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On the Sum of Correlated Squaredκ− µ Shadowed
Random Variables and its Application to

Performance Analysis of MRC
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Abstract—In this paper, we study the statistical character-
ization of the sum of the squared κ − µ shadowed random
variables with correlated shadowing components. The probability
density function (PDF) of this sum is obtained in the form
of a power series. The derived PDF is utilized for obtaining
the performance results of the maximal ratio combining (MRC)
scheme over correlatedκ − µ shadowed fading channels. First,
we derive the moment generating function (MGF) of the received
signal-to-noise ratio of the MRC receiver. By using the derived
MGF expression, the analytical diversity order is obtained; it
is deduced on the basis of this analysis that the diversity of
the MRC receiver over correlated κ − µ shadowed channels
depends upon the number of diversity branches andµ parameter.
Further, the analytical average bit error rate of the MRC scheme
is also derived, which is applicable forM -PSK and M -QAM
constellations. The Shannon capacity of the correlatedκ − µ
shadowed channels is also derived in the form of the Meijer-G
function.

Index Terms—Antenna correlation, κ − µ fading, Land mo-
bile satellite (LMS) channel, maximal ratio combining (MRC),
Shadowed-Rician fading.

I. I NTRODUCTION

Fading is a well investigated propagation phenomenon
which has been researched extensively over the years. The
fading counts on several factors like the environment, scatter-
ers, rain, line-of-sight (LOS), snow, the propagation frequency,
etc. The fading severity ranges from very mild to extremely
severe, depending upon the propagation medium. A large
number of models have been proposed in the literature that
reasonably well describe such a phenomenon in its various
aspects. Rayleigh, Hoyt, Weibull, Rice, Nakagami-m, and
Shadowed-Rician are the best known fading distributions very
widely utilized for the theoretical studies of various practical
wireless communication systems. In [1],κ − µ fading is
proposed to allow flexibility to model the wireless channels
fading fluctuations. Theκ−µ distribution is fully characterized
in terms of measurable physical parameters. For many wireless
communication systems, LOS is a dominating factor which
cannot be ignored. Moreover, in some wireless communication
systems, the LOS is not a deterministic parameter but its
strength randomly fluctuates over the time, e.g., in land mobile
satellite (LMS) links. For a general LOS propagation scenario,
the κ − µ fading distribution provides a general multipath
model. Theκ− µ fading model is applicable to some of the
well studied classical fading models like one-sided Gaussian,
Rayleigh, Nakagami-m, and Rician fading. To be more pre-
cise, the fitting of theκ−µ distribution to the experimental data
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is better than that attained by the conventional distributions
mentioned before [1, Section V].

The Shadowed-Rician channel model is used for modeling
the LMS links because it yields significantly less computa-
tional burden as compared to other LMS channel models [2]–
[7]. This model shows nice fitting for the experimental channel
measurements under different shadowing conditions in LMS
links [2]. Here shadowing indicates that the LOS component
of the channel undergoes shadowing which is modeled by
a Nakagami-m random variable (RV). The multipath fading
is characterized by the Rician fading in Shadowed-Rician
fading model. Since theκ−µ distribution includes the Rician
distribution as a particular case, a natural generalization of the
κ − µ distribution can be obtained by a LOS shadow fading
model with the same multipath/shadowing scheme used in the
Shadowed-Rician model [8]. The statistical characterization
of κ−µ shadowed fading is performed and analytical perfor-
mance results for the selection combining and maximal ratio
combining (MRC) are derived under independent LOS com-
ponents in [8]. However, in the satellite communications the
LOS components associated with different spatial dimensions
are not only dominating but are correlated with each other.
The sum ofcorrelated squared Shadowed-Rician RVs and its
application to communication systems performance prediction
is studied in [9].

In this paper, we study the correlatedκ−µ shadowed fading
for diversity reception technique. We statistically characterize
the sum of correlated squaredκ− µ shadowed RVs in terms
of probability density function (PDF) and moment generating
function (MGF). By using these characterizations, the error
performance of the MRC scheme is analyzed over the corre-
latedκ−µ shadowed fading channels. Specifically, we derive
the average symbol error rate (SER) and average bit error rate
(BER) of the MRC receiver. We also derive the analytical
diversity order of the scheme and show that its diversity is
independent of the antenna correlations. Moreover, we find the
ergodic capacity of the correlatedκ − µ shadowed channels,
under MRC.

II. SUM OF CORRELATEDκ− µ SHADOWED RANDOM

VARIABLES

The κ − µ distribution is a general model that describes
various kinds of fading encompassing from Rayleigh to
Nakagami-m fading; it is useful for describing the small-
scale variations along with the LOS conditions. Theκ − µ
fading considers a signal composed of clusters of multipath
waves, advancing in a non-homogenous environment. Within
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each cluster, the phases of the scattered multipath signalsare
random and have the same temporal delays. Moreover, a domi-
nant component of arbitrary power is present in each clusterof
the multipath waves having identical power. It is assumed that
the intercluster delay-time spreads are relatively largerthan
the delay times of the intracluster scattered waves [1]. The
κ− µ shadowed fading proposed in [8] is more general than
theκ− µ fading proposed in [1]. A generalκ− µ shadowed
fading model assumes that the dominant components of all
clusters can randomly fluctuate due to the shadowing.

Let us consider aκ−µ shadowed distributed RVXl, which
is given by [8]

Xl =

nl
∑

i=1

{(Wi,l + jVi,l) + (ϑlai,l + jϑlbi,l)} , (1)

whereWi,l andVi,l are mutually independent zero mean Gaus-
sian RVs withσ2 variance;nl is a natural number,ai,l andbi,l
are real numbers; andϑl is a Nakagami-m distributed RV with
shaping parameterm and spreading parameterΩl = 1. In (1),
Wi,l + jVi,l, which is circularly symmetric complex Gaussian
RV, represents the scattered component of thei-th cluster. On
the other handϑlai,l + jϑlbi,l denotes the dominating LOS
component witha2i,l+b2i,l power. The common shadowing fluc-
tuation of all clusters is represented by the power-normalized
RV ϑl; for deterministic LOS case,ϑl = 1.

From (1), it can be easily shown that the power ofXl, i.e.,
Yl = X2

l is given by [8]

Yl =

nl
∑

i=1

{

(Wi,l + ϑlai,l)
2 + (Vi,l + ϑlbi,l)

2
}

. (2)

The average value ofYl is E[Yl] = 2nlσ
2 +
∑nl

i=1(a
2
i,l + b2i,l)

as seen from (2); here the expectation is denoted byE[·].
It can be seen from (2) that conditioned onϑl, Yl is sum
of 2nl independent non-central Chi-squared distributed RVs;
therefore, the conditional PDF ofYl will be [10]

fYl|ϑl
(y) =

1

2σ2

(

y

ϑ2
l

∑nl

i=1(a
2
i,l + b2i,l)

)

nl−1

2

× e−
y+ϑ2

l

∑nl
i=1

(a2
i,l

+b2
i,l

)

2σ2

× Inl−1





ϑl

√

∑nl

i=1(a
2
i,l + b2i,l)

σ2

√
y



 , (3)

whereIν(·) is the modified Bessel function of the first kind.
Let us now define the following substitution variables:

nl
∑

i=1

(a2i,l + b2i,l) , 2σ2κlµl

nl , µl. (4)

Further, let us also define a new RVγl , γ̄Yl/E[Yl], denoting
the instantaneous signal-to-noise ratio (SNR) for the signal
received under theκ − µ shadowed fading with̄γ being
the average SNR. By using the method of transformation of
RVs [10] along with substituting the new variables given in

(4), in (3), we get the conditional PDF ofγl:

fγl|ϑl
(γ) =

µl(1 + κl)
µl+1

2

γ̄
µl+1

2 κ
µl−1

2

l ϑµl−1
l

γ
µl−1

2

× e−
µl(1+κl)γ

γ̄
−ϑ2

lµlκl

× Iµl−1

(

2µlϑl

√

κl(1 + κl)γ

γ̄

)

. (5)

Let us now define the sum ofL squaredκ−µ shadowed RVs
as

Y ,

L
∑

l=1

Yl. (6)

We encounter this sum in the diversity reception schemes
like MRC. From (2) and (6), it can be inferred thatY is a
sum of 2

∑L
l=1 nl non-central Chi-squared RVs. Hence, the

conditional PDF ofY will be given by [10]

fY |ϑ1,..,ϑl
(y) =

1

2σ2

(

y
∑L

l=1 ϑ
2
l [
∑nl

i=1(a
2
i,l + b2i,l)]

)

∑L
l=1 nl−1

2

×e−
∑L

l=1 ϑ2
l
[
∑nl

i=1
(a2

i,l
+b2

i,l
)]+y

2σ2

×I∑L
l=1 nl−1





√

∑L
l=1 ϑ

2
l [
∑nl

i=1(a
2
i,l + b2i,l)]

σ2

√
y



 . (7)

For the diversity reception scheme, the instantaneous SNR is
defined asγ , yγ̄/E[Y ] [8], where the average value ofY ,
i.e.,E[Y ] is given by

∑L
l=1

∑nl

i=1(a
2
i,l + b2i,l) + 2σ2

∑L
l=1 nl.

By employing the substitution of variables given in (4) and
using the method of transformation of RVs, we get the
conditional PDF ofγ as

fγ|ϑ2
1,..,ϑ

2
L
(γ) =

(
∑L

l=1 µl(1 + κl))
∑L

l=1 µl+1

2

γ̄
∑L

l=1
µl+1

2 (
∑L

l=1 ϑ
2
l µlκl)

∑L
l=1

µl−1

2

×γ

∑L
l=1 µl−1

2 e−
∑L

l=1 µl(1+κl)γ

γ̄
−
∑L

l=1 ϑ2
lµlκl

×I∑L
l=1 µl−1



2

√

√

√

√

(

L
∑

l=1

ϑ2
l µlκl

)(

L
∑

l=1

µl(1 + κl)

)

√

γ

γ̄



. (8)

In (8), let us use another substitutionϑ2
l µlκl = ϑ̃2

l and have

fγ|ϑ2
1,..,ϑ

2
L
(γ) =

(
∑L

l=1 µl(1 + κl))
∑L

l=1 µl+1

2

γ̄
∑L

l=1
µl+1

2 (
∑L

l=1 ϑ̃
2
l )

∑L
l=1

µl−1

2

×γ

∑L
l=1 µl−1

2 e−
∑L

l=1 µl(1+κl)γ

γ̄
−
∑L

l=1 ϑ̃2
l

×I∑L
l=1 µl−1



2

√

√

√

√

(

L
∑

l=1

ϑ̃2
l

)(

L
∑

l=1

µl(1 + κl)

)

√

γ

γ̄



 . (9)

In (9),
∑L

l=1 ϑ̃
2
l denotes the sum ofL Gamma distributed RVs;

the shape parameter ofϑ̃2
l ism and scale parameter isµlκl/m.

Let us assume that the dominating components of theκ−
µ shadowed RVs, i.e.,̃ϑ2

l are correlated withρij correlation
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coefficient given by

ρij = ρji =
Cov(ϑ̃2

i , ϑ̃
2
j)

√

Var(ϑ̃2
i )Var(ϑ̃2

j )
, 0 ≤ ρij ≤ 1, i, j = 1, .., L.

(10)
Then the PDF ofZ =

∑L
l=1 ϑ̃

2
l can be expressed as [11]

fZ(z) =

L
∏

l=1

(

λ1

λl

)m ∞
∑

k=0

δkz
Lm+k−1e−z/λ1

λLm+k
1 Γ(Lm+ k)

u(z), (11)

where λ1 = minl {λl}, {λl}Ll=1 are the eigenvalues of the
matrix DC, D being a diagonal matrix with the entries
{µlκl/m}Ll=1 and C is the L × L positive definite matrix
defined by

C ,













1
√
ρ12 · · · √

ρ1L√
ρ21 1 · · · √

ρ2L
· · · ·
· · · ·√
ρL1 · · · · · · 1













L×L

, (12)

and the coefficientsδk can be obtained recursively as

δk+1 =
m

k + 1

k+1
∑

i=1





L
∑

j=1

(

1− λ1

λj

)i


 δk+1−i, k = 0, 1, .. (13)

with δ0 = 1. Note that the PDF of (11) is in the form
of a power series. It is shown in [11], [12] that it is a
converging power series. Further, a similar correlation model
is also considered for the Shadowed-Rician LMS channels
in [9], [13], where the shadowing components are correlated
and multipath components are uncorrelated.

If ǫ =
∑L

l=1 µl and η =
∑L

l=1 µl(1 + κl), then the
conditional PDF ofγ can be very compactly represented by

fγ|z(γ) =
η

ǫ+1
2 γ

ǫ−1
2

γ̄
ǫ+1
2 e

η
γ̄
γ
z−

ǫ−1
2 e−zIǫ−1

(
√

4γη

γ̄

√
z

)

. (14)

For finding the unconditional PDF ofγ, (14) should be
averaged uponZ; therefore, from (11) and (14), we get

fγ(γ) = A

(

η

γ̄

)
ǫ+1
2

γ
ǫ−1
2 e−

η
γ̄
γ

∞
∑

k=0

Dk

×
∫ ∞

0

zLm+k− ǫ
2−

1
2 e

−z
(

1+ 1
λ1

)

Iǫ−1

(
√

4γη

γ̄

√
z

)

dz, (15)

where A =
∏L

l=1

(

λ1

λl

)m

and Dk = δk
λLm+k
1 Γ(Lm+k)

. The
integral in (15) can be solved by using [14, Eq. (2.15.5.4)],
and the unconditional PDF ofγ can be written as

fγ(γ) = A

(

η

γ̄

)ǫ

γǫ−1e−
η
γ̄
γ

∞
∑

k=0

D̃k

×1F1

(

Lm+ k; ǫ;
ηγ

γ̄
(

1 + 1
λ1

)

)

, (16)

where

D̃k =
δk

λLm+k
1 Γ(ǫ)

(

1 +
1

λ1

)−(Lm+k)

(17)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ

f
γ
(γ
)

m = 2, 4, 6

Fig. 1. Analytical−− and simulated◦ PDFs forκl = 2, µl = 2, m =
2, 4, 6, L = 2, andρij = 0.7|i−j|.

and1F1(a; b; z) is the confluent Hypergeometric function [15].
The derived expression of the PDF (16) is utilized for plotting
the analytical values of the PDF in Fig. 1 forκl = 2, µl =
2, m = 2, 4, 6, L = 2, and exponential correlationρij =
0.7|i−j|. In addition, the simulated PDF is also shown for these
parameter values in the figure. It can be seen from the figure
that the simulated and analytical PDFs are closely matched.
This justifies the correctness of the derived PDF. Further, it
can be seen from the figure that the PDF plot becomes peaky
with increasing value ofm.

A. Sum of I.I.D. Squared κ− µ Shadowed Random Variables

If all squaredκ − µ shadowed RVs are independent and
identically distributed (i.i.d.), thenκl = κ andµl = µ. From
(10)-(13), it can be found that in this case,ρij = ρji = 0 and
the matrix DC contains uniform eigenvalues,λl = κµ/m;
hence,δk = 0, ∀k > 0. After substituting these values in (16),
we get the PDF of sum of i.i.d. squaredκ−µ shadowed RVs:

fγ(γ) =

(

Lµ(1 + κ)

γ̄

)Lµ(
m

m+ κµ

)Lm
γLµ−1

Γ(Lµ)

×e−
Lµ(1+κ)

γ̄
γ
1F1

(

Lm;Lµ;
Lκµ2(1 + κ)γ

γ̄(m+ κµ)

)

. (18)

It can be easily verified from (18) that forL = 1, we get
the PDF of the square of a singleκ− µ shadowed RV which
matches with the PDF given in [8, Eq. (4)].

III. PERFORMANCEANALYSIS OF THE MRC DIVERSITY

SYSTEM

A. System and Channel Model

Consider anL-branch MRC at the receiver, where each
branch experiences the correlatedκ − µ shadowed fading
with an instantaneous SNRγl, l = 1, .., L; the correlation
coefficient is given in (10). The received instantaneous SNR
of the MRC receiver, i.e.,γ =

∑L
l=1 γl is characterized in

(16).

B. Moment Generating Function of the Received SNR

The MGF of the received SNR is expressed as

Mγ(s) = Eγ [e
−sγ ]. (19)
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Fig. 2. Analytical−◦− and simulated+ SERs forκl = 5, µl = 2, m = 2,
ρij = 0.5|i−j|, L = 2, 3, 4, 5, and QPSK constellation.

From (16) and (19), the MGF of the SNR will be

Mγ(s) = A

(

η

γ̄

)ǫ ∞
∑

k=0

D̃k

×
∫ ∞

0

γǫ−1e−(s+
η
γ̄ )γ1F1

(

Lm+ k; ǫ;
ηγ

γ̄
(

1 + 1
λ1

)

)

dγ. (20)

The following relations can be employed in (20):

1F1

(

Lm+ k; ǫ;
ηγ

γ̄
(

1 + 1
λ1

)

)

=
Γ (ǫ)

Γ (Lm+ k)
G11

12

(

− ηγ

γ̄
(

1 + 1
λ1

)

∣

∣

∣

∣

∣

1− Lm− k

0, 1− ǫ

)

(21)

and

e−(s+ η
γ̄
)γ = G10

01

(

(s+
η

γ̄
)γ

∣

∣

∣

∣

∣

.

0

)

, (22)

whereGm,n
p,q (·| ······) is the Meijer-G function [15, Eq. (9.301)].

After substitution of these relations, we get

Mγ(s) = A

(

η

γ̄

)ǫ ∞
∑

k=0

D̃k
Γ (ǫ)

Γ (Lm+ k)

∫ ∞

0

γǫ−1

×G10
01

(

(s+
η

γ̄
)γ

∣

∣

∣

∣

∣

.

0

)

G11
12

(

−ηγ

γ̄
(

1 + 1
λ1

)

∣

∣

∣

∣

∣

1− Lm− k

0, 1− ǫ

)

dγ.(23)

The integral in (23) can be solved by using [16, Eq. (21)]
and we get

Mγ(s) = A

(

η

γ̄

)ǫ ∞
∑

k=0

D̃k
Γ (ǫ)

Γ (Lm+ k)

(

s+
η

γ̄

)−ǫ

×G12
22

(

−η

γ̄
(

1 + 1
λ1

)(

s+ η
γ̄

)

∣

∣

∣

∣

∣

1− Lm− k, 1− ǫ

0, 1− ǫ

)

. (24)

The MGF for i.i.d. case can be easily calculated by using (18)
and method given above. Alternatively, the MGF for i.i.d. case

0 5 10 15 20

10
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10
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10
−4

10
−2

SNR [dB]

S
E

R

ρ = 0.1, 0.5, 0.7, 0.8, 0.9

Fig. 3. Analytical SER versus SNR plots forκl = 5, µl = 2, m = 2.5,
ρij = ρ|i−j|, ρ = 0.1, 0.5, 0.7, 0.8, 0.9, L = 3, and QPSK constellation.

can also be obtained from (24) by puttingδ0 = 1, δk = 0,
k > 0, λl = κµ/m, ǫ = Lµ, andη = Lµ(1 + κ).

The SER of the scheme forM -PSK constellation can be
efficiently calculated by employing the following relation[17,
Eq. (10)]:

PMPSK ≈
3
∑

p=1

βpMγ (αp) , (25)

whereβ1 = θM/(2π)−1/6, β2 = 1/4, β3 = θM/(2π)−1/4,
α1 = gMPSK , α2 = 4gMPSK/3, α3 = gMPSK/sin2(θM ),
gMPSK = sin2(π/M), andθM = (M − 1)π/M .

The analytical SER forκl = 5, µl = 2, m = 2, ρij =
0.5|i−j|, L = 2, 3, 4, 5, and QPSK constellation is plotted in
Fig. 2. The simulated SER versus SNR plots are also shown for
the same parameters in the figure. The simulated SER values
are obtained by using107 channel realizations. The simulated
SER closely follows the analytical SER values at all SNR
values considered in the figure. Further, the performance of
the MRC receiver improves with increasing value of antennas,
as seen from the figure.

The effect of correlation parameterρ on the SER perfor-
mance of the MRC receiver is shown in Fig. 3 forκl = 5,
µl = 2, m = 2.5, ρij = ρ|i−j|, ρ = 0.1, 0.5, 0.7, 0.8, 0.9,
L = 3, and QPSK constellation. It can be seen from the figure
that the receiver error performance degrades with increasing
value of the correlation coefficient.

C. Diversity Order Calculation

By using the Slater’s theorem [18, Eq. (8.2.2.3)] which
represents the Meijer-G function as a finite series of the
Hypergeometric function, it can be shown that

G12
22

(

−η

γ̄
(

1 + 1
λ1

)(

s+ η
γ̄

)

∣

∣

∣

∣

∣

1− Lm− k, 1− ǫ

0, 1− ǫ

)

= Γ(Lm+ k)2F1






Lm+ k, ǫ; ǫ;

η
(

s+ η
γ̄

)−1

γ̄
(

1 + 1
λ1

)






, (26)
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ideal diversity plots are shown by−×−.

where2F1(a1, a2; b1; z) is the Gaussian Hypergeometric func-
tion [15]. From (24) and (26), the MGF of the MRC scheme
can be written as

Mγ(s) = A

(

η

γ̄

)ǫ ∞
∑

k=0

D̃kΓ (ǫ)

(

s+
η

γ̄

)−ǫ

×2F1



Lm+ k, ǫ; ǫ;
η

γ̄
(

1 + 1
λ1

)(

s+ η
γ̄

)



 . (27)

For diversity calculation, let us assume thatγ̄ is very large,
which means thatη/

(

γ̄
(

1 + 1
λ1

)(

s+ η
γ̄

))

is very small.

Therefore, after observing the fact that2F1(a1, a2; b1; z) → 1,
z → 0 [19] and after some other algebra, the asymptotic value
of the MGF is given by

Mγ(s) = A

(

η

γ̄

)ǫ ∞
∑

k=0

D̃kΓ (ǫ)s−ǫ. (28)

The diversity order of the MRC scheme isǫ =
∑L

l=1 µl, as
seen from (28).

For verifying the analytical diversity order, we have plotted
the asymptotic SER by using (25) and (28) in Fig. 4. The
analytical SER versus SNR plots (obtained from (24) and (25))
are also shown in the figure. All plots are given forκl = 10,
µl = 1, m = 3, ρij = 0.1|i−j|, L = 2, 3, 4, and QPSK
constellation. It can be seen from the figure that the asymptotic
SER closely overlaps with the analytical SER at high values
of the SNR. Therefore, the proposed asymptotic MGF in (28)
is sufficiently tight at high SNR. Further, we have also plotted
the asymptotic ideal diversity curves by using the relation:
α/γ̄δ, whereα is a positive real coefficient andδ denotes the
ideal diversity. The SER versus SNR performance of the MRC
receiver decays at the same rate as that of the slope of the
asymptotic ideal diversity curves in all cases. The correctness
of the diversity analysis is corroborated from the figure.

TABLE I
VALUES OFζM , τM , AND ap FOR DIFFERENT CONSTELLATIONS.

Constellation ζM τM ap

M -QAM
4
(

1− 1
√

M

)

log2 M

√
M
2

(2p− 1)
√

3
(M−1)

M -PSK 2
max(log2 M,2)

max
(

M
4
, 1
) √

2 sin (2k−1)π
M

D. Average BER Calculation

By using the series representation of the confluent Hyper-
geometric function:

1F1(a; b;x) =

∞
∑

n=0

(a)n
(b)nn!

xn, (29)

where(·)n is the Pochhammer symbol, in (16), we get

fγ(γ) = A

(

η

γ̄

)ǫ ∞
∑

k=0

D̃k

∞
∑

j=0

Cj,kγ
j+ǫ−1e−

η
γ̄
γ , (30)

where

Cj,k =
(Lm+ k)j

(ǫ)jj!





η

γ̄
(

1 + 1
λ1

)





j

. (31)

From the signal-space concept, the average BER ofM -
PSK/QAM constellation is given by [7], [20]–[22]

Pe(γ) = ζM

τM
∑

p=1

Q (ap
√
γ) , (32)

whereQ(·) is the q-function [10, Eq. (2.1.97)],ζM , ap, and
τM are modulation dependent parameters, given in Table I.
The average BER of the considered scheme will be

Pe(γ̄) = AζM

(

η

γ̄

)ǫ ∞
∑

k=0

D̃k

∞
∑

j=0

Cj,k

×
τM
∑

p=1

∫ ∞

0

γj+ǫ−1e−
η
γ̄
γQ (ap

√
γ) dγ. (33)

By using the relationQ
(

ap
√
γ
)

= (1/2)erfc(ap
√
γ/

√
2) and

[14, Eq. (2.8.5.7)] in (33), we get the average BER of the
scheme as

Pe(γ̄) = AζM

(

η

γ̄

)ǫ ∞
∑

k=0

D̃k

∞
∑

j=0

Cj,k

×
τM
∑

p=1

(

ap/
√
2
)−2ǫ−2j

(2ǫ+ 2j)
√
π

Γ(ǫ+ j + 1/2)

×2F1

(

ǫ+ j, ǫ+ j + 1/2; ǫ+ j + 1;− 2η

a2pγ̄

)

. (34)

By employing the relation:

2F1

(

ǫ+ j, ǫ + j + 1/2; ǫ+ j + 1;− 2η
a2
pγ̄

)

= 1 for very high
value of γ̄ in (34), we get

Pe(γ̄) = AζM

(

η

γ̄

)ǫ ∞
∑

k=0

D̃k

∞
∑

j=0

Cj,k

×
τM
∑

p=1

(

ap/
√
2
)−2ǫ−2j

(2ǫ+ 2j)
√
π

Γ(ǫ+ j + 1/2). (35)
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Fig. 5. Analytical − ◦ − and simulated+ BERs for κl = 2, µl = 2,
m = 2.1, ρij = 0.2|i−j|, L = 2, 3, 4, 5, 6, and 16-QAM constellation.

It can be seen from (31) thatCj,k varies inversely with̄γj.
Therefore, for the diversity calculation1, we should setj = 0.
By setting j = 0 and p = 1 in (35), we get the asymptotic
BER of the scheme:

Pe(γ̄) =
AζMΓ(ǫ + 1/2)

2ǫ
√
π
(

a1/
√
2
)2ǫ

(

∞
∑

k=0

D̃k

)

(

η

γ̄

)ǫ

. (36)

It is confirmed from (36) that the diversity order of the MRC
receiver isǫ, as shown in Subsection III.C.

Under the condition thatm being an integer andLm+k > ǫ,
the Hypergeometric function in (16) can be represented in the
form of a finite series by using the Kummer’s transform [19]
as

1F1

(

Lm+ k; ǫ;
ηγ

γ̄
(

1 + 1
λ1

)

)

= e
ηγ
γ̄

(

1+ 1
λ1

)

−1

×
Lm+k−ǫ
∑

j=0

(Lm+ k − ǫ)!

(Lm− ǫ− j)!j!(ǫ)j





ηγ

γ̄
(

1 + 1
λ1

)





j

. (37)

Using (37), the BER can be calculated in the form of a single
power series employing the method stated before.

The analytical and simulated BER versus SNR plots for
κl = 2, µl = 2, m = 2.1, ρij = 0.2|i−j|, L = 2, 3, 4, 5, 6,
and 16-QAM constellation are shown in Fig. 5. The simulated
BER values are obtained by using107 channel realizations.
The closeness of the analytical and simulated BER plots is
evident from the figure. Moreover, the performance of the
MRC scheme is improved with increasing value of receive
antennas, as seen from Fig. 5.

E. Ergodic Capacity Analysis

The average capacity (in bits/sec/Hz) of the scheme is given
by

C(γ̄) =

∫ ∞

0

log2 (1 + γ) fγ(γ)dγ. (38)

1The diversity order depends upon the lowest power of the SNR.

0 1 2 3 4 5 6 7 8 9 10
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2.5

SNR
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ci
ty

 (
b

its
/s

e
c/

H
z)

L = 2, 3

Fig. 6. Capacity plots forκl = 2, µl = 2, m = 1.2, ρij = 0.5|i−j|, and
L = 2, 3 obtained by using (42)−− and (38)◦ .

By using the relations:

e−
η
γ̄
γ = G10

01

(

η

γ̄
γ

∣

∣

∣

∣

∣

.

0

)

(39)

and

ln (1 + γ) = G12
22

(

γ

∣

∣

∣

∣

∣

1, 1

1, 0

)

, (40)

where ln(·) is the natural logarithm, and (22) and (30), in (38),
we get

C(γ̄) =
A

ln2

(

η

γ̄

)ǫ ∞
∑

k=0

D̃k

∞
∑

j=0

Cj,k

×
∫ ∞

0

γj+ǫ−1G10
01

(

η

γ̄
γ

∣

∣

∣

∣

∣

.

0

)

G12
22

(

γ

∣

∣

∣

∣

∣

1, 1

1, 0

)

dγ. (41)

Employing [16, Eq. (21)] in (41), we have

C(γ̄) =
A

ln2

∞
∑

k=0

D̃k

∞
∑

j=0

Cj,k

(

η

γ̄

)−j

×G13
32

(

γ̄

η

∣

∣

∣

∣

∣

1, 1, 1− ǫ− j

1, 0

)

. (42)

In Fig. 6, the analytical average capacity of the MRC scheme
is plotted for κl = 2, µl = 2, m = 1.2, ρij = 0.5|i−j|,
and L = 2, 3 by using (42). Moreover, the plots of the
capacity obtained by numerical integration of (38) are provided
in the figure to verify the validity of the proposed capacity
results of (42). It can be seen from the figure that there
is a significant improvement in the average capacity of the
correlatedκ − µ shadowed channels with increasing number
of the spatial dimension. For example, at SNR=10 dB there is
30% increment in the average capacity by using three antennas
as compared to the two antennas case.

IV. CONCLUSIONS

We have statistically characterized the correlatedκ − µ
shadowed fading in this paper, in terms of PDF and MGF.
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These characterizations have been found useful for study of
the error performance and diversity performance of the MRC
scheme. The analytical results have been obtained in terms
of power series of the Hypergeometric functions and Meijer-
G function. A study of the LOS correlation on the error
performance of the MRC receiver has been performed by
using the derived analytical results. It has been deduced on
the basis of the analytical results that the error performance
of the receiver is adversely affected by the antenna correlation.
However, the diversity order of the MRC scheme remains
independent of the antenna correlation.

REFERENCES

[1] M. D. Yacoub, “Theκ−µ and theη−µ distribution,” IEEE Antennas
and Propagation Magazine, vol. 49, pp. 68–81, Feb. 2007.

[2] A. Abdi, W. Lau, M.-S. Alouini, and M. Kaveh, “A new simplemodel
for land mobile satellite channels: First and second order statistics,”
IEEE Trans. Wireless Commun., vol. 2, no. 3, pp. 519–528, May 2003.

[3] M. R. Bhatnagar and Arti M.K., “Performance analysis of AF based
hybrid satellite-terrestrial cooperative network over generalized fading
channels,”IEEE Commun. Lett., vol. 17, no. 10, pp. 1912–1915, Oct.
2013.

[4] Arti M.K. and M. R. Bhatnagar, “Beamforming and combining in hybrid
satellite-terrestrial cooperative systems,”IEEE Commun. Lett., vol. 18,
no. 3, pp. 483–486, March 2014.

[5] M. R. Bhatnagar and Arti M.K., “Performance analysis of hybrid
satellite-terrestrial FSO cooperative system,”IEEE Photon. Technol.
Lett., vol. 25, no. 22, pp. 2197–2200, Nov. 2013.

[6] Arti M.K. and M. R. Bhatnagar, “Two-way mobile satelliterelaying:
A beamforming and combining based approach,”IEEE Commun. Lett.,
vol. 18, no. 7, pp. 1187–1190, July 2014.

[7] M. R. Bhatnagar and Arti M.K., “On the closed-form performance
analysis of maximal ratio combining in Shadowed-Rician fading LMS
channels,”IEEE Commun. Lett., vol. 18, no. 1, pp. 54–57, Jan. 2014.

[8] J. F. Paris, “Statistical characterization ofκ−µ shadowed fading,”IEEE
Trans. Vehicular Technol., vol. 63, no. 2, pp. 518 – 526, Feb. 2014.

[9] G. Alfano and A. D. Maio, “Sum of squared Shadowed-Rice random
variables and its application to communication systems performance
prediction,” IEEE Trans. Wireless Commun., vol. 6, no. 10, pp. 3540–
3545, Oct. 2007.

[10] J. G. Proakis,Digital Communications, 4th ed. Singapore: McGraw-
Hill, 2001.

[11] M.-S. Alouini, A. Abdi, and M. Kaveh, “Sum of Gamma variates and
performance of wireless communication systems over Nakagami-fading
channels,”IEEE Trans. Vehicular Technol., vol. 50, no. 6, pp. 1471 –
1480, Nov. 2001.

[12] P. G. Moschopoulos, “The distribution of the sum of independent
Gamma random variables,”Ann. Inst. Statist. Math. (Part A), vol. 37,
pp. 541–544, 1985.

[13] Y. Dhungana, N. Rajatheva, and C. Tellambura, “Performance analysis
of antenna correlation on LMS-based dual-hop AF MIMO systems,”
IEEE Trans. Vehicular Technol., vol. 61, no. 8, pp. 3590–3602, Oct.
2012.

[14] A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev,Integrals and
Series, 3rd ed. New York, USA: Gordon and Breach Science Publishers,
1992, vol. 2.

[15] I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and
Products, 6th ed. San Diego, CA, USA: Academic Press, 2000.

[16] V. S. Adamchik and O. Marichev, “The algorithm for calculating
integrals of hypergeometric type function and its realization in reduce
system,” in Proc. International Symposium on Symbolic Algebraic
Computation (ISSAC’90), Tokyo, Japan, Aug. 1990, pp. 212–224.

[17] M. McKay, A. Zanella, I. Collings, and M. Chiani, “Errorprobability and
SINR analysis of optimum combining in Rician fading,”IEEE Trans.
Commun., vol. 57, no. 3, pp. 676–687, March 2009.

[18] A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev,Integrals and
Series, 1st ed. New York, USA: Gordon and Breach Science Publishers,
1990, vol. 3.

[19] M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions.
New York, USA: Dover Publications, Inc., 1972.

[20] J. Lu, K. B. Letaief, J. C.-I. Chuang, and M. L. Liou, “M -PSK and
M -QAM BER computation using signal-space concepts,”IEEE Trans.
Commun., vol. 47, no. 2, pp. 181–184, Feb. 1999.

[21] M. R. Bhatnagar, “Performance analysis of a path selection scheme in
multi-hop decode-and-forward protocol,”IEEE Commun. Lett., vol. 16,
no. 12, pp. 1980–1983, Dec. 2012.

[22] Arti M.K. and M. R. Bhatnagar, “Performance analysis ofhop-by-hop
beamforming and combining in DF MIMO relay system over Nakagami-
m fading channels,”IEEE Commun. Lett., vol. 17, no. 11, pp. 2080–
2083, Nov. 2013.


