T

↑ qth (1)

where sql is the APM symbol assigned to the qth TA, such as rq-94
QAM, which is associated with dq = log2(r

q) input bits, whereas95
eq ∈ C

Nt×1 is selected from the Nt-dimensions standard basis vectors96
(i.e., e1 = [1, 0, . . . , 0]T ), according to the log2(Nt) input bits.97

At the receiver, the corresponding (Nr × 1)-element received signal98
vector is given by99

y = HPx+ n (2)

where the elements of the Nr-element noise vector n are Gaussian100
random variables obeying CN (0, N0), and the diagonal matrix P101
allocates the total power PT to the different TAs, yielding102

P =

⎛
⎝

√
p1 0

. . .
0

√
pNt

⎞
⎠ (3)

where the diagonal elements are limited by the total power constraint103
as
∑Nt

q=1
pq = PT .104

B. Performance Metric105

Given the channel matrix H, the pairwise error probability (PEP)106
of the SM system using the maximum-likelihood (ML) detector is107
given by [19]108

P (xi → xj |H) ≈ λ ·Q
(√

1

2N0

dmin(H)

)
(4)

where Q(x) = (1/
√

2π)
∫∞
x

e−(y2/2)dy, and λ is the number of109
neighbor constellation points [19] having the FD dmin(H), which is110
defined as111

dmin(H) = min
xi,xj∈X,

xi �=xj

‖HP(xi − xj)‖2F

= min
eij∈E

‖HPeij‖2F (5)

where X is the set of all legitimate transmit symbols, whereas eij =112
xi − xj , i �= j denotes the error vector and E is a set of error vectors.113
The complexity for calculating the FD of our SM-based system in (5)114
is relatively modest because of the following two reasons.115

1) In (5), the collinear distance vectors generate the same distance.116
Hence, although the cardinality of the set E may be large, only117
a representative subset of those collinear error vectors has to be118
considered.119

2) Unlike in conventional MIMO techniques, the transmit vectors120
of SM-MIMO schemes are sparsely populated since they have121
mostly zero values. This property can be exploited to further122
reduce the complexity of evaluating (5), as detailed in [17].123

C. Optimization Criterion124

Since the error events mainly arise from the nearest neighbors, the125
maximization of the FD in (5) directly reduces the probability of error,126
particularly at high-signal-to-noise ratios (SNRs) [19]. Note that the127
PA solution based on the FD is an attractive LA regime, which has128
been vastly researched in the context of spatial multiplexing systems.129

However, these PA approaches designed for spatial multiplexing-based 130
MIMO systems may not be directly suitable for SM systems [20]–[22] 131
because only a single TA is activated in each time slot. Based on (5), 132
we propose a PA-aided SM system, which adapts the PA matrix P to 133
maximize the FD under the transmit power constraint as 134

Popt = argmax
P

dmin(H)

s.t. tr(P2) = PT (6)

where tr(·) denotes the matrix trace. 135
In most of the PA algorithms conceived for VBLAST, the power 136

is shared among the different TAs (space-only PA). This principle 137
has been also adopted in our PA schemes, and hence, a fixed total 138
power constraint is imposed on all TAs in (6). Since only a single 139
TA is activated in each time slot in SM schemes, unlike in the PA 140
algorithms designed for VBLAST, the PA of our proposed SM scheme 141
beneficially exploits the time domain for maintaining the total power 142
constraint. Under the assumption that all TAs are selected for transmis- 143
sion with equal probability, the average of the transmit power is fixed. 144

Moreover, it is noted that there are two main differences of ASM 145
[16] and the proposed PA-aided SM schemes. 146

• They exploit different properties of the MIMO channels. Specif- 147
ically, ASM dynamically adapts the modulation order assigned 148
to TAs, whereas the PA-aided SM adapts the power assigned to 149
these antennas. 150

• The modulation orders of ASM are selected from a discrete set, 151
whereas the PA parameters are chosen from the real-valued field. 152

III. PA ALGORITHMS 153

Here, we first derive a closed-form solution of (6) for BPSK- 154
modulated (2 × 1)-element SM and then extend the method to the 155
more general M -PSK/M -QAM modulated (2 ×Nr)-element PA- 156
aided SM scenario. In the case of large TAs and high modulation 157
order, deriving a closed-form solution to (6) remains an open challenge 158
since the solution is obtained by exhaustive search for large search 159
space constituted by all legitimate candidate transmit symbols or error 160
vectors. Hence, a numerical search method is proposed. 161

A. Optimal-FD PA Matrix for a BPSK-modulated 2 × 1 SM 162

For BPSK-modulated SM associated with Nt = 2 and Nr = 1, the 163
symbols belong to the set {1,−1}, and all possible error vectors eij = 164
xi − xj , i �= j are listed as follows: {[−2, 0]T , [2, 0]T , [0,−2]T , 165
[0, 2]T , [−1, 1]T , [−1,−1]T , [1,−1]T , and [1, 1]T }. Since some 166
of the vectors are collinear, the set to be studied is reduced 167
to {e1, e2, e3, e4} = {[2, 0]T , [0, 2]T , [1,−1]T , [1, 1]T }. Given the 168
(1 × 2) channel matrix H = [h1, h2], the received constellation point 169
distances are given by 170⎧⎪⎪⎨

⎪⎪⎩
d1 = ‖HPe1‖2 = 4p1 ‖h1‖2
d2 = ‖HPe2‖2 = 4p2 ‖h2‖2

d3 = ‖HPe3‖2 =
∥∥√p1h1 −

√
p2h2

∥∥2

d4 = ‖HPe4‖2 =
∥∥√p1h1 +

√
p2h2

∥∥2
.

(7)

Based on (7), the optimization problem of (6) can be simplified to 171

Popt = argmax
P

{min{d1, d2, d3, d4}}

s.t. p1 + p2 = PT . (8)

As indicated in (8) and shown in Fig. 1, d1 and d2 are linear 172
functions of parameter p1, whereas d3 and d4 are convex or concave 173
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Fig. 1. Optimal-FD-aided PA for BPSK-modulated 2 × 1 SM.

functions and represented by an ellipse as a function of the power p1.174
Hence, the max-FD solution according to p1 is one of the intersections175
between these received distances di(i = 1,2,3,4). More specifically,176
we can obtain the power assigned to the TA by finding these inter-177
sections and then selecting the one having the maximum FD as the178
final solution. As a result, the received FD is maximized, and then, the179
error performance is improved. To be specific, observe from (8) and180

for the total power constraint that the power p(1)1 associated with the181
first intersection in Fig. 1 satisfies182 {

d1 = 4p
(1)
1 ‖h1‖2 = d2 = 4p

(1)
2 ‖h2‖2

p
(1)
1 + p

(1)
2 = pT .

(9)

Upon introducing the shorthand of a = ‖h1‖2, b = ‖h2‖2, and c =183
h∗
1h2 + h∗

2h1 = 2Re{h∗
1h2} for a given channel matrix H and using184

(9), we obtain185 {
p
(1)
1 = b/(a+ b)PT

p
(1)
2 = a/(a+ b)PT .

(10)

Then, the power p(2)1 associated with second intersection of d1 = d3186
in Fig. 1 is given by187 ⎧⎨

⎩ 4p
(2)
1 ‖h1‖2 =

∥∥∥∥
√

p
(2)
1 h1 −

√
p
(2)
2 h2

∥∥∥∥
2

p
(2)
1 + p

(2)
2 = pT .

(11)

To elaborate a little further, (11) can be simplified to188 {
3ap

(2)
1 − bp

(2)
2 + c

√
p
(2)
1

√
p
(2)
2 = 0

p
(2)
1 + p

(2)
2 = pT .

(12)

Then, (12) can be viewed as a quadratic function of
√

p
(2)
1 , which189

can be solved190 {√
p
(2)
1 =

−c+
√

c2+12ab

6a

√
p
(2)
2

p
(2)
1 + p

(2)
2 = pT .

(13)

From (13), we can then evaluate the power as191 ⎧⎨
⎩

p
(2)
1 =

c2+6ab−c
√

c2+12ab

18a2+c2+6ab−c
√

c2+12ab
PT

p
(2)
2 = 18a2

18a2+c2+6ab−c
√

c2+12ab
PT .

(14)

Similar to the evaluation process of p(2)1 , we can obtain the candidate 192

power p
(3)
1 associated with d1 = d4, the power p

(4)
1 associated with 193

d2 = d3, and the power p
(5)
1 associated with d2 = d4 step by step, 194

which are given by 195⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p
(3)
1 =

c2+6ab+c
√

c2+12ab

18a2+c2+6ab+c
√

c2+12ab
PT

p
(4)
1 =

c2+6ab+c
√

c2+12ab

2a2+c2+6ab+c
√

c2+12ab
PT

p
(5)
1 =

c2+6ab−c
√

c2+12ab

2a2+c2+6ab−c
√

c2+12ab
PT .

(15)

Then, based on the fixed total power constraint, the corresponding 196
power assigned to the second TA is given by 197⎧⎪⎪⎨

⎪⎪⎩
p
(3)
2 = 18a2

18a2+c2+6ab+c
√

c2+12ab
PT

p
(4)
2 = 2a2

2a2+c2+6ab+c
√

c2+12ab
PT

p
(5)
2 = 2a2

2a2+c2+6ab−c
√

c2+12ab
PT .

(16)

Additionally, the solution p
(6)
1 associated with d3 = d4 satisfies 198

p
(6)
1 p

(6)
2 = 0. Since the activation of the TAs conveys the information 199

bits, the PA solution of p
(6)
1 = 0 or p

(6)
1 = PT (p

(6)
2 = 0) is not 200

considered as a legitimate one. In conclusion of the algorithm, the 201
FDs of these PA solutions are generated, and we select the one having 202
the largest FD as our final result. Next, the aforementioned method is 203
extended to M -PSK/M -QAM modulated PA-aided (2 ×Nr)-element 204
SM. Here, the value of Nr is an arbitrary positive integer. 205

The detailed max-FD-aided PA algorithm is summarized in two 206
steps as follows. 207

• Step 1: Compute all legitimate error vectors eij = xi − xj , i �= 208
j, and eliminate the redundant collinear elements. Calculate all 209
legitimate received constellation distances dl(l = 1, . . . , L) with 210
the aid of the channel matrix H and eij , which are either linear 211
or nonlinear but convex functions of power p1. 212

• Step 2: Find all possible intersections between the received con- 213
stellation distances di and dj (i, j ∈ {1, . . . , L}), and calculate 214
both the corresponding power matrix P = diag{√p1,

√
p2} and 215

the corresponding FD. Select the one having the largest FD as our 216
final result. 217

Therefore, the allocated power to TA can be decided as a closed- 218
form solution by the aforementioned steps with low complexity. Note AQ1219
that the restriction to 2 ×Nr-element SM is imposed by the difficulty 220
of the FD optimization, and the solution of the general problem 221
remains an open challenge. Indeed, the determination of the PA matrix 222
that maximizes the FD of (5) is difficult for two reasons: First, the 223
solution depends on both the channel matrix and on the symbol 224
alphabet, and the space of solutions is excessive. Hence, for a higher 225
throughput, we propose a simple numerical approach for this difficult 226
optimization problem. 227

B. WCF-PA 228

To deal with the case of Nt > 2 and high modulation orders, the 229
conventional greedy algorithm-based PA (GA-PA) of [17] can be 230
further developed for our SM systems. To be specific, at each step 231
of the GA-PA algorithm, a small fraction Δp of the total power is 232
allocated to that specific TA, which maximizes the FD. By contrast, the 233
power of all the other TAs remains unchanged. As the total power PT 234
is gradually allocated, the final PA matrix P is approached. However, 235
the GA-PA algorithm has to tentatively allocate power to all possible 236
TAs in each iteration, which imposes high complexity. 237
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TABLE I
PROPOSED WCF-PA ALGORITHM

To circumvent the aforementioned challenge, a WCF-PA algorithm238
is proposed for our PA-aided SM scheme, which reduces the search239
space by focusing its efforts on the specific TA pair (m,n) associated240
with the FD of (5) because this is associated with the most likely error241
event. Then the algorithm gradually assigns the appropriate portion242
of power to each of these TA pairs, whereas the power values of the243
remaining TAs remain unchanged with respect to their initial value.244

The detailed WCF-PA algorithm is summarized as in Table I.245
Initially, we assume that the power is equally shared by all TAs. For246
a given channel matrix H, the FD dmin(H) value associated with the247
initial PA matrix P is calculated as d1min in Step 1. Furthermore, the248
indices of the TA pair (m,n) achieving d1min are obtained. If m = n,249
the distance d1min is250

d1min = ‖hm‖2F d̄2min q ∈ {1, . . . , Nt} (17)

where hm is the mth column of H, and d̄min is the minimum distance251
in the APM constellation according to the modulation order, as shown252
in [19]. In (13), it is plausible that the TA m has the smallest channel253
gain ‖hm‖F . In this case, we deduct some power from the TA u, which254
has the largest channel gain and assign it to TA m; hence, dmin(H)255
may be increased due to the increased power assigned to the mth TA.256
Here, we define the achieved PA candidate as Ptemp1.257

If the values of m and n are not the same, the value of d1min is258
computed for different TAs. To increase this FD, two possible PA259
strategies are considered. The first deducts some power from the TA260
m and assigns it to TA n, whereas the second deducts power from the261
TA n and assigns it to TA m. Then, the resultant PA candidates of these262

strategies can be represented as Ptemp2 and Ptemp3, respectively. 263
Hence, the optimal PA matrix is formulated as 264

Popt =

⎧⎨
⎩

argmax
P∈{Pave,Ptemp1}

dmin(H), if m = n

argmax
P∈{Pave,Ptemp2,Ptemp3}

dmin(H), if m �= n.
(18)

As the dmin(H) value increases throughout the WCF-PA iterations, 265
the proposed PA scheme provides a beneficial system performance 266
improvement compared with the conventional SM. More importantly, 267
this algorithm has low complexity because the greedy PA philosophy 268
is adopted only for two TAs, regardless of the total number of TAs. 269

C. Joint AM and PA Techniques in SM 270

As shown in Section II, the PA and AM techniques may rely on dif- 271
ferent transmit parameters to achieve a BER improvement. To further 272
exploit the associated grade of freedom, our PA-aided SM systems can 273
be combined with AM technique. However, this hybrid scheme may 274
become excessively complex, when aiming for jointly optimizing these 275
parameters according to the near-instantaneous channel conditions. In 276
this paper, we simplify the computations using a multistage adaptation 277
strategy. First, the AM technique of [17] is invoked for choosing the 278
optimal modulation constellations for the most correlated TA pair. 279
Then their corresponding power is allocated. Although this approach 280
may not be optimal for joint AM-PA-based systems, we will confirm 281
with the aid of our simulations that this multistage adaptation strategy 282
is capable of achieving a performance improvement compared with 283
the ASM and PA-aided SM schemes. The efficient amalgamation of 284
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Fig. 2. Distribution of FD dmin of conventional and proposed PA schemes in
2 × 1 and 2 × 2 MIMO channels.

AM and PA for the sake of exploiting all the benefits of the MIMO285
channels constitutes a challenging problem, which will be investigated286
in our further studies.287

Fig. 2 portrays the complementary cumulative distribution functions288
of the FD recorded both for conventional SM and for the proposed289
PA-aided SM schemes in (2 × 1) and (2 × 2) MIMO channels. Observe290
in Fig. 2 that the PA-aided SM schemes are capable of beneficially291
increasing the FD. More specifically, as expected, the optimal max-292
FD-aided PA scheme has a higher FD than that of the GA-PA and the293
WCF-based PA schemes due to the fact that it is capable of finding294
the global optimal solution by using (8)–(16). Moreover, the GA-PA-295
aided SM achieves almost the same FD as that of the WCF-PA-aided296
SM. Hence, these two PA-aided schemes may achieve the same BER297
performance, as will be shown in Section IV. It is also shown in Fig. 2298
that the joint AM-PA-aided SM may outperform the other PA-aided299
schemes for (2 × 2) MIMO channels because it has the highest FD300
among these PA-aided schemes.301

D. Computational Complexity and Feedback Load302

For each channel realization H, the GA-PA algorithm has to conduct303
a full exhaustive search of the �(Nt/Δp)�Nt number of PA matrix304
candidates, whereas the proposed WCF-PA algorithm only deals with305
2�(1/Δp)� values. Here, the number of dmin(H) candidates to be306
evaluated is a good metric of quantifying the complexity of these307
algorithms. Moreover, in the proposed WCF-PA, we can first use308
the simplified calculation method of [16] and [17] for quantifying309
dmin(H) of the PA candidate P. Then, the calculation of dmin(H) in310
Step 3 for the other candidates having the tentative PA only has to con-311
sider the updated TAs. Hence, the complexity can be further reduced.312
On the other hand, the GA-PA algorithm requires the receiver to feed313
back the index of the activated PA matrix to the transmitter, whereas314
the WCF-PA algorithm only has to feed back the index of the specific315
TA pair associated with the PA and their assigned power values.316

IV. SIMULATION RESULTS317

Here, we evaluate the BER performance of the proposed PA-aided318
SM schemes over frequency-flat-fading channels. The simulation319
setup is based on 2–4 bits/symbol transmissions, and the number of320
modulated symbols is equal to NL = 30 for each channel realization.321
For comparison, we consider the one-bit reallocation (OBRA)-ASM322
of [17], which is a simplified version of the ASM scheme of [16].323

Fig. 3. BER comparison at mr = 2 bits/symbol for the conventional BPSK-
modulated SM and the PA-aided SM schemes.

Fig. 3 shows the BER performance of the optimal max-FD-aided 324
PA and the numerical search-aided PA schemes (the GA-PA-aided SM 325
and the WCF-PA-aided SM schemes). In Fig. 3, the (2 × 1)-element 326
and (2 × 2)-element MIMO channels using BPSK modulation are 327
considered. For completeness, we add the theoretical upper bound of 328
[14] for the conventional SM scheme. In Fig. 3, in the low-to-medium 329
SNR regime, the numerical search-aided PA schemes achieve almost 330
the same performance as the optimal max-FD-based PA-aided SM. 331
Note that, although the optimal max-FD-based PA-aided SM is capable 332
of achieving a higher FD than other PA-aided schemes, its number 333
λ of the nearest neighbor constellation points may become doubled 334
compared with the conventional SM due to the optimization process. 335
By contrast, the numerical search-aided PA schemes, the solutions may 336
be expected to be close to the optimal max-FD, and hence, parameter 337
λ may not be doubled as that of the optimal max-FD algorithm. As 338
indicated in (4), the FD and the corresponding number of nearest 339
neighbors λ jointly determine the BER and having an increased value 340
of λ may degrade the attainable BER performance. Hence, as shown 341
in Fig. 3, at high SNRs, the optimal max-FD-based PA-aided SM may 342
perform worse than numerical search-aided PA schemes associated 343
with a lower λ1. To circumvent this problem, the combination of the 344
max-FD and minimum-λ in PA-aided SM may be adopted, which has 345
high complexity, as indicated in [23]. Moreover, we observe in Fig. 3 346
that the low-complexity WCF-PA-aided scheme attains a similar BER 347
performance to that of the exhaustive-search-based GA-PA scheme. 348

In Fig. 4, the QPSK-modulated VBLAST scheme and its PA-aided 349
counterpart associated with a zero-forcing successive interference 350
cancelation (ZF-SIC) detector [20] are compared with our PA-aided AQ2351
schemes because their detection complexity values are similar [1], 352
[5]. Observe in Fig. 4 for mr = 4 that our PA-aided SM schemes 353
outperform the PA-aided VBLAST arrangements relying on a ZF- 354
SIC detector. Indeed, if a powerful ML detector is employed for 355
the VBLAST system, we can achieve a better BER performance. 356
However, designing PA algorithms for ML-based VBLAST systems 357
is a challenge, and their detection complexity is high, as indicated in 358
[21] and [22]. 359

1Another reason for this result is that the max-FD-aided PA may achieve
a lower Euclidean distance between the nonadjacent received constellation
points than that of the WCF-PA and GA-PA schemes. Hence, based on the
Q-function-aided PEP upper bound of [19], which depends on all received
distances dij(H) = ‖HP(xi − xj)‖F (i �= j) of the received constellation
points, the max-FD-based PA may not achieve the minimum BER performance
compared with that of other PA schemes.
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Fig. 4. BER comparison at mr = 4 bits/symbol for the conventional 8-QAM-
modulated SM and the PA-aided SM scheme in 2 × 2 MIMO channels. The
corresponding BER results of the QPSK-modulated VBLAST scheme and its
PA-aided scheme are calculated as the benchmarkers.

Fig. 5. BER comparison at mr = 4 bits/symbol for the conventional QPSK-
modulated SM, the ASM scheme, the proposed GA-PA-aided SM, the proposed
WCF-PA SM, and the joint AM-PA-aided SM. Here, 4 × 2 MIMO channels are
considered.

As indicated in Section II-C, our PA algorithm is to a degree360
reminiscent of the spatiotemporal PA scheme of [24], which is capable361
of achieving exponential diversity. However, they are different in the362
sense that the PA scheme in [24] relies on the long-term (time) average363
over which it maintains constant total power, whereas our scheme364
relies on the selection probability of the TAs for satisfying the total365
power constraint. Owing to this difference, the analysis method of366
[24] cannot be extended to our PA-aided SM scheme. However, since367
the power is allocated to both the spatial and temporal dimensions368
in our PA algorithm, more substantial performance gains may be369
expected than that of the pure spatial-domain PA-aided VBLAST370
scheme, as shown in Fig. 4. Deriving the explicit diversity order of371
this max-FD-based PA algorithm is based on the distribution of the FD372
distance. Since this FD depends both on the constellation and on the373
channel realization, its distribution is difficult to determine. Hence, the374
explicit diversity order of this max-FD-based PA algorithm is hard to375
characterize analytically. This challenge is also an open problem in the376
max-FD-aided PA algorithm of VBLAST [21], [22]. Nonetheless, the377
aforementioned challenge will be considered in our further research.378

Fig. 5 compares the BER performances of the PA-aided schemes379
and of the conventional ASM schemes for Nt = 4. Upon comparing380

Fig. 6. BER comparison of the QPSK-aided SM, the ASM, and the proposed
WCF-PA-aided SM schemes under 4 × 2 MIMO channels. We also considered
the effects of CSI error associated with an equivalent channel estimation’s noise
variance of w = 0.1 and (1/γ).

the results in Fig. 5 with the results in Fig. 4, we observe that the 381
AM-aided and PA-assisted SM schemes exhibit different BER advan- 382
tages for different numbers of TAs. This is because these techniques 383
exploit different properties of the MIMO channels when aiming to 384
maximize the FD, as indicated in Section II. As expected in Figs. 4 385
and 5, we observe that joint AM-PA-aided SM achieves the best BER 386
performance among all the schemes. 387

Fig. 6 compares the achievable BER performance of the WCF- 388
PA-aided SM in the presence of Gaussian-distributed channel state 389
information (CSI) errors obeying CN (0, w) [7], [8] associated with 390
w = 0.1 and (1/γ), where γ is the average CSI estimation SNR at 391
each receiver antenna. Observe in Fig. 6 that the BER performance 392
of WCF-PA-aided SM is degraded upon introducing CSI estimation 393
errors. However, this PA-based scheme still provides a considerable 394
performance improvement over its nonadaptive counterparts with 395
w = 1/γ. 396

V. CONCLUSION 397

In this paper, we have proposed the PA algorithms designed for 398
limited-feedback SM-MIMO systems. Our simulation results confirm 399
that the achievable performance is quite attractive. Our further work 400
will be focused on the integration of space–time coding, channel 401
coding, and space–time-shift keying [5] into the proposed schemes. 402
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