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Abstract—With the development of high speed trains (HST) in
many countries, providing broadband wireless services in HSTs
is becoming crucial. Orthogonal frequency-division multiplexing
(OFDM) has been widely adopted for broadband wireless com-
munications due to its high spectral efficiency. However, OFDM is
sensitive to the time selectivity caused by high-mobility channels,
which costs large spectrum or time resources to obtain the
accurate channel state information (CSI). Therefore, the channel
estimation in high-mobility OFDM systems has been a long-
standing challenge. In this paper, we first propose a new position-
based high-mobility channel model, in which the HST’s position
information and Doppler shift are utilized to determine the
positions of the dominant channel coefficients. Then, we propose
a joint pilot placement and pilot symbol design algorithm for
compressed channel estimation. It aims to reduce the coherence
between the pilot signal and the proposed channel model, and
hence can improve the channel estimation accuracy. Simulation
results demonstrate that the proposed method achieves better
performances than existing channel estimation methods over
high-mobility channels. Furthermore, we give an example of the
designed pilot codebook to show the practical applicability of the
proposed scheme.

Index Terms—High-mobility channels, channel estimation,
position-based channel model, compressed sensing (CS), orthog-
onal frequency-division multiplexing (OFDM).

I. INTRODUCTION

Orthogonal frequency-division multiplexing (OFDM) has

been widely adopted for broadband wireless communication

systems due to its high spectral efficiency [1]. In OFDM sys-

tems, each subcarrier has a narrow bandwidth which ensures

the signal robust against the frequency selectivity caused by

the multipath delay spread. However, OFDM is sensitive to the

time selectivity, which is induced by rapid time variations of

mobile channels. In recent years, high speed trains (HST) have

been increasingly developed in many countries and OFDM

has been adopted for high data rate services [2]. Since an

HST travels at a speed of around 500 km/h, the wireless

channels suffer from a high Doppler shift. In high-mobility

environments, wireless channels are both fast time-varying

and frequency selective and can be considered as the doubly
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selective channels [3]-[5]. As the quality of channel estimation

has a major impact on the overall system performance, it is

necessary to investigate reliable estimation methods in high-

mobility environments.

Channel estimation for fast time-varying channels has been

extensively studied in the literature, and various time-varying

channel models have been established. The works [6] and [7]

proposed several channel estimators by using a linear time-

varying channel model. They assumed that the channel varies

with time linearly in one or more OFDM symbols. The method

in [6] works well at low Doppler shifts since some channel

matrix coefficients are ignored. The work [7] proposed two

approaches to estimate time-varying channels: one uses guard

intervals and the other exploits three consecutive symbols.

However, the linear models can result in large modeling error

and severely degrade the channel estimation performance in

high-mobility environments, where the channel may change

significantly even within one OFDM symbol. To overcome

the modeling problem, the authors in [8]-[10] proposed several

basis expansion models (BEM) for the time variations of each

OFDM symbol. The work [8] assumed a polynomial BEM

channel model and suggested an iterative channel estimation

method. The work [9] proposed channel estimators based on

a windowed BEM to combat both the noise and the out-

of-band interference. In particular, the work [10] claimed

that the equidistant pulse-shaped pilot placement is optimal

for a BEM-based doubly selective channel. These works are

based on the implicit assumption of rich underlying multipath

environments.

Recently, growing experimental studies have shown that

the high-mobility channels tend to exhibit a sparse structure

at some high dimensional signal spaces, such as the delay-

Doppler domain, and can be characterized by significantly

fewer parameters. To utilize the inherent channel sparsity, the

authors in [3]-[5], [11] and [12] studied the applications of

compressed sensing (CS) in doubly-selective channels, which

well reflect the natures of the high-mobility channels. The

works [3]-[5] introduced the notion of channel sparsity and

presented CS-based approaches to estimate the channel state

information (CSI). The works [11] and [12] optimized the

delay-Doppler basis to improve the estimation performances.

Coherence is an important issue in CS and fundamental

researches [13]-[16] show that the coherence influences the

CS reconstruction performance directly. The works [13]-[15]

concluded that a lower coherence between the measurement

matrix and the dictionary matrix in CS leads to a better

performance. Therefore, how to design the pilot signal to

http://arxiv.org/abs/2003.02697v1
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Fig. 1. The structure of the HST communication system.

reduce the system coherence in a high-mobility environment is

a very interesting and valuable problem. Previous works [17]-

[23] studied several pilot design methods to minimize the CS

coherence and improve the system performance. The works

[17]-[19] proposed several pilot placement design methods

based on a exhaustive search to reduce the system coherence

in sparse channels with large iterations. The works [20]

and [21] designed the pilot placement by using a discrete

stochastic approximation method for sparse OFDM channels

without considering the channel mobility and the inter-carrier

interference (ICI). In the previous work [22], we designed the

pilot symbol by shrinking the Gram matrix in a high-mobility

multiple-input multiple-output (MIMO) OFDM system. How-

ever, none of these works considered the joint optimization of

the pilot symbol and pilot placement.

In this paper, we introduce a new position-based compressed

channel estimation method for OFDM systems over high-

mobility channels, in which the pilot placement and pilot sym-

bol are jointly designed to further improve the performance.

In specific, we propose a new position-based high-mobility

channel model which reflects the Doppler shift according

to the HST position. The HST’s position information and

Doppler shift are utilized to predict the positions of the

sparse dominant channel coefficients, which highly reduces the

estimation complexity. Then, based on the CS coherence min-

imization criterion, a joint pilot placement and pilot symbol

design algorithm is proposed to reduce the coherence between

the pilot signal and the proposed channel model. Simulation

results demonstrate that the proposed method achieves better

performances than existing channel estimation methods in the

high-mobility environment. Furthermore, we give an example

of a designed pilot codebook to show the practical applicability

of the proposed scheme.

The rest of this paper is organized as follows. Section II

introduces the HST communication model, the OFDM system

model, and the conventional high-mobility channel model. In

Section III, a new position-based high-mobility channel model

is proposed. Then we introduce a new position-based channel

estimation method and discuss the ICI mitigation method.

In Section IV, we propose a joint pilot placement and pilot

symbol design algorithm and discuss its complexity and con-

vergence. The practical applicability of the proposed scheme

is also discussed. Section V presents simulation results in the

high-mobility environment. Finally, Section VI concludes this

paper.

Notations: ‖·‖ℓ0 denotes the number of nonzero entries

in a matrix or vector, and ‖·‖ℓ2 is the Euclidean norm.

Notation φ(k, u) denotes the (k, u)-th entry of the matrix Φ,

and φ(:, u) denotes the u-th column vector of the matrix Φ.

The superscripts (·)T and (·)H denote the transposition and

Hermitian of a matrix, respectively. ⊗ denotes the Kronecker

product, and a = vec{A} denotes the vector obtained by

stacking the columns of matrix A. Finally, R denotes the real

field and Z denotes the set of integers.

II. SYSTEM MODEL

A. High Speed Train Communications

We consider a well-recognized system architecture of broad-

band wireless communications for high speed trains (HST)

[2][24], as shown in Fig. 1. The communication between base

stations (BS) and mobile users is conducted in a two-hop

manner through a relay station (RS) deployed on the train. The

RS has two antennas on the top of the train to communicate

with the BS. On the other hand, multiple indoor antennas are

distributed in the train carriages to communicate with mobile

users by existing wireless communication technologies, e.g.

wireless fidelity (WiFi). The BSs are located 10 to 50 meters

away from the railway at some intervals and connected with

optical fibers. Here we assume each BS is equipped with one

antenna and has the same power allocation and coverage range.

In this paper, we focus on the channel estimation between

the BSs and the RS on the HST. When the HST camps in

a single cell, the RS selects the antenna with better channel

quality to communicate with the BS; when the HST moves

across the cell edges, the front antenna executes handover

while the rear one keeps connect to the serving BS. The

HST is equipped with a global positioning system (GPS)
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which can estimate the HST’s instant position and speed

information and send them to the BS [25]. Several factors

may influence the performance of the GPS, such as signal

arrival time measurement, atmospheric effects, terrains and

so on. Particularly, when the HST runs in a tunnel, the GPS

accuracy may be highly reduced. However, in this paper, we

do not consider these factors and assume that the HST runs

in a plain terrain. We also assume that the GPS estimates the

HST’s speed and position information perfectly and send to

the BS with no time delay.

Denote v as the speed of the HST and c as the light

speed. The distance between BSs is denoted as Ds. Let Dmax

denote the maximum distance of the coverage of the BS to the

railway, i.e. the position A and C to BS1. Let D0 denote the

minimum distance, i.e. the position B to BS1, and Dc denote

the distance between A and B. In each cell, we define the

HST position α as the distance between the serving antenna

and the position A, and α = 0 at A. Let θ denote the angle

between the signal transmitted from the BS to RS and the

railway. When the HST moves from A to C, θ changes from

θmin to θmax. If Dmax ≫ D0, then we have θmin ≈ 0◦ and

θmax ≈ 180◦. Furthermore, HST suffers from the Doppler

shift fd at different positions, and fd can be calculated by

using the equation fd = v
c
· fc cos θ, in which fc is the carrier

frequency. It is easy to find that fd0 = 0 at B for θ = 90◦.

B. OFDM System

We consider an OFDM system with K subcarriers for the

link between the BS and the RS in the HST communication

system. The transmit signal at the k-th subcarrier of the n-th

OFDM symbol is denoted as Xn(k), for n = 1, 2, ..., N and

k = 1, 2, ...,K . The transmitter performs the inverse discrete

Fourier transform (IDFT), inserts the cyclic prefix (CP), and

then transmits the signals to the channel. After removing the

CP and passing the DFT operation at the receiver, the received

signal in the frequency domain can be represented as

Yn = HnXn +Wn, (1)

where Yn = [Y n(1), Y n(2), ..., Y n(K)]T is the received

signal vector over all subcarriers during the n-th OFDM

symbol, Hn is a K × K channel matrix in the fre-

quency domain, Xn = [Xn(1), Xn(2), ..., Xn(K)]T is the

transmitted signal vector over all subcarriers, and Wn =
[Wn(1),Wn(2), ...,Wn(K)]T denotes the noise vector, where

Wn(k) is the additive white Gaussian noise (AWGN) with a

zero mean and σ2
W variance. The entries of Hn are represented

as

Hn(k, d) =
1

K

K−1
∑

m=0

I−1
∑

ℓ=0

hn (ℓ,m) e−j 2π
K

ℓ(k−1)ej
2π
K

(d−k)m,

1 ≤ k, d ≤ K, (2)

where hn (ℓ,m) is the ℓ-th channel tap in the m-th sample time

of the n-th OFDM symbol, and I is the maximum number

of channel taps. More detailed descriptions of Hn in high-

mobility environments is given in the next subsection.

If the channel is time-invariant, the off-diagonal term

Hn(k, d) (k 6= d) is negligible, and the diagonal term

Hn(k, d) (k = d) alone represents the channel in the

frequency domain. Therefore, the channel matrix Hn can

be divided into two parts as the ICI-free channel matrix

Hn
free , diag{[Hn(1, 1), Hn(2, 2), ..., Hn(K,K)]} and the

ICI channel matrix Hn
ICI , Hn − Hn

free. Then (1) can be

rewritten as

Yn = Hn
freeX

n +Hn
ICIX

n +Wn, (3)

= Xn
dH

n
vec +Hn

ICIX
n +Wn, (4)

where Xn
d = diag{[Xn(1), Xn(2), ..., Xn(K)]T } is a diag-

onal matrix of Xn, and Hn
vec = vec{Hn

free} is the stacking

vector of Hn
free.

C. High-Mobility Channel Model

Let τmax be the maximum delay spread, fdmax be the max-

imum Doppler shift, Td be the packet duration and W be the

system bandwidth. Denote T0 as the OFDM symbol duration

and W0 as the bandwidth of each subcarrier, Nt = Td/T0 and

Nf = W/W0. The high-mobility channel at the k-th subcarrier

of the n-th OFDM symbol in the delay-Doppler domain [3]-[5]

can be modeled as

H(n, k) =
L−1
∑

l=0

M
∑

m=−M

βl,mej2π
m
Nt

ne
−j2π l

Nf
k
, (5)

where L = ⌈Wτmax⌉ + 1 represents the maximum number

of resolvable paths and M = ⌈2Tdfdmax⌉ represents the

maximum number of resolvable Doppler shifts, βl,m is the

channel coefficient of the l-th resolvable path with the resolv-

able Doppler shift m.

For the sake of convenience, we define two

vectors uk =

[

1, e
−j2π 1

Nf
k
, ..., e

−j2π (L−1)
Nf

k
]

and

un =
[

ej2π
−M
Nt

n, ej2π
(−M+1)

Nt
n, ..., ej2π

M
Nt

n
]

. Then the

channel model can be represented as a matrix form:

H(n, k) = ukBuT
n = (un ⊗ uk)b, (6)

where B is an L× (2M+1) channel coefficient matrix in the

delay-Doppler domain, i.e.,

B ,







β0,−M · · · β0,0 · · · β0,M

...
. . .

...
. . .

...

βL−1,−M · · · βL−1,0 · · · βL−1,M






, (7)

and b , vec{B} is the stacking vector of B, i.e.,

b =
[

bT
−M , . . . ,bT

0 , . . . ,b
T
M

]T
, (8)

=
[

β0,−M , . . . , βL−1,−M , . . . , β0,M , . . . , βL−1,M

]T
, (9)

where bx denotes the column vector of B and x =
−M,−M + 1, ...,M .

To explore the sparsity of the high-mobility channel, here

we introduce the definition of S-sparse channel based on

[4]. In general, the high-mobility channel is S-sparse in the

delay-Doppler domain, due to the large number of the non-

dominant channel coefficients [5]. In this paper, we assume

that the coefficients are constant within each OFDM symbol

and different for different symbols.
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Definition 1 (S-sparse Channels [4]): Define the dominant

coefficients of a wireless channel as the coefficients which

contribute significant powers, i.e. |βl,m|2 > γ, where γ is a

chosen threshold. We say that the channel is S-sparse if the

number of its dominant coefficients satisfies S = ‖b‖ℓ0 ≪
N0 = L(2M+1), where N0 is the total number of the channel

coefficients.

III. POSITION-BASED HIGH-MOBILITY CHANNEL

ESTIMATION

In this section, we first propose a new position-based

channel model to reduce the number of channel estimation

parameters by utilizing the position information. Then, based

on the proposed channel model, we give a position-based

channel estimation scheme. Finally, the ICI mitigation scheme

is also discussed.

A. Position-Based High-Mobility Channel Model

Considering the HST communication system model shown

in Fig. 1. When the HST is at a certain position α with speed

v, the high-mobility channel suffers from a certain Doppler

shift fd. Here we assume that v is constant during the HST

passing a cell, and fd is constant in one OFDM symbol. In this

case, it can be found that the dominant coefficients only exist

in the bx for suffering the same fd, which can be represented

as

bx =
[

β0,x, β1,x, . . . , βL−1,x

]T
. (10)

This is reasonable since bx represents the L resolvable paths

with the resolvable Doppler shift m. The relationship between

the subscript x and fd is given as

x =

{

⌈2Tdfd⌉ , fd ∈ [0, fdmax
] ,

⌊2Tdfd⌋ , fd ∈ [−fdmax
, 0) .

(11)

Denote M̃ = 2Tdfdmax = 2Td
v
c
· fc. Then the relationship

between x and α can be represented as

x =























⌈

M̃ · Dc−α√
(Dc−α)2+D0

2

⌉

, α ∈ [0, Dc],

⌊

M̃ · Dc−α√
(Dc−α)2+D0

2

⌋

, α ∈ (Dc, 2Dc].

(12)

Note that when Dmax ≫ D0, we have Dc = Dmax.

The structure of the coefficient vector bT is shown as Fig.

2. In particular, bT
M (x = M) with the cross lines denotes the

column vector including the dominant coefficients with fdmax

at the position A, bT
0 (x = 0) with the slash lines denotes the

one with fd0 = 0 at B, and bT
−M (x = −M) with the back

slash lines denotes the one with −fdmax
at C, respectively.

When the HST moves from A to C, bT
x changes from bT

M to

bT
−M in sequence. On the other hand, other coefficients are

non-dominant which contribute less to the CSI, according to

Definition 1.

Remark: (Channel Sparsity) It is easy to find that, with a

certain fd, bx contains at most L dominant coefficients and

the sparsity is S, i.e. ‖bx‖ℓ0 = ‖b‖ℓ0 = S ≤ L < L(2M +
1). Furthermore, high-mobility channels are considered as the

Fig. 2. The structure of the coefficient vector bT .

Fig. 3. The structure of the high-mobility channel model matrix Φ.

doubly-selective channels in [3]-[5] and have the multipath

sparsity, which means there are only S paths (S ≪ L) with

large coefficients and others can be neglected. In addition, as

M increases with the Doppler shift caused by the HST speed,

high-mobility will introduce a large M . Therefore, we have

‖bx‖ℓ0 = S ≪ L ≪ L(2M + 1), and the high-mobility

channel is S-sparse in the proposed position-based model.

After knowing the position of bx which includes the dom-

inant coefficients, we can further get the dominant channel

model Φx. Let Φ = [un ⊗ uk1 ;un ⊗ uk2 ; · · · ;un ⊗ ukP
] be

the P × L(2M + 1) channel model dictionary matrix of the

n-th OFDM symbol with P pilots, in which ukp
= uk|k=kp

and the pilot placement is p = [k1, k2, ..., kP ]. Denote Φx

as the P × L dominant channel model whose columns are

corresponding to bx. Then the dominant channel model Φx

can be represented as

Φx =







φ (k1, ωx) · · · φ (k1, ωx + L− 1)
...

. . .
...

φ(kP , ωx) · · · φ(kP , ωx + L− 1)






, (13)

where ωx = L(M + x). Note that the columns of Φx

represents the resolvable paths and the rows represents the

pilot subcarriers.

Similarly, the structure of Φ = [Φ−M , ...,Φ0, ...,ΦM ] is

shown as Fig. 3. In particular, ΦM with the cross lines

denotes the dominant channel model with fdmax
at position

A corresponding to bM , Φ0 with the slash lines denotes the

one with fd = 0 at B, and Φ−M with the back slash lines

denotes the one with −fdmax
at C, respectively. When the

HST moves from A to C, Φx changes from ΦM to Φ−M

in sequence. More specifically, as the dominant coefficients

only exist in bx corresponding to a certain Doppler shift fd
or HST position α, we only need to consider the ability of

Φx and estimate bx, which highly reduce the analysis and

computational complexity.
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B. Position-Based Channel Estimation

Using the proposed position-based channel model in the

previous subsection, we propose a channel estimation method

based on the comb-type pilot. Assume that there are P
(P ≤ K) pilots and insert at the pilot placement set p =
[k1, k2, ..., kP ]. The pilot placement and pilot symbols are

fixed during one OFDM symbol. Since we only consider the

system in one OFDM symbol, the superscripts n in the rest

of the paper are omitted for compactness. Then, based on the

proposed position-based channel model, Eq. (4) of the received

pilot vector can be represented as follows:

Y(p) = Xd(p)Hvec(p) + d+W(p), (14)

= Xd(p)Φb+ d+W(p), (15)

= Xd(p)Φxbx + d+W(p), (16)

in which Y(p) = [Y (k1), Y (k2), ..., Y (kP )]
T denotes

the received pilots at the pilot placement set p,

Xd(p) = diag{[X(k1), X(k2), ..., X(kP )]} denotes

the transmitted signal matrix at p, Hvec(p) =
[H(k1, k1), H(k2, k2), ..., H(kP , kP )]

T denotes the channel

responses at p, d = HICI(p, :)X denotes the ICI at the pilot

subcarriers, HICI(p, :) denotes the rows of HICI at p, and

W(p) denotes the AWGN at p, respectively.

The theory of CS [15] and [16] show that if bx is S-sparse,

which is satisfied in our system as aforementioned, then CS

recover methods can reconstruct bx from Y(p) successfully.

In this way, the task of estimating the high-mobility channel

H in the frequency domain is converted to estimating the

sparse dominant channel coefficients bx in the delay-Doppler

domain.

C. ICI Mitigation

In high-mobility environments, the transmitted pilots are

distorted by the ICI coming from data and AWGN as repre-

sented in Eq. (16), which highly affect the channel estimation

performance. In this paper, we adopt the ICI mitigation method

proposed in [26]. Firstly, the high-mobility channels can be

estimated by the proposed method. As data is passed through

the estimated channel, it provides an approximation of the

data-induced ICI at the pilot subcarriers. Then, the estimated

ICI can be subtracted at the pilot subcarriers. In this way,

ICI caused by data is reduced and introduces better channel

estimation performance. The process can be represented math-

ematically as:

Y(q) = Y(q−1) − H̃(q−1)z(q−1), (17)

where the superscript q = 1, 2, ... denotes the iteration times.

At each OFDM symbol, Y(0) is the received signal without

ICI mitigation, H̃(q−1) is the estimated channel in the previous

iteration, and z(q−1) is the symbol constructed from the

estimated data in the previous iteration with zeros at the pilot

subcarriers.

In this manner, the data-induced ICI at the pilot subcarriers

can be reduced and get better system performance. This

process can be executed with more iteration times to further

reduce the ICI but limited to a certain level due to the error

propagation. However, as the main topic of this work is the

position-based channel estimator and pilot design, we do not

consider the correct decision in this paper, and assume that

the decision feedback equalizer is error-free to simplify the

analysis.

IV. COHERENCE OPTIMIZED PILOT DESIGN

In this section, we first review some basis of CS and then

formulate the pilot design problem. A joint pilot placement and

pilot symbol design algorithm is proposed and discussed. Fur-

thermore, the practical applicability of the proposed scheme

is discussed.

A. CS Fundamentals

Compressed sensing is an innovative and revolutionary tech-

nique to reconstruct sparse signals accurately from a limited

number of measurements. Given an unknown signal x ∈ Cm,

suppose x can be represented with a known dictionary matrix

D ∈ Cm×U (m < U ) and a vector a ∈ CU , then we have

x = Da. Assume that a is S-sparse, i.e. ‖a‖ℓ0 = S ≪ U . CS

considers the following problem

y = Px+ η = PDa + η, (18)

in which P ∈ Cp×m denotes a known measurement matrix,

y ∈ Cp denotes the observed vector, and η ∈ Cm is the noise

vector. The objective of CS is to reconstruct a correctly based

on the knowledge of y, P and D. Fundamental researches [13]

and [15] indicate that if PD satisfies the restricted isometry

property (RIP) [16], then a can be reconstructed correctly with

CS reconstruction methods such as the basis pursuit (BP) [27]

and the orthogonal matching pursuit (OMP) [28].

To improve the CS performance, in this paper, we consider

the average coherence proposed in [14]. It has been proved in

[14] that the average coherence reflects the actual CS behavior

rather than the mutual coherence [13] for considering the

average performance. The definition is given as follows.

Definition 2 (Average Coherence [14]): For a matrix M

with the i-th column of di, its average coherence is defined as

the average of all absolute inner products between the different

normalized columns in M that are beyond a threshold δ, where

0 < δ < 1. Put formally

µδ{M} =

∑

i6=j

(|gij | ≥ δ) · |gij |
∑

i6=j

(|gij | ≥ δ)
, (19)

where gij = d̃H
i d̃j , d̃i = di/‖di‖ℓ2 , and the operator is

defined as

(x ≥ y) =

{

1, x ≥ y,
0, x < y.

(20)

Previous researches [13] and [29] established that BP and

orthogonal greedy algorithms (OGA) (including OMP) can

recover a correctly provided that the following theorem is

satisfied.
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Theorem 1 ([13]): For a dictionary matrix D and a mea-

surement matrix P, assume that PD satisfies RIP. If

y = Px = PDa satisfies

S = ‖a‖ℓ0 <
1

2

(

1 +
1

µδ {PD}

)

, (21)

then a) a is the unique sparsest representation of x; b) the

deviation of the reconstructed â from a by BP or OGA can

be bounded by

‖â− a‖2ℓ2 ≤ ǫ2

1− µδ{PD}(2S − 1)
, (22)

for some constant ǫ > 0.

It is easy to find that a smaller µδ{PD} will lead to a lower

reconstruction error bound which results in a more accurate

recovery of a. Furthermore, Theorem 1 implies that if P is

designed with a fixed D such that µδ {PD} is as small as

possible, a large number of candidate signals are able to reside

under the umbrella of successful CS behavior and lead to a

better performance.

B. Problem Formulation

As we have already known that a lower µδ leads to a

better CS performance, we are going to reduce µδ {Xd(p)Φx}
in our system to get better performance. In this paper, both

the pilot placement and pilot symbol of the transmitted pilot

matrix Xd(p) are considered with the dominant channel model

dictionary Φx.

Let us start from the objective of minimizing µδ {Xd(p)Φ}.

This pilot design problem can be formulated as follows

min
|Xd|,p

µδ {Xd(p)Φ} , (23)

where |Xd| denotes the pilot symbols in Xd(p) and p denotes

the pilot placement set. According to Definition 2, the objec-

tive function can be represented as Eq. (24), where φ(ki, u)
is the entry of Φ and 0 ≤ u < v ≤ L(2M + 1)− 1.

Suppose that all pilots and data are modulated symbols,

and there are T pilot powers levels corresponding to T pilot

placement subsets {st}t∈T . Then we have
T
⋃

t=1
st = p and

µδ {Xd(p)Φ} =

∑

u6=v

(∣

∣

∣

∣

∣

∑

ki∈p

|X(ki)|2φ(ki, u)Hφ(ki, v)

∣

∣

∣

∣

∣

≥ δ

)

·
∣

∣

∣

∣

∣

∑

ki∈p

|X(ki)|2φ(ki, u)Hφ(ki, v)

∣

∣

∣

∣

∣

∑

u6=v

(
∣

∣

∣

∣

∣

∑

ki∈p

|X(ki)|2φ(ki, u)Hφ(ki, v)

∣

∣

∣

∣

∣

≥ δ

) , (24)

µδ {Xd(p)Φ} =

∑

0≤u<v≤L(2M+1)−1

(
∣

∣

∣

∣

∣

T
∑

t=1

∑

kjt
∈st

Et · φ(kjt , u)Hφ(kjt , v)

∣

∣

∣

∣

∣

≥ δ

)

·
∣

∣

∣

∣

∣

T
∑

t=1

∑

kjt
∈st

Et · φ(kjt , u)Hφ(kjt , v)

∣

∣

∣

∣

∣

∑

0≤u<v≤L(2M+1)−1

(∣

∣

∣

∣

∣

T
∑

t=1

∑

kjt
∈st

Et · φ(kjt , u)Hφ(kjt , v)

∣

∣

∣

∣

∣

≥ δ

) . (26)

µδ {Xd(p)Φx} =

∑

u<v and u,v∈Φx

(∣

∣

∣

∣

∣

T
∑

t=1

∑

kjt
∈st

Et · φ(kjt , u)Hφ(kjt , v)

∣

∣

∣

∣

∣

≥ δ

)

·
∣

∣

∣

∣

∣

T
∑

t=1

∑

kjt
∈st

Et · φ(kjt , u)Hφ(kjt , v)

∣

∣

∣

∣

∣

∑

u<v and u,v∈Φx

(∣

∣

∣

∣

∣

T
∑

t=1

∑

kjt
∈st

Et · φ(kjt , u)Hφ(kjt , v)

∣

∣

∣

∣

∣

≥ δ

) . (27)

µδ {Xd(p)Φx} =

∑

u<v and u,v∈Φx

(∣

∣

∣

∣

∣

T
∑

t=1

∑

kjt
∈st

Et · e−j 2π
W

(v−u)kjt

∣

∣

∣

∣

∣

≥ δ

)

·
∣

∣

∣

∣

∣

T
∑

t=1

∑

kjt
∈st

Et · e−j 2π
W

(v−u)kjt

∣

∣

∣

∣

∣

∑

u<v and u,v∈Φx

(∣

∣

∣

∣

∣

T
∑

t=1

∑

kjt
∈st

Et · e−j 2π
W

(v−u)kjt

∣

∣

∣

∣

∣

≥ δ

) . (28)

µδ {Xd(p)Φx} =

∑

1≤z≤L−1

(∣

∣

∣

∣

∣

T
∑

t=1

∑

kjt
∈st

Et · e−j 2π
W

zkjt

∣

∣

∣

∣

∣

≥ δ

)

·
∣

∣

∣

∣

∣

T
∑

t=1

∑

kjt
∈st

Et · e−j 2π
W

zkjt

∣

∣

∣

∣

∣

∑

1≤z≤L−1

(∣

∣

∣

∣

∣

T
∑

t=1

∑

kjt
∈st

Et · e−j 2π
W

zkjt

∣

∣

∣

∣

∣

≥ δ

) . (29)
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define the pilot power as

Et , |X(kjt)|2, kjt ∈ st, (25)

for jt ∈ {1, 2, ..., P} and t = 1, 2, ..., T . By taking pilot

powers into consideration, (24) can be represented as Eq. (26).

Furthermore, we consider the proposed position-based chan-

nel model. When the HST moves to a certain position α, the

high-mobility channels can be modeled by bx corresponding

to fd. Therefore, we only need to consider the property of

the columns in Φx. The columns in Φx can be represented as

φ(:, u) and u ∈ [L(M + x), L(M + x) + L − 1]. Then (26)

with Φx can be further represented as Eq. (27). By taking

the expression of Φx into consideration, we have Eq. (28).

Denote z = v − u. Then the objective function is simplified

as Eq. (29). So far, the optimization variable has be simplified

from a P × L(2M + 1) matrix Xd(p)Φ to a P × L matrix

Xd(p)Φx, and the number of calculations has been reduced

from
(

L(2M+1)
2

)

to (2M + 1)
(

L
2

)

.

Finally, we formulate the pilot design problem as a joint

optimization problem as Eq. (31).

C. Joint Pilot Placement and Pilot Symbol Design Algorithm

An intuitive method to find the global optimal solution is

to perform exhaustive search over TP
(

K
P

)

combinations. This

method however is impractical for an OFDM system with large

K due to huge computational complexity. In this subsection,

we treat this optimization problem as a discrete stochastic

optimization problem [30] and propose an iterative algorithm

to solve it.

The key idea of our algorithm is to generate a sequence of

candidate pilot matrices, where each new candidate is obtained

from the previous one by taking a step in a direction towards

the global optimum. The details are given in Algorithm 1.

Define pm, p̃m and p̂m as different pilot placement sets at

the m-th iteration. M is the number of pilot placement sets,

and Iter = M × P denotes the total iteration times. At

each iteration, the algorithm updates the probability vector

I[m] = (I[m, 1], I[m, 2], ..., I[m,MP ])T , which represents

the state occupation probabilities of the generated pilot ma-

trices with entries I[m,κ] ∈ [0, 1] , and
∑

κ I[m,κ] = 1.

D[m] ∈ RMP×1 is defined as a zero vector except for its

m-th entry to be 1.

Algorithm 1 : Joint Pilot Placement and Pilot Symbol Design

Algorithm

Input: Initial pilot X0 with the pilot placement p0 and the pilot
symbol x0.

Output: Optimal pilot X∗

d.

1: Initialization: Set X̂0 = X0; set M , set Iter = M × P ; set
pilot powers E1, E2, ..., ET ; set I[0] = 0, I [0, 0] = 1; set
κ = 0, ι = 0.

2: for n = 0, 1, ...,M − 1 do
3: for k = 0, 1, ..., P − 1 do
4: m ⇐ n× P + k;

⋄ Generate and update:

5: generate p̃m with operator p̃m(pm);
6: if µδ{Xm(p̃m)Φx} < µδ{Xm(pm)Φx} then
7: select pilot symbol power Et to minµδ ;
8: update xm and xm+1 ⇐ xm; pm+1 ⇐ p̃m;
9: else

10: select pilot symbol power Et to minµδ ;
11: update xm and xm+1 ⇐ xm; pm+1 ⇐ pm;
12: end if
13: update Xm+1 with pm+1 and xm+1; κ ⇐ m+ 1;

⋄ Update state occupation probabilities:

14: I[m+ 1] ⇐ I[m] + η[m+ 1](D[m+ 1]− I[m]), with
η[m] = 1/m;

15: if I [m+ 1, κ] > I [m+ 1, ι] then

16: X̂m+1 ⇐ Xm+1; ι ⇐ κ;
17: else
18: X̂m+1 ⇐ X̂m;
19: end if
20: end for (k)
21: end for (n)

Algorithm 1 starts with an initial pilot X0 with a random

pilot placement set p0 and a random pilot symbol vector x0.

In the Generate and update step, p̃m is obtained uniformly

with the operator p̃m(pm). At the m-th iteration, the k-th

pilot subcarrier of pm is replaced with a random subcarrier

which is not included in pm and then gets p̃m. Then we

compare p̃m with pm and select the better one to move a

step. Furthermore, we minimize the µδ and select the best

symbol power to update. In the Update state occupation

probabilities step, I[m + 1] is updated based on the previous

I[m] with the decreasing step size η[m] = 1/m. η[m] avoids

the proposed algorithm moving away from a promising point

unless there was a strong evidence that this move will result in

an improvement, which makes Algorithm 1 more progressive

X∗
d = argmin

|Xd|,p

µδ {Xd(p)Φx} , (30)

= argmin
st,Et

∑

1≤z≤L−1

(∣

∣

∣

∣

∣

T
∑

t=1

∑

kjt
∈st

Et · e−j 2π
W

zkjt

∣

∣

∣

∣

∣

≥ δ

)

·
∣

∣

∣

∣

∣

T
∑

t=1

∑

kjt
∈st

Et · e−j 2π
W

zkjt

∣

∣

∣

∣

∣

∑

1≤z≤L−1

(∣

∣

∣

∣

∣

T
∑

t=1

∑

kjt
∈st

Et · e−j 2π
W

zkjt

∣

∣

∣

∣

∣

≥ δ

) . (31)

Pr{µδ{X∗
mΦx} < µδ{XmΦx}} > Pr{µδ{XmΦx} < µδ{X∗

mΦx}}, (32)

Pr{µδ{X∗
mΦx} < µδ{X̂mΦx}} > Pr{µδ{X̂mΦx} < µδ{X∗

mΦx}}. (33)
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and conservative with increasing iterations.

D. Global Convergence Property

The sequence {Xm} generated by the proposed algorithm

is a Markov chain which in general cannot converge to a

fixed point and may visit each entry infinitely often. In this

subsection, we show that the sequence {X̂m} surely converges

to the global optimal solution X∗ under certain conditions. The

sufficient conditions for Algorithm 1 to converge to X∗ are

given as (32) and (33) [31]. For generated solutions Xm 6= X∗

and X̂m 6= X∗, if (32) and (33) are satisfied, then [31]

proves that {Xm} is a homogeneous aperiodic and irreducible

Markov chain in its state space. Moreover, as {Xm} spends

much more efforts in X∗ than others, {X̂m} surely converges

to X∗.

Condition (32) ensures that it is more probable for {Xm} to

move into a state corresponding to X∗ than others. Condition

(33) ensures that once {Xm} is in a state that not correspond-

ing to X∗, it is more probable for {Xm} to move into a state

that corresponding to X∗ than others. Therefore, Algorithm 1

is a globally convergent algorithm which spends most of time

at the global optimum. In addition, the property of spending

more time at the global optimum than any other solution is

called the attraction property of algorithms [32]. The attraction

property shows that Algorithm 1 is efficient.

E. Complexity Analysis

The computational complexity is determined in terms of the

number of the complex multiplications needed. The proposed

algorithm consists of three steps: Initialization, Generate and

update and Update state occupation probabilities. In the

Initialization step, matrices and parameters are pre-computed

and stored in the memory, so its computational complexity

can be omitted. The Generate and update step computes

the objective function with different pilots, which requires

M(T + 2)P 2L(L− 1)/2 complex multiplications. Note that

the proposed position-based channel estimator highly reduces

the multiplications of this step from M(T + 2)P 2L(2M +
1)[L(2M+1)−1]/2, especially for a large M corresponding to

a high Doppler shift. Regarding to the Update state occupation

probabilities step, this update requires M2P 2 multiplications.

Therefore, Algorithm 1 requires M(T + 2)P 2L(L− 1)/2 +
M2P 2 complex multiplications in total. In a practical system,

M , L and T are constant parameters and much smaller than

N . Since the pilot number P is much smaller than N in

practice, the computational complexity of Algorithm 1 is much

lower than O(N2). In contrast, the complexity of [17] is

O(N3). Furthermore, as the needed system parameters can be

estimated in advance, Algorithm 1 is an off-line process and

thus its complexity can be ignored in the practical system.

F. Practical Applicability

In this subsection, we briefly discuss the applicability of

the proposed scheme in a practical HST system. As afore-

mentioned in Section II-A, the BSs are connected with optical

fibers and share the instant speed and position information

TABLE I
HST COMMUNICATION SYSTEM PARAMETERS

Parameters Variables Values

BS power range R 1200 m

Distance between BSs Ds 1000 m

Max distance of BS to railway Dmax 1200 m

Direct distance of BS to railway D0 50 m

Carrier frequency fc 2.35 GHz

Train speed v 300-500 km/h

Light speed c 3× 108 m/s

of the HST, which are supported by the GPS. In a practical

system, system parameters (such as τmax, fdmax and etc.) can

be collected in advance. Thus the optimal pilots (including the

pilot placement and pilot symbol) for different Doppler shifts

fd (or HST positions α) can be pre-designed with Algorithm

1 by selecting corresponding Φx, and then store into a pilot

codebook, which is an off-line process. The relationships

between x, fd and α are given as Eq. (11) and Eq. (12),

respectively. This pilot codebook is equipped at both the BS

and the HST.

When the HST runs, the BS gets the instant speed and

position information of the HST from the GPS and then

calculates the instant fd. At the beginning of each OFDM

symbol, the BS selects the optimal pilot from the codebook

according to fd and transmits it to estimate the channels. This

transmitted pilot is also known at the HST for checking the

same codebook. Note that we assume that fd is constant during

one OFDM symbol. Thus, the selected pilot is optimal during

each OFDM symbol. In this way, the proposed scheme can be

well used in current HST systems without adding too much

complexity. An example of the designed pilot codebook is

given in the simulation results.

V. SIMULATION RESULTS

In this section, under the high-mobility environment, we

illustrate the performances of the proposed pilot design method

using two typical compressed channel estimators, BP [27]

and OMP [28]. The mean square error (MSE) and the bit

error rate (BER) performances are considered versus the

the signal to noise ratio (SNR) and the HST position. In

addition, the performances of the conventional LS and the

linear minimum mean square error (LMMSE) [9] estimators

are also considered. Furthermore, we give an example of the

designed pilot codebook.

Here we consider an OFDM system in the HST commu-

nication system shown as Fig. 1. The parameters of the HST

communication system are given in Table I, according to the

D2a scenario of WINNER II channel model [33]. Assume that

there are 512 subcarriers and 12.5% are pilot subcarriers. The

bandwidth is 5MHz, the packet duration is Td = 0.675ms and

the carrier frequency fc = 2.35GHz, according to [24]. Data

and pilots are modulated with 16-QAM. The additive noise is

a Gaussian and white random process. The maximum delay

spread is τmax = 5µs and the maximum Doppler shift is

fdmax
= 1.088KHz, which means that the maximum speed of

the HST is 500km/h. The channel has L = 26 taps, however,
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Fig. 4. Doppler shift versus HST position.
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Fig. 5. Average (500 runs) of average coherence µδ{Xd(p)Φx} with
different pilot design methods in an OFDM system with 500km/h.

only 6 taps are nonzero and their positions are randomly

generated. The ICI mitigation is operated as mentioned in

Section III-C.

A. Doppler Shift versus HST Position

Fig. 4 shows the Doppler shift of the proposed position-

based high-mobility OFDM system versus the HST position.

The speed of HST is 500km/h. In Fig. 4, the Doppler shift

changes from fdmax
to −fdmax

corresponding to the HST

position α. α is defined as the distance between the HST and

A, and α = 0 at A. We can find that HST suffers from large

Doppler shift at most of the time, and fd changes sharply near

B.

B. Average Coherence versus Iterations

In Fig. 5, we consider 500 channel realizations and gives the

average coherence µδ performance. The equidistant method

is the pilot with the equidistant pilot placement and random
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Fig. 6. MSE performances of liner estimators and BP estimators with
different pilots in an OFDM system at position A with 500km/h.
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Fig. 7. MSE performances of different estimators with different pilots in an
OFDM system at position A with 325 km/h.

pilot symbols, which is claimed in [10] as the optimal pilot

placement to the doubly selective channels. We also plot the

the exhaustive search method in [17] whose main idea is to

do an exhaustive search from a designed optimal pilot subset.

The Algorithm 1 with Iter = 1 × 104 is given to show the

approximate lower bound (ALB) of Algorithm 1, which means

that the performance improves extremely little by increasing

iterations. As can be seen, Algorithm 1 converges fast before

Iter = 200 and then converges to its ALB slowly. Note that

the pilot placement iteration times is M = Iter
P

≈ 3 at Iter =
200, which means that Algorithm 1 calculates 3 set of pilots

and then gets the optimal pilot. Considering the tradeoff of the

computational complexity and the estimation performance, we

select Iter = 200 in the following simulations.

C. MSE versus SNR

Fig. 6 illustrates the comparison of the MSE performances

of different estimators with different pilots with 500km/h at
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position A. The ICI mitigation is operated with q = 2. The

exhaustive 1 method is the method in [17] with 200 iterations,

and the exhaustive 2 method denotes the same method with

2 × 104 iterations. The number of iterations of Algorithm 1

is set to be 200 and 2000. It can be observed that the BP

channel estimators significantly improve the performance by

utilizing the inherent sparsity of the high-mobility channels.

As expected, Algorithm 1 gets better performance than others.

Furthermore, we notice that LS and LMMSE need more pilots

to obtain better CSI, while the proposed scheme performs well

and saves spectrum resources. In addition, BP with the ALB

pilot is given to show the convergence tendency of Algorithm

1. It can be seen that BP-Algorithm 1 converges to BP-ALB

with increasing iterations. From the curves, it is possible to

observe that Algorithm 1 with Iter = 200 is enough for the

practical system.

Fig. 7 depicts the comparison of the MSE performances of
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Fig. 10. A pilot codebook designed by Algorithm 1.

different estimators versus SNR at position A with 325km/h,

which means fd = 0.707KHz. The ICI mitigation is operated

with q = 2 and Algorithm 1 is operated with Iter = 200.

As can be seen, with Algorithm 1, BP and OMP get better

performances comparing with other pilots. On the other hand,

LS and LMMSE with different pilots are also given in this

figure. We notice that Algorithm 1 has little impact on linear

estimators for their not utilizing the coherence of CS.

D. BER versus SNR

Fig. 8 shows the BER performances versus SNR in the given

high-mobility environment at position A with 500km/h. As

a reference, we plot the BER performance under the perfect

knowledge of CSI with Algorithm 1, which means that H

in Eq. (1) is available at the receiver and employed with

the zero-forcing (ZF) equalizer. In this figure, we compare

different estimators with the pilots designed by the equidistant

method, the exhaustive 1 method, the exhaustive 2 method

and Algorithm 1 (Iter = 200). ICI mitigation with 2, 5 and

7 iterations are considered to show its performance tendency.

OMP-5 and OMP-7 are both operated with Algorithm 1. As

can be seen, BP and OMP with Algorithm 1 get significant

improvements and are close to the perfect knowledge of CSI,

particularly in regions of low and moderate SNR. This is

mainly because that, at low SNR, the noise is dominant with

respect to the ICI. We also notice that the ICI mitigation gain

is limited with increasing iterations due to error propagation.

E. MSE versus HST Position

Fig. 9 presents the MSE performances of BP estimators

versus the HST position at SNR = 15dB and SNR = 25dB,

in which the Doppler shift fd is corresponding to the HST

position α shown as Fig. 4. All estimators are considered with

the pilot designed by Algorithm 1 (Iter = 200). The train

speed is fixed as 500km/h, and fd changes from fdmax
to

−fdmax
with the HST moves from A to C shown as Fig. 4. As

a reference, the performance with ICI-free are also included,

in which “ICI-free” means the data are set as zero and pilots

are free of data-ICI. We notice that the MSE performances

change with the HST position and get the best at B. This is

reasonable because fd is largest at A and C but zero at B. This

figure shows that the HST suffers from large Doppler shift at

most of the time. However, the MSE performances improve
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rapidly near B with decreasing Doppler shift. It can be seen

that the proposed channel model well reflects the relationship

between the Doppler shift and the HST position.

F. A Pilot Codebook for Practical Use

Fig. 10 gives a pilot codebook designed by Algorithm 1

(Iter = 200) of the given system, which shows the optimal

pilot sets (including the pilot placement and pilot symbol)

according to the Doppler shift fd (or HST position α). x
denotes the index of the pilot set, its relationship with fd and

α are given as Eq. (11) and Eq. (12), respectively. The pilot

symbol powers are presented as different colors. Furthermore,

data are set to be zero for stressing the pilot placement.

When the HST position changes, the optimal pilot changes

according to the instant fd. According to different fd, the BS

and RS calculate x with Eq. (11) and select the optimal pilot

set from the codebook. For example, x = 5 is selected for

fd ∈ [0.7407, 1.088]KHz (near A), and x = 1 is selected for

fd ∈ [−1.088,−0.7407]KHz (near C), respectively. Mean-

while, as fd changes rapidly when the HST passing B, pilot

sets x = 4, 3, 2 are selected in sequence. From Fig. 4, we

notice that the HST suffers from high Doppler shift at most

of the time while passing through a cell. Thus, we do not

need to change the pilot set frequently while the HST runs

(except for the positions near B), which highly reduce the

system complexity.

VI. CONCLUSION

In this paper, we presented a new position-based compressed

channel estimation method for high-mobility OFDM systems.

The estimation complexity is reduced by the proposed channel

model by utilizing the position information. The pilot symbol

and the placement are jointly designed by the proposed algo-

rithm to minimize the system average coherence. Simulation

results demonstrate that the proposed method achieves better

performances than existing channel estimation methods over

high-mobility channels. Furthermore, with a pre-designed pilot

codebook, the proposed scheme is feasible for many current

wireless OFDM communication systems.
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