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Abstract—In this paper, we study the statistical character- is better than that attained by the conventional distrdnsti
ization of the sum of the squaredx — p shadowed random mentioned before [1, Section V].
variables with correlated shadowing components. The problaility The Shadowed-Rician channel model is used for modeling
density function (PDF) of this sum is obtained in the form h S links b it vields sianifi v |
of a power series. The derived PDF is utilized for obtaining t_ e LMS links because it yields significantly less computa-
the performance results of the maximal ratio combining (MRC)  tional burden as compared to other LMS channel models [2]-
scheme over correlateds — p shadowed fading channels. First, [7]. This model shows nice fitting for the experimental chainn
we derive the moment generating function (MGF) of the receied measurements under different shadowing conditions in LMS
signal-to-noise ratio of the MRC receiver. By using the dered links [2]. Here shadowing indicates that the LOS component
MGF expression, the analytical diversity order is obtained it f th .h | d hadowi hich i deled b
is deduced on the basis of this analysis that the diversity of © the ¢ an.ne un ergoeg shadowing whic '.S mo ee_‘ y
the MRC receiver over correlated ~ — . shadowed channels @ Nakagamim random variable (RV). The multipath fading
depends upon the number of diversity branches ang. parameter. is characterized by the Rician fading in Shadowed-Rician
Further, the analytical average bit error rate of the MRC scheme fading model. Since the — ;. distribution includes the Rician
is also derived, which is applicable for M-PSK and M-QAM  gistrinytion as a particular case, a natural generalinaiiche
constellations. The Shannon capacity of the correlated: — p distributi be obtained b had fadi
shadowed channels is also derived in the form of the Meijer-G + — # distribution can be obtained by a LOS shadow fading
function. model with the same multipath/shadowing scheme used in the

Index Terms—Antenna correlation, x — y fading, Land mo- Shadowed-Rician model [8]. The statistical characteiopat
bile satellite (LMS) channel, maximal ratio combining (MRC), Of # — ¢ shadowed fading is performed and analytical perfor-
Shadowed-Rician fading. mance results for the selection combining and maximal ratio
combining (MRC) are derived under independent LOS com-
o . . _ ponents in [8]. However, in the satellite communications th

Fading is a well investigated propagation phenomen@ms components associated with different spatial dimerssio
which has been researched extensively over the years. Hi€ not only dominating but are correlated with each other.
fading counts on several factors like the environmentterat The sum ofcorrelated squared Shadowed-Rician RVs and its
ers, rain, line-of-sight (LOS), snow, the propagation éreacy, application to communication systems performance priedict
etc. The fading severity ranges from very mild to extremelg studied in [9].
severe, depending upon the propagation medium. A largen this paper, we study the correlatee- 1 shadowed fading
number of models have been proposed in the literature thgf diversity reception technique. We statistically clwiesize
reasonably well describe such a phenomenon in its variofe sum of correlated squared— ;. shadowed RVs in terms
aspects. Rayleigh, Hoyt, Weibull, Rice, Nakagami-and of probability density function (PDF) and moment genemtin
Shadowed-Rician are the best known fading distributiomg vefunction (MGF). By using these characterizations, the rerro
Wldely utilized for the theoretical studies of various ptraal performance of the MRC scheme is ana|yzed over the corre-
wireless communication systems. In [1f, — n fading is |ateds —  shadowed fading channels. Specifically, we derive
proposed to allow flexibility to model the wireless channelge average symbol error rate (SER) and average bit errmr rat
fading fluctuations. The — . distribution is fully characterized (BER) of the MRC receiver. We also derive the analytical
in terms of measurable physical parameters. For many \88elgjiversity order of the scheme and show that its diversity is
communication systems, LOS is a dominating factor whiGRdependent of the antenna correlations. Moreover, we fiad t

cannot be ignored. Moreover, in some wireless communigatigrgodic capacity of the correlated— x shadowed channels,
systems, the LOS is not a deterministic parameter but {{fder MRC.

strength randomly fluctuates over the time, e.g., in landitaob
satellite (LMS) links. For a general LOS propagation scenar
the k — p fading distribution provides a general multipath
model. Thex — p fading model is applicable to some of the
well studied classical fading models like one-sided Gaussi The x — y distribution is a general model that describes
Rayleigh, Nakagamir, and Rician fading. To be more pre-various kinds of fading encompassing from Rayleigh to
cise, the fitting of the:— . distribution to the experimental dataNakagamis fading; it is useful for describing the small-
o _ y scale variations along with the LOS conditions. The- u
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each cluster, the phases of the scattered multipath signals (4), in (3), we get the conditional PDF of:
random and have the same temporal delays. Moreover, a domi-
nant component of arbitrary power is present in each cludter p(l+m) 20 w1
. . . . . f'y |19 ( ) v 2
the multipath waves having identical power. It is assumed th He
the intercluster delay-time spreads are relatively larthen

= 3 qHi—1
TR Y
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the delay times of the intracluster scattered waves [1]. The X e pm

x — p shadowed fading proposed in [8] is more general than k(1 + Ky)y

the x — 1 fading proposed in [1]. A general — ;. shadowed X Ty 2w | ———— . (5
fading model assumes that the dominant components of all

clusters can randomly fluctuate due to the shadowing. Let us now define the sum df squareds — . shadowed RVs
Let us consider & — . shadowed distributed RX;, which g5

is given by [8] L
Y £33 v (6)
=1

ng
= Z {Win+ Vi) + (Viaig + jhibi)}, (1)
; We encounter this sum in the diversity reception schemes

whereW; ; andV;; are mutually independent zero mean Gaugke MRC. From (2) and (6), it can be inferred that is a
sian RVs witho? variance;n; is a natural number, ; andb, ; m of23°,~, ; non-central Chi-squared RVs. Hence, the
are real numbers; ang} is a Nakagami=n distributed RV with cond|t|onal PDF ofY” will be given by [10]

shaping parameten. and spreading paramet@y = 1. In (1), $L n—1
Wi+ j Vi, which is circularly symmetric complex Gaussian 1 y 2

RV, represents the scattered component ofittfecluster. On Frion,..oy) = Z 2 (a2, + 02,)]

the other hand;a;; + j9;b;; denotes the dominating LOS =1 =100 T T

component witha? l+b ', power. The common shadowing fluc-

A z[zi:wai,wbi,m

xe 202

tuation of all clusters is represented by the power-nomzadli 215 5

RV ¥;; for deterministic LOS casea}; = 1. oI \/Zl el ( a;it b z)] o 7
From (1), it can be easily shown that the powerXof i.e., izl 02 gl

Y, = X} is given by [8]
For the diversity reception scheme, the instantaneous SNR i
Z{ 1+ 0iai)? + (Vi +19lb1__’l)2}_ ) Qef|ned asy = yy/E[Y ] [8], where the average2valge of,
i.e., E[Y] is given by> [ S (a2 +02) +20% 371 .
By employing the substitution of vanables given in (4) and

The average value df; is E[Y)] = 2n,0° + 3212, (a, + b)) using the method of transformation of RVs, we get the
as seen from (2); here the expectation is denotedZbY. conditional PDF ofy as

It can be seen from (2) that conditioned @p, Y; is sum

of 2n; independent_ non—central Chi—_squared distributed RVs; (ZlL (1t m))ZLL:12m+1
therefore, the conditional PDF &f will be [10] pr ) ( )= ST s
- Y (i ) T
2 L — Lou K1)y
o) = 5o | sreor e Sl Sl o gy,
AT 2 192le (%214'(’121) .
RS 2 CARL XIsr i (Zﬁluma <Zm(1 W)ﬂ . (8)
=1
ﬁl Z’L 1(a1l+b1l) ~
X o 2 VY |, (3) In (8), let us use another substitutidf;x; = 97 and have
L SE L+t
wherel,(-) is the modified Bessel function of the first kind. o202 (7) = (i (4 k)™ 2
Let us now define the following substitution variables: Tt zl Lt ok, 02)21 1l
il ZLL:1 Hp—1 _21:1 #lf(lJr'w)'v _Z L 52
Z(azz.l +bil) = 20'2I€1/Ll X7y 2 e 5 =1
=1 L L 5
w2 @ <Dy e? <Zﬁ?> <Z‘”(l : “”) Vi@
1=1 I=1

Further, let us also define a new Ry = 7Y;/E|Y;], denoting

the instantaneous signal-to-noise ratio (SNR) for the adigrin (9), Y_/-, ¥ denotes the sum df Gamma distributed RVs;
received under thes — u shadowed fading withy being the shape parameter@f is m and scale parameter igr; /m.
the average SNR. By using the method of transformation ofLet us assume that the dominating components ofxthe
RVs [10] along with substituting the new variables given im shadowed RVs, i.ea?l2 are correlated withp;; correlation



coefficient given by
0.9r-

Cov(92, 92
pZ] = ij = ( : J) B O S ng S 17 Z,] = 1, 7IJ osr
Var(ﬁf)Var(ﬁ?) o7t
} (10) 0.6
Then the PDF o7 = Zle ¥? can be expressed as [11] G
L m oo 1 S
)\1 5kZLm+k 18 z/M 0.4]
e =T1(E) L2 ue). @y
11;[1 Al k; AEMFRD (Lm 4 k) 03
0.2
where \y = min; {\;}, {/\l}lL:1 are the eigenvalues of tl oal /
matrix DC, D being a diagonal matrix with the entri -2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
{mlil/m}le and C is the L x L positive definite matri 02 04 06 08 1 12 14 16 18 2
defined by Fig. 1. Analytical — and simulated> PDFs forx; = 2, yu; = 2, m =
1 JPz - /P 2,4,6, L = 2, and p;; = 0.7/"71,
VP21 1 <o \/paL and; Fy(a; b; z) is the confluent Hypergeometric function [15].
(o= . . . . , (12) The derived expression of the PDF (16) is utilized for ptugti
. . . . the analytical values of the PDF in Fig. 1 fef = 2, yu; =
PL1 e 1 Lol 2, m = 2,4,6, L = 2, and exponential correlatiop;; =

0.7"=71, In addition, the simulated PDF is also shown for these
parameter values in the figure. It can be seen from the figure
k+1 [ L that the simulated and analytical PDFs are closely matched.
_mo Z Z 1— ﬁ 5 ., k=0,1,.. (13) This justifies the correctness of the derived PDF. Further, i
E+1 s k+1—i> 5 Ly e )
=1 | =1 J can be seen from the figure that the PDF plot becomes peaky
_ o with increasing value ofn.
with §o = 1. Note that the PDF of (11) is in the form

of a power series. IF is shown in [.11.]’ [12] that_ it is . sumof 1.1.D. Sguared « — . Shadowed Random Variables

converging power series. Further, a similar correlatiordeto )

is also considered for the Shadowed-Rician LMS channels!f &l squaredx — . shadowed RVs are independent and
ntically distributed (i.i.d.), them; = x and y; = pu. From

in [9], [13], where the shadowing components are correlat ) o
and multipath components are uncorrelated. (10)-(13), it can be found that in this cage; = p;; = 0 and
If ¢ — ZlL w andn = ZlL (1 + ), then the the matrix DC contains uniform eigenvaluesy = xu/m;
- =1 - =1 '

conditional PDF ofy can be very compactly represented byhenceﬁk =0, vk > 0. After_ ;ubstituting these values in (16),
we get the PDF of sum of i.i.d. squared- ;. shadowed RVs:

fen) = Lol e ( %f) 4 fm:(LM(HR))LM( - )me-l

n
57

and the coefficients; can be obtained recursively as

Opy1 =

v 5 m+rp)  T(Lp)
For finding the unconditional PDF of,, (14) should be _LnGtw) Lep?(1 + K)y
averaged upot; therefore, from (11) and (14), we get xem T ¥ Tk | Lms Ly mtrp) ) (18)
n 1 It can be easily verified from (18) that fat = 1, we get
() =A <—> 2l Te A ZDk the PDF of the square of a single— p shadowed RV which
7 matches with the PDF given in [8, Eq. (4)].
o S Lmtk—5— l —z 1+— m
></0 ’ e <\/ B \/E> dz, (15) I1l. PERFORMANCEANALYSIS OF THE MRC DIVERSITY
SYSTEM

where A = [[ 1( 1) and D, = )\LerkF Lm+8 The A system and Channel Model
2.

integral in (15) can be solved by using [14, Eq. (2.15.5.4)], Consider anL-branch MRC at the receiver, where each
and the unconditional PDF of can be written as branch experiences the correlated— 1 shadowed fading

n\¢ b with an instantaneous SNR;, I = 1,.., L; the correlation
fr()=A (t) v lem Y Dy coefficient is given in (10). The received instantaneous SNR
7 =0 of the MRC receiver, i.e.y = Zlew is characterized in
x1Fy (Lm + k;e; L (16) (16).

B. Moment Generating Function of the Received SNR
} 5 ( 1 )(Lerk) The MGF of the received SNR is expressed as

D= o U5, a4 M, (5) = B o). (19)

where

A1
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Fig. 2. Analytical—o— and simulatedt SERs forx; = 5, u; = 2, m =2, Fig. 3. Analytical SER versus SNR plots fe = 5, u; = 2, m = 2.5,

pij = 0.51"731 [, = 2,3 4,5, and QPSK constellation. pij = pl"=9l, p=0.1,0.5,0.7,0.8,0.9, L = 3, and QPSK constellation.
From (16) and (19), the MGF of the SNR will be can also be obtained from (24) by puttidg = 1, 6z = 0,
. s k>0, N\ =ku/m, e= Ly, andny = Lu(l + k).
M, (s) = A (ﬂ) ZD’C '_I'r_]e SER of the scheme fM—PSK constgllatmn can be
) = efficiently calculated by employing the following relati¢tv,
oo ) Eqg. (10)]:
X / ’76_167(S+%)71F1 (Lm + ks € Ll)dv.(ZO) 5
0 ~(1+ L
7 ( * ’\1) Prypsk =~ Zﬁpr (o), (25)
The following relations can be employed in (20): p=1
ny Whereﬁl = 9@[/(27‘1’)— 1/6, ﬂg = 1/4, [‘33 = 9@[/(2#) — 1/4,
1 (Lm+ k; € — 1 ) a1 = gupsk, @2 = 4gupsi/3, az = gupsk/sin*(Ou),
7(14_}\_1) gMpSK:SiTL2(7T/M), and@M: (M—l)W/M

1= L —k The analytical SER for; = 5, 1y = 2, m = 2, p;; =
01 . ) (21) 0,591, L = 2,3,4,5, and QPSK constellation is plotted in
’ Fig. 2. The simulated SER versus SNR plots are also shown for
the same parameters in the figure. The simulated SER values
are obtained by using0” channel realizations. The simulated
(542 10 n. . SER closely follows the analytical SER values at all SNR
€ T =Gor | (s+ 5)’7 0/ (22)  values considered in the figure. Further, the performance of
the MRC receiver improves with increasing value of antennas

whereGI:"(-| ") is the Meijer-G function [15, Eq. (9.301)]. as seen from the figure.

=Y i 1 _
T (Lm + k) (14 4)

and

After substitution of these relations, we get The effect of correlation parameteron the SER perfor-
. s - mance of the MRC receiver is shown in Fig. 3 fer = 5,
M (s) = A (g) S Dy I (e) / et o= 2,m =25 py = plIl p=01050708,0.9,
V) = T'(Lm+k) J, L = 3, and QPSK constellation. It can be seen from the figure

that the receiver error performance degrades with inangasi

1—Lm— k) d~.(23) value of the correlation coefficient.

G110 n
X 01<(5+7)”Y 0.1—¢

. GB( -
0) 3 (1 + %1)
. Diversity Order Calculati
The integral in (23) can be solved by using [16, Eq. (21)C]: |ver§| y Lrder Larcuanon .
By using the Slater’s theorem [18, Eq. (8.2.2.3)] which

and we get * - - :
represents the Meijer-G function as a finite series of the
‘e = T ¢ Hypergeometric function, it can be shown that
=4 (L) S Dt (12) voerg
5 (Lm + k) g 1—Lm—k,1—e>

k=0 G12< -
1—Lm—k,1—e>. (24) 2 ’7(14—%)(54—%) 0,1—¢

—-n
xG%S(
1+ ) (s+2 -1
T ) -
The MGF for i.i.d. case can be easily calculated by using (18) = I'(Lm +k)2Fy| Lm +k, € ¢; —7——~ | , (26)
and method given above. Alternatively, the MGF for i.i.dsea 7 (1 + A_l)

0,1—¢€




0 TABLE |

10
E(\ VALUES OF (s, Tas, AND ap FOR DIFFERENT CONSTELLATIONS
S Constellation Cm ™ ap
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10" \;(‘\\ B x\\)( o feo - W max (T, ) sin A
AN ! .
X J X
*\\ X
o X X .
& Ux . D. Average BER Calculation

-10 b . . .

0y L=30=3"0x = g . 7 By using the series representation of the confluent Hyper-
X » geometric function:
X 8 o0 (a)
n
H x VFPi(asbe) = 0 L, (29)
1075 L=4,0=4 e n=0 \ /"
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ where(-), is the Pochhammer symbol, in (16), we get
0 5 10 15 20 25 30 35 40
SNR [dB]

Fig. 4. Analytical — o — and asymptotic- 4+ — SERs forx; = 10, y; = 1,
m =3, pi; = 0.11"7J, L. = 2,3, 4, and QPSK constellation; the asymptotic

Re=A(2) C o ettt @0
k=0 =0

ideal diversity plots are shown by x —. where ;
wherey Fi (a1, ag; b1; 2) is the Gaussian Hypergeometric func- Cix = (Lm +.k)j Ui (31)
tion [15]. From (24) and (26), the MGF of the MRC scheme ' (€);5! 5 (1 + A—ll)
can be written as ,
From the signal-space concept, the average BERMGf
1\ - n\ ¢ PSK/QAM constellation is given by [7], [20]-[22]
M,(s) = A <;> > DT (e) (s + ;) .
k=0 Pe(y) = Cu Y Q(apy/7), (32)
.. U !
xoFy | Lm+ k€6 — (1 N L) (S N ﬂ) - @n whereQ(-) is the g-function [10, Eq. (2.1.97)as, ap, and
K A ¥ Tp are modulation dependent parameters, given in Table I.

) _ ) The average BER of the considered scheme will be
For diversity calculation, let us assume thais very large,

which means that)/ (ﬁ (1 + A%) (s +2 ) is very small. Pe(3) = ACy (ﬁ)e Zbk ch A
Therefore, after observing the fact thdf; (a1, as; b1;2) — 1, 77 =0 j=0

z — 0[19] and after some other algebra, the asymptotic value TM oo .
of the MGF is given by x Z/ YTeTIQ (apy/7) dy- (33)
p=1"0
VAR ST —e By using the relatior®) (a,\/7) = (1/2)erfc(a,\/7/v2) and
M. =A(-= DT . 28 P P
2(5) (ﬁ) kz_o K (€)s (28) [14, Eq. (2.8.5.7)] in (33), we get the average BER of the
a scheme as
The diversity order of the MRC scheme ds= Zle [, as Pe(3) — A n e D > _
seen from (28). e(y) = At 5 ];) g ;Cj’k
For verifying the analytical diversity order, we have péutt ar /3 —2¢—2j

the as_ymptotic SER by using (25) ar_wd (28) in Fig. 4. The % Z (%/ ) T(e+j+1/2)
analytical SER versus SNR plots (obtained from (24) and)(25) ) (2¢ + 24) /7
are also shown in the figure. All plots are given fqr= 10, 2
w =1, m =3, pij = 01771 [ = 2,3 4, and QPSK X2l (e+j,e+j+1/2;e+j+1;—cﬂ—_)- (34)
constellation. It can be seen from the figure that the asytiepto . 7 _
SER closely overlaps with the analytical SER at high values By employing the relation:

of the SNR. Therefore, the proposed asymptotic MGF in (28F1 (e + j,e+j+1/2;e+ 5+ 1; —52—’%) = 1 for very high
is sufficiently tight at high SNR. Further, we have also @dtt value of7 in (34), we get ?
the asymptotic ideal diversity curves by using the relation

a/7°, wherea is a positive real coefficient antidenotes the Pe(5) = ACu (2) Z Dy, Z Cix

ideal diversity. The SER versus SNR performance of the MRC 7= o

receiver decays at the same rate as that of the slope of the _— V2 —2e—2j

asymptotic ideal diversity curves in all cases. The comess Z (a”/ ) C(e+j+1/2). (35)

of the diversity analysis is corroborated from the figure. = (2e+2j)Vm
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Fig. 5. Analytical — o — and simulatedt BERs forx; = 2, 4y = 2, Fig. 6. Capacity plots fok; = 2, y; = 2, m = 1.2, p;; = 0.5/"=3l, and
m =21, p;; = 0.21"73, L =23 4,5 6, and 16-QAM constellation. L = 2,3 obtained by using (42)— and (38)o .

It can be seen from (31) that; ;. varies inversely withy/. By using the relations:

Therefore, for the diversity calculationwe should sej = 0.

By settingj = 0 andp = 1 in (35), we get the asymptotic e~ A = th)? <ﬁ7 ) (39)
BER of the scheme: 7|0

o AT(e+1/2) [ - ¢ and
Pe(y) = 2ulle L 2) (Z Dk> (Z). e .
2ev/7 (a1/V2)" \iZo 7 In(1+7) =63, ) (40)
It is confirmed from (36) that the diversity order of the MRC ’
receiver ise, as shown in Subsection III.C. where Ir(+) is the natural logarithm, and (22) and (30), in (38),
Under the condition that: being an integer anfim+k& > ¢, we get
the Hypergeometric function in (16) can be representeden th A € oo oo
form of a finite series by using the Kummer’s transform [19] C(H) = — <Q> ZDk ZCj k
as In2 \ ¥ P — "
=0 =0
B (Dm ke — DL = o7 () < [reai( 2] )6t ( o)) ) @
ol (1 + A%) 0 7|0 L0
Lt k—e J Employing [16, Eq. (21)] in (41), we have
" Z (Lm+k —¢)! 7y (37) e - »
—e— i)il(e), \ - : - o U]
= (Im—e=5)lle); \ 5 (1 T x—ﬂ) CH) =3 > Dpd Cix (;)
k=0 j=0
Using (37), the BER can be calculated in the form of a single 11— e i
power series employing the method stated before. xG33 <1 T ¢ j). (42)
The analytical and simulated BER versus SNR plots for n 1,0

Ri= 2, m =2, m=21,p; =027, L =234,56, |nFig. 6, the analytical average capacity of the MRC scheme
and 16-QAM constellation are shown in Fig. 5. The simulatgg plotted fors; = 2, uy = 2, m = 1.2, p;; = 0.5/l
BER values are obtained by usin@” channel realizations. gnd 1, — 2,3 by using (42). Moreover, the plots of the
The C|OseneSS Of the analytical and Simulated BER plotsdﬁpacny obtained by numerical integration of (38) are Fd'ed
evident from the figure. Moreover, the performance of thg the figure to verify the validity of the proposed capacity
MRC scheme is improved with increasing value of receiMgsults of (42). It can be seen from the figure that there
antennas, as seen from Fig. 5. is a significant improvement in the average capacity of the
correlateds — i shadowed channels with increasing number
E. Ergodic Capacity Analysis of the spatial dimension. For example, at SNR=10 dB there is
30% increment in the average capacity by using three antenna

The average capacity (in bits/sec/Hz) of the scheme is givgg compared to the two antennas case

by
O(”_Y):/ log, (1 +7) fy(v)dy. (38) IV. CONCLUSIONS
0

We have statistically characterized the correlated- p
1The diversity order depends upon the lowest power of the SNR. shadowed fading in this paper, in terms of PDF and MGF.



These characterizations have been found useful for study[zf J. Lu, K. B. Letaief, J. C.-l. Chuang, and M. L. LiouM-PSK and
the error performance and diversity performance of the MRC -QAM BER computation using signal-space conceptsEE Trans.

h Th \vtical Its h b btained in t Commun., vol. 47, no. 2, pp. 181-184, Feb. 1999.
scheme. € analylical results have been obtained In ter M. R. Bhatnagar, “Performance analysis of a path sielecscheme in

of power series of the Hypergeometric functions and Meijer-  multi-hop decode-and-forward protocol EEE Commun. Lett., vol. 16,
G function. A study of the LOS correlation on the erroL no. 12, pp. 1980-1983, Dec. 2012.

. 22] Arti M.K. and M. R. Bhatnagar, “Performance analysishaip-by-hop
performance of the MRC receiver has been performed y beamforming and combining in DF MIMO relay system over Nakag

using the derived analytical results. It has been deduced on m fading channels,21JEEE Commun. Lett., vol. 17, no. 11, pp. 2080-
the basis of the analytical results that the error perfoaaan 2083, Nov. 2013.

of the receiver is adversely affected by the antenna caivela

However, the diversity order of the MRC scheme remains

independent of the antenna correlation.
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